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Abstract
We present a model of an externally driven acoustic metamaterial constituted of
a nonlinear parallel array of coupled acoustic waveguides that supports logical
phi-bits, classical analogues of quantum bits (qubit). Descriptions of correlated
multiple phi-bit systems emphasize the importance of representations of phi-
bit and multiple phi-bit vector states within the context of their corresponding
Hilbert space. Experimental data are used to demonstrate the realization of the
single phi-bit Hadamard gate and the phase shift gate. A three phi-bit system
is also used to illustrate the development of multiple phi-bit gates as well as
a simple quantum-like algorithm. These demonstrations set the stage for the
implementation of a digital quantum analogue computing platform based on
acoustic metamaterial that can implement quantum-like gates and may offer
promise as an efficient platform for the simulation of materials.
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1. Introduction

Digital quantum computers are starting to provide efficient platforms for the simulation of
materials and in particular quantummaterials [1–4]. Digital quantum computers are constituted
of a set of quantum bits (qubits) on which one can operate through a universal set of quantum
logic gates. These gates are reversible unitary operations that act on a state or a superposition of
states of qubits producing a predictable and eventually measurable output. Any operation can
be expressed as a finite sequence of gates forming a set of universal quantum gates [5]. Among
such logic gates are the single qubit Hadamard gate and the phase shift gate. Examples of two
qubit logic gates include the controlled NOT (CNOT) gate. Here, we focus on digital comput-
ing platforms in contrast to quantum simulators which exploit the isomorphism between the
Hamiltonian of the simulator and that of the quantum system to be simulated [6].

The advantage of qubits over conventional bits results from their quantum wave func-
tions which are probability amplitudes and can support coherent superpositions of states.
For instance, the state of a single qubit can be in a superposition of state ψ = α |0⟩ +β |1⟩ .
Here, the kets |0⟩ and |1⟩ form the basis for expending the wave function ψ. The coeffi-
cients α and β are complex quantities. The wave function ψ can therefore be represented as a
complex state vector in a Hilbert space whose basis is {|0⟩ , |1⟩} with components α and β.
Coherence results from the phase relation between these two coefficients. Unitary operations
on a single qubit are effectively rotations of the state vector in the Hilbert space. The wave
function of a two partite quantum system composed of two qubits can also be represented as
a vector in a 22-dimensional Hilbert space tensor product of the 2D Hilbert spaces of the con-
stitutive qubits. The basis vectors of the composite Hilbert space {|0⟩|0⟩, |0⟩|1⟩,|1⟩|0⟩, |1⟩|1⟩}
are tensor products of the basis vectors of the individual qubits. The components of the two-
qubit state vector are phase related and the two qubits wave function forms a coherent super-
position. Unitary operations on two qubit wave functions are rotations in their 4D Hilbert
space. This concept easily generalizes to N> 2 qubits with their Hilbert space scaling expo-
nentially as 2N. Quantum computing is therefore essentially a phase computing approach; it
exploits the possibility of realizing and rotating coherent superpositions of states of multi-
partite systems with complex amplitudes that are represented as vectors in large exponentially
scaling Hilbert spaces. In the Hilbert space of multipartite quantum systems, some vector states
cannot be factored into tensor products of subsystems composed of small number of qubits.
These states are said to be non-separable. Non-separability is at the core of quantum entangle-
ment, a form of quantum correlation leading to the interdependency of states of individual
qubits in a multipartite system. This leads to the parallelism of quantum computing since
an operation affecting one qubit may then affect all other qubits simultaneously. However,
since the quantum wave function is a probability amplitude, quantum computing with mul-
tiple qubits suffers from the fragility of quantum superpositions of states against perturbations
or undesired interactions, i.e. it suffers from the collapse of the wave function upon a perturb-
ation such as a measurement. To overcome the drawback of qubits in quantum computing,
we have recently introduced the notion of ‘logical phi-bit’ [7]. A logical phi-bit is a two-state
degree of freedom of a nonlinear acoustic wave supported by a metamaterial, which can be in a
coherent superposition of states with complex amplitude coefficients and hence realizes a qubit
classical analogue. The wave function of a logical phi-bit is an amplitude and does not suf-
fer from quantum fragility. We have demonstrated experimentally the exponential complexity
and scalability of the Hilbert space of states of multiple phi-bits and also the non-separability
of coherent superpositions to reveal their applicability to quantum information science [7].
Since the CNOT gate is one of the keys to unlock the power of quantum computing, we
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demonstrated experimentally the systematic and predictable operation of a two phi-bit CNOT
gate [8].

