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Machine learning offers an exciting opportunity to improve the calibration of nearly all reconstructed
objects in high-energy physics detectors. However, machine learning approaches often depend on the
spectra of examples used during training, an issue known as prior dependence. This is an undesirable
property of a calibration, which needs to be applicable in a variety of environments. The purpose of this
paper is to explicitly highlight the prior dependence of some machine-learning-based calibration strategies.
We demonstrate how some recent proposals for both simulation-based and data-based calibrations inherit
properties of the sample used for training, which can result in biases for downstream analyses. In the case of
simulation-based calibration, we argue that our recently proposed Gaussian Ansatz approach can avoid
some of the pitfalls of prior dependence, whereas prior-independent data-based calibration remains an open
problem.
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I. INTRODUCTION

Calibration is the task of removing bias from an
inference—that is, to ensure the inference is “correct on
average.” There are two major classes of calibration:
simulation-based calibration, where the goal is to infer a
truth reference object, and data-based calibration, where the
goal is to match simulation and data distributions.
Both simulation-based calibrations and data-based cal-

ibrations are essential components of the experimental
program in high-energy physics (HEP), and a significant
amount of time is spent deriving these results to enable
downstream analyses. We focus on the ATLAS and CMS
experiments at the Large Hadron Collider (LHC) for our
examples, but this discussion is relevant for all of HEP (and
really any experiment). ATLAS and CMS have performed
many recent calibrations, including the energy calibration
of single hadrons [1,2], jets [3,4], muons [5,6], electrons/
photons [7–9], and τ leptons [10,11]. The reconstruction
efficiencies of all of these objects are also calibrated and

include the classification efficiency of jets from heavy
flavor [12,13] and even more massive particles [14,15].

Machine learning is a promising tool to improve both
types of calibration. In particular, machine learning meth-
ods can readily process high-dimensional inputs and there-
fore can incorporate more information to improve the
precision and accuracy of a calibration. There have been
a large number of proposals for improving the simulation-
based calibrations of various object energies, including
single hadrons [16–21], muons [22], and jets [23–33] at
colliders; kinematic reconstruction in deep inelastic scat-
tering [34]; and neutrino energies in a variety of experi-
ments [35–40]. Further ideas can be found in Ref. [41]. For
data-based calibration, a machine learning procedure was
recently proposed in Ref. [42].
Caution is needed to ensure that calibrations resulting

from a machine learning approach satisfy certain important
properties. One critical property of a calibration is that it
should be universal—a calibration derived in one place
should be applicable elsewhere. A nonuniversal calibration
would have a rather limited utility and can produce
undesirable results if applied to a dataset that does not
exactly match the calibration dataset. Statistically, univer-
sality is synonymous with prior independence. Most of the
existing machine-learning-based calibration proposals,
though, are inherently prior dependent, as we will explain
below.
A second critical property of a calibration is closure,

which means that on average, the calibration produces the
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correct answer.1 To quantify closure, one often computes
the bias of a calibration, which is the average deviation of
the calibrated result from the target value. A calibration can
be biased due to the choice of estimator or fitting procedure
used, even if the usual pitfalls of dataset-induced biases are
taken care of. As explained below, universality and closure
are related, and a prior-dependent calibration will neces-
sarily have irreducible bias.2

In this paper, we explain the origin of prior dependence
for common calibration techniques, with explicit illustra-
tive examples, and demonstrate the associated bias that
these procedures incur. For simulation-based calibrations,
we advocate for our Gaussian Ansatz [43] as a machine-
learning-based strategy that is prior independent and bias-
free. For data-based calibrations, we are unaware of any
prior-independent methods in the literature. We hope that
by highlighting these issues, we can inspire the develop-
ment of prior-independent calibration methods.
The remainder of this paper is organized as follows.

In Sec. II, we review the statistical properties of machine-
learning-based calibration. In Sec. III, we clarify the
meaning of resolution and uncertainty in the HEP context.
To demonstrate the issue of prior dependence, we present
Gaussian examples in Sec. IV. In Sec. V, we study an HEP
application of calibration in the context of jet energy
measurements at the LHC. The paper ends in Sec. VI with
our conclusions and outlook.

II. THE STATISTICS OF CALIBRATION

In this section, we review some of the basic features of
simulated-based and data-based calibration, and discuss the
issues of prior dependence and bias.

A. Simulation-based calibration

In simulation-based calibration, the goal is to infer target
(or true) features zT ∈ RN from detector-level features
xD ∈ RM—that is, to construct an estimator or calibration
function f∶ RM → RN where

ẑT ¼ fðxDÞ ð1Þ

is the inferred estimate. To carry out simulation-based
calibration, one starts with a set of ðxD; zTÞ pairs, which
typically come from an in-depth numerical simulation of an
experiment. For the case study in Sec. V, xD will be the
experimentally measurable features of hadronic jets and zT
will be the true jet energy.

For concreteness, one can think of the calibration
function f as being parametrized by a universal function
approximator such as a neural network, whose weights and
biases are learned. This is often done by minimizing the
mean squared error (MSE) loss:

fMSE ¼ argmin
g

Etrain½ðgðXDÞ − ZTÞ2�; ð2Þ

where capital letters correspond to random variables and E
represents the expectation value over the training sample
used to derive the calibration. The calibration function is
then deployed on the testing sample, which could be the
dataset of interest or a hold-out control region.
Using the calculus of variations, one can show that with

enough training data, a flexible enough functional para-
metrization, and a sufficiently exhaustive training pro-
cedure, the asymptotic solution to Eq. (2) is

fMSEðxDÞ ¼ Etrain½ZT jXD ¼ xD�; ð3Þ

where lowercase letters correspond to an instance of a
random variable. In this way, f learns the mean value of
zT for a given xD in the training set. Alternative loss functions
result in statistics other than themean. See, e.g., Ref. [44] for
alternative approaches, including mode learning, which is a
standard target for many traditional calibrations (usually in
the form of truncated Gaussian fits; see, e.g., [9]).

