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Abstract: Differential privacy (DP) is a widely used no-

tion for reasoning about privacy when publishing aggre-

gate data. In this paper, we observe that certain DP

mechanisms are amenable to a posteriori privacy analy-

sis that exploits the fact that some outputs leak less in-

formation about the input database than others. To ex-

ploit this phenomenon, we introduce output differential

privacy (ODP) and a new composition experiment, and

leverage these new constructs to obtain significant pri-

vacy budget savings and improved privacy–utility trade-

offs under composition. All of this comes at no cost in

terms of privacy; we do not weaken the privacy guaran-

tee.

To demonstrate the applicability of our a posteriori pri-

vacy analysis techniques, we analyze two well-known

mechanisms: the Sparse Vector Technique and the

Propose-Test-Release framework. We then show how

our techniques can be used to save privacy budget in

more general contexts: when a differentially private it-

erative mechanism terminates before its maximal num-

ber of iterations is reached, and when the output of

a DP mechanism provides unsatisfactory utility. Exam-

ples of the former include iterative optimization algo-

rithms, whereas examples of the latter include training

a machine learning model with a large generalization er-

ror. Our techniques can be applied beyond the current

paper to refine the analysis of existing DP mechanisms

or guide the design of future mechanisms.
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1 Introduction

Differential privacy (DP) is a formal notion of privacy

for aggregate data releases from databases. Its defini-

tion characterizes the extent of what the output of a

randomized aggregation mechanism M that is invoked

on a database reveals about individual database records.

The guarantee is given in terms of the indistinguisha-

bility of neighboring databases, that is, databases x

and x′ where x can be obtained from x′ by either

adding/removing one record or by changing the values

of one record:

Definition 1 (Differential Privacy [16, 18]). A ran-

domized algorithm M is (ε, δ)-differentially private if

for all pairs of neighboring databases x, x′ ∈ D and for

all S ⊆ Range(M),

Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S) + δ.

In the definition, D denotes the space of databases. If

δ = 0, we call M an ε-differentially private mechanism

and say that M fulfills pure differential privacy.

The DP guarantee holds over all possible sets of out-

puts. There is a good reason for this: we do not want

to end up in a situation where we get unlucky with the

database or the randomness of the mechanism M and

leak more information about a database record than we

intended to when releasing the output of M . However, in

this paper we show that when composing mechanisms,

i.e., invoking a sequence of mechanisms instead of a sin-

gle one, one can exploit DP guarantees that only hold

w.r.t. proper subsets of Range(M). We capture the col-

lection of these subset-specific guarantees in the output

differential privacy (ODP) guarantee of M , which con-

sists of a partition of Range(M) and privacy guarantees

associated with each set in the partition. By adapting

mechanisms later in the sequence to the privacy guaran-

tees associated with the outputs of previously invoked

mechanisms, one can improve utility in two ways: (1)

by reducing the amount of noise that is required for

guaranteeing privacy, or (2) by increasing the number

of mechanisms that are invoked. All of this is achieved
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while retaining the same standard DP guarantee for the

sequence of mechanisms.

We emphasize and expand on this crucial last point:

in this paper we do not weaken the DP guarantee, we do

not use or propose a relaxed definition of privacy, and we

do not leak any additional private information by apply-

ing our techniques. In fact, all the mechanisms we con-

sider satisfy the traditional definition of DP (Def. 1). In-

stead, we simply observe that for some DP mechanisms,

some outputs happen to leak less private information

than other outputs. We show how to exploit this fact

to improve the privacy–utility tradeoff offered by these

mechanisms in practice.

To make the concept of ODP more concrete, we

start with an example. Let f : D → R be a function

that maps databases to values in R and has sensitivity

1, i.e., |f(x) − f(x′)| ≤ 1 for all neighboring databases

x, x′ ∈ D. Then the Laplace mechanism that releases

f(x)+Lap(1/ε), the value of f plus noise drawn from the

Laplace distribution with parameter 1/ε, fulfills ε-DP

[18]. With the Laplace mechanism as a building block

we define the toy mechanism Mtoy that takes as input

a database x as follows:

1. Flip an unbiased coin c.

2. If c came up heads, return f(x) + Lap(1/ε).

3. If c came up tails, return ⊥.

Here ⊥ is a symbol that is independent of x. If c comes

up heads, the ε-differentially private Laplace mechanism

is invoked, whose output depends on x and might con-

tain (a limited amount of) information about individ-

ual database records. If c comes up tails, however, the

output is independent of x and thus does not contain

any information about individual records in x. The fact

that c comes up tails also does not reveal any infor-

mation about x since the coin flip is independent of x

as well. Thus, an adversary learns nothing about x if

they receive ⊥ as the output of Mtoy. This means that

in the case of a ⊥-output the adversary should be al-

lowed to receive the result of a second ε-differentially

private mechanism if the overall privacy budget is ε. In

the case where an output is produced via the Laplace

mechanism, however, the adversary should not receive

a second output.

While this is a toy example where the output ⊥
serves no practical purpose, we show examples of well-

known mechanisms that exhibit the same behavior —

some outputs leak more private information than others

— notably the Sparse Vector Technique [19, 29] and the

mechanisms from the Propose-Test-Release framework

[17].

1.1 Our contributions

In this paper we introduce the concept of output dif-

ferential privacy (ODP), which can be used to more

accurately describe the leakage of private information

of mechanisms whose different outputs reveal different

amounts of information about the database they are

invoked on. Since ODP is an extension of DP, there

exists a trivial ODP guarantee for every DP mecha-

nism. However, our framework only yields improvements

for mechanisms with non-trivial ODP guarantees. This

class of mechanisms includes the well-known Sparse Vec-

tor Technique (SVT) and the mechanisms from the Pro-

pose-Test-Release (PTR) framework, but also mecha-

nisms that can be derived from DP mechanisms with

only trivial ODP guarantees (Sec. 5 and 6), even in

a black-box fashion (Sec. 5). When composing mecha-

nisms with non-trivial ODP guarantees with other DP

mechanisms, the more fine-grained ODP guarantees can

be used to improve the utility of the composition over us-

ing the coarse DP guarantees. Utility here is measured in

terms of the noise required to be added or the maximal

number of allowed mechanism invocations to not exceed

a given DP guarantee. This is achieved via a novel com-

position protocol that keeps track of the actual leakage

of the mechanism’s outputs instead of using the leak-

age of the worst-case output, in a way that preserves

standard DP.

How to benefit from ODP. For simplicity assume

that we only compose one ODP mechanism M1 with

one other DP mechanism M2. After having produced

an output s1 via M1, we check how much s1 would re-

veal about the worst-case database that M1 could have

been invoked on. For a worst-case output this bound

will not be better than the regular DP bound. For a

non-worst-case output such as the ⊥ from the example

of Mtoy, however, we have a better bound on the leak-

age than the DP bound and need to subtract less from

the remaining privacy budget. This means that there is

more privacy budget left to spend on M2, and hence M2

can produce a less noisy and more accurate result. We

give some concrete examples for this in Sec. 4. Alterna-

tively, we could decide to spend the saved privacy bud-

get on invoking a third mechanism M3. In some cases it

might not be of interest to invoke more than one mech-

anism on the database, e.g., when the database serves
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only as training data for one particular machine learn-

ing (ML) model. In such cases saved privacy budget can

be spent on mechanism invocations on other databases

to which individuals from the first database might have

contributed as well. Examples for this are user databases

for different products of the same company or the results

of different surveys from the same city.

Useful for small to medium length compositions.

There has been a lot of research on better asymptotic

composition bounds (advanced composition bounds)

when the number of composed mechanisms is large (see

Sec. 2), whereas our framework yields improvements for

as little as two composed mechanisms, up to a small to

medium number of mechanisms. For a more thorough

discussion, see Appendix A. There we also discuss the

potential for an advanced composition theorem within

our framework.

A formally verified composition theorem. Moti-

vated by mistakes in previous composition theorems

[29, 32], we have formally verified the proof of our ODP

composition theorem in the proof assistant Lean [13].

Proof assistants are software tools to develop and check

formal mathematical proofs. They are used in various

areas of computer science — e.g., to verify algorithms

and data structures, programming language semantics,

security protocols, or hardware specifications. We make

the formal proof available online and hope that it can

help future formalization endeavors of DP mechanisms

or theorems. In this paper we are not concerned with

measurability and assume that all sets that we deal with

are measurable. However, in the formal proof of the com-

position theorem we also show measurability.

1.2 Organization of the paper

We start by summarizing prior work and describing how

it relates to ODP in Sec. 2. We then formally intro-

duce our ODP framework, consisting of definitions and a

novel composition protocol, in Sec. 3. The privacy proof

of the composition protocol is deferred to the appendix.

As already mentioned, the ODP framework can be ap-

plied to PTR and the SVT, which we describe in de-

tail in Sec. 4. In Sec. 5 we demonstrate how ODP can

be used to save privacy budget in iterative mechanisms

with a non-fixed number of iterations. ODP also allows

to recover already spent privacy budget in case the out-

put of a DP mechanism is unsatisfactory, as we show in

Sec. 6. We conclude in Sec. 7. The appendix contains

the discussion of a possible extension to advanced com-

position (Appendix A) and most of the proofs.

2 Related work

One of the two major components of the ODP frame-

work is a new composition experiment that improves

utility in certain cases. Extending privacy guarantees

from a single mechanism to sequences of mechanisms

has been an important subject of study from the early

days of DP research. The first result for the composi-

tion of mechanisms is the simple composition theorem

[16], which states that a mechanism that invokes k (ε, δ)-

DP mechanisms fulfills (kε, kδ)-DP. This statement also

holds for pure DP with δ = 0 and cannot be improved

upon if pure DP is also required for the composition.

However, Dwork et al. [22] later proved the advanced

composition theorem, which shows that for the cost of

an increase in the δ-part of the composition guarantee,

the ε-part can be decreased to O(ε2k + ε
√

k). Since

then, optimal composition theorems both for the case

of homogeneous composition [25] (where all composed

mechanisms have the same (ε, δ)-guarantee) and hetero-

geneous composition [31] (where they may have differ-

ent (ε, δ)-guarantees) have been found. The optimality

of these composition theorems holds w.r.t. general (ε, δ)-

DP mechanisms, that is, if the DP guarantees of the

mechanisms are fixed, but the data analyst is free to

choose any mechanisms that fulfill these DP guarantees.

By restricting the choice of mechanisms, tighter com-

position bounds can be given. To this end, relaxations

of DP such as concentrated DP [21], the Rényi-diver-

gence based zero-concentrated DP [10] and Rényi DP

[30], and f -DP [14] have been introduced. These defini-

tions can capture the composition behavior of specific

mechanisms more precisely. What these improvements

have in common with advanced composition is that they

only give an improved level of privacy over simple com-

position if the number of composed mechanisms is large

enough (see Table 1).

The most flexible setting that classic composition

theorems consider is one where the number of mecha-

nisms to be invoked and their DP guarantees are fixed

ahead of time, but where under these constraints the

data analyst may adaptively choose the mechanism to

be invoked in each step and the database to invoke it

on based on the outputs of the previous mechanisms.

This is formalized in a so-called composition experiment

[22]. The ODP composition experiment that we propose
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gives the data analyst a level of freedom that goes be-

yond what is possible in the classic setting: the data an-

alyst may adaptively choose not only mechanisms and

databases, but also neither the number of mechanisms

nor their DP guarantees need to be fixed ahead of time.

This setting has been previously studied by Rogers et al.