In this paper, we present a model of an externally driven acoustic metamaterial constituted
of a nonlinear parallel array of coupled acoustic waveguides that supports logical phi-bits. We
describe a logical phi-bit as a two-level system with complex amplitudes analogous to a qubit.
We also unravel the correlations between phi-bits and the description of multiple phi-bit sys-
tems within the context of exponentially scaling Hilbert spaces.We also emphasize the import-
ance of representation of phi-bit and multiple phi-bit vector states as the result of changes in
the Hilbert space basis. Experimental data are used to demonstrate the effect of representations
in the realization of the single phi-bit Hadamard gate and the phase shift gate. A three phi-bit
system is also used to illustrate the development of multiple phi-bit gates as well as a simple
quantum-like algorithm. This work sets the stage for the implementation of a digital quantum
analogue computing platform based on acoustic metamaterial that can implement quantum-
like gates and may offer promise as an efficient platform for the simulation of materials.

2. Model of acoustic metamaterials quantum analogue computing platform

2.1. Logical Phi-bit in nonlinearly coupled array of elastic waveguides

The acoustic metamaterial is composed of three one-dimensional (1D) elastic waveguides
coupled elastically along their length (figure 1). Each waveguide is driven externally at its
end at the position x= 0. x represents the position along the waveguides.

The nonlinear elastic wave equation in the long wavelength limit is given by:[(
∂2

∂t2
−β2 ∂

2

∂x2
+µ

∂

∂t

)
↔
I +α2↔

M

]
⇀

U+ ε
⇀

G
(

⇀

U
)

=
⇀

F1δx=0 cosω1t+
⇀

F2δx=0 cosω2t. (1)

The parameter β is proportional to the speed of sound along the waveguides. The para-
meter µ represents damping.

↔
I is the identity matrix. αmeasures the elastic coupling strength

between waveguides.
↔
M is the matrix characterizing the elastic coupling between the three

waveguides. In the case of a planar array of waveguides, the coupling matrix takes the form:

↔
M=

 1 −1 0
−1 2 −1
0 −1 1

 (2)

where
⇀

F1 and
⇀

F2 are 3 ×1 vectors representing the external driving harmonic forces for two
different driving angular frequencies ω1 = 2πf1 and ω2 = 2πf2.

The displacement in waveguides 1, 2 and 3 is represented by the 3× 1 vector
⇀

U= (U1,U2,U3). ε
⇀

G(
⇀

U) is a nonlinear term with strength ε. In this model we consider a
simple quadratic nonlinearity which depends on the difference in the displacement between
adjacent waveguides:

⇀

G

(
⇀

U

)
=

−

(U1 −U2)
2

(U1 −U2)
2
+(U2 −U3)

2

−(U2 −U3)
2

 . (3)
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Figure 1. Schematic of the metamaterial composed of a parallel array of three coupled
waveguides.

To solve equation (1) we use perturbation theory. For small ε, the displacement field is
initially expanded to first order in perturbation:

U=
⇀

U(0) + ε
⇀

U(1). (4)

This expansion yields equation (1) to zeroth order:[(
∂2

∂t2
−β2 ∂

2

∂x2
+µ

∂

∂t

)
↔
I +α2↔

M

]
⇀

U(0) =
⇀

F1δx=0e
iω1t+

⇀

F2δx=0e
iω2t. (5)

We can solve this equation by defining by λn and
⇀

En with n = 1, 2, 3, the eigen values

and eigen vectors of the
↔
M matrix, where

⇀

En represent the spatial eigen modes across the
waveguides with components En,j, j= 1,2,3. We write:

↔
M

⇀

En = λn
↔
I

⇀

En. (6)

The first eigen vector for which λ1 = 0, is
⇀

ET11 =
1√
3
(1,1,1). The other two eigen modes

have eigen values λ2 = 1, and λ3 = 3, and are given by:

⇀

E2 =

 E2,1

E2,2

E2,3

=
1√
2

 1
0
−1

 , ⇀

E3 =

 E3,1

E3,2

E3,3

=
1√
6

 1
−2
1

 .
We can now expand the displacement vector on the complete orthonormal basis, {

⇀

En}:
⇀

U(0) =
∑
n

u(0)n

⇀

En. (7)

Since equation (5) is linear, we focus on an external force with a single driving frequency,
⇀

Fl with l = 1 or 2. We seek solutions of the simplified equation:[(
∂2

∂t2
−β2 ∂

2

∂x2
+µ

∂

∂t

)
↔
I +α2↔

M

]
⇀

U(0)
l =

⇀

Flδx=0e
iωlt. (8)