B. Prior dependence and bias

A key assumption of simulation-based calibration is that
the detector response is universal:

ptestðxDjzTÞ ¼ ptrainðxDjzTÞ: ð4Þ

This equation says that for a given truth input zT , the
detector response is the same between the training data
used for deriving the calibration and the testing data used
for deploying the calibration. In some cases, the detector
response might depend on more features than zT , and if
these hidden features are mismodeled, then Eq. (4) may not
hold. For our analysis of simulation-based calibration, we
assume Eq. (4) throughout.
Calibrations of the form of Eq. (3) are not universal, even

if the detector response is. Writing out the MSE-based
calibration in integral form, we have

fMSEðxDÞ ¼
Z

dzT zTptrainðzT jxDÞ

¼
Z

dzT zTptrainðxDjzTÞ
ptrainðzTÞ
ptrainðxDÞ

: ð5Þ

Here, we have used Bayes’ theorem to make explicit the
dependence of f on ptrainðzTÞ, the prior of true values used

1Any measure of central tendency can be used to measure
closure, such as the median or mode. In this paper, we will
focus on the mean, as it is the usual target in machine learning and
HEP applications.

2Prior independence is a necessary prerequisite for clo-
sure. However, even with prior independence, closure is not
guaranteed.
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for the training. Thus, even if ptrainðxDjzTÞ is universal via
Eq. (4), the truth distribution is not:

ptestðzTÞ ≠ ptrainðzTÞ: ð6Þ

The nonuniversality of the calibration function leads to
bias, as we now explain.
The bias bðzTÞ of a calibration quantifies the degree of

nonclosure. Specifically, bias is the average difference
between the reconstructed value and the truth reference
value. It is evaluated over the test sample, conditioned on
the truth values:

bðzTÞ ¼ Etest½fðXDÞ − zT jZT ¼ zT �: ð7Þ

A bias of zero means that, on average, the reconstructed and
truth values agree. For MSE regression, the bias is

bðzTÞ þ zT ¼
Z

dxDfMSEðxDÞptestðxDjzTÞ

¼
Z

dxDdz0Tz
0
Tptrainðz0T jxDÞptestðxDjzTÞ: ð8Þ

This bias is dependent on the training prior through
ptrainðz0T jxDÞ. Thus, a prior-dependent calibration is neces-
sarily biased, since it depends on the choice of ptrainðzTÞ.3
Note that even if the training dataset is statistically identical
to the testing dataset [i.e., ptestðxD; zTÞ ¼ ptrainðxD; zTÞ], it
is not guaranteed that the calibration will be unbiased.
One way to reduce the bias is if the prior is “wide and flat

enough,” such that the prior asymptotically approaches a
uniform sampling over the real line relative to the detector
response. For example, one can show using Eq. (8) that if
the prior pðzTÞ is Gaussian with standard deviation σ, the
detector response pðxDjzTÞ is a Gaussian noise model with
standard deviation ϵ, and the test set is statistically identical
to the training set, then the bias scales as

bðzTÞ ∼
�
ϵ

σ

�
2

zT þO
��

ϵ

σ

�
4
�
: ð9Þ

In cases with steeply falling spectra, as is common in HEP,
prior dependence usually leads to large biases in calibra-
tion, even if the testing and training sets follow the same
distribution.

C. Mitigating prior dependence

A majority of simulation-based calibrations (with or
without machine learning) are set up using the MSE loss as
described above, which means that they are biased. That
said, there are alternative methods to mitigate the prior
dependence and thereby reduce the bias. For example,
simulation-based jet calibrations at the LHC use a tech-
nique called numerical inversion (see, e.g., Ref. [45]). The
idea of numerical inversion is to regress xD from zT with a
function gðzTÞ and then define the calibration function
through the inverse:

fNIðxDÞ ¼ g−1ðxDÞ: ð10Þ

Traditionally, xD is one dimensional and g is parametrized
with functions that can easily be inverted numerically,
hence the name. The function g is given by

gðzTÞ ¼ Etrain½XDjZT ¼ zT �: ð11Þ

Since the detector response pðxDjzTÞ is universal, g is
universal, and thus the derived f is also universal. Under
certain assumptions, the f from numerical inversion is also
unbiased [45].
Numerical inversion has been extended to work with

neural networks [23,24], where the inversion step is accom-
plished with a second neural network. Alternatively, it may
be possible to also achieve this with a natively invertible
neural network such as a normalizing flow [46,47]. A key
challenge with numerical inversion and its neural network
generalizations are that they do not scale well to high
dimensions.
In Ref. [43], we propose an alternative way to achieve a

prior-independent calibration that scales well to high- and
variable-dimensional settings. This approach is based on
finding the local maximum likelihood, such that the learned
calibration function becomes

fMLCðxDÞ ¼ argmax
zT

ptrainðxDjzTÞ; ð12Þ

where MLC stands for maximum likelihood classifier—see
Ref. [48]. Again, because the detector response pðxDjzTÞ is
universal, maximum likelihood calibrations are universal4

and, in certain configurations, are provably unbiased. In
particular, if the detector response pðxDjzTÞ is a Gaussian
noise model centered on zT , then one can show that the bias
is zero using Eq. (7):3Note that the bias does not depend on the choice of testing

prior, ptestðzTÞ, but rather only on ptestðxDjzTÞ. Depending on the
choice of ptestðxDjzTÞ, it is possible for the bias to be zero, but this
does not imply the inference is prior independent. For example, if
ptestðxDjzTÞ ¼ δðxD − zTÞ, and Etrain½xDjZT ¼ zT � ¼ zT , then one
can show that bðzTÞ ¼ 0.