[32]. They introduce privacy filters, which are functions

that can be used as stopping rules to prevent a given

privacy budget from being exceeded. This is essentially

the same as how we prevent the choice of mechanisms

whose invocation would exceed the privacy budget in

our composition experiment. In fact, we can even almost

equivalently reformulate our composition experiment us-

ing a new variant of privacy filters (see Appendix A).

As opposed to us, Rogers et al. give advanced compo-

sition results that are asymptotically (in the number

of queries) better than our simple composition results.

These results have been improved upon by showing that

composition results obtained via Rényi DP also hold for

the privacy filter setting [23, 26]. However, our compo-

sition results are still superior whenever the number of

queries is small to medium.

The observation that some outputs of DP mecha-

nisms leak less private information than others and that

in these cases one only has to account for the leakage of

the actual output has been exploited before, though only

in the design of quite specific types of mechanisms and

not for developing a general framework as we do. Pro-

pose-Test-Release (PTR) [17] is a method for designing

DP mechanisms based on robust statistics. PTR mech-

anisms consist of chains of mechanisms of a particular

type whose different outputs leak different amounts of

private information, and the authors exploit the fact

that only certain sequences of outputs are possible to

give better DP guarantees. The Sparse Vector Tech-

nique (SVT) [19, 29] is a technique for releasing the

(binary) results of a sequence of threshold queries with

DP, in a way that each positive result contributes a

certain amount to the private leakage, but all negative

results together only contribute a fixed amount, which

can be used to output arbitrarily many negative results

with a fixed privacy budget. The DP mechanism for top-

k selection by Durfee and Rogers [15] can be seen as a

combination of the ideas of PTR and the SVT. The goal

of their mechanism is to return the top-k elements from

a database. However, the mechanism might return less

than k elements. In that case, it can be invoked again

multiple times until k elements have been returned, with

an additional cost in δ but without any additional cost

in ε. We dedicate Sec. 4 to PTR and the SVT, where we

show how with ODP we can reduce the privacy budget

that these mechanisms use up when composing them

with other mechanisms.

Dwork and Rothblum [21] formalize the distribution

of the amount of leakage of private information of mech-

anisms over their outputs via the so-called privacy loss

random variable. They — and later Sommer et al. [33]

— use the fact that it is unlikely that a mechanism will,

over many iterations, always produce an output with a

high privacy loss to show improved composition bounds.

These are, however, a priori bounds that do not take

into account the privacy loss of the actually produced

outputs.

Ligett et al. [28] do compute the privacy loss of

the actually produced outputs when computing noisy

expected risk minimization (ERM) models. They con-

sider the setting where a model does not need to fulfill a

predetermined privacy requirement, but instead its loss

should not exceed a predetermined value. They propose

algorithms to compute the most private model that still

fulfills the loss requirement. The authors introduce ex-

post DP to measure the privacy of a model, which is the

special case of our ODP definition when δ = 0. This is

why all algorithms proposed in their paper are compat-

ible with our new composition theorem. As opposed to

us, Ligett et al. do not provide a way to go from ex-post

DP to standard DP. Our ODP framework thus widens

the applicability of their mechanisms.

We are not the first to employ automated reason-

ing to verify differential privacy. While we restrict our-

selves to verifying our abstract composition theorem,

others have gone a step further and developed tools to

verify differential privacy of concrete programs. Barthe

et al. [4] developed a specialized Hoare logic, later ex-

tended by Barthe and other colleagues [3], and imple-

mented this logic in the toolbox CertiPriv, based on

the Coq proof assistant [5]. An alternative approach by

Barthe et al. [2] transforms probabilistic programs into

nonprobabilistic programs such that proving the trans-

formed program to fulfill a certain specification estab-

lishes differential privacy of the original program. Later

approaches [6, 35, 36, 38, 40] rely on the SMT solver

Z3 [12], the MaxSMT solver νZ [8], or the probabilistic

analysis tool PSI [24] to minimize the manual effort nec-

essary to prove or disprove differential privacy. Wang et

al.’s tool DPGen [37] can even transform programs vio-

lating differential privacy into differentially private ones.

Recent work by Bichsel et al. [7] uses machine learning

to detect differential privacy violations.
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3 Output differential privacy

In this section we introduce our ODP framework. It is

an extension of DP: it contains DP as a special case, but

allows for more precise, output-specific privacy account-

ing.

Definition 2 (Output Differential Privacy (ODP)).

Let O be a set, and let P = {Pk}k∈K be a partition

of O, where K is a countable index set. Let E : P 7→ R≥0

be a function that assigns to each set in the partition a

non-negative value, and let δ ≥ 0. A randomized mech-

anism M with output set O is called (P, E , δ)-output

differentially private ((P, E , δ)-ODP) if for all S ⊆ O
and for all neighboring databases x, x′:

Pr(M(x) ∈ S) ≤ δ +
∑

k∈K

eE(Pk) Pr(M(x′) ∈ S ∩ Pk),

where the probability space is over the coin flips of the

mechanism M . If M is (P, E , δ)-output differentially pri-

vate for some E and δ, we call P an ODP partition for

M .

As an example, consider the mechanism Mtoy from the

introduction. An ODP partition for Mtoy would be P1 =

R, P2 = {⊥}, with E(P1) = ε, E(P2) = 0 and δ = 0.

Note that the assumption of the countability of P
is a technical one that is required in the proof of our

composition theorem (Thm. 7), but not a restriction in

practice due to the finiteness (and thus countability) of

computer representations.

The following results allow us to convert a DP guar-

antee to an ODP guarantee (Lemma 3) and an ODP

guarantee to a DP guarantee (Lemma 4):

Lemma 3. Let M be an (ε, δ)-differentially private

mechanism. Then M is (P, E , δ)-output differentially

private for any partition P of Range(M) and the con-

stant function E ≡ ε.

Proof. Follows directly from the definitions of DP and

ODP.

Lemma 4. Let M be a (P, E , δ)-output differentially

private mechanism. Then M is (supP ∈P E(P ), δ)-differ-

entially private.

Proof. Let ε∗ = supP ∈P E(P ). Let x, x′ be neighboring

databases and let S ⊆ Range(M). Then

Pr(M(x) ∈ S) ≤ δ +
∑

k∈K

eE(Pk) Pr(M(x′) ∈ S ∩ Pk)

≤ δ +
∑

k∈K

eε∗

Pr(M(x′) ∈ S ∩ Pk)

= δ + eε∗

Pr(M(x′) ∈ S).

We sometimes want to build up an ODP guarantee from

privacy guarantees that only hold w.r.t. subsets of the

output set of a mechanism. We call such guarantees sub-

set differential privacy guarantees, and show how they

can be combined into an ODP guarantee (Lemma 6).

However, as we show in Sec. 5.2, this does not always

result in an optimal ODP guarantee.

Definition 5 (Subset Differential Privacy). Let O be a

set and R ⊆ O a subset of O. Let ε ≥ 0 and δ ≥ 0. A

randomized mechanism M with output set O is called

(R, ε, δ)-subset differentially private if for all S ⊆ R and

for all neighboring databases x, x′:

Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S) + δ,

where the probability space is over the coin flips of the

mechanism M .

Lemma 6. Let O be a set, and let P = {Pk}k∈K be

a partition of O, where K is a countable index set. Let

M be a randomized mechanism with output set O and

let E : P 7→ R≥0 and ∆ : P 7→ R≥0 be functions such

that M is (Pk, E(Pk), ∆(Pk))-subset differentially private

for all k ∈ K. Then M is (P, E ,
∑

k∈K ∆(Pk))-output

differentially private.

Proof. Let S ⊆ O and let x, x′ be neighboring

databases. Then

Pr(M(x) ∈ S) =
∑

k∈K

Pr(M(x) ∈ S ∩ Pk)

≤
∑

k∈K

[

eE(Pk) Pr(M(x′) ∈ S ∩ Pk) + ∆(Pk)
]

=
∑

k∈K

∆(Pk) +
∑

k∈K

eE(Pk) Pr(M(x′) ∈ S ∩ Pk).

3.1 Composition of ODP mechanisms

As mentioned in the introduction, ODP can be used

to give better utility when composing mechanisms. As
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in classical adaptive composition [22], we model com-

position as a game between a data curator (in the real

world this would be the entity with access to the private

databases) and an adversary (in the real world a data

analyst) that is allowed to spend a total privacy budget

of (εt, δt) (in terms of DP) on mechanism invocations

(Alg. 1). In each round, the adversary chooses a mecha-

nism Mi and a pair of neighboring databases xi,0, xi,1.

Based on a bit b that is only known to the data curator,

the data curator returns Mi(x
i,b). The adversary may

base their choices in an iteration on the mechanism out-

puts it has seen in previous iterations. The goal of the

adversary is to infer b from the mechanism outputs. Our

goal is to ensure that this is not possible with high con-

fidence, by bounding how much the output distribution

under b = 0 can differ from the output distribution un-

der b = 1. Note that this is a hypothetical game that is

required for the privacy analysis. In the real world there

is no bit b, and only one private database in each round,

on which the mechanism in that round is invoked.

As opposed to previous composition experiments,

we require the adversary to not only choose each mech-

anism Mi such that its DP guarantee (as computed via

Lemma 4) does not exceed the remaining privacy bud-

get, but to also return an ODP partition Pi for Mi. Due

to Lemma 3, each DP mechanism has a trivial associated

ODP partition, thus this requirement does not exclude

any DP mechanisms. However, if the ODP partition is

non-trivial, such as for the mechanisms in Sec. 4, 5 and

6, the partition can be used to save privacy budget: let

k ∈ Ki be such that the output of Mi falls into the set

Pi,k of Mi’s ODP partition. If Ei(Pi,k) < supP ∈Pi
Ei(P ),

then the incurred ε-cost is smaller than the ε of the

mechanism’s DP guarantee.

Something that sets Alg. 1 apart from the classic

composition experiment, but has been used in combina-

tion with the privacy filters and odometers of Rogers

et al. [32], is that the privacy guarantees of the mech-

anisms do not have to be fixed ahead of time. Instead,

the adversary can adaptively, i.e., based on the outputs

of previous mechanisms, choose the privacy parameters

of the next mechanism that they want to invoke. This

also means that the adversary can adaptively choose

the number of iterations: if they want to spend all of

the privacy budget in the first I ′ < I iterations, they

can choose a mechanism that always produces the same

output independently of the database and thus is (0, 0)-

DP for the remaining I − I ′ iterations. Like Rogers et

al., we limit the maximal number of iterations by a fixed

number I. This is purely for technical reasons and not

a limitation in practice, since I can be chosen arbitrar-

Algorithm 1 ODPComposition(A, εt, δt, b)

1: Select coin tosses Rb
A for A uniformly at random.

2: Set remaining budget εr = εt, δr = δt.

3: for i = 1, . . . , I do

4: A = A(Rb
A, {Ab

j}i
j=1) chooses

• neighboring databases xi,0, xi,1,

• a triple (Pi = {Pi,k}k∈Ki
, Ei, δi), and

• a mechanism Mi

such that

• supP ∈Pi
Ei(P ) ≤ εr,

• δi ≤ δr, and

• Mi is (Pi, Ei, δi)-ODP

5: Sample Ab
i = Mi(x

i,b)

6: Let k be such that Ab
i ∈ Pi,k

7: εr −= Ei(Pi,k)

8: δr −= δi

9: A receives Ab
i

10: return view V b = (Rb
A, Ab

1, . . . , Ab
I)

ily large. Note that our composition experiment can al-

most equivalently be formulated using a new variant of

privacy filters (see Appendix A). We choose the formu-

lation in Alg. 1 throughout most of the paper for a more

easily accessible presentation.