The 3× 1 vector,
⇀

Fl, is also expanded on the basis {
⇀

En}:
⇀

Fl =
∑
n

F(l)
n

⇀

En. (9)

Inserting equations (6)–(8) into equation (5) yields a set of three equations of the form:(
∂2

∂t2
−β2 ∂

2

∂x2
+µ

∂

∂t
+α2λn

)
u(0)n,l = F(l)

n δx=0e
iωlt. (10)

The coefficients u(0)n,l are now expanded on plane waves which follow the harmonic driving
force:

u(0)n,l =
∑
kn

An,l (kn)e
iknxeiωlt. (11)
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Since the waveguides are finite in length, the wave numbers, kn, form a discrete set.
Equation (10) is now evaluated at x= 0 leading to the driven complex amplitudes:

An,l (kn) =
F(l)
n

ω2
0,n (kn)−ω2

l + iµωl
(12)

where we define the characteristic frequency

ω2
0,n (kn) = β2k2n+α2λn. (13)

To zeroth order the displacement field is found to be

⇀

U(0)
l =

3∑
n=1

⇀

En
∑
kn

An,l (kn)e
iknxeiωlt (14)

with the complex resonant amplitudes given by equation (12). We note that these amplitudes
are complex quantities as a result of the dissipative term iµω. Rewriting the linear displacement
field for driving forces with two different frequencies, one gets:

⇀

U(0) =
⇀

U(0)
1 +

⇀

U(0)
2

=
3∑

n=1

⇀

En

∑
kn

An,1 (kn)e
iknxeiω1t+

∑
k ′n

An,2 (k
′
n)e

ik ′n xeiω2t

 . (15)

Here, we have used two independent summation indices for the wavenumber, namely kn
and k ′n.

Now that we have the linear displacement field, we can solve the wave equation to first order
in perturbation since the zeroth order displacement drives the system with mixed frequencies.

This equation takes the form:[(
∂2

∂t2
−β2 ∂

2

∂x2
+µ

∂

∂t

)
↔
I +α2↔

M

]
⇀

U(1) +
⇀

G(
⇀

U(0)) = 0. (16)

Let us introduce the quantities Sn,l =
∑

kn
An,l (kn)eiknx. The first component of the quadratic

nonlinear term is:

{(
U(0)

1 −U(0)
2

)2
}

ω1,ω2

=

(
3∑

n=1

(En,1 −En,2)
(
Sn,l=1e

iω1t+ Sn,l=2e
iω2t
))2

. (17)

We focus on the terms which mix the two different frequencies and reduce equation (17) to

(
U(0)

1 −U(0)
2

)2
=

3∑
n=1

3∑
m=1

g1,2n,mSn,l=1Sm,l=2e
i(ω1+ω2)t (18)

where g1,2n,m = 2(En,1 −En,2)(Em,1 −Em,2) .

5
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In equation (18), there are nine {n,m} terms contributing to
⇀

G(
⇀

U(0)) taking the form of

3× 1 vectors (
g1,2n,m

−g1,2n,m+ g2,3n,m
−g2,3n,m

). Each of these vectors can be expanded on the complete basis

{
⇀

En} in the form
∑
p
g̃(n,m)p

⇀

Ep.

This allows use to express the nonlinear term as:

⇀

G

(
⇀

U(0)

)
=
∑
p

3∑
n=1

3∑
m=1

g̃(n,m)p

⇀

EpSn,l=1Sm,l=2e
i(ω1+ω2)t. (19)

Similarly, we also expand the first order displacement field for each {n,m} term on {
⇀

En}:
⇀

U(1) (n,m) =
∑

p u
(1)
p (n,m)

⇀

Ep, enabling us to write:

⇀

U(1) =
∑
p

3∑
n=1

3∑
m=1

u(1)p (n,m)
⇀

EpSn,l=1Sm,l=2e
i(ω1+ω2)t. (20)

Inserting these expansions into equation (16), the first order equations of motion reduce to
three equations with p = 1, 2, 3:(

−i(ω1 +ω2)
2 +β2(kn+ km)

2 + iµ(ω1 +ω2)+α2λp
)
u(1)p (n,m)+ g̃(n,m)p = 0 (21)

which yield the complex resonant amplitudes

u(1)p (n,m) =
−g̃(n,m)p(

−(ω1 +ω2)
2
+β2(kn+ km)

2
+ iµ(ω1 +ω2)+α2λp

) . (22)

The complete nonlinear first order displacement field for the sum of frequencies ω1 +ω2

evaluated at one end of the waveguide array (say x = 0), reads

⇀

U(1) =
∑
p

3∑
n=1

3∑
m=1

u(1)p (n,m)
⇀

Ep
∑
kn

∑
km

An,1 (kn)Am,2 (km)e
i(ω1+ω2)t. (23)

The nonlinear displacement is a coherent superposition of states in the basis {
⇀

En} with
complex coefficients. These coefficients are product of Lorentzian-type resonances.