4One important caveat is that universality here means prior
independence over the space of priors that share the same support
as the training set. One cannot get away with training a model on
a single zT instance and expecting it to work everywhere.
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bðzTÞ þ zT ¼
Z

dxDargmax
zT

½pðxDjzTÞ�pðxDjzTÞ

¼
Z

dxDxD
1ffiffiffiffiffiffiffiffiffiffi
2πϵ2

p e−
ðxD−zT Þ2

2ϵ2

¼ zT: ð13Þ

Here, we have made use of the fact that for a Gaussian,
pðxDjzTÞ is maximized at xD ¼ zT , and that the average of
this Gaussian is simply zT. This conclusion holds even if
the detector response includes offsets, or if the noise ϵ
depends on zT .

5

The strategy in Ref. [43] is to estimate the (local)
likelihood density by extremizing the Donsker-Varadhan
representation (DVR) [49,50] of the Kullback-Leibler
divergence [51]:

L½f� ¼EpðxD;zTÞ½fðxD;zTÞ�− logEpðxDÞpðzT Þ½efðxD;zT Þ�: ð14Þ

By parametrizing fðxD; zTÞ via a specially chosen Gaussian
Ansatz (see Ref. [43] for details), one can extract the local
maximum likelihood estimate and resolution with a single
neural network training.
We focused on regression in the above discussion, but

prior dependence also appears in classification calibration.
A classifier trained with the MSE loss function or the
binary cross entropy (BCE) will learn the probability of the
signal given an observed xD. If the fraction of the signal is
different in the training set and the test set, that is,
ptestðzTÞ ≠ ptrainðzTÞ, then the output can no longer be
interpreted as the probability of the signal. Luckily,
classifiers are almost never used this way in HEP, since
the classification score is not interpreted directly as a
probability.6 In this case, simulation-based calibrations
may not be required,7 though data-based calibrations are
still essential, as described next.

D. Data-based calibration

In data-based calibration, the goal is to account for
possible differences between a true detector response,
pdataðxDÞ, and a simulated detector model, psimðxDÞ.
That is, the goal is to match detector level features xD
between data and a simulation at the distribution level, in

contrast to simulation-based distribution, where the goal is
to match xD and a target feature zT at the object level.
Usually, pdataðxDÞ is a control dataset, and psimðxDÞ ¼R
dzTpsimðxDjzTÞptrainðzTÞ is a simulated detector output

generated from truth-level features zT .
In the machine learning literature, data-based calibration

is called domain adaptation. Machine learning domain
adaptation has been widely studied in the context of HEP
[53–57] (see also decorrelation [58–74]), but these tools
have not yet been applied to per-object calibrations.
Traditional methods typically use binned or simple para-
metric approaches to calibrate differences between data and
simulation.
The authors of Ref. [42] propose to use tools from the

field of optimal transport (OT) to perform the data-based
calibration using machine learning. The central idea is to
learn a map h∶RN → RN that “moves” xD as little as
possible, but still achieves psimðxDÞ ↦ pdataðxDÞ. In this
case, the OT-based calibration is

p̂ðxDÞ ¼ psimðhðxDÞÞjh0ðxDÞj; ð15Þ

where jh0ðxDÞj is the Jacobian factor. The precise trans-
portation map depends on the choice of OT metric.
Equation (15) can be interpreted as shifting simulated
samples xD to hðxDÞ, and additionally reweighting each
sample by jh0ðxDÞj. One can also write a corresponding
expression for the OT-calibrated detector model, condi-
tioned on zT :

p̂ðxDjzTÞ ¼ psimðhðxDÞjzTÞjh0ðxDÞj: ð16Þ

Equation (16) can be thought of as a “corrected simu-
lated response” function that accounts for mismodeling in
the original simulation, psimðxDjzTÞ. At first glance,
Eq. (16) might seem prior independent, since it is con-
ditioned on the truth-level zT . As we will see, though, there
is implicit prior dependence in h. For simplicity, consider
the special case of one dimension. Here, for any OT metric,
the OT map h∶R → R is simply given by

hðxDÞ ¼ P−1
dataðPsimðxDÞÞ; ð17Þ

where Pλ is the cumulative distribution function of λ, i.e.,
PλðxDÞ ¼

R
xD
−∞ dx0Dpλðx0DÞ. This function maps quantiles of

the simulated distribution to quantiles of the data distri-
bution. The Jacobian of this transformation is

jh0ðxDÞj ¼
psimðxDÞ

pdataðhðxDÞÞ

¼
R
dzTpsimðxDjzTÞptrainðzTÞ

pdataðhðxDÞÞ
: ð18Þ

Thus, since the priorptrainðzTÞ explicitly appears, the derived
OT-based detector model in Eq. (16) is prior dependent.

5It is not always true that a maximum likelihood calibration is
unbiased. For instance, if XD is drawn from a uniform distribution
Uð0; zTÞ, then the maximum likelihood estimate from a single xD
sample is ẑT ¼ xD, whereas an unbiased estimate would be
ẑT ¼ 2xD.

6See Ref. [52] for a review in the machine learning literature
and Ref. [53] for related studies in the context of HEP likelihood
ratios.

7There may be practical issues associated with prior depend-
ence; e.g., if there is an extreme class imbalance, the classifier
may not learn well. In the extreme limit of only one class present
in the training, then there is a prior dependence also on the result.
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In line with simulation-based calibration, the bias of a
data-based calibration is the average difference between the
estimator p̂ðxDÞ and the desired value pdataðxDÞ, condi-
tioned on xT .

