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Abstract

With the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), it is expected that only
∼0.1% of all transients will be classified spectroscopically. To conduct studies of rare transients, such as Type I
superluminous supernovae (SLSNe), we must instead rely on photometric classification. In this vein, here we carry
out a pilot study of SLSNe from the Pan-STARRS1 Medium Deep Survey (PS1-MDS), classified photometrically
with our SuperRAENN and Superphot algorithms. We first construct a subsample of the photometric sample
using a list of simple selection metrics designed to minimize contamination and ensure sufficient data quality for
modeling. We then fit the multiband light curves with a magnetar spin-down model using the Modular Open-
Source Fitter for Transients (MOSFiT). Comparing the magnetar engine and ejecta parameter distributions of the
photometric sample to those of the PS1-MDS spectroscopic sample and a larger literature spectroscopic sample, we
find that these samples are consistent overall, but that the photometric sample extends to slower spins and lower
ejecta masses, which correspond to lower-luminosity events, as expected for photometric selection. While our PS1-
MDS photometric sample is still smaller than the overall SLSN spectroscopic sample, our methodology paves the
way for an orders-of-magnitude increase in the SLSN sample in the LSST era through photometric selection and
study.

Unified Astronomy Thesaurus concepts: Supernovae (1668)

1. Introduction

Hydrogen-poor (Type I) superluminous supernovae (SLSNe)
are a rare subclass of core-collapse supernovae (CCSNe) that
radiate ∼10–100 times more energy in the UV/optical than
typical CCSNe, and generally exhibit longer durations and
hotter continuum spectra (e.g., Chomiuk et al. 2011; Quimby
et al. 2011; Nicholl et al. 2015; Inserra et al. 2017; De Cia et al.
2018; Lunnan et al. 2018). SLSNe account for only ∼0.1% of
the volumetric CCSN rate (Quimby et al. 2018; Frohmaier et al.
2021), but in magnitude-limited optical surveys they account for
∼2% of all transients (Perley et al. 2020; Gomez et al. 2021),
thanks to their high luminosity. SLSNe are classified spectro-
scopically based on the lack of hydrogen Balmer lines, the
presence of a blue continuum, and unique early-time “W”-shaped
O II absorption lines at ∼3600–4600Å (e.g., Lunnan et al. 2013;
Mazzali et al. 2016; Quimby et al. 2018; Nicholl 2021).

Several mechanisms have been proposed as powering
SLSNe, but a magnetar central engine model (Kasen & Bildsten
2010; Woosley 2010; Dessart et al. 2012; Metzger et al. 2015;
Nicholl et al. 2017b) has had the most success in explaining both
the light curves and spectra of the SLSN population. This model
accounts for the broad range of peak luminosities and timescales
(e.g., Nicholl et al. 2017b; Blanchard et al. 2020), for the early
UV/optical spectra (e.g., Nicholl et al. 2017a), for the nebular
phase spectra (e.g., Nicholl et al. 2016b; Jerkstrand et al. 2017;

Nicholl et al. 2019), and for the power-law decline rates observed
in SN 2015bn and SN 2016inl at 103 day (Nicholl et al. 2018;
Blanchard et al. 2021). Additional support for a magnetar engine
comes from the low-metallicity host galaxies of SLSNe, which
most closely resemble the hosts of long-duration gamma-ray
bursts, another rare population of CCSNe that are likely powered
by a central engine (Lunnan et al. 2014; Perley et al. 2016).
While the magnetar engine model can explain the plethora of
SLSN properties, other mechanisms have also been proposed to
explain some SLSN properties; for example, Chen et al. (2022)
recently argued that the light curves of at least some SLSNe from
the Zwicky Transient Facility (Bellm et al. 2019) can be
explained equally well with a combination of circumstellar
(CSM) interaction and Ni51 decay. Furthermore, Hosseinzadeh
et al. (2022) have also explored ejecta–CSM interaction as a
potential source for postpeak undulations in SLSN light curves.
With ongoing and upcoming wide-field optical surveys,

including in particular the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST; Ivezić et al. 2019), only a
small fraction of SNe are being classified spectroscopically
(∼10% currently, with ∼0.1% anticipated for LSST; Villar
et al. 2020). This impacts the ability to advance the study of
rare SN classes, such as SLSNe, in particular. As shown by
Villar et al. (2018), LSST may yield ∼104 SLSNe per year to
z∼ 3 (of which at least ∼20% will have well-measured
physical properties), but identifying these events requires
photometric classification.
Recently, we presented two machine-learning-based SN

photometric classification pipelines, SuperRAENN (Villar et al.
2020) and Superphot (Hosseinzadeh et al. 2020), trained on
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2315 SN-like transients from the Pan-STARRS1 Medium Deep
Survey (PS1-MDS; Huber et al. 2017). Both classifiers use
multiple SN classes, including SLSNe, in particular. Super-
RAENN combines a novel unsupervised recurrent autoencoder
neural network (RAENN) with a random forest classifier for a
semisupervised algorithm. Superphot utilizes a random forest
approach, based on flexible analytic model fits to the light curves
and their resulting parameters.