This displacement field can be expressed in the compact form:

⇀

U(1) =

 C1eiφ1

C2eiφ2

C3eiφ3

ei(ω1+ω2)t. (24)

The phases φ1, φ2 and φ3 arise from the complex nature of the resonant amplitudes,
u(1)p (n,m), An,1 (kn) and Am,2 (km). Equation (24) can be reformulated by normalization and
considering two phase differences only:

⇀

U(1) =

 1
Ĉ2eiφ12

Ĉ3eiφ13

ei(ω1+ω2)t (25)
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where Ĉ2 and Ĉ3 are normalized to C1 and φ12 = φ2 −φ1 and φ13 = φ3 −φ1. We reduce this
expression by dropping direct reference to waveguide 1. We now define the displacement field
at the end of the waveguides by the renormalized 2× 1 vector:

⇀

U(1) =

(
ĉ2eiφ12

ĉ3eiφ13

)
ei(ω1+ω2)t. (26)

The mixed frequency, ω1 +ω2, serves as a good quantum number for defining a logical phi-
bit. A logical phi-bit in a nonlinear acoustic metamaterial composed of coupled 1Dwaveguides
is defined as a two-state degree of freedom of an elastic wave, which can be in a coherent
superposition of states with complex amplitude coefficients. Phi-bit states live on the Bloch
sphere. A logical phi-bit is therefore a classical analogue of a qubit—the critical component
of quantum computing platforms.

2.2. Generalized logical phi-bit—second order solution

In order to illustrate other logical phi-bits in the form of nonlinear modes, we consider the
expansion of the displacement field to second order in perturbation:

⇀

U=
⇀

U(0) + ε
⇀

U(1) + ε2
⇀

U(2). (27)

The second order equation takes the form:[(
∂2

∂t2
−β2 ∂

2

∂x2
+µ

∂

∂t

)
↔
I +α2↔

M

]
⇀

U(2) +
⇀

G(
⇀

U(0),
⇀

U(1)) = 0 (28)

where the components of
⇀

G(
⇀

U(0),
⇀

U(1)) are given by
2
(
U(0)

1 −U(0)
2

)(
U(1)

1 −U(1)
2

)
−2
(
U(0)

1 −U(0)
2

)(
U(1)

1 −U(1)
2

)
− 2
(
U(0)

2 −U(0)
3

)(
U(1)

2 −U(1)
3

)
2
(
U(0)

2 −U(0)
3

)(
U(1)

2 −U(1)
3

)
. The zeroth and

first order solution drive the second order equation (28). Some solutions of equation (28)
will have mixed frequencies of the type 2ω1 +ω2 or ω1 + 2ω2 and will constitute additional
logical phi-bits. Even higher order solutions or solutions of the wave equation with nonlinear-
ity going beyond the quadratic character discussed so far will produce logical phi-bits. These
logical phi-bits will appear as nonlinear peaks in the Fourier spectrum of the displacement field
of the coupled waveguide system. We therefore represent logical phi-bits in the generalized
form of a 2× 1 vector characterizing the displacement field at the end of the waveguides by:

U⃗(i) =

(
ĉ2eiφ12

ĉ3eiφ13

)
eiω

(i)t (29)

where ĉ2 and ĉ3 are normalized amplitudes and all phases are referred to that of the
waveguide 1. ω(i) = (sω1 + tω2) where s and t are integers, is the frequency of a nonlinear
mode, ‘i’, mixing the two drivers’ frequencies ω1 and ω2. Note that the complex amplitudes
ĉ2 and ĉ3 of a given phi-bit are linear combination of products of resonant amplitudes of
zeroth order solutions or other nonlinear modes. The complex amplitudes of phi-bits with
different quantum numbers ω(i) are therefore phase locked. That is, there exist a phase rela-
tion between the complex amplitudes of different phi-bits coexisting within the metamaterial.
Logical phi-bits are subsequently correlated through these phase relations. The representation

7
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of the nonlinear mode given by equation (29) is expressed in the space of the waveguides.

That is, the 2× 1 amplitude is represented on a basis

{(
1
0

)
,

(
0
1

)}
which orthogonal

unit vectors correspond to waveguides 2 and 3, respectively.