We show that our composition scheme provides DP:

Theorem 7. For every adversary A and for every set

of views V of A returned by Alg. 1 we have that

Pr(V 0 ∈ V) ≤ eεt Pr(V 1 ∈ V) + δt.

We defer the proof to Appendix B, where we first show

the theorem statement for a composition length of I = 2.

We define sets of views Vk where the outputs of M1 come

from the same set Pk of M1’s ODP partition. Then we

apply an extension of a proof of the simple composition

theorem for (ε, δ)-mechanisms by Dwork and Lei [17,

Lemma 28] to such sets Vk. By taking unions over Vk’s,

we can analyze arbitrary sets of views. For this we make

use of the countability of ODP partitions. The general

theorem statement finally follows by induction.

3.2 Formal verification of the composition

theorem

We have formally verified the proof of Thm. 7 in the

proof assistant Lean [13]. The formal proof is available
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online1. The effort of formalizing our proof has paid off:

During the process, we discovered an error in a previous

version of Thm. 7 that all authors and reviewers had

previously missed. At first glance, in Alg. 1, it might

seem as if the δi that is subtracted from δr on line 8

could also depend on Pi,k. A counterexample shows that

this is a fallacy, which was subtly hidden in a previous

version of our proof.

Unlike our pen-and-paper proof in Appendix B, the

mechanized version discusses all questions of measurabil-

ity. The measurability tactic of Lean’s mathematical

library could resolve many measurability proofs auto-

matically, but some of them had to be carried out man-

ually. For example, showing that Alg. 1 is measurable

(as a function from the sample space to the resulting

view) requires an induction over the number of itera-

tions, which is out of reach of automation. Apart from

this hurdle, Lean’s mathematical library [34] was sur-

prisingly mature for our purposes, given that it is still

relatively young.

4 ODP analysis of existing

mechanisms

In this section, we analyze two well-known DP mecha-

nisms using our ODP framework.

4.1 Sparse Vector Technique

The Sparse Vector Technique (SVT) [19, 29] is a method

for releasing the results of a sequence of threshold com-

Algorithm 2 MSVT(x, Q, ∆, T1, T2, . . . , c)

1: ρ ∼ Lap(∆/ε1)

2: count = 0

3: for qi ∈ Q do

4: if qi = STOP or count ≥ c then

5: BREAK

6: νi ∼ Lap(2c∆/ε2)

7: if qi(x) + νi ≥ Ti + ρ then

8: Output ai = ⊤
9: count += 1

10: else

11: Output ai = ⊥

1 https://doi.org/10.6084/m9.figshare.19330649

parisons with DP. There are multiple variants of SVT.

We work with the improved variant of the mechanism

due to Lyu et al. [29, Alg. 1]; see Alg. 2 (MSVT). In this

variant, the data analyst sends a stream Q of adaptively

chosen R-valued queries qi and thresholds Ti to the data

curator, who adds the same noise ρ to the thresholds,

and different noise values νi to the query results. For

each query i they then return the result of the com-

parison qi(x) + νi ≥ Ti + ρ: if the inequality holds, ⊤
is returned, otherwise ⊥ is returned. The data curator

then moves on to the next query until the stream ends —

which, as opposed to Lyu et al., we make explicit by let-

ting the data analyst send a STOP query —, or until a

prespecified number c of ⊤-outputs has been produced.

What sets the SVT apart from other DP mechanisms

is that for a fixed privacy budget an arbitrary number

of ⊥ outputs can be produced; however, only a limited

number of ⊤ outputs. Lyu et al. show that MSVT ful-

fills (ε1 + ε2)-DP. From their proof it can be seen that

all ⊥-outputs together contribute ε1 to the privacy guar-

antee and each of the at most c ⊤-outputs contributes

ε2/c. Thus, intuitively, we should be able to save pri-

vacy budget if less than c ⊤-outputs are produced. By

slightly modifying the proof by Lyu et al., we can show

the following lemma:

Lemma 8. For each integer c′ ∈ [0, c], let SSVT
c′ be the

set of outputs of MSVT with c′ ⊤-entries. Let further

P = {SSVT
c′ }c

c′=0 and let, for 0 ≤ c′ ≤ c,

E(SSVT
c′ ) = ε1 +

c′

c
ε2

Then MSVT is (P, E , 0)-ODP.

Proof. Our proof follows closely the one of Lyu et al.

[29, Thm. 1]. The only differences are that we explicitly

consider the query at which the stream Q stops and that

we do not bound c′ by c, but work with the exact value.

Let x, x′ be neighboring databases and assume that the

sensitivity of all queries qi is bounded by ∆. Let

fi(x, z) = Pr(qi(x) + νi < Ti + z),

gi(x, z) = Pr(qi(x) + νi ≥ Ti + z).

We have that

gi(x, z − ∆) = Pr(qi(x) + νi ≥ Ti + z − ∆)

≤ Pr(qi(x
′) + ∆ + νi ≥ Ti + z − ∆)

= Pr(qi(x
′) + νi ≥ Ti + z − 2∆)

≤ eε2/c Pr(qi(x
′) + νi ≥ Ti + z). (1)

Let l > 0, c′ ≤ c and let a ∈ {⊥, ⊤}l ∩ SSVT
c′ be an

output of MSVT of length l that contains c′ ⊤’s. Let
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I⊥ = {i | ai = ⊥}, I⊤ = {i | ai = ⊤}. Then

|I⊤| = c′. (2)

By Pr(ql+1 = ST | a) denote the probability that the

data analyst chooses the STOP query as the next query

after having received the l outputs in a, and let z− =

z − ∆. We have:

Pr(MSVT(x) = a)

Pr(MSVT(x′) = a)

=
Pr(MSVT(x) = a | ql+1 = ST) Pr(ql+1 = ST | a)

Pr(MSVT(x′) = a | ql+1 = ST) Pr(ql+1 = ST | a)

=
Pr(MSVT(x) = a | ql+1 = ST)

Pr(MSVT(x′) = a | ql+1 = ST)

=

∞
∫

−∞

Pr(ρ = z)
∏

i∈I⊥

fi(x, z)
∏

i∈I⊤

gi(x, z)dz

∞
∫

−∞

Pr(ρ = z)
∏

i∈I⊥

fi(x′, z)
∏

i∈I⊤

gi(x′, z)dz

=

∞
∫

−∞

Pr(ρ = z−)
∏

i∈I⊥

fi(x, z−)
∏

i∈I⊤

gi(x, z−)dz

∞
∫

−∞

Pr(ρ = z)
∏

i∈I⊥

fi(x′, z)
∏

i∈I⊤

gi(x′, z)dz

≤

∞
∫

−∞

eε1 Pr(ρ = z)
∏

i∈I⊥

fi(x
′, z)

∏

i∈I⊤

gi(x, z−)dz

∞
∫

−∞

Pr(ρ = z)
∏

i∈I⊥

fi(x′, z)
∏

i∈I⊤

gi(x′, z)dz

(1)

≤

∞
∫

−∞

eε1 Pr(ρ = z)
∏

i∈I⊥

fi(x, z)
∏

i∈I⊤

eε2/cgi(x, z)dz

∞
∫

−∞

Pr(ρ = z)
∏

i∈I⊥

fi(x′, z)
∏

i∈I⊤

gi(x′, z)dz

(2)
= eε1(eε2/c)c′

= eε1+ c′

c
ε2 .

Since this bound hold for every element a ∈ SSVT
c′ ,

it also holds for all subsets of SSVT
c′ . Hence, MSVT is

(SSVT
c′ , eε1+ c′

c
ε2 , 0)-subset differentially private for every

c′ ≤ c. The ODP bound then follows from Lemma 6.

Application. A common use case for SVT is the dif-

ferentially private release of only those entries of a vec-

tor with large magnitude, instead of the entire vector

[27, 39]. This can be desirable for multiple reasons: to

be able to release the entries with less noise, since the

privacy budget needs to be divided between fewer en-

tries; to release only those values of a histogram that

are large enough in magnitude so that they will not be

dominated by the added noise; or to reduce communi-

cation costs in a distributed setting. Assume that f is

a function that takes as input the private database and

returns the vector of interest. The queries would then

be qi(x) = |fi(x)|, i.e., the absolute value of the i-th

entry of the vector f(x). Only if the corresponding out-

put ai is ⊤, a differentially private version of fi(x) is

released. When analyzing SVT with DP [29, Sec. 4.1],

the available privacy budget εt = ε1 + ε2 + ε3 is divided

into a budget ε1 + ε2 for SVT itself, and a budget ε3

for the release of the vector entries. When using the

Laplace mechanisms with the same variance to perturb

the vector entries, a privacy budget of ε3/c is available

for each of the at most c entries that get released. How-

ever, it is not guaranteed that c entries will surpass the

threshold and thus get released. ODP allows us to do the

following: first invoke SVT. Let c′ ≤ c be the number of

entries that surpassed the threshold. We have now used

up a privacy budget of ε1 + c′

c ε2 and thus have a pri-

vacy budget of ε′
3 = ε3 + c−c′

c ε2 available for the release

of the c′ vector entries. Assume that c′ < c. Then we

have ε′
3 > ε3. Further, we only need to split this budget

between c′ instead of between c vector entries and thus

have a budget of ε′
3/c′ per entry. This is not possible

with a pure DP analysis, where we always have to as-

sume the worst-case of c released vector entries. These

two sources of budget saving — from SVT itself via

Lemma 8, and from making use of the knowledge of the

actual number of released entries — lead to less noise in

the released entries. Adapting the noise per entry to the

actual number of released entries would also be possible

with privacy filters [32], but saving budget from SVT

itself is only possible with ODP.

In Fig. 1 we numerically demonstrate the advantage

of using ODP when releasing a sparse vector via SVT2.

The vector in our example has 100 entries that each

have a value of either 0 or 1000. We assume that at

most 20 of the entries lie above the threshold T = 500,

i.e., c = 20. The total privacy budget is ε = 1, split

into a budget ε1 + ε2 = 1/2 for determining the indices

of the large vector entries and a budget ε3 = 1/2 for

releasing the corresponding values. For splitting budget

between ε1 and ε2 we choose the optimal ratio ε1/ε2 =

1/(2c)2/3 according to Lyu et al. [29]. We further assume

that the queries qi(x) = |fi(x)| have sensitivity ∆ = 1.

Since c is only an upper bound on the number of large

entries, the actual number of large entries can be lower.