Here, as a demonstration of the type of approach and
analysis that will be essential in the LSST era, we explore and
study, for the first time, the photometrically classified SLSNe
from PS1-MDS (Huber et al. 2017), as identified by Super-
RAENN and Superphot. We first explore how to effectively
construct a pure and well-measured subset of SLSNe from a
photometrically classified sample (Section 2). We then model
the light curves of the photometrically classified SLSNe with the
same magnetar engine model that was previously used to study
spectroscopically classified SLSNe (using MOSFiT; Guillochon
et al. 2018; Section 3). Finally, we compare the resulting
parameter distributions to those of the spectroscopically classified
PS1-MDS SLSNe, as well as to the overall sample of spectro-
scopically classified SLSNe (Section 4).

Throughout the paper, we assume a flat ΛCDM cosmology,
with Ωm= 0.308 and H0= 67.8 km s−1 Mpc, based on the
Planck 2015 results (Planck Collaboration et al. 2016). We
correct all photometry for Milky Way extinction using Schlafly
& Finkbeiner (2011), and we follow the extinction law of
Fitzpatrick (1999), with RV= 3.1.

2. Sample Construction

The data used in this paper are from PS1-MDS. We refer the
reader to Chambers et al. (2016) for details of the PS1 survey
telescope and the PS1-MDS observing strategy, and to Villar
et al. (2020) and Hosseinzadeh et al. (2020) for the definition of
the overall sample of SN-like transients and their light curves,
the description of the subsample of spectroscopically classified
events, the photometric classification approaches and results,
all the relevant data (including photometry and host galaxy
redshifts), and complete descriptions of the algorithms and
training processes.

In this paper, we focus on the sample of photometrically
classified SLSNe.7 Using SuperRAENN (Villar et al. 2020)
and Superphot (Villar et al. 2018; Hosseinzadeh et al. 2020),
we photometrically classified 58 and 37 SLSNe, respectively,
using the same training set of 557 spectroscopically classified

SNe, which includes 17 SLSNe that were studied in Lunnan
et al. (2018). Here, we adopt the class with the highest
probability as the predicted SN type for each transient.
Combining all the transients classified by the two algorithms

as SLSNe, and accounting for 28 that are classified as SLSNe
by both, we obtain an initial sample with 67 photometrically
classified SLSNe. To further evaluate and potentially cull the
photometric sample, we investigate several post-classification
selection criteria. We find three effective criteria that help to
reduce the sample contamination and lead to events with
sufficient data to enable robust modeling. Furthermore, we
apply an additional post-modeling quality cut, based on model
convergence. The criteria and their effects on the sample size
are summarized in Table 1, and we discuss them in detail
below.

2.1. Active Galactic Nuclei Host Galaxies

Prior to applying our algorithms to the sample of PS1-MDS
SN-like transients, we systematically excluded light curves
with long-term variability to avoid contamination from active
galactic nuclei (AGNs). Still, some large AGN flares with little
other variability over the 4.5 yr time span of the survey could
survive this preliminary qualitative cut and eventually be
classified as SLSNe. In particular, Hosseinzadeh et al. (2020)
find that 14 photometrically classified SLSNe with host galaxy
spectra that exhibit broad AGN lines are located within 1″ of
the host center.8 While these could in principle be SLSNe
located indistinguishably close to an AGN, they are more likely
large AGN flares or tidal disruption events, neither of which are
classification categories in SuperRAENN or Superphot.
Eliminating these events results in a combined sample of 53
events (Table 1, row 2).

2.2. Classification Confidence

Our initial sample requires that the highest classification
probability be assigned as SLSN. However, given the number
of classification categories, this does not necessarily mean that
the classification confidence is high. Hosseinzadeh et al. (2020)
and Villar et al. (2020) show that increasing the classification
confidence threshold to p 0.75 leads to higher purity9 across
the full range of classes, at the expense of sample complete-
ness. Here, we apply a classification confidence threshold of

p 0.5SLSN as a compromise between purity and sample size

Table 1
Sequential Selection Criteria

Metric (Applied Sequentially) SuperRAENN Superphot Both Algorithms Total SLSNe Classifieda

No criteria applied 37 58 28 67
Not within 1″ of the AGN host center 25 44 16 53
Classification confidence � 0.5 18 28 10 36
� 11 detections across all four bands 16 17 9 24
PSRF � 1.1 13 13 7 19

Note.
a The total number of photometrically classified SLSNe takes into account the events classified by both algorithms.

7 Both classification pipelines are open source and available via GitHub:
https://github.com/villrv/SuperRAENN and https://github.com/griffin-h/
superphot.

8 These transients are PSc000478, PSc010120, PSc010186, PSc020026,
PSc030013, PSc052281, PSc110163, PSc130394, PSc130732, PSc350614,
PSc390545, PSc400050, PSc480585, and PSc550061.
9

“Purity” refers to the fraction of a given photometric class that belongs to
the equivalent spectroscopic class (Hosseinzadeh et al. 2020).
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(which corresponds to a purity of ≈0.78; see Hosseinzadeh
et al. 2020). This selection cut reduces the sample size from 53
to 36 events (Table 1, row 3).