2.3. Multiple phi-bit systems and their representations

A logical phi-bit with frequency ω(i) is effectively an oscillator. An equation of motion rep-
resenting the evolution of oscillations along the positive timeline of a phi-bit oscillator may be
constructed in the form:[(

− d
dt

+ iω(i)

)
↔
I 2×2 +

↔
C(i)

2×2

]
V⃗(i) = 0. (30)

When we define a solution as V⃗(i) =

(
V(i)
1

V(i)
2

)
eiw

(i)t, one recovers the single phi-bit repres-

entation given by equation (29) when
↔
C(i)

2×2 =

(
−1 X

−X−1 1

)
with X= ĉ2eiφ12/ĉ3eiφ13 . The

eigen values of the matrix
↔
C(i)

2×2 are equal to zero and the eigen frequency w(i) is equal to the

characteristic frequency of the oscillator, ω(i). The product of functions eiw
(i)t and the eigen

vectors of
↔
C(i)

2×2 form a complete basis for the states of a phi-bit oscillator, ‘i’ thus defining the
Hilbert space, h(i), of a single phi-bit.

The equations of motion for a multipartite system composed of N independent phi-bits may
take the form: [(

− d
dt

+ iω(1) + . . .+ iω(N)

)
↔
I 2N×2N +

↔
C(1)

2×2 ⊗ . . .⊗
↔
C(N)

2×2

]
W⃗= 0. (31)

Which solutions are tensor products of single phi-bit states and given by: W⃗= U⃗(1) ⊗ . . .⊗
U⃗(N). Consequently, the tensor product of the basis vectors of single phi-bit forms a complete
basis for the states of the non-interacting multiple phi-bit system. This basis describes vector
states in a 2N dimensional Hilbert space, H. This space is the tensor product of the N Hilbert
spaces of the individual phi-bits, H= h(1) ⊗ . . .⊗ h(N). When the phi-bits interact, the tensor

product
↔
C(1)

2×2 ⊗ . . .⊗
↔
C(N)

2×2 in equation (31) is replaced by a general matrix operator
↔
C2N×2N .

However, the Hilbert space spanned by the states of the interacting phi-bit system is the same
as that of the non-interacting phi-bits. A vector state of the interacting phi-bits can then be
written as a linear combination of the basis vectors of H. The coefficient of this superposition
of states are complex quantities. A given set of basis vectors in the system’s Hilbert space
corresponds to but one of the many possible representations of the N phi-bit system.

Different representations of the N phi-bit system can be realized by applying a unitary
transformation to the basis of H. This is equivalent to a change of coordinate system. It is not
necessary to know the unitary transformation to define a new representation of the multiple
phi-bit system. In the subsequent sections, we will construct different representation of phi-bits
under the assumption that one can eventually find the corresponding unitary transformation.

We also note that the components of a 2N dimensional state vector of a multiple logical phi-
bit system are correlated. Physical manipulation of a metamaterial supporting N logical phi-
bits will result in a rotation in the system’s Hilbert space. The components of the system’s state
vector will change simultaneously in a manner prescribed by their physical phase relations.

8
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The simultaneous change of the components of the state vector in an exponentially complex
Hilbert space offers promise in achieving massively parallel processing capabilities.

3. Experimental validation of acoustic metamaterial operations

In the next section, we validate experimentally some specific and universal operations on
examples of logical phi-bit systems. The physical metamaterial is composed of an array of
three elastically coupled acoustic waveguides that produces a nonlinear displacement field
which can be partitioned in the frequency domain [7]. Each waveguide consists of a finite
length aluminum rod with circular cross section. The rods are arranged in a linear array with
a lateral gap filled with epoxy. Ultrasonic transducers drive and detect the acoustic field at
the ends of the rods. Function generators and amplifiers are used to excite two driving trans-
ducers attached to the ends of guide 1 and 2 with sinusoidal signals of same magnitude but
with frequency f1 = 62 kHz, f2 = 66 kHz. These frequencies were selected for illustrative pur-
pose. Experiments conducted with other frequencies showed qualitatively similar behavior.
The driving frequency of the first rod is modified according to f1 = 62 kHz−∆υ where the
tuning parameter ∆υ is used to navigate the logical phi-bits Hilbert space. Three detecting
transducers located at the opposite ends of the rods collect data on the displacement field.
The nonlinearity of this driven system leads to many ways of mixing the drivers’ frequencies
as was discussed in section 2.2. The measured displacement field at the detection end of the
waveguides is the Fourier sum of a large number of linear and nonlinear modes, each with its
own characteristic frequency. That is, each one of these nonlinear modes appearing as peaks
in the Fourier spectrum of the displacement field is effectively a logical phi-bit. Additional
details on this physical system can be found in [7]. Briefly, in the experiment, the oscilloscope
records the driving and response signals, which are averaged over 128 time series. We conduc-
ted numerous sets of independent experimental measurements and found that the phase had an
estimated experimental uncertainty of less than π/9. In addition, because the force transducers
are not bonded to the sample, the layer of couplant on the sample’s edges was kept constant
throughout the experiments by maintaining a constant pressure on the transducers.

