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Anomaly detection with convolutional autoencoders is a popular method to search for new physics in a
model-agnostic manner. These techniques are powerful, but they are still a “black box,” since we do not
know what high-level physical observables determine how anomalous an event is. To address this, we adapt
a recently proposed technique by Faucett et al. [Phys. Rev. D 103, 036020 (2021).], which maps out the
physical observables learned by a neural network classifier, to the case of anomaly detection. We propose
two different strategies that use a small number of high-level observables to mimic the decisions made by
the autoencoder on background events, one designed to directly learn the output of the autoencoder, and the
other designed to learn the difference between the autoencoder’s outputs on a pair of events. Despite the
underlying differences in their approach, we find that both strategies have similar ordering performance as
the autoencoder and independently use the same six high-level observables. From there, we compare the
performance of these networks as anomaly detectors. We find that both strategies perform similarly to the
autoencoder across a variety of signals, giving a nontrivial demonstration that learning to order background
events transfers to ordering a variety of signal events.
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I. INTRODUCTION

Many analyses have been carried out at the LHC to look
for new physics beyond the Standard Model, but unfortu-
nately these have yet to yield statistically significant
deviations from the expected background. This may indi-
cate that there is no new physics to be found in the data or,
more optimistically, it may be a result of not looking for the
right signals. There remain many well-motivated models to
search for, but designing and carrying out dedicated
analyses for each quickly becomes intractable. This moti-
vates the need for broad, model-agnostic searches. The
advent of modern machine learning has seen the creation of
a variety of unsupervised anomaly detection techniques, all
capable of searching for new physics with no reliance on a

particular signal model. See Ref. [1] for a recent review of
anomaly detection and unsupervised techniques.
Anomaly detection techniques rely on an ability to

characterize the background in some way, with the hope
that this characterization does not generalize to out-of-
distribution events, thus making signal events appear
“anomalous.” Broadly speaking, anomaly detection can
be split into two categories, depending on how similar one
expects the signal and background to look. If they are
expected to look similar, one has to work to exploit
differences in the underlying probability distributions,
and many techniques have been developed to highlight
those differences [2–24]. However, one often expects there
to be qualitative differences between signal and back-
ground. In that case, there are a variety of methods that
can determine whether events are anomalous or not on an
event-by-event basis [25–55].
Machine learning (ML) techniques, including unsuper-

vised anomaly detection, typically make use of low-level,
high-dimensional data. This is in contrast to human-
engineered strategies, which tend to use high-level, low-
dimensional data. When the two perform equally well on a
given task, we tend to assume that the ML strategy must
have used some combination of its low-level inputs to
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create an approximation of the high-level variables used by
humans. It could be, however, that the ML strategy has
found an alternative that is just as efficient. Unfortunately,
the “black box” nature of ML techniques make it difficult to
understand what the machine is actually learning. This
problem is only amplified when the ML strategy outper-
forms the human-engineered one. Has the machine learned
a simple observable humans did not consider or has it
perhaps found something new?
There have been efforts to understand a neural network by

using existing high level observables [56–60], as well as
“knowledge distillation” techniques to gain insights about
complex networks by analyzing simpler ones [61–64]. In a
recent paper (Ref. [65]), a promising iterative technique was
introduced to build an interpretable classifier. This classifier
mimics a “black box” deep neural network classifier, where
the mimicker’s inputs consists of a limited set of human-
interpretable high-level variables (see also [66,67]). In this
paper, we extend this technique to anomaly detectors by
presenting two strategies for mapping the low-level infor-
mation utilized by an anomaly detector into a handful of
simple to understand high-level observables. As a concrete
example, we attempt to mimic both the decisions and
performance of an anomaly detector based on a convolu-
tional autoencoder, which is trained on background jet
images. The convolutional autoencoder then helps to iter-
atively select high-level observables that serve as the inputs
to the mimicker networks. As our pool of high-level
observables, we use the energy flow polynomials [68]
because they form a basis for all infrared- and collinear-
safe observables.
We introduce two strategies to mimic an autoencoder.

The first strategy, the high-level network, uses a small
number of high-level observables to match the autoen-
coder’s anomaly score on an event-by-event basis. The
other strategy, the paired neural network, is tasked with
using a potentially different set of observables to learn to
make the same ordering decisions as the autoencoder.
Given a pair of events, the paired neural network learns
which of the two was deemed to be less anomalous by the
autoencoder. Note that like the convolutional autoencoder
we want to mimic, both the paired and high-level neural
networks are only trained on background events and so are
unsupervised with respect to signal events. Despite their
philosophical differences, we find that both strategies agree
on which high-level observables are useful for ordering
background events like the autoencoder. These two strat-
egies also have comparable performance, where we find
that they both make the same ordering decisions as the
autoencoder ∼83% of the time.
Since these networks are unsupervised, applying these

networks as anomaly detectors allows us to test whether the
decision ordering on background events transfers to signal
events. Interestingly, for seven of the eight different signals
we consider, we find that the mimickers perform as well or

better as anomaly detectors than the autoencoder. Thus, this
shows that it is possible to create interpretable anomaly
detectors that have a limited number of high-level inputs
without compromising performance. This reduction of
complexity is an obvious advantage for experimental
applications of anomaly detection, reducing work needed
for variable validation and determination of systematic
uncertainties. Theoretically, this result gives insights into
the features of a QCD jet image which are harder to
compress into a lower-dimensional latent space.
This paper is outlined as follows. In Sec. II, we describe

the Monte Carlo generated dataset, as well as the relevant
selection criteria and preprocessing. Section III starts by
describing the details of the convolutional autoencoder. We
then review all of the pieces needed to mimic the autoen-
coder—the pool of high-level observables we use to
explain the autoencoder, a metric to determine how similar
the decisions of two networks are, the details of our two
simplified anomaly detectors, and the iterative procedure
we use to construct the mimickers from the pool of high-
level observables. We present our results in Sec. IV,
detailing the construction and performance of the mimi-
ckers. Finally we conclude in Sec. V. Details of the
simulated events and network training hyperparameters
appear in the appendices.