8 For OT-based calibration, the bias for a given
value of xD is

bðxDÞ ¼ psimðhðxDÞÞjh0ðxDÞj − pdataðxDÞ

¼
Z

dzTpsimðhðxDÞjzTÞptestðzTÞjh0ðxDÞj

− pdataðxDÞ: ð19Þ

If ptestðzTÞ ¼ ptrainðzTÞ, then the bias is zero. Otherwise,
the calibration is biased, a consequence of prior depend-
ence. Note that this is in contrast to simulation-based
calibration, where nonuniversality can imply a bias even
if ptestðzTÞ ¼ ptrainðzTÞ.

E. Unbiased data-based approaches?

As defined above, the goal of a data-based calibration is
to match psimðxDÞ to pdataðxDÞ. This is an inherently
prior dependent task, however, since p̂ðxDÞ ¼

R
dzT ×

p̂ðxDjzTÞptrainðzTÞ—that is to say, the simulated detector
output depends on the simulation input. Instead, one can
ask if the corrected response function, p̂ðxDjzTÞ, is uni-
versal. If it is, then one can use the same corrected response
function to generate p̂ðxDÞ for a variety of priors ptestðzTÞ.
At least in the special case of one-dimensional OT-based
calibration, however, we have shown above that the
corrected response function is not universal.
To our knowledge, no one has proposed a data-based

calibration method that is prior independent, whether using
machine learning or not. This implies that all data-based
calibration methods in use are biased, though the degree of
bias may be small if the testing and training truth-level
densities are similar enough. We encourage the community
to develop a prior-independent data-based calibration
strategy, or prove that it is impossible.

III. RESOLUTION AND UNCERTAINTY
IN CALIBRATIONS

The discussion thus far has focused on mitigating bias
in calibration. Two related concepts are the resolution
and uncertainty of a calibration. In this section, we review
calibration resolution and uncertainty, and we clarify
important nomenclature in HEP settings.

A. Resolution

As already mentioned, the bias of a calibration refers to
the difference in central tendency (such as the mean,
median, or mode) between a reconstructed quantity and
a reference quantity. By contrast, the resolution of a
calibration refers to the spread in the difference between
the reconstructed and reference quantities. Using variance
as our measure of spread, the resolution Σ2ðzTÞ can be
written as the variance of differences between the recon-
structed and truth values, conditioned on the truth values,
evaluated over the test sample:

Σ2ðzTÞ ¼ Vartest½fðXDÞ − zT jZT ¼ zT �: ð20Þ

Resolution, like biases, can be prior dependent. When
using the MSE-based calibration [Eq. (3)], this becomes

Σ2ðzTÞ þ bzðzTÞ

¼
Z

dxD

�Z
dzTz0Tptrainðz0T jxDÞ − zT

�
2

ptestðxDjzTÞ:

ð21Þ

The prior dependence is seen by applying Bayes’ theorem
to ptrainðz0T jxDÞ.

As before, this prior dependence can be reduced if the
prior is wide compared to the detector response. If the prior
pðzTÞ is Gaussian with standard deviation σ, and the
detector response pðxDjzTÞ is a Gaussian noise model
with standard deviation ϵ, then by applying Eq. (22), one
can show that the resolution scales as

Σ2ðzTÞ ∼ ϵ2 þO
��

ϵ

σ

�
4
�
ϵ2: ð22Þ

On the other hand, for the prior-independent MLC cali-
bration [Eq. (12)], the resolution can be shown to be

Σ2ðzTÞ ¼ ϵ2: ð23Þ

In HEP (and many other) applications, however, it is
common to instead refer to the resolution with respect to a
measurement xD rather than the true value zT . That is, for an
inference ẑT ¼ fðxDÞ, we would like a measure of the
spread of zT values consistent with this measurement,
which we will denote ΣðxDÞ (distinguished by the xD
argument rather than zT). Depending on the context and
type of calibration, there are a variety of ways to define
ΣðxDÞ—for instance, as the standard deviation from a
Gaussian fit to the distribution of reconstructed over true
energies (see, e.g., Ref. [45]). For our purposes, we can
define the point resolution Σ2ðxDÞ as the variance of zT ’s
conditioned on xD:

8This differs from the simulation-based calibration definition,
which was conditioned on zT . In data, there is no truth level zT .
However, sometimes, a proxy can be used as a zT in data,
allowing for a direct comparison of true versus reconstructed zT
values in data-based calibration. For example, when performing
data-based calibration on a Z þ jets sample, the pT of the Z can
be used as a proxy for the true jet pT .
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Σ2ðxDÞ ¼ Vartest½ZT jXD ¼ xD�
¼ Etest½ðfMSEðxDÞ − ZTÞ2jXD ¼ xD�: ð24Þ

For the MSE-based calibration, this is simply the variance
of the posterior, pðzT jxDÞ. However, for frequentist
approaches where the posterior is not well defined, such
as the maximum likelihood calibration, the resolution
cannot be defined this way and care must be taken. For
Gaussian noise models pðxDjzTÞ, the likelihood is sym-
metric under interchanging the arguments xD and zT , so one
can take the resolution to be [applying Eq. (20)]

Σ2ðxDÞ ¼ Σ2ðzTÞ ¼ ϵ2: ð25Þ

Calibrations do not necessarily improve the resolution
and can sometimes make the resolution seem worse. For
example, if a calibration requires multiplying the recon-
structed quantity by a fixed number greater than one, then
the resolution will grow by the same amount.9 It is therefore
important to compare resolutions only after calibration.
If a calibration incorporates many features that determine

the resolution of a given quantity, then the resolution can
improve from calibration. For example, suppose the recon-
structed value xD is some function of observable quantities
 yD ¼ ðyD1; yD2;…; yDnÞ, i.e., xD ¼ gð  yDÞ. For instance, in
the context of jet energy calibrations, xD ¼ αη for some
constant α and an observable quantity η (e.g., energy
dependence on the pseudorapidity). If any of the  yD have
a nontrivial probability density, this will be inherited by the
reconstructed value xD, and thus xD will have a nonzero
resolution. This resolution is completely reducible, how-
ever, through a calibration that is  yD dependent—that is, a
calibration function ẑT ¼ f0ð  yDÞ rather than ẑT ¼ fðxDÞ.
The ability to incorporate many auxiliary features is why
machine-learning-based approaches, such as the Gaussian
Ansatz [43], have the potential to improve analyses at HEP
experiments.