3.1. Hadamard gate operation on a single logical phi-bit

Here, we focus our attention on a single phi-bit (nonlinear mode) in the Fourier spectrum of
the displacement field with frequency f1 −∆f with ∆f= | f2 − f1|. (i.e. 2f1 − f2). The phases
φ12 and φ13 as functions of tuning parameter ∆υ ∈ [0,4000]Hz in increments of 10 Hz
are reported in figure 2(a). We change the 2× 1 vector representation of this phi-bit amp-

litude from that of equation (3) to another representation defined as U⃗ ′ =

(
cos∆φ
sin∆φ

)
=(

cosS
[(
φ12 −φ0

12

)
−
(
φ13 −φ0

13

)]
sinS

[(
φ12 −φ0

12

)
−
(
φ13 −φ0

13

)] ) where φ0
12 = φ12 (∆υ = 0) and φ0

13 = φ13 (∆υ = 0)

and the factor S scales the phase difference to 2π. This representation limits the components of
U⃗ ′ to real number. The components of this amplitude vector as a function of tuning parameter
are presented in figure 2(b).

Figure 2(b) shows that the two components of U⃗ ′ vary simultaneously and coherently with
the tuning parameter. It also shows that with a proper choice of the tuning parameter one
can realize a number of pure states and superpositions of states and relate them through a

unitary transformation similar to the Hadamard gate matrix: Ha =
1√
2

(
1 1
1 −1

)
. Some of
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Figure 2. Phi-bit with frequency 2f1 − f2. (a) Phases φ12 and φ13 as functions of driving
frequency tuning parameter∆υ. (b) Components of the U⃗ ′ representation of the phi-bit
state (see text for details) as function of tuning parameter.

these states with their associated value of the tuning parameter are summarized in table 1. The

Hadamard gate operation that takes a pure state

(
1
0

)
or

(
0
1

)
into the coherent super-

positions of states

(
1
1

)
or

(
1
−1

)
can then be implemented by applying physically a

systematic and predictable change of 200 Hz in the value of the tuning parameter.
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Table 1. Examples of values of the tuning parameter ∆υ realizing U⃗ ′ states with real
components related to within a general phase of 0 or π by the Hadamard gate, Ha. Note
that the states in this table may not be normalized.

∆υ (Hz) 780 980 1100 1300

State

(
1
0

) (
1
1

) (
0
1

)
−
(

1
−1

)
Operation Ha ≡ δ (∆υ) = 200 Hz Ha ≡ δ (∆υ) = 200 Hz

So far, the Hadamard gate realized here is an initial illustration of the potential of logical
phi-bits for quantum analogue computing. Representations of phi-bit states with complex
coefficients and the capability to manipulate the relative phase between these coefficients is
described in the next subsection.

3.2. Phase gate

The phase shift gate or phase gate is a single phi-bit gate that keeps on component of a phi-bit
representation constant and phase shift the other component. The gate matrix representation

is P(φ) =

(
1 0
0 eiφ

)
, where φ is the phase shift. This is an essential operation in quantum

Fourier transforms. We consider a representation of a logical phi-bit states in the form: U⃗ ′ ′ =(
eiφ12

eiφ13

)
. We also consider four different phi-bits corresponding to nonlinear modes in the

metamaterial Fourier spectrum with the frequencies: (phi-bit I) f1 − 4∆f, (phi-bit II) 2f1 + f2 −
4∆f, (phi-bit III) 2f1 + f2 − 3∆f and (phi-bit IV) 2f1 + f2 − 2∆f. Figures 3(a)–6(a) report the
variation in phases φ12 and φ13 for the four phi-bits over the same range of tuning parameter.
In all cases φ12 (∆υ) varies only slightly compared to φ13 (∆υ). The components eiφ12 and
eiφ13 are plotted in the complex plane with states represented on the unit circle. The four phi-

bit approximate well the complete set of superpositions of states:

(
−1

eiφ13(I)

)
,

(
1

eiφ13(II)

)
,(

i
eiφ13(III)

)
, and

(
−i

eiφ13(IV)

)
. Note that the phi-bit state components are now complex

quantities. By changing the tuning parameter, the first component remains constant to within
some well characterized interval while the second component varies over a sizeable section of
the unit circle. The complex plane could be completely spanned by the second component if

one were to use another representation of the phi-bit states taking the form:

(
eiφ12

eimφ13

)
where

m is some coefficient introduced to rescale the phase φ13.
The phase gate can then be applied physically by varying ∆υ.