2.3. Number of Light-curve Data Points

Both the classification confidence and the ability to mean-
ingfully model the light curves with MOSFiT (Section 3.1) are
affected by the number of light-curve data points; namely, the
number of data points relates to the ability to constrain the
MOSFiT models and return statistically meaningful posterior
distributions. Here, we set a threshold of �11 data points in
total across the four observed filters (griz) to match the number
of the model’s free parameters.10 This selection cut reduces the
sample size from 36 to 24 (Table 1, row 4).

2.4. Model Convergence

The aforementioned selection criteria are applied prior to
modeling. After all three criteria are applied, we model the 24
photometrically classified SLSNe with a magnetar central
engine model, implemented in MOSFiT. Although we have
reduced our sample to identify only events with a sufficient
number of data points and high confidence as being SLSNe,
light curves with marginal detections or potentially misclassi-
fied events could in principle survive the above pre-modeling
selection metrics. Therefore, we include an additional cut based
on the model convergence factor, as measured by calculating
the Gelman–Rubin statistics, or the potential scale reduction
factor (PSRF; Gelman & Rubin 1992), which estimates the
extent to which the full parameter space has been explored in
our Markov Chain Monte Carlo (MCMC) models. Brooks &
Gelman (1998) suggest that a PSRF < 1.2 provides reliable
convergence, but we set a stricter threshold of PSRF < 1.1, as
done in Nicholl et al. (2017b) and Hsu et al. (2021), which is
also the termination value for our models (see Section 3.1).
This post-modeling selection cut reduces our sample size from
24 to 19 (Table 1, row 5).

Our final photometric sample consists of 10 events classified
as SLSNe by both algorithms, with the remaining nine being
classified as SLSN by either SuperRAENN or Superphot.
See Table 2 for the predicted SN type of each transient in our
final sample and their respective classification confidence.

2.5. Justification of Our Choices

In Figure 1, we show the combined effects on the final
sample size of varying the minimum classification confidence
and the number of data points; we use this as a guide, such that
our final sample consists of events with sufficient confidence
levels and data points to obtain a robust model. In each cell, we
show the number of events that survive each pair of minimum
thresholds for confidence and number of detections, and we
quote the final sample size after applying both the AGN and
convergence cuts in parentheses. To extract a sample size
comparable to the PS1-MDS spectroscopic sample (17 events)
that will return statistically meaningful results, we outline in
Figure 1 the combinations of minimum confidence and
detection thresholds that produce a minimal final sample size
�17. We find that our choices of the minimum confidence

(�0.5) and the number of detections (�11) fall within the
outlined region, indicating that our selection criteria are
reasonable and justified.

Table 2
Classification Results for the Final SLSN Photometric Sample

SuperRAENN Superphot

PScID SN Type Confidence SN Type Confidence

PSc000036 SLSN 1.00 SLSN 0.89
PSc000553a SLSN 0.84 SNIIn 0.52
PSc061198 SLSN 0.41 SLSN 0.82
PSc070299 SLSN 1.00 SLSN 0.99
PSc080492a SLSN 0.86 SNIIn 0.50
PSc091753a SLSN 0.78 SNIIn 0.47
PSc110446 SLSN 0.94 SLSN 0.94
PSc120151a SNIIn 0.66 SLSN 0.86
PSc130096a SNIa 0.93 SLSN 0.71
PSc300035 SLSN 0.76 SLSN 0.89
PSc310006 SLSN 1.00 SLSN 0.98
PSc320338 SLSN 0.98 SLSN 0.94
PSc380044a SNIIn 0.39 SLSN 0.58
PSc390461a SNIa 1.00 SLSN 0.77
PSc390605a SLSN 0.64 SNIIn 0.95
PSc420350 SLSN 0.39 SLSN 0.69
PSc450057a SLSN 0.51 SNIIn 0.61
PSc480628 SLSN 0.61 SLSN 0.73
PSc490019 SLSN 0.60 SLSN 0.39

Note. The classification results for the final 19 photometric SLSNe from both
SuperRAENN and Superphot. Here, we adopt the SN class with the highest
classification probability as the predicted SN type for each transient. If either
algorithm classifies an event as an SLSN, we include it in our sample.
a Event classified as an SLSN by only one classifier.

Figure 1. Matrix showing the effect of varying the minimum classification
confidence and the minimum number of light-curve data points across all four
filters. The top number in each cell indicates the total number of events (out of
67) satisfying both thresholds. The numbers in parentheses indicate the final
sample size after removing AGN hosts and events with nonconverged models.
The region outlined in red marks the boundary for combinations that result in a
comparable sample size (�17) to the PS1-MDS spectroscopic sample.