B. Uncertainty

In the machine learning literature, “resolution” would be
referred to as a type of “uncertainty.” Uncertainty in the
statistical context refers to the limited information about zT
contained in xD. In the HEP literature, though, we use
uncertainty in a different way, to instead refer to the limited
information we have about the bias and resolution of a
calibration.
The reason for this difference in nomenclature is that

HEP research is based primarily on simulation-based
inference, where data are analyzed by comparison to model
predictions. (This is the case for the vast majority of

analyses at the LHC.) In this context, the word “uncer-
tainty” is reserved to refer to uncertainties on model
parameters. A worse resolution can degrade the statistical
precision of a measurement, but if it is well modeled by the
simulation, then there is no associated systematic uncer-
tainty (though there will still be statistical uncertainties).
Both simulation-based and data-based calibrations can

have associated uncertainties. For simulation-based cali-
brations, even if they are prior independent, there can be
uncertainties in the detector models themselves. For data-
based calibrations, there are additional uncertainties asso-
ciated with the truth-level prior; see Sec. II E.
One of the goals of data-based calibration is to improve

the modeling of the calibration in simulation to match the
data. Typically, data-based calibrations are performed in
dedicated event samples with well-understood physics
processes. The residual uncertainty following the data-
based calibration is dominated by the modeling of the
underlying process. For example, data-based jet calibra-
tions (called in situ calibrations) compare the jet to a well-
measured reference object such as a Z boson. The
momentum imbalance between the jet and the Z boson
will be due in part to differences in the calibration between
data and simulation and in part due to the mismodeling of
initial and final state radiation. Uncertainties on the latter
are then incorporated into the data-based calibration
uncertainty. In nearly all cases, data-based calibrations
are performed independently of the uncertainties, which
are computed post hoc. In the future, these uncertainties
may be improved with uncertainty/inference-aware
machine learning methods [32,58–88].

IV. GAUSSIAN EXAMPLES

In this section, we demonstrate some of the calibration
issues related to bias and prior dependence in a simple
Gaussian example. We assume that the truth information
(the “prior”) is distributed according to a Gaussian dis-
tribution with mean μ and variance σ2:

ZT ∼N ðμ; σ2Þ: ð26Þ

The detector response is assumed to induce Gaussian
smearing centered on the truth input with variance ϵ2:

XDjZT ¼ zT ∼N ðzT; ϵ2Þ: ð27Þ

For the simulation-based calibration in Sec. IVA, the
goal is to learn ZT given XD, assuming perfect knowledge
of the detector response. For the data-based calibration in
Sec. IV B, the goal is to map XD in “simulation” to XD in
“data.” In this latter study, we assume that data and
simulation have the same true probability density and
differ only in their detector response, ϵsim ≠ ϵdata—that
is, psim “mismodels” pdata.

9This is also true if we had used the relative resolution,
E½fðxDÞzT

jZT ¼ zT �, which is also commonly used in HEP, rather
than the absolute resolution.
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A. Simulation-based calibration

If we use the MSE approach in Eq. (3), there is a prior
dependence in the calibration, which induces bias. Perhaps
counterintuitively, this bias persists even if the prior is the
same as the data density,

ptrain ¼ ptest ≡ p; ð28Þ

as we now show.
In the Gaussian case, the reconstructed data are distrib-

uted according to

XD ∼N ðμ; σ2 þ ϵ2Þ; ð29Þ

and it is possible to solve Eq. (5) analytically, in the
asymptotic limit

fMSEðxDÞ ¼
ϵ2μþ σ2xD
ϵ2 þ σ2

: ð30Þ

For comparison, we can also compute the unbiased
maximum likelihood calibration using Eq. (12):

fMLCðxDÞ ¼ xD: ð31Þ

It is also possible to analytically compute the point
resolutions, ΣðxDÞ, for both the MSE and the MLC fits
[Eqs. (24) and (25), respectively]:

ΣMSEðxDÞ ¼
ϵσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 þ σ2
p ; ð32Þ

ΣMLCðxDÞ ¼ ϵ: ð33Þ

To illustrate this setup, we simulate this scenario numeri-
cally for μ ¼ 0, σ ¼ 1, and ϵ ¼ 2. In Fig. 1(a), we show the
simulated data, for which both the true and reconstructed
values follow a Gaussian distribution. The first step of a
typical calibration is to predict the true zT from the
reconstructed xD. Since we know that the average depend-
ence of the true zT on the reconstructed xD is linear, we
perform a first-order polynomial fit to the data using NumPy

POLYFIT, which is represented by the blue dashed line in
Fig. 1(a). This calibration function is then applied to all
reconstructed values:

ẑTðxDÞ ¼ fMSEðxDÞ: ð34Þ

The resulting calibration curve is presented in blue in
Fig. 1(b), along with the associated resolution ΣMSEðxDÞ.
For comparison, we perform a maximum likelihood

calibration using the Gaussian Ansatz introduced in
Ref. [43]:

fðx; zÞ ¼ AðxÞ þ ðz − BðxÞÞ ·DðxÞ

þ 1

2
ðz − BðxÞÞT · Cðx; zÞ · ðz − BðxÞÞ; ð35Þ

(a) (b)