II. DATASETS

In this section, we briefly describe the simulated datasets
we use in this study. In particular, our focus is on anomaly
detection in boosted jets at the LHC. We utilize the publicly
available datasets provided by Ref. [38], using QCD dijet
events [69] as background and W, top, and Higgs jets [70]
as the anomalous events. We consider four different W
masses, mW ¼ 59; 80; 120; 174 GeV, two different top
masses,mt ¼ 80; 174 GeV, and two different Higgs masses,
mh ¼ 20; 80 GeV. Note that when mt ¼ 80 GeV, the mass
of the decay productW is set to 20 GeV. The full simulation
details are given in Appendix A. These signals give a broad
range of signals with varying amounts of substructure (two
to four prongs), which will prove useful when testing the
ability of our anomaly detectors.
These datasets contain approximately 700,000 QCD

dijet events and 100,000 events for each of the W, top,
and Higgs signals. After applying a pT cut (see
Appendix A), we are left with ∼150; 000 QCD events
and ∼30; 0000 events for each of the anomalous signals We
use 2=3 of the QCD dijet events for training the autoen-
coder, with the remaining 1=3 being reserved for testing
and validation. We are not considering training on real
data at this point, so we do not include the possibility of
contamination in the background set from signal samples
when training the autoencoder. However, previous work
has shown that autoencoders are robust to up to ∼10%
signal contamination [28–30,71].
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Our procedure for preprocessing the raw four vectors into
images follows that outlined in Ref. [72] and is implemented
with the EnergyFlow package [73]. For the leading jet in each
event, we boost and rotate along the beam direction, such
that the pT weighted centroid lies at ðη;ϕÞ ¼ ð0; 0Þ. The jet
is then rotated about its centroid until its principal axis lies
along the vertical. Finally, the jet is reflected about the
horizontal and vertical axes so that the maximum intensity
lies in the upper-right quadrant. Only after centering,
rotating, and reflecting the jet do we pixelate the image.
Our final pixelated images are 40 × 40, covering Δη ¼
Δϕ ¼ 2.0. The last step of our preprocessing procedure is to
divide by the total pT in the image. This final normalization
step ensures that each image has the same scale, which helps
with training. Figure 1 shows the average jet image for the
background and three representative signals—the 80 GeV
W, 174 GeV top, and 80 GeV Higgs.

III. METHODOLOGY

While neural networks have been used for classification
and anomaly detection with great success, they are often
viewed as black boxes, leading one to wonder what
information they are using to match or outperform tradi-
tional techniques. With this in mind, the authors of
Ref. [65] showed that modern classification networks are
able to be mimicked by interpretable networks using a few
high level physics variables as inputs. In this work, we
adapt this method to the task of anomaly detection. In order
to do this, we first need a good anomaly detector to mimic
with physics variables.

A. Creating a target anomaly detector
with a convolutional autoencoder

The anomaly detector we chose is a convolutional
autoencoder (hereafter referred to as the AE). Given an
input image, the AE is tasked with encoding the image down
into a smaller latent space, then reconstructing the original
image from its latent space representation. The idea behind
compressing the data to a smaller representation is that it
forces the network to learn what is important about the jet
image, while ignoring noisy or less crucial aspects. The hope
is that when the autoencoder is applied to anomalous data,
the important characteristics will be different, and thus the
image will be poorly encoded, leading to a decoded image
that is quite different from the initial image. Thus, we can
distinguish between the background data and the anomalous
signal data by the size of the reconstruction error. AEs were
first introduced to the high energy community as anomaly
detectors in Refs. [27–29].1
The architecture of our AE is shown in Fig. 2 and is

described below. The encoder consists of multiple layers.
The first two layers are a set of five 3 × 3 pixel convolu-
tional filters. We use a stride of one and pad the output to
keep the same height and width as the original image. After
each convolution we apply an exponential linear unit (ELU)
activation [74]. Following these convolutions, the repre-
sentation is down sampled with a 2 × 2 max pooling layer,
leading to a height and width of 20 pixels. This reduced
image is then passed through another two convolutional
layers with five filters before being passed through a final
convolutional layer with a single filter. This final
20 × 20 image is then flattened and connected to a dense
layer with 100 nodes, which is in turn connected to our
32-dimensional latent space. We chose a 32-dimensional
latent space, as that is where we found the performance of
the AE as an anomaly detector began to saturate.
The decoder mirrors the encoder and consists of a dense

layer with 100 nodes, followed by another dense layer
with 400 nodes. Both of these dense layers use the ELU

activation function. The output of this layer is then
reshaped into a 20 × 20 image, and is then passed through
two convolutional layers with five filters each. All of the
convolutional layers in the decoder use a 3 × 3 convolu-
tional kernel and the ELU activation function, with the
exception of the last convolutional layer in the decoder,
which uses the SOFTMAX activation function along the pixel
dimension so that the sum of the pixel intensities is unity.
These are then upsampled with a transposed convolutional
layer to 40 × 40, passed through a convolutional layer
with five filters, and finally passed through one last

FIG. 1. The average jet image for the background, 80 GeV W,
174 GeV top, and 80 GeV Higgs. Note that the Higgs bosons are
pair produced from the decay of a heavier Higgs, leading to
potentially four prongs in the large-radius jet.

1Often, AEs can be improved with variational autoencoders
(VAEs), in which the latent space representation becomes a
distribution, rather than a single point. As a proof of principle, we
use the simpler AE, and leave the extension to VAEs for further
study.
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convolutional layer to create the output image. We train the
AE to reproduce QCD jet images, by minimizing the mean
squared error of their reconstruction. Explicitly, this is
given as

LAE ¼ 1

NiNp

XNi

k

XNp

j

ðfAðIjkÞ − IjkÞ2; ð1Þ

whereNi is the total number of images,Np is the number of

pixels in each image, Ijk is the jth pixel of the kth input
image, and fAðIjkÞ is the AE’s reconstruction of that pixel
for that input image. The training details for the AE are
provided in Appendix B. Our AE, along with all of the
other neural network architectures discussed in Sec. III are
implemented with KERAS [75] using the TensorFlow [76]
backend.
Figure 3 shows some examples of how the trained AE

can act as an anomaly detector. The left panels display the
distribution of the reconstruction errors as the anomaly
score for the background training set as well as three
different anomalous signals. At first glance, the
reconstruction errors are very small, but this is explained
by the normalization and the sparsity of our jet images.
Because each image is normalized to sum to one, all pixels

have a value of less than one. The images are also very
sparse, so most pixels are identically 0, and the network is
very good at predicting that. When we take the mean
squared error over the pixels, we actually average over the
number of pixels, so the number of pixels with no intensity
leads to a very good average reconstruction. Importantly,
we see that the background distribution is at lower scores
than the signal distributions. The encoder has never seen
jets with inherent substructure from the decay of a heavy
resonance, so it does not recognize the important informa-
tion to encode into the latent space, and the decoder
therefore performs worse when reconstructing the images.
The right panel displays the receiver operating character-
istic (ROC) curves for these three signals. While the W is
harder for the AE to distinguish from the background, the
top and Higgs jets have decent area under the ROC curve
(AUC) scores.
As we have seen, our constructed AE is capable of

detecting jets which are different from the QCD back-
ground it was trained on. In the next section we build up a
method to mimic the ordering decisions the AE makes
using physics observables.