10 One parameter is set to have a constant value, leaving us with 11 free
parameters; see Section 3.1.
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3. Magnetar Model Fits

3.1. Brief Description of the Model

We fit the optical light curves of the 19 photometrically
classified SLSNe (selected as described in Section 2) using
the Modular Open-Source Fitter for Transients (MOSFiT;
Guillochon et al. 2018), with the magnetar spin-down model
described in Nicholl et al. (2017b). MOSFiT is an open-source
Python-based light-curve fitting package that employs an
MCMC algorithm to fit a one-zone, gray-opacity analytical
model to multiband light curves (Nicholl et al. 2017b).

The magnetar model has 12 free parameters, of which eight
are nuisance parameters that we marginalize over, in order to
obtain the four key physical parameters related to the ejecta and
engine properties. We fix one of the nuisance parameters, the
angle θPB, between the magnetic field and the rotational axis of
the magnetar, to 90°, as this ensures that the derived B-field
strength is a lower limit (following Nicholl et al. 2017b). The
nuisance parameters, κ, κγ, MNS, and nH,host, are not well
constrained by the model. Events with sufficient late-time
observations may constrain the gamma-ray opacity κγ, but this
is not the case for our sample. The neutron star mass is
degenerate with the spin period and magnetic field strength, but
is not well constrained. The explosion time, texp, is the time
between the explosion and the first observation in the pure
magnetar model. The main parameters that constrain the
observed properties of an SLSN are the neutron star’s initial
spin period, P; magnetic field strength, B; ejecta mass, Mej; and
ejecta velocity, vej (the latter two can be combined to determine
the kinetic energy, EK). The model parameters and their priors
are listed in Table 3.

For each light-curve fit, the first 10,000 iterations are used to
burn in the ensemble, during which minimization is employed
periodically, as the ensemble converges to the global optimum;
the remainder of the run time is used to sample the posterior
probability distribution. Convergence is measured by calculating

the PSRF, and we terminate our fits when PSRF < 1.1. Most
events typically require 30,000–60,000 iterations to reach
convergence, depending on the number of data points and the
scatter around our model.

3.2. Light-curve Fits

In Figure 2, we show the magnetar model light-curve fits for
the 19 PS1-MDS photometrically classified SLSNe. The
shaded regions are the MOSFiT light-curve fits, where the
upper and lower bounds are the 1σ uncertainties calculated
from the 120 MCMC walkers, while the solid light curves are
based on the parameter medians. To allow for a proper
comparison with the PS1-MDS spectroscopic sample, we also
show in Figure 3 the 17 PS1-MDS spectroscopically classified
SLSNe (which were used in the classification training samples).
Previous studies (Nicholl et al. 2017b; Villar et al. 2018;
Blanchard et al. 2020) have already modeled all but one of
these events (PS1-12cil) in the same manner as this work. Two
peculiar events from the PS1-MDS spectroscopically classified
sample, PS1-11ap and PS1-12cil, exhibit postpeak undulations
(e.g., Inserra et al. 2013; Nicholl et al. 2014, 2016a; Inserra
et al. 2017; Hosseinzadeh et al. 2022). Since our MOSFiT
model does not account for these “bumps,” we replace the
model of PS1-11ap from Blanchard et al. (2020) with the
version presented in Hosseinzadeh et al. (2022), which converts
these bumps into upper limits prior to fitting. We also include
the model for PS1-12cil from Hosseinzadeh et al. (2022) to
complete the PS1-MDS spectroscopic SLSN sample. For
illustrative purposes, we extrapolate all light curves (both
photometric and spectroscopic samples) back to the inferred
explosion time and forward to 100 days after the last detection.
Overall, we find that the model fits the observed light curves

well, and is better constrained for events with more extensive data.
The resulting median values and 1σ uncertainties for the four
main physical parameters (P, B, Mej, and vej), calculated based on
the posterior probability distributions from 120 MCMC walkers,
are summarized in Table 4. Our model includes an intrinsic scatter
term, σ, which attempts to model white systematic scatter not
captured by our statistical uncertainties.
The sample median values and associated 1σ ranges of the

four key model parameters, along with the kinetic energy,11

=E M vK
1

2 ej ej
2, for the PS1-MDS photometric and spectro-

scopic samples, are listed in Table 5. We also list in Table 5 the
values for a larger SLSN compilation sample, which includes
82 spectroscopically classified SLSNe (81 from Hsu et al.
2021, plus PS1-12cil from Hosseinzadeh et al. 2022), as a
comparison sample. Comparing these samples, we find that the
PS1-MDS photometric sample displays somewhat slower
spins, higher B-field values, and lower ejecta masses as
compared to the other two samples. However, the values are in
good agreement within the 1σ ranges.

4. Sample Properties

4.1. Observational Properties

The PS1-MDS samples (both spectroscopic and photo-
metric) collectively span a wide range of redshifts, z≈ 0.3–2.
To properly compare the observational properties of the

Table 3
Priors on the Magnetar Model Parameters

Parameter Prior Lower Upper Gaussian

/Unit Shape Bound Bound Mean S.D.