FIG. 1. (a) Two-dimensional histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with μ ¼ 0, σ ¼ 1, and ϵ ¼ 2. The dashed line represents a linear fit to the data points. (b) For test values of xD, the vertical axis
is the calibrated target value ẑTðxDÞ. The blue dots are the results from a numerical MSE fit fMSEðxDÞ, and the error bars correspond to
the numerical point resolution ΣMSEðxDÞ, with the analytic prediction in the red dotted line. For comparison, the Gaussian Ansatz
calibration is indicated by the red points fMLCðxDÞ, with the error bars indicating the point resolution ΣMLCðxDÞ. For both fits, the
colored lines and bands are the analytically expected results for the fits and resolutions, respectively.
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where we have dropped the subscripts (xD → x, zT → z) for
compactness of notation. As described in Ref. [43], the
calibration function BðxÞ is obtained by minimizing the
DVR loss function from Eq. (14), such that after training

ẑTðxDÞ ¼ BðxDÞ; ð36Þ

ΣMLCðxDÞ ¼ −½CðxD; BðxDÞÞ�−1=2: ð37Þ

For Gaussian noise models, this maximum likelihood
estimate is unbiased, as confirmed by the numerical results
in Fig. 1(b). We implement the Gaussian Ansatz in KERAS

[89] with the TensorFlow backend [90]. The A network
consists of three hidden layers with 16 nodes per layer,
with rectified linear unit activations. The B and C networks
are each a single node with linear activation. The D
network is set to zero by hand. Optimization is carried
out with ADAM [91] over 100 epochs with a batch size of
128. As desired, the Gaussian Ansatz yields a calibration
that is independent of the prior ptrainðzTÞ.
To demonstrate the bias, we plug Eq. (28) into Eq. (8) to

get the bias from the MSE calibration approach:

bðzTÞþzT ¼
Z

dxDdz0Tz
0
TpðxDjz0TÞpðxDjzTÞ

pðz0TÞ
pðxDÞ

: ð38Þ

It is possible to solve Eq. (38) analytically for the Gaussian
setup:

bðzTÞ ¼
�

ϵ2

σ2 þ ϵ2

�
ðμ − zTÞ: ð39Þ

As expected, bðzTÞ → 0 as ϵ → 0. For ϵ > 0, though, there
is a nonzero bias with the MSE approach. The zT-binned
resolutions can also be computed using Eqs. (22) and (23):

ΣMSEðzDÞ ¼
σ2

ϵ2 þ σ2
ϵ; ð40Þ

ΣMLCðzDÞ ¼ ϵ: ð41Þ

The fitted biases and resolutions are presented in Fig. 2,
which exhibits the bias expected from Eq. (39). This
illustrates the large bias introduced by the MSE regression
procedure.
To further highlight the role of prior dependence, we

repeat the MSE calibration procedure, where we test
multiple values of the prior parameters μ and σ to confirm
the predictions in Eq. (39). As shown in Fig. 2(a), changes
in μ simply shift the calibration up and down, but do not
improve the calibration quality across the true values of zT .
As shown in Fig. 2(b), changes in σ change the slope of the
calibration. In the limit σ → ∞, the calibration curve
approaches the unbiased curve, as anticipated from Eq. (9).

B. Data-based calibration

As discussed in Sec II E, we are unaware of any prior-
independent data-based calibration. To highlight this
challenge, we study the OT-based technique introduced
in Ref. [42] and mentioned in Sec. II. D. In our Gaussian
example, the goal is to calibrate a “simulation” sample
with ðμsim:; σsim:; ϵsim:Þ to match a “data” sample with
ðμdata; σdata; ϵdataÞ.

(a) (b)

FIG. 2. The same MSE results as Fig. 1(b), but plotted in bins of true zT rather than xD. Points correspond to numerical fit results with
associated resolution ΣMSEðzTÞ, while the dashed lines and bands correspond to analytic results. Multiple values of the prior parameters
(a) μ and (b) σ are shown to illustrate the prior dependence of the bias. Though not shown, we verified that the Gaussian Ansatz gives
results consistent with the unbiased calibration in dashed red lines.
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For simplicity, we assume that the true spectra [deter-
mined by ðμ; σÞ] are the same in data and in simulation,
such that there is no systematic uncertainty in the calibra-
tion (see Sec. III B). Only ϵ, the parameter governing
the detector response, is different between simulation
and data—the simulation mismodels the real detector. To
highlight the issue of prior dependence, we consider a
“training” set with one value of μtrain ¼ 0 and a “testing” set
with a different value of μtest, with a shared value of σ. The
calibration will be derived on the training set and deployed
on the testing set. Again for simplicity, we assume that
detector effects (determined by ϵ) are the same in both the
train and the test sets.
The one-dimensional OT map h from one Gaussian A to

another Gaussian B can be computed analytically:

hA→BðxÞ ¼
x − μA
σA

· σB þ μB; ð42Þ

where the mean and standard deviation of sample i are μi
and σi, respectively. This equation can be derived following
Eq. (17), by computing cumulative distribution function
(CDF) of sample A with the inverse CDF of sample B.
For the training set with μtrain ¼ 0, we have

htrainðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ϵ2data

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ϵ2sim

p x≡ αx: ð43Þ

The test set only differs in the value of μtest, so the correct
calibration function should be

htestðxÞ ¼ αðx − μtestÞ þ μtest ¼ αxþ μtestð1 − αÞ: ð44Þ
As long as α ≠ 1, then htrain ≠ htest, and so the calibration is
not universal.