The ODP analysis can exploit cases with less than c

large entries for adding less noise to the values of the

released entries, while with the standard analysis of SVT

always the same amount of noise has to be added. For

2 The code for generating the plots in this paper can be found

at https://doi.org/10.6084/m9.figshare.19330649.
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2ε, E(P2) = ε, T also fulfills ({P1, P2}, E , δ)-ODP. Hence

we can save privacy budget in the case of a ⊥-output. We

exemplify this for the mechanism proposed by Dwork

and Lei for approximating the interquartile range (IQR)

of an empirical distribution on R, that is, the difference

between the 75th and the 25th percentile, which serves

as a measure of scale. We use MIQR to denote this

mechanism. MIQR works by discretizing R into buck-

ets and proposing a local sensitivity of the discretized

IQR. If the IQR has at most the proposed sensitivity, a

noisy version of the IQR is released, otherwise ⊥ is re-

leased. To avoid an unlucky choice of the discretization,

MIQR uses two discretizations, where the second one is

a shifted version of the first one. If the output produced

by the mechanism resulting from the first dicretization

(denoted by MD
1 ) is not ⊥, this output is returned and

the computation ends. Otherwise the mechanism result-

ing from the second discretization (denoted by MD
2 ) is

invoked and its output is returned. The authors show

that, for j = 1, 2, MD
j is a PTR function. Without hav-

ing formalized the concept of ODP yet, they use the fact

that a ⊥-output of MD
1 contains less information about

the database than a non-⊥-output, combined with the

fact that MD
2 is only invoked if MD

1 ’s output is ⊥ to

show that M fulfills (3ε, δ)-DP (instead of the naive

((2+2)ε, (1+1)δ)-DP), because one never has to account

for a non-⊥-output of both MD
1 and MD

2 . The authors

show that the same reasoning can be applied to more

general compositions of PTR functions to save privacy

budget also in the computation of, e.g., the median or

of regression parameters.

ODP analysis: Treating MD
1 and MD

2 as sepa-

rate mechanisms. By treating each PTR function that

makes up one of their mechanisms as a separate mecha-

nism and composing them via Alg. 1, we can save ε-bud-

get beyond the improved analysis by Dwork and Lei, but

require additional δ-budget. In the example of MIQR we

either only invoke MD
1 (if the output is in R) or invoke

both MD
1 and MD

2 . Since MD
1 and MD

2 are PTR func-

tions, they fulfill ({R, {⊥}}, E , δ)-ODP with E(R) = 2ε

and E(⊥) = ε. One of the following three cases will oc-

cur:

1. MD
1 returns r for some r ∈ R (and MD

2 never gets

invoked);

2. MD
1 returns ⊥ and MD

2 returns r for some r ∈ R;

3. both MD
1 and MD

2 return ⊥.

In case 1 we spend a privacy budget of (2ε, δ), in case 2

we spend a budget of (3ε, 2δ), and in case 3 we spend a

budget of (2ε, 2δ). Compared with the DP analysis, in

cases 1 & 3 we save a budget of (ε, 0), but we spend

an additional budget of (0, δ) in cases 2 & 3. By choos-

ing the order of the two discretizations used for MD
1

and MD
2 uniformly at random, we can ensure that with

probability at least 1/2 we will be in case 1 if at least

one of the two mechanisms returns a value in R.

ODP analysis: Treating MIQR as a single mech-

anism. When treating MIQR as a single mechanism,

we can even strictly improve upon the original analysis

in terms of ODP. We have the following lemma, which

shows that we can save privacy budget if both discretiza-

tions result in a ⊥-output:

Lemma 10. Let P1 = R, P2 = {⊥} and E(P1) =

3ε, E(P2) = 2ε. Then MIQR is ({P1, P2}, E , δ)-ODP.

Proof. Since MIQR is (3ε, δ)-DP, it is in particular

(R, 3ε, δ)-subset differentially private. Let x and x′ be

neighboring databases. Since (1) the randomnesses of

MD
1 and MD

2 are independent and (2) MD
1 and MD

2 are

(ε, δ)-PTR functions, it holds that

Pr(M(x) = ⊥) = Pr(MD
1 (x) = ⊥, MD

2 (x) = ⊥)

(1)
= Pr(MD

1 (x) = ⊥) Pr(MD
2 (x) = ⊥)

(2)

≤ eε Pr(MD
1 (x′) = ⊥)eε Pr(MD

2 (x′) = ⊥).

Thus MIQR is ({⊥}, 2ε, 0)-subset differentially private.

The statement of the lemma then follows from Lemma 6.

Application. There are multiple statistics that can be

computed via PTR mechanisms. Typically one is not

interested in only a single differentially private statistic

of a dataset, but in multiple statistics. E.g., one might

want to release a measure of the location of the data

and a measure of its spread. For this task one could first

invoke MIQR to compute the IQR of the data and then

another DP mechanism Mmedian to compute its median

[17]. The total privacy budget (εt, δt) would be divided

into a budget (3ε1, δ1) for MIQR and a budget (ε2, δ2)

for Mmedian, where 3ε1 + ε2 = εt and δ1 + δ2 = δt. With

a DP analysis, MIQR would always use up (3ε1, δ1) from

the budget. However, with ODP composition and when

using our second ODP analysis (Lemma 10), MIQR only

uses up (2ε1, δ1) in the case of a ⊥-output, and thus the

budget remaining for Mmedian increases to (ε1+ε2, δ2) in

that case. The increased budget can be used to reduce

the amount of noise added in the computation of the

differentially private median, which makes the released

estimate more accurate.
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5 ODP for mechanisms with

variable numbers of iterations

There are many iterative algorithms for which the re-

quired number of iterations is not known beforehand.

Instead, they are executed until a certain criterion is

reached, e.g., the norm of the gradient in an optimiza-

tion problem falls below a prespecified threshold or the

validation loss starts increasing in the training of a ma-

chine learning (ML) model. A common technique to

make the final output of iterative algorithms differen-

tially private is by making the intermediate values in

each iteration differentially private. In stochastic gradi-

ent descent, for instance, which is often used for train-

ing neural networks, this is typically achieved by adding

Gaussian noise to each gradient [1, 9]. The DP guaran-

tees for the intermediate values are then combined us-

ing a composition theorem to get a DP guarantee for

the final output. For this it is necessary to know before-

hand — i.e., before executing the iterative algorithm —

how many iterations will be performed. If the total pri-

vacy budget is fixed, a larger number of iterations means

that less privacy budget can be used on each iteration,

whereas with a smaller number of iterations more pri-

vacy budget is available for each iteration. If, as in many

cases, the optimal number of iterations is not known a

priori, the number will often be either overestimated

or underestimated. If the number of iterations is over-

estimated, privacy budget is wasted on iterations that

are not required. If it is underestimated, the iterative

algorithm will halt before it has reached an optimal so-

lution, e.g., an ML model might have a larger error than

it could have with more iterations.

ODP allows us to escape this dilemma. Consider a

data analyst that chooses a number k of iterations for

the iterative algorithm. With standard DP analysis, the

algorithm always runs for k iterations, even if it con-

verges at an earlier iteration k′ < k. The privacy bud-

get for the remaining k − k′ iterations is thus wasted.

With ODP, however, the algorithm can be stopped at

iteration k′ and the budget that was reserved for the

remaining k − k′ iterations can be used via ODP com-

position for other queries on the same database or on

other databases that might share individuals who con-

tributed data with the original database. This solves the

problem of overestimating the number of iterations. To

solve the problem of underestimating the number of it-

erations, the data analyst can purposely choose a large

number for k that is likely to be an overestimate. This is

not problematic anymore, since in the case where it was

indeed an overestimate, the algorithm can again halt

earlier, and the remaining privacy budget can be used

for other tasks.

Algorithm 3 Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

(x)

1: for k = 1, . . . , kn do

2: sk = Mk((s1, . . . , sk−1), x)

3: if k ∈ {ki}n−1
i=1 then

4: Let i such that k = ki

5: if hki(s1, . . . , ski
) = 1 then

6: return (s1, . . . , ski
)

7: return (s1, . . . , skn
)

We consider an iterative mechanism M as defined in

Alg. 3. Let k1 < k2 < · · · < kn be numbers of iterations

after which M might stop. For k = 1, . . . , kn, let Mk be

a differentially private mechanism that takes as input

the output of previous mechanisms and a database. Mk

is the mechanism executed in the k-th iteration of M .

Define a set of binary functions

hki :

ki
∏

k=1

Range(Mk) 7→ {0, 1},

i = 1, . . . , n− 1, that act as stopping criteria. After ki it-

erations, M evaluates hki on the outputs s1, . . . , ski
pro-

duced so far: if hki(s1, . . . , ski
) = 1, M halts and returns

(s1, . . . , ski
); otherwise it continues. If hki(s1, . . . , ski

) =

0 for all i < n, M halts and returns (s1, . . . , skn
) after it-

eration kn. Note that we assume for simplicity that hki

can be evaluated with only the information that has

already been computed in a differentially private way,

i.e., it only requires access to x via M1, . . . , Mki
(this

is, e.g., the case if hki is based on the gradient norm in

differentially private SGD or the validation score of an

ML model on a public validation set). If this is not the

case and the computation of hki requires access to the

database x, we can simply add an additional mechanism

M̃ki
after Mki

that computes hki in a differentially pri-

vate way, and reindex the sequence of mechanisms such

that Mki
= M̃ki

.

For i = 1, . . . , n, let

Pi = {s | s ∈ Range(M), |s| = ki},

where |s| denotes the length of the vector s, and let

P = {Pi}n
i=1. Throughout this section we always mean

this partition P when referring to the partition of the

output space of an iterative mechanism. When we want

to make the dependency on an iterative mechanism M ′
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explicit, we write PM ′

= {P M ′

i }n
i=1. In Sec. 5.1 we show

a generic ODP bound for M with the ODP partition P
based on Lemma 6 that is compatible with any DP com-

position theorem. In Sec. 5.2 we show how this generic

bound can be improved upon via a direct derivation

that depends on the specific composition setting. Thus,

Sec. 5.2 also acts as a demonstration of how Lemma 6

does not always yield an optimal ODP bound.

The iterative mechanism in Alg. 3 is defined by a se-

quence {ki}n
i=1 of potential stopping points, a sequence

{Mk}kn

k=1 of mechanisms that are invoked in the different

iterations, and a sequence {hki}n−1
i=1 of stopping criteria.

We denote an iterative mechanism, given by such a set

of parameters, via Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

.

5.1 ODP bound based on Lemma 6

We derive an ODP bound for iterative mechanisms via

Lemma 6 and any composition theorem COMP that is

compatible with M1, . . . , Mkn
, i.e., that can be applied

to the sequence of mechanisms M1, . . . , Mkn
. This could,

e.g., be the optimal composition theorem for adaptive,

heterogeneous composition [31] (see Sec. 5.2), for the

most general class of mechanisms.

Lemma 11. Let

M = Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

be an iterative mechanism. Let COMP be a DP com-

position theorem that is compatible with M1, . . . , Mkn
.

COMP takes as input a sequence of mechanisms and a

desired value ε, and returns a value δ such that the se-

quence fulfills (ε, δ)-DP. For i = 1, . . . , n, let εki ≥ 0 be

a desired ε-value, and let

δki = COMP(M1, . . . , Mki
; εki)

be the δ returned by the composition theorem. Then M

fulfills (P, E , δ)-ODP with

E(Pi) = εki

and

δ =

n
∑

i=1

δki

for all i = 1, . . . , n.

Proof. We can assume w.l.o.g. that the stopping criteria

hki are deterministic. If they are not deterministic, we

can let Mki
, in addition to its original output, return a

sample from the distribution of hki ’s randomness, which

hki can then access. This does not change the DP guar-

antee of Mki
, since the distribution of hki ’s randomness

is independent of the database.

Let i ∈ {1, . . . , n}. Define Mki = (M1, . . . , Mki
). Be-

cause hki is deterministic, it holds for any database x

and any S ⊆ Pi that

Pr(M(x) ∈ S) = Pr(Mki(x) ∈ S).

Since Mki is (εki , δki)-differentially private, we have, for

any neighboring databases x, x′:

Pr(M(x) ∈ S) = Pr(Mki(x) ∈ S)

≤ eεki
Pr(Mki(x′) ∈ S) + δki

= eεki
Pr(M(x′) ∈ S) + δki .