P/ms Flat 0.7 20 L L
B/1014 G Flat 0.1 10 L L
Mej/Me Flat 0.1 100 L L
vej/10

4 km s−1 Gaussian 0.1 3.0 1.47 4.3
κ/ g cm−2 Flat 0.05 0.2 L L
κγ/ g cm−2 Log-flat 0.01 100 L L
MNS/Me Flat 1.4 2.2 L L
T 10 Kmin

3 Gaussian 3.0 10.0 6.0 1.0
nH,host/cm

−2 Log-flat 1016 1023 L L
t daysexp Flat −100 0 L L

σ/mag Log-flat 10−3 100 L L

Note. P is the initial spin period of the magnetar; B is the magnetic field
strength; Mej is the ejecta mass; vej is the ejecta velocity; κ is the opacity; κγ is
the gamma-ray opacity; MNS is the neutron star mass; Tmin is the photospheric
temperature floor; nH,host is the hydrogen column density in the host galaxy, a
proxy for extinction; texp is the time of explosion relative to the first observed
data point; and σ is the additional photometric uncertainty required to yield a
reduced chi-squared value of ≈1. All priors, including Gaussian priors, are
bounded as specified above. For a detailed description of the model, see
Nicholl et al. (2017b).

11 Our model assumes the analytic density profile described in Margalit et al.
(2018). For a homogeneous density profile, the kinetic energy is given
by =E M vK

3

10 ej ej
2.
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PS1-MDS SLSNe, we correct their observed peak apparent
magnitudes to a single rest-frame filter. Since we do not have a
complete set of spectra for the spectroscopic sample, and by
definition have no spectra for the photometric sample, we do
not apply a complete K-correction; instead, we apply only a
cosmological K-correction factor of ( )+ z2.5 log 110 to the
peak magnitude in the band closest to the rest-frame g band for
each event, and correct for Milky Way extinction. We plot the
resulting peak g-band absolute magnitudes as a function of
redshift in Figure 4. The PS1-MDS spectroscopic sample spans

a range from ≈−20.5 to ≈−22.6, while the photometric
sample spans a wider range from ≈−18.7 to ≈−22.6. As
expected, lower-luminosity SLSNe are restricted to lower
redshift (z 0.5), while higher-luminosity events are distrib-
uted to higher redshift (z≈ 2). The spectroscopic sample is
intrinsically more luminous, with a median peak magnitude of
−22 as compared to −20.8 for the photometric sample.
We also plot in Figure 4 the per-visit PS1-MDS limiting

magnitude of ≈23.3 (Villar et al. 2020), as well as the effective
spectroscopic follow-up limit of ≈22.5 (Lunnan et al. 2018).

Figure 2. Multiband extinction-corrected apparent magnitude light curves of the 19 PS1-MDS photometrically classified SLSNe, along with our magnetar model fits
using MOSFiT. The name of each transient and its spectroscopic host galaxy redshift are quoted at the top of each panel. The different filters are shifted for clarity, as
indicated in the legend. Open triangles indicate 3σ upper limits, while solid circles indicate detections. The solid lines and shaded regions indicate the median model
and 1σ ranges. Events classified as SLSNe by only one classifier are marked with daggers.
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The majority of the photometric sample have peak absolute
magnitudes either around or below the spectroscopic follow-up
depth, which explains why these events were not chosen for
spectroscopic follow-up. However, there are five photometri-
cally classified SLSNe (PSc061198, PSc080492, PSc110446,
PSc390605, and PSc490019) at lower redshift (z� 0.6) that are
more than 1 mag brighter than the threshold, but were not
chosen as follow-up candidates.

4.2. Physical Properties and Correlations

In Figure 5, we show two-dimensional distributions of the
primary physical parameters (P, B, Mej, and vej; the medians of
the posteriors) and redshifts of both the PS1-MDS sample and
the SLSN compilation, which contains events from a wide
range of surveys (including the PS1-MDS spectroscopic
sample). We explore the differences between the three samples

Figure 3. The same as Figure 2, but for the PS1-MDS spectroscopically classified SLSNe. The light curves for PS1-11ap and PS1-12cil are from Hosseinzadeh et al.
(2022), modeled without the postpeak pumps.
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and the parameter correlations for the combined sample (all
three samples together, 101 SLSNe in total). Specifically, we
compare the PS1-MDS photometric sample and the spectro-
scopic compilation sample using the two-sample Kolmogorov–
Smirnov (K–S) test (Smirnov 1948) and the two-sample
Anderson–Darling (A–D) test (Anderson & Darling 1952).
Both tests are designed to determine whether two distributions
arise from the same underlying population. The A–D test is a
modification of the K–S test that is more sensitive to the tails of
a distribution, whereas the K–S test gives more weight to the
mean of a distribution. We report the resulting p-values from
these tests, to determine if both are drawn from the same
parameter distribution, at the top of each column in Figure 5.