A numerical demonstration of this bias is presented in
Fig. 3, where histograms of the data and simulation are
presented alongwith the calibrated result. In Fig. 3(a), we see
the calibration derived in the training sample, where by
construction, the calibrated simulation matches the data.
Since the truth distribution is different in the test set, however,
the training calibration applied in the test set is biased, as
shown in Fig. 3(b). The actual calibration function is plotted
in Fig. 4 and compared to the analytic expectation from
Eqs. (44) and (43). The fact that the calibration derived on the

(a) (b)

FIG. 3. Histograms of the raw simulation, calibrated simulation, and data for (a) the training set and (b) the test set, the Gaussian
example of data-based calibration. The calibration function for the test set is used in both figures.

FIG. 4. The data-driven calibration functions corresponding to
Fig. 3. The blue points correspond to the calibration function
htrain derived from the training set, and the red points correspond
to the ideal calibration htest one would derive from the test set.
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train set is not the same as the calibration derived on the test
set shows that the calibrationderived in one and applied to the
other will lead to a residual bias.

V. CALIBRATING JET ENERGY RESPONSE

Jets are ubiquitous at the LHC, and their calibration is an
essential input to a majority of physics analyses performed
by ATLAS and CMS. In this section, we consider a
simplified version of simulation-based and data-based jet
energy calibrations. To illustrate the impact of the prior
dependence, we use a realistic and also extreme example
where calibrations are derived in a sample of generic quark
and gluon jets and then applied to a test sample of jets from
the decay of a heavy new resonance. To further simplify the
problem, we consider a calibration of the invariant mass
mjj of the leading two jets. In practice, jet energy
calibrations are derived for individual jets, but this requires
at least including calibrating the jet rapidity in addition to
the jet energy. We keep the problem one-dimensional in
order to ensure the problem is easy to visualize and to
mitigate the dependence on features that are not explicitly
modeled. For a high-dimensional study of jet energy
calibrations in a prior-independent way, see Ref [43].

A. Datasets

Our study is based on generic dijet production in
quantum chromodynamics (QCD). For these studies we
will consider two different datasets to demonstrate simu-
lation-based and data-based jet energy calibrations. The
first dataset is made with a full detector simulation. The full
simulation sample uses PYTHIA6.426 [92] with the Z2 tune
[93] and interfaced with a GEANT4-based [94–96] full
simulation of the CMS experiment [97]. In simulation-
based calibration, our goal will be to reconstruct the truth-
level zT ¼ mtrue

jj from the detector-level xD ¼ mreco
jj . The

second dataset is constructed with a fast detector simu-
lation. The fast simulation uses PYTHIA8.219 [98] interfaced
with DELPHES3.4.1 [99–101] using the default CMS detector
card. In data-based calibration, our goal will be to match
this fast simulation to “data,” which will be represented by
the full simulation. The full simulation sample comes from
the CMS Open Data Portal [102–104] and processed into
an MIT Open Data format [105–108]. The fast simulation
sample is available at Refs. [109,110].

For each dataset, we have access to the parton-level hard-
scattering scale p̂T from PYTHIA, which is in general
different from the jet-level transverse momentum pT we
are interested in studying. To avoid any issues related to the
trigger, we focus on events where p̂T > 1 TeV. Particles (at
truth level) or particle flow candidates (at the reconstructed
level) are used as inputs to jet clustering, implemented
using FastJet 3.2.1 [111,112] and the anti-kt algorithm
[113] with radius parameter R ¼ 0.5. No calibrations are
applied to the reconstructed jets.

To emulate two different physics processes while con-
trolling for all hidden variables, we consider dijet events
with two different sets of event weights. This will allow us
to study the prior-dependent effects of each calibration.

(i) QCD. This set of weights fwig comes from the
original PYTHIA event generation. The resulting
spectra are steeply falling in the invariant mass of
the two jets, mjj.

(ii) Beyond the Standard Model (BSM). To emulate a
narrow dijet resonance, we consider a second set of
weights given by

wðmtrue
jj;i Þ ∝

1

σwi
exp

�
−
ðmtrue

jj;i − μÞ2
2σ2

�
; ð45Þ

where μ ¼ 2.8 TeV and σ ¼ 10 GeV. Note that the
weighting is applied using the true mjj.

The mjj distributions as described above are shown in
Fig. 5. In the full simulation, one can see a difference
between mtrue

jj and mreco
jj for both QCD and BSM, neces-

sitating a simulation-based calibration. Additionally, the
mreco

jj distribution is significantly different between the full
and fast simulations, which to correct requires a data-based
calibration.
For all following results, half of the examples are used

for training and half are used for testing.

B. Simulation-based calibration

The goal for the simulation-based calibration is to learn a
function to predict zT ¼ mtrue

jj from xD ¼ mreco
jj in the full

simulation. In contrast to theGaussian example in Sec. IVA,

FIG. 5. The mjj distributions for QCD (blue) and BSM (red)
events in the fast and full simulation. The shaded histograms
correspond to the zT ¼ mtrue

jj truth-level distributions, whereas the
light triangles and dark circles correspond to xD ¼ mreco

jj for the
fast (DELPHES) and slow (GEANT4) distributions, respectively.
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we do not know the functional form of the calibration.
Therefore, we use a neural network to provide a flexible
parametrization of the calibration and numericallyminimize
the MSE loss. The neural network has three hidden layers
with 50 nodes per layer, with the rectified linear unit
activation for intermediate layers and a linear activation
for the output. The network is implemented in KERAS with
the TensorFlow backend and optimized with ADAM using a
batch size of 1000 and 50 epochs. Training is performedover
the QCD sample to obtain the calibration function. The
learned calibration function is then applied to both the QCD
and BSM test samples.
The result of MSE calibration is shown in Fig. 6(a). Prior

to any calibration, the detector response is about 5% low in
both the QCD and BSM test samples. After calibration, the
mean is nearly unity for the QCD sample, albeit with a large
width—that is to say, the average bias is close to zero over
the prior, but the average resolution is large. For the BSM
sample, though, the calibrated mean is far from unity,
demonstrating the bias and prior dependence of the MSE
calibration. The MSE-based calibration obtained from the
QCD fit is not universal and gives poor results when
applied to the BSM sample.10