Hence M is (Pki
, εki , δki)-subset differentially private.

The statement of the lemma then follows from Lemma 6.

5.2 ODP bound via direct derivation

In this subsection we give an example that shows that

we can get better ODP bounds for iterative mecha-

nisms than the ones obtained by applying Lemma 11.

This comes at the cost of losing generality, since we

cannot plug in any existing DP composition theorem

anymore, but have to do a derivation from scratch. We

consider the adaptive, heterogeneous composition of ar-

bitrary differentially private mechanisms. Our proof ex-

tends the one by Murtagh and Vadhan [31] for a compo-

sition setting without stopping rules to one with stop-

ping rules. Adaptive, heterogenous composition means

that, for k = 1, 2, . . ., we assume that Mk fulfills (εk, δk)-

DP for some fixed εk and δk, and that Mk may depend

on the outputs of M1, . . . , Mk−1, but we assume nothing

beyond that.

Let

M = Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

be an iterative mechanism, based on mechanisms

{Mk}kn

k=1 as described above. For a function E : P 7→
R≥0 we define the smallest δ such that M fulfills

(P, E , δ)-ODP as

OptDel({ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1 , E)

= inf{δ | Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

is (P, E , δ)-ODP}.
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Given E , {ki}n
i=1 and a fixed list of DP parame-

ters {(εk, δk)}kn

k=1, we want to find the minimal δ such

that Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

fulfills (P, E , δ)-

ODP for any sequence {Mk}kn

k=1 of mechanisms that

fulfill (εk, δk)-DP, k = 1, . . . , kn, and any sequence of

stopping criteria. We thus define

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= sup
{Mk}kn

k=1

{hki }n−1

i=1

{OptDel({ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1 , E)

| Mk is (εk, δk)-DP, k = 1, . . . , kn}.

The remainder of this subsection is devoted to deriv-

ing the expression for OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

in Thm. 15. Further, following Thm. 15, we compare

this optimal value with the one that can be obtained

via Lemma 11. All proofs from this subsection are de-

ferred to Appendix C.

Like Kairouz et al. [25] and Murtagh

and Vadhan [31], we derive an expression for

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E) by showing that it

suffices to analyze a class of randomized response mech-

anisms and to then compute the optimal ODP bound

for these randomized response mechansisms. Kairouz et

al. show the following lemma:

Lemma 12 ([25]). For ε, δ ≥ 0, let the randomized re-

sponse mechanism M̃(ε,δ) : {0, 1} → {0, 1, 2, 3} be defined

as (dropping the dependency on (ε, δ) for simplicity)

Pr(M̃(0) = 0) = δ Pr(M̃(1) = 0) = 0

Pr(M̃(0) = 1) =
(1 − δ)eε

1 + eε
Pr(M̃(1) = 1) =

(1 − δ)

1 + eε

Pr(M̃(0) = 2) =
(1 − δ)

1 + eε
Pr(M̃(1) = 2) =

(1 − δ)eε

1 + eε

Pr(M̃(0) = 3) = 0 Pr(M̃(1) = 3) = δ.

Then for any mechanism M that is (ε, δ)-DP and any

pair of neighboring databases x0, x1 there exists a func-

tion T such that T (M̃(ε,δ)(b)) is identically distributed

to M(xb) for b = 0, 1.

Based on this result, we show that it suffices

to compute the ODP guarantee of a mechanism

whose iterations consist of invocations of random-

ized response mechanisms, in order to compute

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)):

Lemma 13. For any {ki}n
i=1, {(εk, δk)}kn

k=1 and any E
we have that

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= sup
{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {hki}n−1
i=1 , E).

For the proof we need the following post-processing

lemma, whose proof follows that of the post-processing

lemma of DP [20, Prop. 2.1]:

Lemma 14. Let f = (f1, . . . , fkn
) be a random-

ized function, where fk may depend on the output of

f1, . . . , fk−1, and let

M = Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki ◦ (f1, . . . , fki
)}n−1

i=1

]

be an iterative mechanism that fulfills (PM =

{P M
i }n

i=1, E , δ)-ODP. Assume that the output of each

mechanism Mk, k = 2, . . . , kn, only depends on the

database but not on the outputs of M1, . . . , Mk−1. Then

the iterative mechanism

M ′ = Miter

[

{ki}n
i=1, {fk ◦ Mk}kn

k=1, {hki}n−1
i=1

]

fulfills (PM ′

= {P M ′

i }n
i=1, E ′, δ)-ODP, where

E ′(P M ′

i ) = E(P M
i ),

for i = 1, . . . , n.

Lemma 14 allows us to prove Lemma 13, and with

Lemma 13 we can prove the main result of this sub-

section. In the theorem and its proof we write q1,...,k for

the first k elements of a vector q.

Theorem 15. Let {ki}n
i=1 be numbers of iterations, let

{(εk, δk)}kn

k=1 be DP parameters and let E be a function

that assigns ε-values to outputs of different lengths. For

i = 1, . . . , n, define, for every Q ∈ {0, 1, 2, 3}ki and for

b = 0, 1,

ki

Pr
b

(Q) = Pr
(

(M̃(ε1,δ1)(b), . . . , M̃(εki
,δki

)(b)) ∈ Q
)

.

For sets Qki
∈ {0, 1, 2, 3}ki and Qkj

∈ {0, 1, 2, 3}kj with

i < j, write, with a slight abuse of notation, Qki
∩Qkj

=

∅ if q1,...,ki
6= q′

1,...,ki
for all q ∈ Qki

, q′ ∈ Qkj
. Then

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= max
Qki

∈{0,1,2,3}ki

i=1,...,n
Qkj

∩Qkl
=∅ for all j<l

n
∑

i=1

[
ki

Pr
0

(Qki
) − eE(Pi)

ki

Pr
1

(Qki
)
]

.

(3)
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This quantity can be computed by iterating over the

exponentially (in kn) many possible sets Qki
. Murtagh

and Vadhan [31] analyze the special case n = 1 and show

that already that case is #P -complete. Thus, there is

no hope for an efficient exact algorithm, but there might

exist efficient approximation algorithms.

The main goal of this subsection is to show that

one can get better ODP guarantees for iterative mech-

anisms than the ones from applying Lemma 11. With

Lemma 11, we would get the following ODP-δ:

δ =

n
∑

i=1

max
Qki

∈{0,1,2,3}ki

[
ki

Pr
0

(Qki
) − eE(Pi)

ki

Pr
1

(Qki
)
]

= max
Qki

∈{0,1,2,3}ki

i=1,...,n

n
∑

i=1

[
ki

Pr
0

(Qki
) − eE(Pi)

ki

Pr
1

(Qki
)
]

. (4)

This is a direct application of Lemma 11 and the opti-

mal composition theorem for adapative, heterogeneous

mechanisms by Murtagh and Vadhan [31] (without the

simplifications of the expression performed by the au-

thors). Intuitively, Thm. 15 gives us an exact character-

ization of the sets of outputs that are possible, whereas

in Eq. 4 we also need to take the maximum over impossi-

ble sets of outputs: let q1, . . . , qki
be an output sequence

such that the iterative mechanism consisting of a se-

quence of randomized response mechanisms terminates

in iteration ki. Then it is impossible for the mechanism

to output a sequence of length > ki with the prefix

q1, . . . , qki
.

This can lead to larger values for δ in Eq. 4. For

example, assume that δk > 0 for all k = 1, . . . , kn.

We then have Pr(M̃(εk,δk)(0) = 0) = δk > 0 and

Pr(M̃(εk,δk)(1) = 0) = 0 for all k = 1, . . . , kn. Thus,

each Qki
of the maximizer in Eq. 4 contains an output

vector consisting of ki δ’s, whereas for the sets Qki
of

the maximizer in Eq. 3 it must hold that at most one

of them contains an output vector that only consists of

δ’s, leading to a strictly smaller maximum.

We leave a quantification of the size of the gap be-

tween Lemma 11 and Thm. 15 for future work, since

this requires an efficient approximation algorithm for

the maximization problem in Thm. 15.

5.3 Comparison with privacy filters

What we propose — stopping iterative mechanisms if

they do not need more iterations, and thereby saving

privacy budget that can be used on other queries —

can also be done with the privacy filters introduced by

Rogers et al. [32]. In fact, a similar method for saving pri-

vacy budget when stopping early has recently been pro-

posed in this context, though in combination with the

related privacy odometers, which track privacy spend-

ing [26]. The disadvantage of privacy filters is that they

cannot simply use any existing DP composition result,

but require their own composition theorems. It has been

shown that Rényi DP (RDP) composition can be used

for privacy filters [23, 26], which is the currently best

composition result for privacy filters. While RDP com-

position is a powerful tool, it does not always yield the

best composition bounds [9]. With ODP, on the other

hand, one can make use of any DP composition result

via Lemma 11, though at an additional cost in δ that

depends on the number n of potential stopping points

and their positions.

6 Recovering already spent

privacy budget

Assume that a data analyst invokes a DP mechanism M

on a database x, which produces an output A ∼ M(x).

For some reason the data analyst is not satisfied with the

output. E.g., A could be a neural network that does not

perform much better than random guessing, it could be

a logistic regression model whose coefficients are not sta-

tistically significant, it could be some statistic with too

large a confidence interval, etc. In all of these cases, A

would be essentially useless and the data analyst would

not publish it. Thus, it would be desirable if the ana-

lyst could get back the privacy budget that they spent

on computing A. For this, we could define a new mecha-

nism M̃ that first computes A ∼ M(x) and then invokes

a test Mtest on A that checks whether A should be re-

leased or not. If A should be released, M̃ returns A,

otherwise M̃ returns the symbol ⊥. In the first case, the

data analyst would have to pay for the privacy cost of

A and (potentially) the privacy cost of the test Mtest, in

the second case only for the privacy cost of Mtest. Mtest

should thus be designed such that it uses up much less

privacy budget than M .

Formally, we want M̃ to be ({Range(M), {⊥}}, E , δ)-

ODP with E({⊥}) < E(Range(M)). The test Mtest is a

function of the differentially private output A of M , and

in some cases also of a private database on which to eval-

uate this output. This second input is not necessary if

the test can be performed on A directly. In the ML set-

ting, there might be a private database x that is split up

into a training set xtrain that is used to train a differen-

tially private model, and a test set xtest on which Mtest
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Algorithm 4 ERMOutputPert(xtrain, ε, l, N, Λ)

1: Sample random vector q with element-wise density

proportional to exp
(

− ntrainΛε
2 ‖q‖2

)

2: Compute pmin = pmin(xtrain) according to Eq. 5

3: return p̃min = pmin + q

Algorithm 5 LogRegWithTest(xtrain, xtest, ε1, ε2, Λ, t)

1: p̃min = ERMOutputPert(xtrain, ε1, lLogReg, NL2
, Λ)

2: a = max
(

2
ntest , 2

(

exp
(

2
ntrainΛ

)

− 1
))

3: Sample r ∼ Lap(a/ε2)

4: if s(p̃min, xtest) + r ≤ t then

5: return p̃min

6: return ⊥

evaluates the model. In the case of a non-⊥-output, we

only have to account for the privacy of Mtest w.r.t. its

database input xtest but not w.r.t. xtrain, since its first

input, which is based on xtrain, is the already differen-

tially private output of M . Since xtrain and xtest are dis-

joint, we can compose the guarantees of M (w.r.t. xtrain)

and of Mtest (w.r.t. xtest) via parallel composition. For

the case of a ⊥-output, however, we want to exploit the

fact that the output of M does not get revealed to obtain

a better privacy guarantee. We thus need to compute a

privacy guarantee of Mtest(M(xtrain), xtest) w.r.t. both

xtrain and xtest.