The differences in the redshift distributions between the two
samples reflect the design characteristics of the various surveys
(e.g., PS1-MDS, Dark Energy Survey, Palomar Transient
Factory, etc.). In terms of the magnetar model parameters, we
find that the distributions are overall in good agreement, except
for the ejecta velocity, which has statistically significant

p-values for the A–D test. This indicates that we can reject the
null hypothesis at 95% confidence that the ejecta velocity for the
photometric and the spectroscopic compilation samples are drawn
from the same distribution. This may be caused by the sensitivity
of the A–D test to tail distributions. The spectroscopic compilation
sample spans a range of vej≈ (3.6–16)× 103 km s−1, while the
photometric sample spans a range of vej≈ (2.2–14)× 103 km s−1,
with two events12 (PSc130096 and PSc390605) having vej
values that fall outside the range of the spectroscopic
population. Removing these two outliers returns an updated
A–D test p-value of ≈0.06, suggesting that other than these two
specific data points, the remainder of the photometric sample fit
into the spectroscopic sample well. We explore the posterior
distributions of the magnetar parameters from the photometric
sample in more detail in the next subsection.
As done in previous SLSN parameter studies (e.g.,

Blanchard et al. 2020; Hsu et al. 2021), we combine the
PS1-MDS photometric and literature samples to confirm
known correlations and explore new ones. For each pair of
parameters, we perform a Monte Carlo procedure to calculate
the Spearman rank correlation coefficient (ρ; Spearman 1904)
and its associated 1σ bound, using the method described in
Curran (2014). The results are summarized in each panel of
Figure 5. We find the same results as in Hsu et al. (2021),
where most parameter combinations exhibit either no correla-
tion, mild correlations, or mild correlations that are primarily
due to the absence of events in specific areas of the parameter
space. The mass–spin correlation first discussed in Blanchard
et al. (2020) remains strong after merging the photometric and

Table 4
Median Magnetar Parameter Values for the Photometrically Classified SLSNe

P B Mej vej
SLSN Name (ms) (1014 G) (Me) (103 km s−1)

PSc000036 -
+1.61 0.58
0.87

-
+1.30 0.42
0.57

-
+4.31 2.16
4.25

-
+7.47 1.64
0.85

PSc000553a -
+7.45 0.95
0.97

-
+1.56 0.51
0.67

-
+3.19 1.04
1.87

-
+6.83 0.80
0.96

PSc061198 -
+6.89 0.84
0.82

-
+4.73 1.25
0.91

-
+1.69 0.44
0.46

-
+11.46 0.53
0.46

PSc070299 -
+2.32 1.28
1.81

-
+1.87 1.13
1.00

-
+9.38 7.50
15.07

-
+5.91 0.65
1.12

PSc080492a -
+2.10 0.69
0.90

-
+0.94 0.29
0.30

-
+13.54 4.75
12.43

-
+6.76 0.74
0.87

PSc091753a -
+2.18 0.86
0.83

-
+0.27 0.14
0.23

-
+28.62 17.73
37.64

-
+3.97 0.24
0.21

PSc110446 -
+2.27 1.14
1.07

-
+1.40 0.54
0.78

-
+7.52 4.74
19.93

-
+8.22 1.22
1.98

PSc120151a -
+7.51 0.93
0.69

-
+2.04 0.49
0.64

-
+1.23 0.23
0.20

-
+5.96 0.38
0.30

PSc130096a -
+5.30 2.84
4.18

-
+1.55 1.12
2.20

-
+25.45 17.95
30.36

-
+3.00 0.82
1.12

PSc300035 -
+2.87 1.22
1.16

-
+7.66 1.55
1.36

-
+1.75 0.33
0.33

-
+14.09 1.16
1.47

PSc310006 -
+4.35 0.62
0.66

-
+0.97 0.31
0.41

-
+1.44 0.25
0.38

-
+11.99 0.79
1.08

PSc320338 -
+6.02 0.86
1.06

-
+1.46 0.56
0.67

-
+1.93 0.46
0.47

-
+8.63 1.36
1.36

PSc380044a -
+7.00 0.95
0.88

-
+2.14 0.52
0.65

-
+3.58 1.44
2.25

-
+5.64 0.64
0.58

PSc390461a -
+1.53 0.55
0.85

-
+0.08 0.05
0.07

-
+47.89 24.13
28.57

-
+4.60 0.53
0.57

PSc390605a -
+2.15 0.94
1.61

-
+2.21 0.67
0.68

-
+30.24 10.10
14.93

-
+2.17 0.22
0.34

PSc420350 -
+1.17 0.29
0.42

-
+5.59 1.27
1.30

-
+9.90 2.60
6.85

-
+13.36 1.26
1.14

PSc450057a -
+10.83 1.56
1.03

-
+2.31 0.56
0.42

-
+1.16 0.36
0.84

-
+9.02 0.17
0.26

PSc480628 -
+4.67 0.52
0.71

-
+1.74 0.44
0.36

-
+2.74 1.25
1.97

-
+3.71 0.40
0.89

PSc490019 -
+7.98 1.15
1.07

-
+5.95 1.72
0.91

-
+1.50 0.30
0.65

-
+10.74 1.17
1.34

Note.
a Event classified as an SLSN by only one classifier.