For comparison, in Fig. 6(b) we show results from a
maximum-likelihood-based calibration trained on the QCD
sample, using the Gaussian Ansatz in Eq. (35). The A, B, C,

and D networks of the Gaussian Ansatz each consist of
three hidden layers with 32 nodes per layer, with the same
activation functions, batch size, and epochs as in the
Gaussian example. The calibration function trained on
the QCD sample can be used for the BSM sample, and
as Fig. 6(b) shows, the calibration is indeed universal and
unbiased, as expected.

C. Data-based calibration

The goal for the data-based calibration task is to “correct”
psimðmreco

jj Þ, given by the fast simulation (DELPHES), to the
observed data distribution pdataðmreco

jj Þ, given by the full
simulation (GEANT4). We now apply the same procedure
described in Sec. IV B to the dijet example.
An OT-based calibration is derived using QCD jets, to

align the fast simulation DELPHES sample with the full
simulation GEANT4 sample. The calibration function, given
by the optimal transport map [Eq. (17)], can be computed
numerically by sorting and integrating the weighted data
points to build the cumulative distribution functions. On the
QCD sample, this calibration closes by construction. In
particular, as shown in Fig. 7(a), the blue dashed line in the
ratio plot fluctuates around unity, with deviations due to
statistical fluctuations that differ between the two halves of
the event samples.
When this calibration is applied to the BSM events,

however, the calibration overshoots, as shown with the red
dashed line in the ratio plot in Fig. 7(b). While the resulting
dashed distribution agrees better with the data histogram in
dark red than does the fast sim histogram in light red, the
overall agreement is still rather poor. This again highlights
the issue of prior dependence in data-based calibrations.

(a) (b)

FIG. 6. The reconstructed mjj divided by the true mjj for the QCD and BSM samples, using (a) the MSE-based approach and (b) the
maximum likelihood approach with the Gaussian Ansatz. Shown are results with and without the simulation-based calibration applied.

10The converse is also true—attempting to use a calibration
fitted on the BSM sample will lead to bias on the QCD sample, or
any other BSM sample for that matter. These nonuniversal fits
lead to mass sculpting, in which a fit depends strongly on the
mass point used in training. See, e.g., [114] for discussions on
sculpting and mass decorrelation.
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VI. CONCLUSIONS

In this paper, we explored the prior dependence of
machine-learning-based calibration techniques. There is a
growing number of machine learning proposals for simu-
lation-based and data-based calibration, and in nearly all
cases, there is a prior dependence. We highlighted the
resulting calibration bias in a synthetic Gaussian example
and a more realistic particle physics example of dijet
production at the LHC.
In the simulation-based calibration case, most proposals

learn a truth target from detector-level observables using
loss functions such as the MSE. A neural network trained
in this way will learn the average true value given the
detector-level inputs, which depends on the spectrum of
truth values. However, we have shown that this will yield a
calibration that lacks the critical properties of universality
and closure.
There are fewer proposals formachine learning data-based

calibrations, but we studied one recent idea based on OTand
showed its prior dependence. While we focused on one-
dimensional examples, the prior dependence is a generic
feature of these approaches. Going to higher dimensionsmay
even exacerbate the issue since it is harder to visualize and
control prior differences in many dimensions.
New learning approaches are required to ensure that

machine learning-based calibrations are universal. For
simulation-based calibration, the ATLAS Collaboration
has proposed a prior-independent method called gener-
alized numerical inversion [23,24]. While prior indepen-
dent, this technique is typically biased and does not scale

well to many dimensions. We proposed a new approach
based on maximum likelihood estimation in Ref [43],
based on parametrizing the log-likelihood with a Gaussian
Ansatz. Maximum-likelihood-based approaches are prior
independent by construction and are well-motivated sta-
tistically. Parametrizing the maximum likelihood estima-
tor with neural networks requires a different learning
paradigm than current approaches, but it extends well to
many dimensions. To our knowledge, there are currently
no prior-independent data-based calibration approaches.
To make the most use of the complex data from the LHC

and other HEP experiments, it is essential to use all of the
available information for object calibration. This will
require modern machine learning to account for all of
the subtle correlations in high dimensions. It is important,
however, that we construct these machine learning cali-
bration functions in a way that integrates all of the features
of classical calibration methods. We highlighted prior
independence in this paper as a cornerstone of calibration.
In the future, innovations that incorporate knowledge of the
detector response or physics symmetries may further
enhance the precision and accuracy of machine learning
calibrations.

The code for this paper can be found at [115], which
makes use of JUPYTER notebooks [116] employing NumPy

[117] for data manipulation and MATPLOTLIB [118] to
produce figures. All of the machine learning was per-
formed on a Nvidia RTX6000 Graphical Processing Unit
(GPU). The physics datasets are hosted on ZENODO at
Refs. [106–108,110].

(a) (b)

FIG. 7. The reconstructed mjj for (a) QCD and (b) BSM events in the fast and full simulation, with and without the data-based OT
calibration. The calibration is performed on the QCD sample, which closes, and the same calibration is applied to the BSM sample. Note
that for the BSM sample, the ratio plot is in log-scale, indicating a very large bias.
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