6.1 Example: ERM

As an example we consider the output perturbation

mechanism by Chaudhuri et al. [11] for releasing linear

ML models with differential privacy. The class of models

that their mechanism applies to includes, among others,

logistic regression and (an approximation to) support

vector machines (SVMs). Chaudhuri et al. assume co-

variates x ∈ R
d, ‖x‖2 ≤ 1, and labels y ∈ [−1, 1]. For

a set xtrain of ntrain training records they consider the

empirical risk minimization problem

pmin(xtrain) = arg min
p

1

ntrain

∑

(x,y)∈x
train

l(ypTx)+ΛN(p),

(5)

where the minimization is over all parameter vectors p;

l is a loss function; and N a regularizer with regulariza-

tion strength Λ.

Chaudhuri et al. design Alg. 4 for privately releas-

ing the optimal parameter vector p and show that the

algorithm fulfills DP:

Theorem 16. If N is differentiable and 1-strongly con-

vex, and l is convex and differentiable with |l′(z)| ≤ 1 for

all z, then the L2-sensitivity of pmin is at most 2
ntrainΛ ,

and Alg. 4 is ε-DP.

We extend Alg. 4 with a differentially private test that

checks whether the differentially private model returned

by Alg. 4 performs well enough for the respective appli-

cation; only in that case will we release the model. For

this we examplarily look at the case of logistic regres-

sion. The loss function of logistic regression is defined

as

lLogReg(z) = ln(1 + e−z),

often regularized with L2-regularization NL2
(p) =

1
2 ‖p‖2

2. A logistic regression model hp with parameter

vector p predicts the probability that the label of a

record x is 1 as

h′
p(x) =

1

1 + exp(−pTx)
,

and the probability that the label is −1 as 1 − h′
p(x). To

map this output to the interval [−1, 1] we define

hp(x) = 2h′
p(x) − 1.

The prediction for the label of a record x is then typ-

ically sign(hp(x)). Based on these label predictions it

would be natural to use the accuracy of the model, i.e.,

the fraction of correct predictions, as the measure of

model performance. However, if hp(x) is close to 0 on

all test records, then a small change in p might flip all

label predictions, which implies that the sensitivity of

the accuracy function is large. Since we want to perform

a differentially private test on the model performance,

we need a measure with smaller sensitivity. The error

function s as defined below has this property.

Let xtest be a private test set of size ntest that is

disjoint from the training set. For our test we use the

error function

s(p, x
test) =

1

ntest

∑

(x,y)∈x
test

|hp(x) − y|

— i.e., the mean absolute error made by the logistic re-

gression model —, which can take values in [0, 2]. With

this error function we define Alg. 5, which computes a

differentially private logistic regression parameter vec-

tor, but only releases this vector if the model error on

the test set is not larger than a threshold t. In Ap-

pendix D we prove the following theorem about the pri-

vacy of Alg. 5:
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A Towards advanced composition

Simple versus advanced composition. The current

ODP framework is suited for improving composition

when a small to medium number of mechanisms is com-

posed. When the number of mechanisms is large, though,

it is more beneficial to use one of the advanced com-

position theorems (see Sec. 2). Advanced composition

decreases the ε in the DP guarantee when compared

to simple composition, at the cost of increasing the δ-

term. This increase in δ is unacceptably high for short

to medium-length compositions, but asymptotically ad-

vanced composition is superior to simple composition.

To provide sufficient privacy, a common recommenda-

tion is to choose δ ≪ 1/n, where n is the size of the

database.

We consider the setting where the privacy guaran-

tees — and thereby the utilities — of the mechanisms

that are composed are fixed and the data curator has a

requirement on how large the value of δ of their composi-

tion may at most be. In this setting the goal is to choose

the composition theorem that yields the smallest ε while

respecting the requirement on δ. For advanced composi-

tion theorems such as the optimal advanced composition

theorem for the setting of composing arbitrary mecha-

nisms with the same DP guarantees [25] by Kairouz et

al., δ cannot be made arbitrarily small if a non-zero im-

provement in ε over simple composition is required (i

in their Thm. 3.3 needs to be at least 1 in that case).

The shorter the length of the composition, the larger

the minimal δ. Thus, the requirement on δ can only be

fulfilled if the composition is long enough; otherwise this

composition theorem cannot be used.

Table 1 shows the minimal length of the composi-

tion that is required to achieve a δ not greater than a

given value and an improvement in ε over simple compo-

sition when composing 0.1-DP mechanisms via the opti-

mal advanced composition theorem by Kairouz et al. If

we require fewer compositions, then advanced composi-

tion does not at the same time yield an improvement in

ε over simple composition — or our composition proto-

col, which is based on simple composition— and fulfill

the requirement on δ. Since ODP composition improves

upon simple composition, it is the best choice in terms

of ε in this range of composition lengths whenever at

least one of the composed mechanisms has a non-triv-

ial ODP guarantee. When the number of compositions

is larger, then it depends on the concrete mechanisms

whether ODP composition or advanced composition is

better. Fixing the mechanisms and letting the number
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of compositions go to infinity, advanced composition is

superior.

Advanced composition for ODP. While in sim-

ple composition, on which our composition theorem is

based, privacy in terms of ε degrades at a rate of O(εk),

where k is the number of invoked mechanisms and ε

the ε-part of the DP guarantees of the composed mech-

anisms — which we, for simplicity, assume is the same

for all mechanisms —, advanced composition theorems

have a more gentle degradation rate of O(ε2k + ε
√

k)

(but only yield better results for large enough k). Thus,

it would be desirable to derive an advanced composition

theorem in the framework of ODP. Privacy accounting

in Alg. 1 is done by subtracting after each mechanism

invocation the amount of privacy budget that this mech-

anism has used up with its output. However, when we

want privacy to degrade at a rate of O(ε
√

k) and want

to keep the freedom for the adversary to freely choose

mechanisms in each iteration whose privacy guarantees

are not fixed beforehand, the amount of privacy degra-

dation that was due to one particular mechanism is not

known before Alg. 1 has terminated.

For this reason, it makes sense to reformulate Alg. 1

using a privacy filter, as introduced by Rogers et al.

[32], which newly evaluates the entire sequence of mech-

anisms once a new mechanism gets invoked. In Alg. 1

the adversary is only allowed to invoke mechanisms that

fit within the remaining privacy budget. If the budget

is used up, they may only invoke (0, 0)-DP mechanisms.

When using a privacy filter, we do not constrain the ad-

versary in their choice of mechanisms, but instead stop

the composition if invoking the mechanism chosen by

the adversary would exceed the privacy budget. We de-

fine the new composition experiment in Alg. 6, and the

privacy filter for ODP Fεt,δt
, which we term ODP filter,

as follows:

Definition 19 (ODP Filter). Fix εt, δt ≥ 0. A function

Fεt,δt
: R2I

≥0 → {HALT, CONT} is a valid ODP filter if,

for all adversaries A and for all sets of views V of A
returned by Alg. 6, we have that

Pr(V 0 ∈ V) ≤ eεt Pr(V 1 ∈ V) + δt.

Alg. 1 is equivalent to a Alg. 6 with the ODP filter that

receives as input a sequence (ε1, δ1, . . . , εI , δI), and re-

turns HALT if
∑I

i=1 εi > εt or
∑I

i=1 δi > δt, and CONT

otherwise. Due to Thm. 7, this is a valid ODP filter. In

future work, it would be interesting to explore whether

there exist valid ODP filters that have an asymptot-

ically better than linear privacy degradation, as it is

the case for privacy filters in the non-ODP setting. As

an argument for why this might be the case, consider

the mechanism Mtoy from the introduction. Recall that

Mtoy flips a coin, and based on the result either invokes

the Laplace mechanism on a function of the database,

or returns the symbol ⊥, i.e., does not reveal any infor-

mation about the database. If Mtoy is invoked k times,

and in k′ of the cases the output is ⊥, then intuitively

not more information about the database should have

been revealed than when invoking the Laplace mecha-

nism k − k′ times without returning ⊥ between some of

the invocations. An ODP filter that applies an advanced

composition theorem to the composition of the k − k′

Laplace mechanisms and only returns HALT if the re-

sulting composition bound exceeds (εt, δt) should thus

be valid.

Algorithm 6 ODPFilterComposition(A, Fεt,δt
, b)

1: Select coin tosses Rb
A for A uniformly at random.

2: for i = 1, . . . , I do

3: A = A(Rb
A, {Ab

j}i
j=1) chooses

• neighboring databases xi,0, xi,1,

• a triple (Pi = {Pi,k}k∈Ki
, Ei, δi), and

• a mechanism Mi that is (Pi, Ei, δi)-ODP

4: if Fεt,δt
(ε1, δ1, . . . , εi−1, δi−1, supP ∈Pi

Ei(P ), δi,

0, 0, . . . , 0, 0) = HALT then

5: Ab
i , . . . , Ab

I = ⊥
6: BREAK

7: Sample Ab
i = Mi(x

i,b)

8: Let k such that Ab
i ∈ Pi,k

9: Let εi = Ei(Pi,k)

10: A receives Ab
i

11: return view V b = (Rb
A, Ab

1, . . . , Ab
I)

B Proof of Thm. 7

Lemma 20. Let x0 and x1 be neighboring databases.

Let εt ≥ 0 and δt ≥ 0. Let M1 be a ({Pk}k∈K, E , δ)-

output differentially private mechanism with output set

O1 such that E(Pk) ≤ εt for all k and δ ≤ δt. For each

v ∈ O1, let M0
2 (v) and M1

2 (v) be random variables with

values in a set O2 such that for all subsets V ⊆ O2 and

for v ∈ Pk,

Pr(M0
2 (v) ∈ V) ≤ eεt−E(Pk) Pr(M1

2 (v) ∈ V) + δt − δ.
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δ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

I 17 20 24 27 31 35 38 42

Table 1. The minimum number I of 0.1-DP mechanisms that need to be composed so that a δ-value of at most δ and a smaller ε-

value than with simple composition is achieved when using the optimal composition theorem for homogeneous composition [25]. Below

that number of composed mechanisms, advanced composition does not offer an advantage in terms of ε over simple composition,

while ODP composition can offer an advantage over simple composition. A common recommendation is to choose δ ≪ 1/n, where n

is the size of the database, or even cryptographically small (corresponding to roughly 10−12).

Then, for all V ⊆ O1 × O2, we have

Pr((M1(x0), M0
2 (M1(x0))) ∈ V)

≤ eεt Pr((M1(x1), M1
2 (M1(x1))) ∈ V) + δt.

Note that the two occurrences of M1(x0) in the equation

refer to the same random variable, and likewise for the

two occurrences of M1(x1).

Proof. Let V ⊆ O1 × O2. We partition V into slices

Vk = V∩(Pk×O2) for k ∈ K. In the following, we roughly

follow a proof of the simple composition theorem for

(ε, δ)-mechanisms by Dwork and Lei [17, Lemma 28].

We define the signed measure

µ(S) = Pr(M1(x0) ∈ S)−
∑

k∈K

eE(Pk) Pr(M1(x1) ∈ S∩Pk).

We denote the positive measure resulting from its Hahn

decomposition by µ+. This implies that for all S ⊆ O1,

Pr(M1(x0) ∈ S)

≤
∑

k∈K

eE(Pk) Pr(M1(x1) ∈ S ∩ Pk) + µ+(S).