Table 5
Magnetar Parameter Sample Median Values

PS1-MDS PS1-MDS SLSN
Parameter Photometric Spectroscopic Compilation

P (ms) -
+4.35 2.32
3.11

-
+1.96 0.90
2.36

-
+2.67 1.34
3.26

B (1014 G) -
+1.56 0.63
3.28

-
+0.88 0.59
1.43

-
+1.14 0.86
1.75

Mej (Me) -
+3.19 1.70
22.6

-
+7.70 4.35
16.5

-
+4.56 2.37
6.02

vej (10
3 km s) -

+6.83 2.89
4.69

-
+9.09 3.10
4.15

-
+9.25 2.58
3.40

EK (1051 erg) -
+2.21 1.10
2.98

-
+6.48 4.24
7.93

-
+3.78 1.86
5.09

Note. The median values and 1σ ranges for the magnetar engine and ejecta
parameters of the PS1-MDS SLSN samples (photometric and spectroscopic)
and the SLSN compilation sample (from Hsu et al. 2021, with the addition of
PS1-12cil), including the 17 PS1-MDS spectroscopically classified SLSNe.

Figure 4. Peak absolute rest-frame g-band magnitude vs. redshift for the PS1-
MDS SLSNe (solid squares: photometrically classified by Superphot only;
solid triangles: photometrically classified by SuperRAENN only; solid stars:
photometrically classified by both SuperRAENN and Superphot; open
circles: spectroscopically classified). The top panel shows the redshift
distribution of the PS1-MDS photometric (blue) and spectroscopic (red)
samples compared to the SLSN compilation from Hsu et al. (2021) (82
spectroscopic SLSNe, including the 17 from PS1-MDS), while the right panel
shows the distributions of the peak magnitudes for the PS1-MDS samples.
Each peak magnitude is corrected for Galactic extinction and includes a
cosmological K-correction factor of ( )+ z2.5 log 1 .

12 The two vej outliers (PSc130096 and PSc390605) have relatively few data
points. PSc130096 lacks a definitive peak and any postpeak data, and the
model is therefore only marginally constrained. PSc390605 similarly lacks
prepeak and postpeak data, again leading to a marginally constrained model.
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spectroscopic samples. All other mild correlations have been
previously explained as being due to observational biases in
Blanchard et al. (2020) and Hsu et al. (2021), and we do not
find any new statistically significant correlations here.

4.3. Posterior Distributions of the Photometric Sample

To explore any differences in the magnetar and ejecta
parameters between the PS1-MDS photometric and spectro-
scopic samples, we show in Figure 6 the joint posterior

distributions of the PS1-MDS photometric, PS1-MDS spectro-
scopic, and compilation samples. We construct the joint
posterior distributions by selecting 100 randomly sampled
walkers from each MOSFiT fit.13

To capture the uncertainties in the test statistics, we calculate
and report in each panel the two-sample K–S test and the

Figure 5. Median values and 1σ uncertainties of the key magnetar model parameters (P, B, Mej, and vej; solid squares: photometric; open circles: spectroscopic; and
the plot symbols for the photometrically classified SLSNe are the same as in Figure 4). The models for PS1-11ap and PS1-12cil are both obtained from Hosseinzadeh
et al. (2022). The gray crosses mark the remaining spectroscopically confirmed SLSNe from Hsu et al. (2021). In the top panels, we show the parameter distributions
for the PS1-MDS photometric sample (blue), the PS1-MDS spectroscopic sample (red), and the SLSN compilation sample (gray), along with the median p-values
associated with both the K–S test and the A–D test statistics, calculated using the PS1-MDS photometric sample and the SLSN compilation. In each panel, we quote
the median value and 1σ bound of the Spearman rank correlation coefficient, using the PS1-MDS photometric sample and literature data set. Of all the parameter pairs,
P and Mej exhibit the strongest correlation, consistent with the findings in Blanchard et al. (2020) and Hsu et al. (2021).

13 We take 100 here instead of the full 120 walkers as described in Section 3.2
because some events modeled previously in Blanchard et al. (2020) only have
100 walkers.
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two-sample A–D test p-values between the PS1-MDS photo-
metric sample and the spectroscopic compilation using a
modified bootstrap method. For each parameter, we calculate a
distribution of p-values by repeating the following procedure
5000 times. We assemble a joint posterior for the 19
photometrically classified SLSNe by randomly drawing one
MCMC walker from the individual posterior for each event,
and we do the same for the 82 spectroscopically classified
SLSNe. We then calculate p-values for the K–S and A–D tests,
comparing these two joint posteriors. We report the median and
1σ bounds of these distributions of the resulting p-values on top
of each panel in Figure 6.

The posterior distributions for the physical parameters are in
good agreement, except for vej, as noted previously; removing
PSc130096 and PSc390605 from the photometric sample leads
to = -

+p 0.11 0.08
0.15 (K–S) and = -

+p 0.05 0.03
0.06 (A–D). We also note

that while the K–S and A–D tests indicate that the distributions
of P and Mej are drawn from the same distribution, the
photometric sample skews to slower spins and lower ejecta
masses (this trend is still in agreement with the mass–spin
correlation). This difference can be ascribed to the system-
atically lower luminosities of the photometric SLSNe
(Figure 4) compared to the PS1-MDS spectroscopic SLSNe.