B. Mimicking the target anomaly detector

As shown in the previous section, the AE is able to tag
various signals as being different from QCD. However, it is
unclear what information in the event image is being used
to do this. In order to mimic the behavior of the AE, we
need a few ingredients. The first is a wide set of physics
observables which could possibly explain the anomaly
detector. For these, we use the energy flow polynomials,
described in detail in Sec. III B 1. Next, we use the idea of
decision ordering to select which observables are important
as described in Sec. III B 2. Finally, we need a flexible
function which can use the physics observables to produce

FIG. 3. The AE’s performance as an anomaly detector on three
of the anomalous signals, the 80 GeV W, the 174 GeV top, and
the 80 GeV Higgs. Note that the Higgs bosons are pair produced
from the decay of a heavier Higgs, leading to potentially four
prongs in the large-radius jet. The left panel shows the normalized
distribution of the log of the AE’s anomaly score for the
background and each of the signals. The right panel shows the
ROC curves for each signal.
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FIG. 2. The architecture of the convolutional AE. The AE
consists of two separate networks, an encoder that compresses the
original image down to a smaller latent space, and a decoder
tasked with recreating the original image from the latent space
representation.
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an anomaly score which mimics that of the AE. We
describe two complementary methods that achieve this
goal. The first method, a paired neural network, is a neural
network which takes in the physics observables from two
events at the same time and is trained to determine which
event had the worse reconstruction error from the AE. We
construct this in such a way that, at inference, we can feed
in a single event and get an anomaly score. This technique
is described in Sec. III B 3. The second method, a high-
level neural network, instead takes in only a single event at
a time and is trained to regress the reconstruction error of
the AE for that event. This second method is described in
Sec. III B 4.

1. High-level observables

Since there is no way to know which human-constructed,
high-level observables will be relevant a priori, we need to
rely on using a basis of observables. To that end, we make
use of the energy flow polynomials (EFPs) [68], a formally
infinite set of jet substructure observables inspired by
previous work on energy correlation functions [77–82].
The EFPs form a discrete linear basis for all infrared- and
collinear-safe (IRC-safe) observables and are defined in
terms of the momentum fraction, za, and pairwise angular
distances, θab. The EFPs are computed using the four-
momentum of each particle in the jet, where za is the
momentum fraction carried by particle a, and θab is the
pairwise angular distance between particles a and b. Each
EFP is conveniently represented by a multigraph, using the
following correspondences:

each node a ↔
XN
a¼1

za ð2Þ

and

each k-fold edge between nodes a and b ↔ ðθabÞk: ð3Þ

As an example, we have

ð4Þ

In this example, we have labeled the nodes for clarity, but
we will not do so for future graphs. To build some intuition
for this framework, we note that the fully connected graphs
with N vertices correspond to the N-point energy corre-
lation functions.
The EFPs corresponding to each multigraph can be

modified with a pair of parameters, ðκ; βÞ, which determine
the precise meaning of za and θab. More specifically,

zðκÞa ¼
�

pTaP
bpTb

�
κ

; ð5Þ

θðβÞab ¼ ðΔη2ab þ Δϕ2
abÞβ=2; ð6Þ

where pTa
is the transverse momentum of particle a, Δηab

is the difference in pseudorapidity between particles a
and b, and Δϕab is the difference in azimuthal angle
between particles a and b. The original IRC-safe EFPs
require κ ¼ 1. While there are well-motivated reasons to
explore a broader space of observables at the cost of IR and/
or C safety [83–85], we restrict ourselves to only IRC-safe
observables in this work. For our iterative procedure to
mimic the AE, we choose κ ¼ 1, β ¼ 1, and consider all
EFPs with degree (i.e., the number of edges) d ≤ 5. With
these parameters, we have a total of 102 EFPs to explore.

2. Decision ordering

To create an interpretable alternative to the AE, we will
iteratively add EFP observables as inputs to the mimicking
networks. To compare how well a network (or EFP input)
orders events relative to the AE, we use a series of metrics
implemented in Ref. [65]. Here we briefly summarize these
metrics. Given two decision functions, fðxÞ and gðxÞ, the
decision ordering (DO) for a pair of events x1 and x2 is
defined as

DO½f;g�ðx1;x2Þ¼Θð½fðx1Þ−fðx2Þ�½gðx1Þ−gðx2Þ�Þ; ð7Þ

where ΘðxÞ is the Heaviside theta function, and we choose
Θð0Þ ¼ 1. Here, we can think of fðxÞ as being the anomaly
score/reconstruction error for the AE and gðxÞ being the
output of one of our methods. Later, we will also use
fðxÞ ¼ AEðxÞ and gðxÞ ¼ EFPðxÞ to determine which EFP
observables to include for our mimickers. A DO of 1 means
that f and g agree that one event is more anomalous than
another; a DO of 0 indicates the two methods disagree on
which event is more anomalous. If two decision functions
have DO ¼ 1 for all possible pairs x1 and x2, then the
two are effectively identical decision functions on the
domain tested.
To create a summary statistic, we then average the DO

over all possible pairs, weighted by the underlying dis-
tributions that x1 and x2 are drawn from. The resulting
statistic, the average decision ordering (ADO), is given by

ADO½f;g�¼
Z

dx1dx2p1ðx1Þp2ðx2ÞDO½f;g�ðx1;x2Þ: ð8Þ

This evaluates to 1 if both decision functions order every
possible pair of events in the same manner (making them
equivalent decision functions), 0 if they order the pairs in
the opposite manner, and 1

2
if there is no consistency to

the way the decision functions order the events. Due to
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computing constraints, we could not compute the ADO on
the entirety of the background training set. Instead, when
computing the ADO, we choose 10,000 events at random,
and then evaluate on the ð10;000

2
Þ ∼ 5 × 107 pairs of events.