For k ∈ K and S ⊆ Pk, it follows that

Pr(M1(x0) ∈ S) ≤ eE(Pk) Pr(M1(x1) ∈ S)+µ+(S). (6)

By our assumption on M0
2 and M1

2 , for every v ∈ Pk

and every S ⊆ O1 × O2,

Pr((v, M0
2 (v)) ∈ S) = Pr((v, M0

2 (v)) ∈ S) ∧ 1

≤ [eεt−E(Pk) Pr((v, M1
2 (v)) ∈ S) + δt − δ] ∧ 1

≤ [eεt−E(Pk) Pr((v, M1
2 (v)) ∈ S)] ∧ 1 + δt − δ, (7)

where ∧ denotes the minimum operator.

First, we consider a single partition Pk

and its corresponding slice Vk. We write

V 0 for (M1(x0), M0
2 (M1(x0))) and V 1 for

(M1(x1), M1
2 (M1(x1))). We have

Pr(V 0 ∈ Vk)

= Pr((M1(x0), M0
2 (M1(x0))) ∈ Vk)

=

∫

Pk

Pr((v, M0
2 (v)) ∈ Vk) Pr(M1(x0) ∈ dv)

(7)

≤
∫

Pk

([eεt−E(Pk) Pr((v, M1
2 (v)) ∈ Vk)] ∧ 1 + δt − δ)

× Pr(M1(x0) ∈ dv)

=

∫

Pk

([eεt−E(Pk) Pr((v, M1
2 (v)) ∈ Vk)] ∧ 1)

× Pr(M1(x0) ∈ dv) + (δt − δ) Pr(M1(x0) ∈ Pk)

(6)

≤
∫

Pk

([eεt−E(Pk) Pr((v, M1
2 (v)) ∈ Vk)] ∧ 1)

× (eE(Pk) Pr(M1(x1) ∈ dv) + µ+(dv))

+ (δt − δ) Pr(M1(x0) ∈ Pk)

≤ eεt

∫

Pk

Pr((v, M1
2 (v)) ∈ Vk) Pr(M1(x1) ∈ dv)

+ µ+(Pk) + (δt − δ) Pr(M1(x0) ∈ Pk)

≤ eεt Pr((M1(x1), M1
2 (M1(x1)) ∈ Vk)

+ µ+(Pk) + (δt − δ) Pr(M1(x0) ∈ Pk)

= eεt Pr(V 1 ∈ Vk) + µ+(Pk)

+ (δt − δ) Pr(M1(x0) ∈ Pk). (8)

Next, we consider all partitions Pk and slices Vk

together. Since M1 is ({Pk}k∈K, E , δ)-ODP, for all S ⊆
O1, we have

Pr(M1(x0) ∈ S) ≤ δ +
∑

k∈K

eE(Pk) Pr(M1(x1) ∈ S ∩ Pk),

and thus µ(S) ≤ δ. It follows that for all S ⊆ O1,

µ+(S) ≤ δ. (9)

Thus,

Pr(V 0 ∈ V) = Pr(V 0 ∈
⋃

k

Vk) =
∑

k

Pr(V 0 ∈ Vk)

(8)

≤
∑

k

[eεt Pr(V 1 ∈ Vk) + µ+(Pk)

+ (δt − δ) Pr(M1(x0) ∈ Pk)]

= eεt

∑

k

Pr(V 1 ∈ Vk) +
∑

k

µ+(Pk)
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+
∑

k

(δt − δ) Pr(M1(x0) ∈ Pk)

= eεt Pr(V 1 ∈ V) + µ+(O1) + (δt − δ) Pr(M1(x0) ∈ O1)

(9)

≤ eεt Pr(V 1 ∈ V) + δ + (δt − δ) × 1

= eεt Pr(V 1 ∈ V) + δt.

Theorem 7. For every adversary A and for every set

of views V of A returned by Alg. 1 we have that

Pr(V 0 ∈ V) ≤ eεt Pr(V 1 ∈ V) + δt.

Proof. Since the adversary’s coins are tossed before any

computation on the data is done, we can fix the random-

ness Rb
A of the adversary and thus assume a determin-

istic adversary.

We proceed by induction on the number of itera-

tions I of Alg. 1. The theorem holds for I = 1 by

Lemma 4. By the induction hypothesis, we can assume

that the theorem holds for I iterations and we must

show that it holds for I + 1 iterations.

Since the adversary is deterministic, the databases

x1,0 and x1,1, the triple (P1 = {P1,k}k∈K1
, E1, δ1), and

the ODP mechanism M1 are fixed.

Let v be a possible output of M1. Let Ar(v) be

the adversary that behaves like adversary A after ad-

versary A has seen M1 produce output v. Let k ∈ K1

such that v ∈ P1,k. We invoke the induction hypothesis

using Ar(v) for A, εt − E1(P1,k) for εt, and δt − δ1 for δt

to obtain

Pr(V 0
r (v) ∈ Vr) ≤ eεt−E1(P1,k) Pr(V 1

r (v) ∈ Vr) + δt − δ1,

for every set of views Vr of Ar(v) returned by Alg. 1,

where V b
r (v) is the random variable describing the view

of Ar(v) returned by Alg. 1 for bit b with total budgets

εt − E1(P1,k) and δt − δ1.

We can thus apply Lemma 20 using M1 for M1 and

V b
r (v) for Mb

2(v), yielding

Pr((M1(x1,0), V 0
r (M1(x1,0))) ∈ V)

≤ eεt Pr((M1(x1,1), V 1
r (M1(x1,1))) ∈ V) + δt.

Since V b = (M1(x1,b), V b
r (M1(x1,b))), this completes the

induction step and the proof.

C Proofs from Sec. 5.2

We first prove Lemma 14, which we use in the proof of

Lemma 13.

Lemma 14. Let f = (f1, . . . , fkn
) be a ran-

domized function, where fk may depend on

the output of f1, . . . , fk−1, and let M =

Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki ◦ (f1, . . . , fki
)}n−1

i=1

]

be an

iterative mechanism that fulfills (PM = {P M
i }n

i=1, E , δ)-

ODP. Assume that the outputs of each mechanism Mk,

k = 2, . . . , kn, only depends on the database but not on

the outputs of M1, . . . , Mk−1. Then the iterative mech-

anism M ′ = Miter

[

{ki}n
i=1, {fk ◦ Mk}kn

k=1, {hki}n−1
i=1

]

fulfills (PM ′

= {P M ′

i }n
i=1, E ′, δ)-ODP, where, for

i = 1, . . . , n, E ′(P M ′

i ) = E(P M
i ).

Proof. First assume that f is deterministic. Let x, x′ be

neighboring databases and let S′ ⊆ Range(M ′). Let

S = {s ∈ Range(M) | (f1, . . . , fdim(s))(s) ∈ S′},

where dim(s) denotes the dimensionality of the vector s.

Then

Pr(M ′(x) ∈ S′) = Pr(M(x) ∈ S)

≤ δ +

n
∑

i=1

eE(P M
i ) Pr(M(x) ∈ S ∩ P M

i )

= δ +

n
∑

i=1

eE(P M
i ) Pr(M ′(x) ∈ S′ ∩ P M ′

i ).

This proves the statement for deterministic functions

f . Every randomized function f can be written as a

random convex combination of deterministic functions.

Since every convex combination of (P, E , δ)-ODP mech-

anisms fulfills (P, E , δ)-ODP, the statement follows for

randomized functions f .

Lemma 13. For any {ki}n
i=1, {(εk, δk)}kn

k=1 and any E
we have that

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= sup
{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {hki}n−1
i=1 , E).

Proof of Lemma 13. Since, for k = 1, . . . , kn, M̃(εk,δk)

fulfills (εk, δk)-DP, we have that

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= sup
{Mk}kn

k=1

{hki }n−1

i=1

{OptDel({ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1 , E)

| Mk is (εk, δk)-DP, k = 1, . . . , kn}
≥ sup

{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {hki}n−1
i=1 , E).

For the converse, define an iterative algorithm M =

Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

, where, for k =
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1, . . . , kn, Mk fulfills (εk, δk)-DP. Since we allow adap-

tive composition, Mk may depend on the outputs of

M1, . . . , Mk−1, which we denote by s1, . . . , sk−1. We

write M
s1,...,sk−1

k when we want to make this depen-

dency explicit. Fix a pair of neighboring databases

x0, x1. Due to Lemma 12 there exists, for every k and for

every sequence of previous outputs s1, . . . , sk−1, a func-

tion T
s1,...,sk−1

k such that T
s1,...,sk−1

k (M̃(εk,δk)(b)) follows

the same distribution as M
s1,...,sk−1

k (xb) for b = 0, 1. In

following Murtagh and Vadhan, we define a function

T̂ (z1, . . . , zkn
), where z1, . . . , zkn

∈ {0, 1, 2, 3}, as follows:

T̂k(zk) = T
T1(z1),...,Tk−1(zk−1)
k (zk).

Then, for b = 0, 1,

M(xb) = Miter

[

{ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1

]

(xb)

follows the same distribution as

M ′(xb) := Miter

[

{ki}n
i=1, {T̂k ◦ M̃(εk,δk)}kn

k=1,

{hki}n−1
i=1

]

(xb).

Let

M ′′ = Miter

[

{ki}n
i=1, {M̃(εk,δk)}kn

k=1,

{hki ◦ (T̂1, . . . , T̂ki
)}n−1

i=1

]

.

From Lemma 13 it follows that any ODP guarantee that

holds for M ′′ also hold for M ′ and thus for M . Hence,

OptDel({ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1 , E)

≤ OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1,

{hki ◦ (T̂1, . . . , T̂ki
)}n−1

i=1 , E).

Taking the supremum over the mechanisms and the stop-

ping criteria on both sides yields

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= sup
{Mk}kn

k=1

{hki }n−1

i=1

{OptDel({ki}n
i=1, {Mk}kn

k=1, {hki}n−1
i=1 , E)

| Mk is (εk, δk)-DP, k = 1, . . . , kn}
≤ sup

T̂ ,{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1,

{hki ◦ (T̂1, . . . , T̂ki
)}n−1

i=1 , E)

= sup
{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {hki}n−1
i=1 , E).

Theorem 15. Let {ki}n
i=1 be numbers of iterations, let

{(εk, δk)}kn

k=1 be DP parameters and let E be a function

that assigns ε-values to outputs of different lengths. For

i = 1, . . . , n, define, for every Q ∈ {0, 1, 2, 3}ki and for

b = 0, 1,

ki

Pr
b

(Q) = Pr
(

(M̃(ε1,δ1)(b), . . . , M̃(εki
,δki

)(b)) ∈ Q
)

.

For sets Qki
∈ {0, 1, 2, 3}ki and Qkj

∈ {0, 1, 2, 3}kj with

i < j, write, with a slight abuse of notation, Qki
∩Qkj

=

∅ if q1,...,ki
6= q′

1,...,ki
for all q ∈ Qki

, q′ ∈ Qkj
. Then

OptDel({ki}n
i=1, {(εk, δk)}kn

k=1, E)

= max
Qki

∈{0,1,2,3}ki

i=1,...,n
Qkj

∩Qkl
=∅ for all j<l

n
∑

i=1

[
ki

Pr
0

(Qki
) − eE(Pi)

ki

Pr
1

(Qki
)
]

.

Proof. From Lemma 13 we know that we only have to

compute

sup
{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {hki}n−1
i=1 , E).