3.3. Example algorithm with three phi-bits

So far, we have considered phi-bits and ranges of tuning parameter that were associated with
monotonous variations in the phases φ12 and φ13. As was shown in the sections 2, the complex
amplitudes of phi-bit states are composed of products of resonant amplitudes. In figure 7, we
show π jumps in the phases associated with such resonant processes for the phi-bits II, III,
and IV.

11
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Figure 3. Phi-bit I with frequency f1 − 4∆f. (a) Phases φ12 and φ13 as functions of driv-
ing frequency tuning parameter ∆υ over the range 1000–1500 Hz. (b) and (c) location
of the components of the U⃗ ′ ′ representation on the unit circle in the complex plane for
the different values of the tuning parameter. The open and closed symbols correspond
to the components eiφ12 and eiφ13 , respectively. The 2π discontinuity is inconsequential.

Figure 4. Same as figure 3 but for Phi-bit II with frequency 2f1 + f2 − 4∆f. The 2π
discontinuities are inconsequential.

These resonances can be exploited to develop additional operations on phi-bits states via
variations in ∆υ. We now treat the system of three phi-bits II, III, and IV as partitioned into
a two phi-bit (III and IV) composite system and another reference phi-bit (II). The state of

12
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Figure 5. Same as figure 3 but for Phi-bit III with frequency 2f1 + f2 − 3∆f.

Figure 6. Same as figure 3 but for Phi-bit IV with frequency 2f1 + f2 − 2∆f.

the two phi-bit composite evolves now in a 22-dimensional Hilbert space while the state of the
remaining phi-bit spans a two-dimensional space. We now employ a two phi-bit representation
given by:

U⃗(III− IV) =


1+ ei(φ

∗
12(III)+φ∗

12(IV))

1+ ei(φ
∗
12(III)+φ∗

13(IV))

1+ ei(φ
∗
13(III)+φ∗

12(IV))

1+ ei(φ
∗
13(III)+φ∗

13(IV))

 . (32)
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Figure 7. Phases φ12 and φ13 of phi-bits II, III, and IV as functions of driving frequency
tuning parameter ∆υ over the range 200–1200 Hz. The large black arrows mark the
location of π jumps in the phases. The equally spaced vertical lines indicate selected
states of the three phi-bit system (see text for details). The experimental data includes
inconsequential 2π discontinuities as phases are defined modulo 2π.

Since the phases φ12 and φ13 exhibit monotonous variations as well as resonant π jumps, in
equation (32), the phases φ∗

12 and φ
∗
13 are stripped from the monotonous variations and include

only the resonant changes. Furthermore, all phases are translated to the origin at∆υ= 200 Hz.
Figure 8 illustrates schematically this adjustment.

In this representation, the states of the III–IV composite are given in table 2.
Starting with a tuning parameter at ∆υ = 230 Hz, the two phi-bit state alternates between
1
1
1
1

 and


1
0
0
1

 for every increment of the tuning parameter of 315 Hz. Effectively the

four-dimensional state vector follows a closed loops in theHilbert space of the two phi-bit com-
posite system. Note that the identical first and third states are separable into a tensor product of
two individual phi-bit states, while the second and fourth states are non-separable. The matrix
associated with the unitary operation that corresponds to the physical action of incrementing
the tuning parameter is:

Q=
1√
2


1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

 .
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Figure 8. Same as figure 7. The solid black, solid gray and dashed gray curves represent
the phases φ∗

12 and φ∗
13 adjusted to include only resonant variations with the tuning

parameter.

Table 2. States of the two phi-bit III–IV composite system and the values of their cor-
responding tuning parameter. Note that the states in this table are to be normalized by
1
2 for the first and third states and 1√

2
for the second and fourth states.

∆υ(Hz) 230 545 860 1175

State


1
1
1
1




1
0
0
1




1
1
1
1




1
0
0
1



Note that this unitary transformation can be written as the combination of some of the more
fundamental quantum gates: Q=−σz⊗σz+σx⊗ I where σx, σz and I are 2× 2 Pauli gates
and identity matrix. This transformation can be used to develop algorithms. Let us consider

that we can go from a state


1
0
0
1

 starting at∆υ = 545 Hz to another identical state


1
0
0
1


by two routes. The first route is to apply an operation associated with the 4× 4 identity matrix
whereby one does not change ∆υ. The second route is to apply the matrix operation Q twice,
that is, change∆υ by adding 2× 230 Hz.In the first case the phi-bit II does not change its state.