We now follow the black-box guided search strategy
from Ref. [65] to iteratively construct neural networks
whose decision functions should become better and better
approximations of the AEs. We start by training a neural
network, NN0, on some initial set of observables,
X0 ¼ ðmJ; pTÞ. We will later describe the two possible
architectures for NN0, but for now it is enough to say it aims
to produce decision functions that mimic the AE on
background events. We then compute the ADO between
NN0 and the AE, and isolate all of the pairs of events
misordered by NN0. From our set of high-level observables,
O, we then want to find the observable O1 ∈ O with the
highest ADO on the pairs misordered by NN0.

2 We then
train a new neural network, NN1, whose input observables
are X1 ¼ X0 ∪ O1. Given its inputs, we would expect NN1

to have a decision function that more closely resembles that
of the AE—and consequently, a higher ADO compared to
NN0—since it has access to the same information NN0 had,
as well as information that can help order the pairs
misordered by NN0.
From here, we continue to iterate using the remaining

observables in O. On the nth iteration, we start by finding
the observable On ∈ O with the highest ADO on the pairs
misordered by NNn−1ðXn−1Þ that is not already part of
Xn−1. We then build a new set of inputs, Xn ¼ Xn−1 ∪ On,
and train a new neural network, NNn on Xn. At each
iteration, we expect the ADO between the neural network
and AE to increase, since the neural network we construct
on the nth iteration has access to all of the same information
available to the previous network, as well as a new
observable On that helps order the events misordered by
the (n − 1Þth neural network.
Now that we have described both the physics observ-

ables and the general method for choosing which observ-
ables to give the networks, we describe the two network
architectures in more detail.

3. Paired neural network

Our first attempt to mimic the AE is an approach we call
the paired neural network (PNN). The aim of the paired
neural network is to mimic the AE by learning to predict the
relative anomaly score between two events. To do this,
the PNN takes pairs of events as its input and classifies
which has a larger anomaly score. This is in contrast to
other methods such as trying to match the AE’s output or
anomaly score on an event-by-event basis. In general,
classifiers are easier to train, so this seems like a promising
method.

Figure 4 shows the PNN architecture. Both events are
fed through the same interior model in parallel. This is
shown in the image as the “common interior model.” The
interior model consists of four hidden layers with 50
nodes each, and the ELU activation function is used for all
layers. The interior model produces a single output for
each input event, and this single output node uses the
RELU activation. The motivation for this is to think of the
output for each event as its own anomaly score. Within
the larger PNN, we then subtract these two output
anomaly scores from each other. If the first event is more
anomalous, then the result should be negative, and if the
second is more anomalous, then the result will be positive.
The larger the difference in scores should tell us about the
networks confidence in the relative ordering. Finally, to
turn this into a classification problem, we apply the
sigmoid function to the interior model difference, mapp-
ing large negative numbers to 0 and large positive values
to 1. If the anomaly scores are the same (the difference
is 0) the sigmoid gives a value of 0.5.
To train the network, we continue the idea of classi-

fication and minimize the binary cross entropy given by

LPNN¼−
1

N

XN
k

½yk lnðfPðXkÞÞþð1−ykÞlnð1−fPðXkÞÞ�;

ð9Þ

where k represents a specific pair of events, where the order
matters. The value of yk is the truth “label” for the pair of
events as determined by the AE, i.e., yk ¼ 0ð1Þ if the AE
determines the event in input 1 to be more (less) anomalous
than the event in input 2, and fPðXkÞ is the PNN’s output
for the pair of events. Appendix B provides the training
details for the PNN.
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FIG. 4. The architecture of the paired neural network. The
interior model consists of four hidden layers each with 50 nodes
and using the ELU activation function. The interior model outputs
a single node for each input and uses the RELU activation
function. The final output of the model is a single node which
is the difference between the two interior model outputs and uses
a sigmoid activation function. Our input data are the jet’s mass,
pT , and up to 14 EFPs.

2If the ADO of an observable is less than 0.5, then we take
1-ADO, since a highly anticorrelated variable is also useful.
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After training the PNN on ∼250; 000 pairs of events, we
extract the interior model for use on single events. Thus,
even though the training procedure requires pairs of events
and was trained as a classifier, the interior model provides a
function which takes in observables from a single event and
outputs an anomaly score.

4. High-level neural network

The PNN described in the last section does not attempt to
learn the actual anomaly score of the AE, but only the
relative difference in the anomaly score between pairs of
events. We also introduce a method that specifically aims to
mimic the actual anomaly score of the AE. We call this
network the high-level neural network (HLN). In practice,
the anomaly score (reconstruction error) from the AE spans
many orders of magnitude, so we found better results when
the HLN is trained to predict the log of the anomaly score
rather than the score itself.
We find that a relatively simple neural network is able to

achieve the task of reproducing the loss of the AE. Figure 5
shows the architecture we use for the HLN. The HLN
consists of four hidden layers, with each hidden layer
having 50 nodes. The final output of the network is a single
node. All of the nodes in the hidden layers use the ELU

activation function.
To train the HLN, we minimize the mean squared error

between the (log of the) anomaly score of the AE and the
output of the HLN. Specifically, we use a loss function of

LHLN ¼ 1

N

XN
k

�
fHðXkÞ − ln

�
1

Np

XNp

j

ðfAðIjkÞ − IjkÞ2
��

2

;

ð10Þ

where fHðXkÞ is the HLN’s output given some input data
Xk and fAðIjkÞ is the AE’s output given a pixel j in an image
Ijk for the kth event. When using the HLN as an anomaly

detector, we use the model’s output as the anomaly score.
See Appendix B for the HLN training details.

IV. RESULTS

In the previous section, we outlined two different
architectures we could use to iteratively build neural
networks whose decision functions would more closely
resemble the AE’s decision function. Here, we provide the
results of the iterative procedure and analyze the specific
EFPs that are selected to mimic the anomaly detector. We
will find that the EFPs selected are composite observables
built out of only six prime EFP factors. We show that using
only the prime components gives very similar results.
Finally, we demonstrate that using the EFPs with a tradi-
tional anomaly detection technique, the isolation forest,
gives very poor results. The failure of the isolation forest
when provided with the same basic physics observables
highlights the benefits of using our mimicker networks.