(10)

Fix a sequence of (potentially randomized) stopping cri-

teria {h̃ki}n−1
i=1 . For q ∈ {0, 1, 2, 3}ki , write Prki

b (q) =

Prki

b ({q}) and

R({h̃kj }i
j=1, q)

= Pr(h̃kj (q1,...,kj
) = 0 for all j < i, h̃ki(q) = 1).

Then OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {h̃ki}n−1
i=1 , E) is the

minimal value δ̃ such that, for all Qki
∈ {0, 1, 2, 3}ki ,

i = 1, . . . , n,

n
∑

i=1

∑

q∈Qki

R({h̃kj }i
j=1, q)

ki

Pr
0

(q)

≤ δ̃ +

n
∑

i=1

∑

q∈Qki

eE(Pi)R({h̃kj }i
j=1, q)

ki

Pr
1

(q),

i.e.,

n
∑

i=1

∑

q∈Qki

R({h̃kj }i
j=1, q)

(
ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)

≤ δ̃.

(11)

Let H be the set of all sequences {hki}n−1
i=1 of determin-

istic stopping criteria. Since the domain and the range

of all stopping criteria are finite sets, H is also a finite
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set. We can thus write

n
∑

i=1

∑

q∈Qki

R({h̃kj }i
j=1, q)

(
ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)

=
∑

{hki }n−1

i=1
∈H

n
∑

i=1

∑

q∈Qki

[

R({hkj }i
j=1, q)

Pr({h̃ki}n−1
i=1 = {hki}n−1

i=1 )
(

ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)]

≤
∑

{hki }n−1

i=1
∈H

n
∑

i=1

∑

q∈Qki

[

max
{h̄ki }n−1

i=1
∈H

R({h̄kj }i
j=1, q)

Pr({h̃ki}n−1
i=1 = {hki}n−1

i=1 )
(

ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)]

=

n
∑

i=1

∑

q∈Qki

[

max
{h̄ki }n−1

i=1
∈H

R({h̄kj }i
j=1, q)

(
ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)

∑

{hki }n−1

i=1
∈H

Pr({h̃ki}n−1
i=1 = {hki}n−1

i=1 )
]

=

n
∑

i=1

∑

q∈Qki

max
{h̄ki }n−1

i=1
∈H

R({h̄kj }i
j=1, q)

(
ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)

.

Thus, the worst-case in terms of δ is achieved for a

sequence of deterministic stopping criteria. In Eq. 10

we therefore only have to take the supremum over de-

terministic stopping criteria, and can replace it with a

maximum, since the set H of these criteria is finite. For

deterministic stopping criteria {hki}n−1
i=1 , the values

R({hkj }i
j=1, q)

= Pr(hkj (q1,...,kj
) = 0 for all j < i, hki(q) = 1)

are each either 0 or 1. We have, using 1 as the indicator

function:

max
{hki }n−1

i=1

OptDel({ki}n
i=1, {M̃(εk,δk)}kn

k=1, {hki}n−1
i=1 , E)

= max
{hki }n−1

i=1
∈H

max
Qki

∈{0,1,2,3}ki

i=1,...,n

n
∑

i=1

∑

q∈Qki

[

1(hkj (q1,...,kj
) = 0

for all j < i, hki(q) = 1) (12)

(
ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
)]

= max
Qki

∈{0,1,2,3}ki

i=1,...,n
Qkj

∩Qkl
=∅ for all j<l

n
∑

i=1

∑

q∈Qki

[
ki

Pr
0

(q) − eE(Pi)
ki

Pr
1

(q)
]

(13)

= max
Qki

∈{0,1,2,3}ki

i=1,...,n
Qkj

∩Qkl
=∅ for all j<l

n
∑

i=1

[
ki

Pr
0

(Qki
) − eE(Pi)

ki

Pr
1

(Qki
)
]

.

The equality between Eq. 12 and Eq. 13 holds because

of the following:

(12) ≤ (13) since for every sequence of tests

{hki}n−1
i=1 and for every sequence of sets {Qki

}n
i=1 we

get the same quantity in Eq. 13 as in Eq. 12 by choos-

ing that sequence of subsets of the sets {Qki
}n

i=1 that

excludes those elements q for which

1(hkj (q1,...,kj
) = 0 for all j < i, hki(q) = 1) = 0.

This sequence of subsets fulfills Qkj
∩Qkl

= ∅ for all j <

l because of the following observation: let q ∈
{0, 1, 2, 3}ki for some i > 1. If hkl(q1,...,kl

) = 1 for some

l < i, then

1(hkj (q1,...,kj
) = 0 for all j < i, hki(q) = 1) = 0.

Hence, the union of the sequence of subsets will not

include elements q1,...,kl
and q1,...,ki

, i.e., elements where

one is the prefix of the other, at the same time.

(13) ≤ (12) since for every sequence of sets {Qki
}n

i=1

that fulfills Qkj
∩Qkl

= ∅ for all j < l, we can define a se-

quence of tests {hki}n−1
i=1 such that, for every i = 1, . . . , n

and every q ∈ Qki
, we have hkj (q1,...,kj

) = 0 for all j < i

and hki(q) = 1.

D Proof of Thm. 17

Theorem 17. Let ε1, ε2 > 0 and let

a = max

(

2

ntest
, 2

(

exp

(

2

ntrainΛ

)

− 1

))

.

Then Alg. 5 is ({Rd, {⊥}}, E , 0)-ODP with

E(Rd) = max

(

ε1,
2/ntest

a
ε2

)

and

E({⊥}) = min(E(Rd), ε2)

w.r.t. a change in either xtrain or xtest.

The main ingredient for the proof of Thm. 17 is the

following lemma about the error function s:



Privacy accounting εconomics 245

Lemma 21. Let ε1, ε2 > 0. Let Q be a random vector

with element-wise density proportional to

exp

(

−ntrainΛε1

2
‖q‖2

)

.

Let further

a = max

(

2

ntest
, 2

(

exp

(

2

ntrainΛ

)

− 1

))

,

and let R be distributed according to Lap(a/ε2). Then:

1. Let xtest be a fixed database. The function

g1(xtrain) = s(pmin(xtrain) + Q, x
test) + R

fulfills ε2-DP.

2. Let p be a fixed vector. The function

g2(xtest) = s(p, x
test) + R

fulfills
(

2/ntest

a ε2

)

-DP.

Proof of Thm. 17. In the case where the noisy value of

the error function is not larger than the threshold in

Alg. 5, the adversary learns the noisy model parameters

and thereby implicitly the result of the threshold com-

parison in line 4. If the noisy error exceeds the thresh-

old, the adversary only learns the result of the threshold

comparison, i.e., a subset of the information of the first

case. Thus, a DP guarantee for Alg. 5 can be given by

composing the guarantee of Alg. 4 with a guarantee for

the comparison. Since the comparison is a post-process-

ing of the noisy error, and the vector input to the error

function is already differentially private, we can instead

use the guarantee for g1. Alg. 4 only accesses xtrain and

g1 only accesses xtest, and thus we can use parallel com-

position. This yields a DP-guarantee of

max

(

ε1,
2/ntest

a
ε2

)

,

and the same subset DP-guarantees for the sets R
d and

{⊥} according to Lemma 3.

To get a refined privacy guarantee for the case of

a ⊥-output, we use the fact that in this case the ad-

versary does not learn the noisy parameter vector but

only the result of the comparison. As above, we can in-

stead assume that the adversary receives the noisy error

directly. We hence compute a DP guarantee for the com-

putation of the error function s in line 4 w.r.t. a change

of one record in either xtrain or xtest. This is given as

the maximum of the DP guarantees of g1 and g2, which

is

max

(

ε2,
2/ntest

a
ε2

)

= ε2.

Thus, Alg. 5 is ({⊥}, ε̃, 0)-subset DP for

ε̃ = min

(

max

(

ε1,
2/ntest

a
ε2

)

, ε2

)

.

Proof of Lemma 21.

Privacy w.r.t. xtrain. We first analyze the sensitiv-

ity of the (non-noisy) error function s w.r.t. xtrain

when adding a fixed vector q to the parameter vec-

tor. For neighboring databases xtrain
0 , xtrain

1 , and p =

pmin(xtrain
0 ), p′ = pmin(xtrain

1 ) we have

|s(p + q, x
test) − s(p′ + q, x

test)|

=
1

ntest

∑

(x,y)∈x
test

||hp+q(x) − y| − |hp′+q(x) − y||.

For any real numbers u, u′, v it holds that

||u − v| − |u′ − v|| ≤ |u − u′|, (14)

which can easily be shown by a case-by-case analysis.

Further, we know from Thm. 16 that ‖p−p′‖2 ≤ 2
ntrainΛ

and hence, by the Cauchy-Schwarz inequality,

|pTx − p′Tx| = |(p − p′)Tx|
≤ ‖p − p′‖2‖x‖2

≤ 2

ntrainΛ
× 1. (15)

Let w1 = (p + q)Tx and w2 = 2
ntrainΛ . Then

||hp+q(x) − y| − |hp′+q(x) − y||
(14)

≤ |hp+q(x) − hp′+q(x)|

= 2

∣

∣

∣

∣

1

1 + exp(−(p + q)Tx)
− 1

1 + exp(−(p′ + q)Tx)

∣

∣

∣

∣

(15)

≤ 2

∣

∣

∣

∣

1

1 + exp(−(p + q)Tx)

− 1

1 + exp
(

−(p + q)Tx + 2
ntrainΛ

)

∣

∣

∣

∣

∣

= 2

(

1

1 + e−w1

− 1

1 + e−w1+w2

)

= 2

(

ew1

ew1 + 1
− ew1

ew1 + ew2

)

= 2
ew1(ew2 − 1)

(ew1 + 1)(ew1 + ew2)

≤ 2
ew1(ew2 − 1)

(ew1 + 1)ew1

= 2
ew2 − 1

ew1 + 1

≤ 2(ew2 − 1)



Privacy accounting εconomics 246

= 2

(

exp

(

2

ntrainΛ

)

− 1

)

.

Hence,

|s(p + q, x
test) − s(p′ + q, x

test)|

≤ 2

(

exp

(

2

ntrainΛ

)

− 1

)

.

Let C be a set of real numbers and denote by fR the

density of R. According to the Laplace mechanism, we

have
∫

c∈C

fR(c − s(p + q, x
test))dc

≤ exp

(

ε2

2
(

exp
(

2
ntrainΛ

)

− 1
)

a

)

∫

c∈C

fR(c − s(p′ + q, x
test))dc

≤ eε2fR(c − s(p′ + q, x
test))dc.

Therefore, writing fQ for the density of Q:

Pr(s(p + Q, x
test) + R ∈ C)

=

∞
∫

−∞

fQ(q)

∫

c∈C

fR(c − s(p + q, x
test))dcdq

≤
∞
∫

−∞

fQ(q)

∫

c∈C

eε2fR(c − s(p′ + q, x
test))dcdq

= eε2 Pr(s(p′ + Q, x
test) + R ∈ C).

Privacy w.r.t. xtest. Since y ∈ [−1, 1] and hp(x) ∈
[−1, 1], the sensitivity of s(p, xtest) (with fixed vec-

tor p) w.r.t. xtest is 2
ntest . Thus, adding noise from

Lap
(

2
ntest /ε2

)

would make the output of the error func-

tion ε2-DP. Since we add noise from Lap(a/ε2) instead,

the output is
(

2/ntest

a ε2

)

-DP.