For instance, using the representation U⃗(II) =

(
1+ eiφ

∗
12(II)

1+ eiφ
∗
13(II)

)
, phi-bit II remains in the state(

1
1

)
. However, in the case of the second route, the state of phi-bit II changes to

(
1
0

)
15
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because we have crossed one of its resonant π jump. We can measure that change on phi-bit II
while the state of the III–IV composite system has not effectively changed. This is a controlled
operation. We can then develop an algorithm that can differentiate whether a function, f(X) of
a single variable X ∈ [1,2,3,4] is a constant, say 1, or is linear say f(X) = X. For this, we may
redefine the matrix Q as follows:

Qf =
1
√
2

f(4)−f(3)+f(2)−f(1)
2

×


(−1)1+f(1) 1

2

(
1+(−1)f(2)

)
0 0

1
2

(
1+(−1)f(2)

)
(−1)1+f(2) 1

2

(
1+(−1)f(3)

)
0

0 1
2

(
1+(−1)f(3)

)
(−1)1+f(4) 1

2

(
1+(−1)f(4)

)
0 0 1

2

(
1+(−1)f(4)

)
(−1)1+f(3)


whereQf realizes the identity matrix if the function f is constant and the unitary transformation
Q if the function is linear. We can therefore identify the character of the function in one single
iteration. The algorithm has the following steps. Initialize the system of three phi-bits at∆υ =
545 Hz. An oracle, i.e. an operation that is used as input to the algorithm, applies either no
change in the tuning parameter is the function is constant or adds 460 Hz if the function is
linear. The state of the two phi-bits III–IV does not change but one can read the output in the
change of phase of phi-bit II. Phi-bits III and IV serve as control inputs (their state does not
change) to the unitary gate Qf which alters the phase of phi-bit II. Note that phi-bit II allows
us to measure changes (or not) in the representation space of phi-bits III and IV. This provides
access to the mathematical structure of a representation.

4. Conclusions

The pursuit of digital quantum computers is in part a quest to power scientific discovery
in materials modeling and simulation. However, quantum computers constituted of multiple
qubits suffer from decoherence of quantum superpositions of states due to undesired inter-
actions, imposing the development of cumbersome strategies for suppressing environmental
effects [9, 10] and performing error corrections [11]. These strategies limit current simulations
of materials to toymodels. In contrast, here, we exploit analogies between quantumwave func-
tions and classical acoustic waves in metamaterials, namely coherent superpositions of states
that are robust against decoherence, to realize quantum-like gate operations that may serve as
a resource to complement quantum systems in harnessing the power of complexity in quantum
information processing and materials simulations. We exploit the strong coupling and nonlin-
earity of acoustic waves in metamaterials to develop the notion of correlated logical phi-bits.
Indeed, in contrast to other types of waves such as optical waves, sound supporting media
such as acoustic metamaterials offer a broader palette of nonlinear responses that may res-
ult from different type, strength and order of nonlinearity [12]. Phi-bits—classical analogues
of qubits—offer new approaches to realize superpositions of states for classical multipartite
systems that span exponentially complex Hilbert spaces. The properties of logical phi-bits par-
allel those of qubits from coherent superpositions to non-separability, to strong correlations.
Quantum superpositions also exhibit the unique property of nonlocality, however, since logical
phi-bits live in the spectral domain of the same physical metamaterial, there is no issue with
their spatial separation. We show that we can operate upon superpositions of phi-bit states to
achieve quantum-like gates in systematic, controllable, and predictable ways. Here, we demon-
strate two single phi-bit gates, namely the Hadamard and the phase shift gates as well as a three
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phi-bit controlled gate. While single phi-bit gates do not exploit the non-separability of clas-
sical waves and may be easily realizable in classical systems, the three phi-bit controlled gate
demonstrated herein is associated with unitary operations that transforms separable multi phi-
bit states into non-separable states (i.e. classically entangled states). These operations act on
different representations of the complex phi-bit/multi phi-bit amplitude by rotating their vec-
tor states within the corresponding Hilbert space, thus accumulating a geometric phase. It has
been proposed that the geometric phase can be used for enabling quantum computation [13].
Acoustic analogues of quantum systems provide easy to use classical physical platforms for
testing or mimicking quantum behaviors [14, 15] offering avenue to use acoustic metamateri-
als for quantum computation [16]. Therefore, this paper sets the stage for the implementation
of a set of universal quantum-like gates on an acoustic metamaterials digital quantum analogue
computer that may enable simulation of materials beyond simple models.
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