A. Background decision ordering

We start our iterative process by training both a PNN and
HLN on jet mass and pT for QCD events in the training
set and then compute the ADO for each model. Of the
∼5 × 107 pairs of events we use to compute the ADO, both
the initial PNN and HLN correctly order ∼72% of
the events relative to the reconstruction error of the AE.
Next, we take all of the pairs which are misordered and
compute the ADO between all 102 EFPs and the AE. On
this first iteration, we find that the observable with the
highest ADO for both networks is EFP 2, given by

ð11Þ

This observable is then added to the list of inputs. So in the
next iteration the input for each event is given by
ðmJ; pT;EFP 2Þ. We then repeat this process 14 more
times, recording both the ADO of each network, as well
as which EFP has the largest ADO for the pairs of events
which are misordered by the respective networks.
Figure 6 shows the result of this iterative process. The

solid lines show the ADO of the models we used to
determine the next best observable to add; the shaded band
shows the maximum and minimum value of the ADO for
each model after recalculating the ADO an additional 50
times at each iteration using a different set of ∼5 × 107

pairs of events. We also created PNN and HLN models
trained on m;pT , and all d ≤ 5 EFPs. The ADOs of these
two models agree to three significant digits and thus is
plotted as the single dashed line in the panel. Since they use
all of the EFPs, this line gives a sense of the highest ADO
each model is capable of achieving, given our set of
observables. The blue “þ” and orange “×” will be
discussed in Sec. IV C. There are a few key takeaways
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FIG. 5. The architecture of the high-level neural network. This
network consists of four hidden layers, with each having 50 nodes
and using the ELU activation function. The network output is a
single node. Like the PNN, our input data are the jet’s mass, pT ,
and up to 14 EFPs.
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from these plots. By the time the ADOs start to plateau,
both the HLN and PNN are correctly ordering 83% of the
pairs of events in the QCD sample relative to the AE. For
the first two iterations, the model ADOs do not change.
Looking at Table I, we see that the first two EFPs are EFP
2 and ½EFP 2�2, which are proportional to m2=p2

T and
m4=p4

T . Since the initial inputs to both the PNN and HLN
are mass and pT , these observables contain no new
information, and thus it makes sense that the model
ADO does not improve. This redundancy of information
follows since the EFPs are a linear basis of substructure
observables, whereas our neural networks can utilize
nonlinear combinations of its inputs. Despite their under-
lying philosophical differences—the HLNs are trying to
match the AE’s anomaly score, while the PNN is trying
the match the DO of the AE—both methods select the
same set of 14 EFPs in the same order. In Table I, we list
the multigraph and mathematical expression correspond-
ing to each of these EFPs as well as the iteration step in
which they were added. The agreement of the PNN and
HLN approaches gives us confidence that these observ-
ables are important to detect jets which do not look like
typical QCD jets. Also, since by the last iteration, the
PNN and HLN have nearly reached the ADO of the
dashed line, it suggests that the decision ordering of our
mimickers has almost converged to what is possible with
our set of EFPs.

B. Anomaly detection

While both the HLN and PNN have demonstrated the
ability to mimic the AE’s anomaly score on QCD events,
it is unclear if matching the decision ordering on in-
distribution events will generalize to out-of-distribution
events. In other words, having mimicked the AE on QCD
background events with HLNs and PNNs, we must test if
this decision ordering transfers to boosted jet signals by
comparing the AE, PNN, and HLN as anomaly detectors.
To determine how well each network performs as an
anomaly detector we use a popular metric, the AUC.
Figure 7 shows how the HLN and PNN on their final

iteration compare to the autoencoder on the same three
signals as Fig. 3. The left panels show the normalized
distributions of each network’s anomaly scores for the
background and three of the signals. The right panel then
shows all of the ROC curves for each model on each signal.
We can see that both the HLN and PNN do a good job of
mimicking the anomaly detector on events with higher
anomaly scores. But the long tails in each of the back-
ground distributions indicate that the HLN and PNN
struggle to match the AE on less anomalous events,
explaining their poorer background rejection at low signal
efficiency.
Figure 8 shows how the mimickers perform on all eight

signals described in Sec. II at each step of the iterative
progress. The dashed black line in each panel shows the
AUC when using the reconstruction error of the AE as the
anomaly score. The blue and orange curves show the results
of the PNN and HLN, respectively, as a function of the
number of iterations for selecting extra observables. The
solid center lines denote the AUC of the model used to
select observables in the iterative process. The shaded
bands show the maximum and minimum AUCs when
retraining each network ten additional times, to give us a
sense of how stable the training is. The bands are quite
narrow, indicating that the results are robust to training
uncertainties.
Like we saw with the ADOs in Fig. 6, the HLN and PNN

perform similarly, despite their different approaches. For
both the decision ordering and the AUCs, the results start to
plateau around the fifth iteration. When the HLN and PNN
AUC scores begin to plateau, we see that the value is
similar to the AUC of the AE. This indicates that the HLN
and PNN are performing comparably to the AE when all
three are acting as anomaly detectors. It is surprising that
mimicking the decision ordering on the in-distribution
(QCD) events seems to also generalize to the relative
differences between the signals and the background. Some
of the mimicking networks even exceed the anomaly
detection capability of the AE they are trying to mimic
for certain signals.
For some signals—specifically the 20 GeV Higgs,

80 GeV W, 120 GeV W, and 174 GeV W—we see a drop
in AUC around the third iteration for both the PNN

FIG. 6. The ADOs for each PNN and HLN. The center line
shows the ADO of the model that was used to select the EFPs.
The shaded bands show the maximum and minimum ADO values
obtained when recalculating the ADO an additional 50 times,
using a different set of pairs of events each time. The x axis
denotes the iteration step of the iterative process. See Table I for
the multigraph and mathematical representations of the selected
EFPs and the iteration step at which they were added. The blue
“þ” (orange “×”) shows the ADO of a PNN (HLN) trained on
only the five prime EFPs picked out by each method [see
Eq. (12)]. The ADO of each model trained on m;pT , and all
of the d ≤ 5 EFPs is the same to three significant digits, and is
plotted as a single dashed line.
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FIG. 7. The performance of the AE, PNN14, and HLN14 as anomaly detectors on the 80 GeV W, 174 GeV top, and 80 GeV Higgs.
Note that the Higgs bosons are pair produced from the decay of a heavier Higgs, leading to potentially four prongs in the large-radius jet.
The left panels show the normalized distribution of each method’s respective anomaly score for the background and each signal. The
right panel shows the ROC curves for each signal, with the solid lines being the ROC curves for the AE, the dashed lines for HLN14, and
the dashed-dot lines for PNN14.