4.4. Effects of Classification Uncertainty

As indicated in Table 2, nine of the 19 photometrically
classified SLSNe in our final sample were designated as SLSNe
by only one of the two classifiers. To investigate the impact of
these cases of classification disagreement, we repeat the
analyses in the previous subsections using only the events
classified as SLSNe by both Superphot and SuperRAENN.
This “consensus” photometric sample spans a peak absolute
magnitude range from ≈−20.3 to ≈−22.6. However, despite
excluding some of the lowest-luminosity events, the median
peak magnitude is still ≈1 mag dimmer than that of the
spectroscopic sample (see Figure 7, left), and we find the same
trend of systematically lower luminosity at any redshift, as seen
for the full sample in Figure 4. Our conclusion about the lower

luminosities probed by the photometric sample thus remains
unchanged.
Systematically removing objects classified as SLSNe by only

one classifier eliminates the disagreement in the vej distribu-
tions, but introduces mildly statistically significant differences
in B and Mej. The consensus sample shifts to higher ranges of
B≈ (1–7.7)× 1014 G, vej≈ (0.37–1.41)× 104) km s−1, a lower
range of Mej≈ 1.4–9.9 Me, and a similar range of P≈
(1.17–7.98) ms in parameter distributions. These shifts are all
consistent and expected for SLSNe with higher luminosities. See
Figure 7 for these changes in the magnetar model parameters.
The shift in B is reflected in the posterior distribution, but not as
strongly in Mej.

5. Discussion and Conclusions

In this paper, we have presented a case study for time-domain
science with machine-learning-based photometric classification,
focusing on SLSNe from PS1-MDS. Our analysis has consisted
of two critical aspects that would need to be undertaken for any
such future studies (for SLSNe or any other types of transients).
First, we began with a sample of events nominally classified as
SLSNe by two independent machine-learning-based pipelines
(SuperRAENN and Superphot). We then applied various
selection criteria to increase the sample purity (e.g., removing
likely AGN flares and setting a higher minimum classification
probability threshold), at the cost of sample completeness. Our
sample size following these cuts was 36% of the initial sample
(24 of 67). Subsequent to the sample refinement, we carried out
modeling with MOSFiT to extract physical parameters in order
to compare the photometric sample with existing spectroscopic
samples modeled in the same way. The requirement for model
convergence eliminated five additional events from the sample (a
21% reduction, from 24 to 19). These two critical steps of sample
refinement and modeling will be essential for all studies with
photometrically classified samples.
Comparing our photometric SLSN sample to the PS1-MDS

spectroscopically classified SLSNe and to the larger sample of
spectroscopic SLSNe, we find an overall similarity in both the

Figure 6. Normalized joint posterior distributions of the magnetar and ejecta parameters for the PS1-MDS photometric (blue), PS1-MDS spectroscopic (red), and
spectroscopic compilation (gray) samples. The distributions are the summed posteriors of the MOSFiT parameters, consisting of 100 randomly sampled MCMC
walkers from each SLSN fit. At the top of each panel, we quote the median p-values and their 1σ ranges from both the K–S and the A–D tests, using the bootstrap
method, by comparing the PS1-MDS photometric sample and the SLSN compilation.
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observed properties and the inferred magnetar and ejecta
parameters. We do note a potential shift in the photometric
sample to slower magnetar spins and lower ejecta masses,
which may reflect the fact that the photometric SLSNe are
systematically dimmer than the spectroscopic PS1-MDS
SLSNe (due to the shallower effective magnitude limit required
for spectroscopy). If this is indeed the case, then it highlights an
important advantage of photometric classification in deep
surveys (such as PS1-MDS and LSST).

Our initial classifications and subsequent modeling both rely
on the existence of redshift information. In the case of our PS1-
MDS sample, the redshifts were determined from host galaxy
spectroscopy after the survey had concluded. Such data may be
difficult to obtain for the large samples expected from LSST
(e.g., 106 SNe per year and ∼104 SLSNe per year; Villar
et al. 2018). However, robust photometric redshifts are likely to
be as useful as spectroscopic redshifts. We also note that one
source of contamination in our initial photometric sample
appears to be AGNs (21%, 14 of 67 events), despite the fact
that the PS1-MDS sample was designed to eliminate variable
AGNs. These contaminating AGNs were again identified via
host galaxy spectroscopy, which will not be available for the
LSST samples; a more robust elimination of AGN will be
essential.

Overall, our analysis highlights some challenges in con-
structing pure samples of photometrically classified SNe, but
we believe that these challenges are surmountable. The
photometric sample explored here is smaller than the overall
known spectroscopic sample by a factor of several, but, looking
forward to LSST, even a highly conservative selection with
relatively low completeness will easily exceed the spectro-
scopic sample by two orders of magnitude.
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