TABLE I. The EFP multigraphs and corresponding expressions for each of the EFPs selected by both the HLN and PNN. In the last
two columns, we list the iteration step where the PNN or HLN selects the corresponding EFP.

EFP no. EFP multigraph EFP expression PNN iteration HLN iteration

1
P

N
a;b¼1 zazbθab 5 5

2
P

N
a;b¼1 zazbθ

2
ab 1 1

54
P

N
a;b;c;d¼1 zazbzczdθabθcd 6 6

57
P

N
a;b;c;d¼1 zazbzczdθ

2
abθ

2
cd 2 2

65
P

N
a;b;c;d;e¼1 zazbzczdzeθ

2
abθcdθ

2
de 3 3

70
P

N
a;b;c;d;e;f¼1 zazbzczdzezfθabθcdθef 7 7

85
P

N
a;b;c;d;e;f¼1 zazbzczdzezfθabθ

2
cdθ

2
ef 4 4

86
P

N
a;b;c;e;d;f;g¼1 zazbzczdzezfzgθabθacθdeθfg 13 13

94
P

N
a;b;c;e;d;f;g¼1 zazbzczdzezfzgθabθacθbcθdeθfg 11 11

95
P

N
a;b;c;d;e;f;g;h¼1 zazbzczdzezfzgzhθabθcdθefθgh 8 8

97
P

N
a;b;c;d;e;f;g;h¼1 zazbzczdzezfzgzhθabθbcθcdθefθgh 12 12

99
P

N
a;b;c;d;e;f;g;h¼1 zazbzczdzezfzgzhθ

2
abθcdθefθgh 14 14

100
P

N
a;b;c;d;e;f;g;h;i¼1 zazbzczdzezfzgzhziθabθacθdeθfgθhi 10 10

101
P

N
a;b;c;d;e;f;g;h;i;j¼1 zazbzczdzezfzgzhzizjθabθcdθefθghθij 9 9
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and HLN. While such dips are not ideal, they are not
completely unexpected. Our iterative process is trying to
pick out the observables that help to best order the back-
ground events, with no attention paid to how effective they
may or may not be to picking out signal events. So, for
those three signals, it appears that the EFP added at the
iteration where the AUC dips improves the ADO relative to
the AE, but at the same time makes it more difficult for the
HLNs and PNNs to distinguish those signal events from the
background.
However, AUC is an inclusive figure of merit and,

consequently, does not tell the whole story. As Fig. 7
highlights, networks with similar AUCs are not necessarily
making the exact same decisions when used as anomaly
detectors. Somemore physically interpretable metrics are the
background rejection (1=εB) at fixed signal efficiency (εS)
and the signal efficiency at fixed background rejection.
Table II shows the background rejection at two different
fixed signal efficiencies—0.5 and 0.1—and the signal
efficiency at two different fixed values of the background
rejection—10 and 100—for all eight signals and five differ-
ent networks—the AE, HLN0, PNN0, HLN14, and PNN14.
There are a few key takeaways from this table. Looking

at the signal efficiency at a fixed value of the background
rejection, we can see that, in general, our mimicker

networks need to operate at lower signal efficiencies to
achieve the same background rejection as the AE. The
exceptions here are the final iteration of the mimicker
networks when used as anomaly detectors for the 174 GeV
Top and 80 GeV Higgs. These networks, when applied to
these signals operate at comparable signal efficiencies to
the AE for lower fixed values of the background rejection.
Shifting now to the background rejection at fixed signal
efficiency, we see that our mimicker networks compare
favorably to the AE at higher signal efficiencies across all of
the anomalous signals we consider, but fall behind the AE at
lower signal efficiencies. Again, the exception here are the
mimicker networks applied to the 80 GeV Higgs. As was
observed earlier in Fig. 7, as we make tighter cuts on our
mimicker networks, forcing them to operate at lower signal
efficiencies, they begin to deem the background as being
more anomalous than the signal when compared to the
autoencoder. While this type of behavior would be difficult
to deal with in a real analysis, it is not unique to our
mimicker networks and is a challenge with anomaly
detection in general. The cuts that result in εB > εS are
highlighted in bold in Table II. Taken together, these
indicate that most of the performance of our mimicker
networks is coming at higher signal efficiencies, and the
long tails in their anomaly scores for the background
distribution holds them back from exactly matching the AE.

FIG. 8. AUCs for the PNN and HLN at each iteration for each of the eight signals reserved for testing. Note that the Higgs bosons are
pair produced from the decay of a heavier Higgs, leading to potentially four prongs in the large-radius jet. The solid center lines are the
AUC of the model used in the iterative process, the shaded bands show the maximum and minimum AUCs from retraining each network
an additional 10 times. The dashed black line corresponds to the AE’s AUC. The dotted lines correspond to the isolation forest anomaly
detectors and the blue “þ” (orange “×”) is the PNN (HLN) trained using mass, pT , and the five prime factors in Eq. (12).
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Finally, by the end point of the iterative process, we had
found that the PNN and HLN agreed on ordering of
background events at about 83% when compared to the
AE. Here, we see that in terms of the AUC metric, 83%
mimicking transferred quite well to the use of these
mimickers as simpler anomaly detectors with comparable
performance. We expect the tendency for the mimicker
networks to tag the background as being more anomalous
than the signal at low signal efficiencies to subside as the
ADO of the mimickers approaches 1.

C. Using only prime EFPs

In examining the EFPs selected to improve the decision
ordering, we note that even though we use up to 14 EFPs,
they only depend on six prime EFP factors:

ð12Þ

Notably in these primes, the first and fifth prime factors are
the energy correlation functions for two and three prong
structures [77]. It is also interesting to note that these prime
factors are nonzero only for ≥ 2; 3 prong structures. As the
AE is learning to encode the predominantly one-prong QCD
events, it seems that it is losing information contained in
these higher prong observables. With this loss of informa-
tion, networks with direct access to these observables are
able to explain the reconstruction error of the network.
The observation that the anomaly scores can be

explained by composite operators which only have a few
prime operators leads one to wonder if the prime EFPs are
good enough. To test this, we trained both the PNN and the
HLN using mass, pT , and the six prime EFPs. The results
are denoted in Figs. 6 and 8 by the blue “þ” and orange
“×,” respectively. Not only do these “prime-only” networks
perform comparably to each other, which matches the
behavior we saw from the networks trained on the
composite EFPs, but the prime-only and composite net-
works also perform comparably across all of the signals.
The results in Fig. 6 show the ADO of the prime-only
networks computed on the same pairs of events as the
center line for the composite models. The ADO of the
prime-only models has a similar spread as the composite
models, and thus the two do indeed perform comparably.
Taken together, this seems to indicate that the prime EFPs

TABLE II. The background rejection (1=εB) at two different
fixed signal efficiencies (εS)—0.5 and 0.1—and the signal
efficiency at two different fixed values of the background
rejection—10 and 100—for all eight anomalous signals. We
present these metrics for five different networks, the AE, PNN0,
HLN0, PNN14, and HLN14. The values shown in bold are those
where εB > εS.

80 GeV top

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.252 0.012 0.114 0.071 0.071
εSð1=εB ¼ 100Þ 0.022 0.007 0.008 0.007 0.008
1=εBðεS ¼ 0.5Þ 4.24 4.03 3.95 2.29 2.29
1=εBðεS ¼ 0.1Þ 26.5 12.0 11.3 7.33 7.39

174 GeV top

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.470 0.357 0.428 0.146 0.148
εSð1=εB ¼ 100Þ 0.088 0.016 0.022 0.013 0.013
1=εBðεS ¼ 0.5Þ 8.93 6.94 8.26 5.96 6.00
1=εBðεS ¼ 0.1Þ 87.6 28.6 38.0 12.8 12.9

20 GeV Higgs

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.240 0.027 0.086 0.032 0.033
εSð1=εB ¼ 100Þ 0.025 0.001 0.001 0.001 0.001
1=εBðεS ¼ 0.5Þ 4.06 3.39 4.14 4.87 4.91
1=εBðεS ¼ 0.1Þ 25.7 6.82 9.67 6.68 6.72

80 GeV Higgs

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.446 0.549 0.565 0.030 0.031
εSð1=εB ¼ 100Þ 0.036 0.022 0.020 0.002 0.002
1=εBðεS ¼ 0.5Þ 8.58 11.3 11.9 4.67 4.70
1=εBðεS ¼ 0.1Þ 42.4 46.1 50.1 6.41 6.44

59 GeV W

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.155 0.017 0.007 0.011 0.012
εSð1=εB ¼ 100Þ 0.015 0.0003 0.0003 0.0007 0.0007
1=εBðεS ¼ 0.5Þ 2.86 2.76 2.62 1.40 1.40
1=εBðεS ¼ 0.1Þ 16.1 5.08 3.91 2.36 2.35

80 GeV W

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.190 0.043 0.013 0.014 0.014
εSð1=εB ¼ 100Þ 0.028 0.0005 0.0004 0.0009 0.0009
1=εBðεS ¼ 0.5Þ 3.06 3.57 3.44 1.77 1.77
1=εBðεS ¼ 0.1Þ 22.4 7.17 5.52 2.83 2.84

120 GeV W

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.244 0.070 0.089 0.021 0.022
εSð1=εB ¼ 100Þ 0.040 0.001 0.001 0.001 0.001
1=εBðεS ¼ 0.5Þ 3.71 4.01 4.76 2.97 2.97
1=εBðεS ¼ 0.1Þ 32.9 8.52 9.58 4.30 4.31

(Table continued)

TABLE II. (Continued)

174 GeV W

AE HLN14 PNN14 HLN0 PNN0

εSð1=εB ¼ 10Þ 0.289 0.124 0.190 0.064 0.064
εSð1=εB ¼ 100Þ 0.052 0.003 0.003 0.003 0.003
1=εBðεS ¼ 0.5Þ 4.40 4.21 5.53 6.05 6.10
1=εBðεS ¼ 0.1Þ 42.4 11.4 14.7 8.61 8.57
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alone contain all of the necessary information to construct
simple anomaly detectors capable of matching much more
complex ones. While each of the prime EFPs on their own
would have been selected eventually, these results also
suggests a more efficient iterative procedure for creating
HLN and PNN mimickers, where one uses the redundancy
in the full space of EFPs to their advantage and allows the
algorithm to explore the full space of composite EFPs, but
only selects those containing new prime factors.

D. Comparison with isolation forests

Through this iterative process, we have constructed
two different types of dense neural networks that approx-
imately match the AE not only in how their decision
functions order background events, but also as anomaly
detectors for classifying a variety of signals. It is clear
then that the observables picked out by this procedure
contain the information needed to match the AE on both
fronts. One then wonders if an even simpler anomaly
detector than the ones presented in Sec. III would give
similar results. To investigate this possibility, we consider
isolation forests as implemented by ISOLATION FOREST in
SCIKIT-LEARN [86].
Isolation forests work by randomly selecting a feature

from a given set of inputs, and then randomly selecting a
split value for that feature. This splitting process is repeated
until each event the model is trained on has been isolated
from the rest, resulting in a treelike structure. We then build
an ensemble, or “forest" of these classifiers. The anomaly
score is the number of splittings needed to isolate each
event, averaged over the entire ensemble. This kind of
random partitioning tends to take fewer splittings to isolate
anomalous events, so if the average number of splittings
across a large ensemble is low, the event is likely to be
anomalous. We wanted to see if the performance of the
isolation forests saturate in the same way the HLNs and
PNNs did, so we trained a series of them and added the new
observable picked out by either the HLN or PNN each time.
The details of our specific implementation is given in
Appendix B. Since the HLNs and PNNs selected EFPs in a
slightly different order, we trained two different sets of
isolation forests. One set added observables in the order
selected by the HLN, while the other added them in the
order selected by the PNN.
Figure 8 shows how the isolation forests compare to the

HLNs, CNNs, and AE when used as a classifier on the 8
signals considered in this work. The blue dotted line shows
the AUC of the isolation forests trained on the EFPs
selected by the PNN, the orange dotted line corresponds
to isolation forests trained on the EFPs selected by the
HLN. For most of the signals, both isolation forests have an
AUC of ∼0.5, and are unable to match the performance of
the HLN, PNN, or AE. This is a very interesting obser-
vation. The same small set of observables are able to lead to
good anomaly detection when trying to match the decisions

of the AE. However, as discussed above, these observables
in some sense tell us what the AE is choosing to ignore
when learning to reconstruct QCD images. Since these
observables are not very descriptive for QCD events, the
isolation forest does not have much to learn from. We
expect the results would hold for other anomaly detection
techniques trained on the same observables. Thus, we
suspect it is the mimicking aspect of our procedure which
allows for good anomaly detection with the simple set of
observables.

V. CONCLUSION

In this paper, we have extended the results of Ref. [65] to
build simpler, more interpretable anomaly detectors. Starting
with a convolutional autoencoder, we iteratively built a
network that mimics the autoencoder’s ordering of back-
ground events, where the network’s inputs are high-level
variables taken from a set of energy flow polynomials. We
presented two network architectures for the mimickers, the
high-level network and the paired neural network. The high-
level network aims to reproduce the reconstruction error of
the autoencoder, while the paired neural network takes in
two events and is trained to order them like the autoencoder.
Note that both the PNN and HLN are trained to order
anomalous events from the physics observables, which is an
inherently different task than the autoencoder, which was
only trained to compress and decompress background data.
This highlights the difference with Ref. [65], in which the
black-box network and mimicking network have the same
task of binary classification. Given this fundamental differ-
ence between our AE and mimicking networks, it is not
obvious that employing the same strategy will work when
trying to mimic the autoencoder’s ordering. However, we
find that these two complementary approaches give similar
performance, ∼83% agreement, when ordering background
events and also pick out the same list of EFPs, suggesting the
commonality of the information that is needed to order
events like the autoencoder.
After mimicking the autoencoder on ordering of back-

ground events, we take these networks and apply them as
anomaly detectors on eight different signals. Even though
the mimickers and autoencoder have never seen these events,
we find that the similarity in ordering transfers to these
events, making the mimickers as good (or better) than the
autoencoder as an anomaly detector for seven of the eight
signals. It is worth emphasizing how such results were not
guaranteed to occur. The autoencoder, having been trained
only on background events, has no concept of what is
anomalous. So it is not obvious that mimicking the ordering
of events for the background will generalize to anomalous
events, especially given a large set of signal classes.
Since the high-level observables picked out by these

mimickers rely only on six prime energy flow polynomials,
it indicates that the information required to order events like
the autoencoder is reasonably small. However, since the
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isolation forests based on these high-level inputs did not
perform as well, it shows that mimicking the autoencoder’s
background ordering is crucial in creating a simpler anomaly
detector.
In terms of future directions, it would be interesting to

extend the list of energy flow polynomials to check that one
can saturate the decision ordering of the autoencoder and to
determine what prime energy flow polynomials are needed
for that. Applying this technique to other anomaly detection
methods on the same dataset would help uncover what
high-level variables are being used by these methods and
could help in designing more powerful anomaly detectors.
Finally, it would be interesting to see if one can extend this
technique to cases where there is no known high-level
variable basis (like the energy flow polynomials) and to see
to what extent decision ordering transfers to different
signals. For instance, the methods which performed best
on the Dark Machines anomaly score challenge [25,51,54]
used variational autoencoder structures which only aimed
to make a Gaussian latent space and did not try to
reconstruct events. It would be very interesting to see what
physics these methods are using, but there is no obvious
basis of observables to use.
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APPENDIX A: SIMULATION DETAILS

In this appendix, we provide further details of the
simulated public datasets we use in this work [38,69,70].
All of the QCD dijet,W, top, and Higgs samples are subject
to the same selection criteria, showering, and detection
simulation parameters. The background and anomalous
events are generated using MadGraph [88] and PYTHIA 8 [89],
with detector effects being simulated by DELPHES [90]. The
jets are then clustered with FastJet [91,92] using the anti-kT
algorithm [93] with a cone size of R ¼ 1.0. All events are
required to have two hard jets, with the leading jet having
pT > 450 GeV and the subleading jet having pT >
200 GeV. We then take only the leading jet in each event.

The QCD jets are created via pp → jj. The W jets are
created using pp → W0 → Wð→ jjÞZð→ νν̄Þ with mW0 ¼
1.2 TeV. The top jets are produced via pp → Z0 → tt̄ with
mZ0 ¼ 1.3 TeV. Finally, the Higgs jets are produced with
pp → HH, H → hh, h → jj with mH ¼ 174 GeV. For
each of these signals, we only consider jets with pT ∈
½550; 650� GeV. This same pT cut is applied to the back-
ground training and testing sets.

APPENDIX B: NETWORK TRAINING
HYPERPARAMETERS

Here, we provide the details of the training hyper-
parameters of the AE, PNN, HLN, and isolation forests.
For all three deep neural network architectures, we use the
ReduceLROnPlateau and EarlyStopping callbacks from KERAS to
dynamically reduce the learning rate and stop training early,
respectively. All three neural networks are trained with the
Adam optimizer [94].
For the AE, our training hyperparameters are
(i) Train for 100 epochs with EarlyStopping on the

validation_losswith a patience of ten epochs.
(ii) Initial learning rate of 10−3 with ReduceLROnPlateau on

the validation_loss with a patience of five
epochs.

(iii) Batch size of 256.
For the HLN and PNN, our training hyperparameters are
(i) Train for 200 epochs with EarlyStopping on the

validation_losswith a patience of ten epochs.
(ii) Initial learning rate of 10−3 with ReduceLROnPlateau on

the validation_loss with a patience of five
epochs.

(iii) Batch size of 256.
With the early stopping conditions, the AE trains in ∼30

epochs, the PNN trains in ∼50 epochs, and the HLN trains
in ∼60 epochs.
For the isolation forests, our training hyperpara-

meters are
(i) 250 estimators in the ensemble.
(ii) The max_features used to train each estimator is

set to the number of inputs for each event.
(iii) contamination is set to “auto” since there is

no way to determine what fraction of events can
reliably be called outliers a priori.

(iv) bootstrap is set to “False,” so individual trees
are trained on random subsets of the data without
replacement.
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