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Achieving Transparency Report Privacy in Linear Time
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An accountable algorithmic transparency report (ATR) should ideally investigate (a) transparency of the
underlying algorithm, and (b) fairness of the algorithmic decisions, and at the same time preserve data sub-
jects’ privacy. However, a provably formal study of the impact to data subjects’ privacy caused by the utility
of releasing an ATR (that investigates transparency and fairness), has yet to be addressed in the literature.
The far-fetched benefit of such a study lies in the methodical characterization of privacy-utility trade-offs for
release of ATRs in public, and their consequential application-specific impact on the dimensions of society,
politics, and economics. In this paper, we first investigate and demonstrate potential privacy hazards brought
on by the deployment of transparency and fairness measures in released ATRs. To preserve data subjects’

privacy, we then propose a linear-time optimal-privacy scheme, built upon standard linear fractional pro-

gramming (LFP) theory, for announcing ATRs, subject to constraints controlling the tolerance of privacy
perturbation on the utility of transparency schemes. Subsequently, we quantify the privacy-utility trade-offs
induced by our scheme, and analyze the impact of privacy perturbation on fairness measures in ATRs. To the
best of our knowledge, this is the first analytical work that simultaneously addresses trade-offs between the
triad of privacy, utility, and fairness, applicable to algorithmic transparency reports.
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1 INTRODUCTION

In the era of big data and machine learning (ML), automated data processing algorithms are
widely adopted in many fields for classification, prediction, or decision-making tasks due to huge
volumes of input data and successful performance of ML approaches. Ongoing concerns and social
uproar about the transparency and fairness of such decision-making have been raised by themedia,
government agencies, foundations, and academics over the past decade [14, 68]. On a technical
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note, it has been shown in example studies that ML algorithms can be biased when (i) a dataset
used to train ML models reflects society’s historical biases [86], e.g., only a few female presidential
nominees in the U.S. history, or (ii) because ML algorithms have much better understanding of
the majority groups and poor understanding of the minority groups [12]. Thus, as we rapidly
move forward to a data-driven age where a significant amount of day-day decision making in
personal and professional spheres might be automation-driven, it would make great sense to often
know the reasons behind certain decisions in order to understand if they are being treated fairly.
Unfortunately, most decision processes today are often opaque, making it difficult to rationalize
why certain decisions are made and whether they favor or disfavor certain individuals or groups.

Providing an algorithmic transparency report (ATR) by data controllers and third party reg-
ulatory agencies to decision-facing individuals is one way to investigate whether decisions made
in a blackbox are fair and transparent [26, 36, 71] - an immediate application area of considerable
social impact being explainable AI for medical diagnoses [50, 77] to enable medical personnel to
better understand and interpret diagnostic reports, and to justify vulnerabilities of deployed AI
models through domain expertise. This is a popular topic in research and there have been works
in the last decade that have developed methodologies to reduce opaqueness in decision making
[28, 46] and improve on its fairness relative to certain protected attributes1 [63]. The notion of
transparency has also made its way into recently implemented policies for data protection such as
the EU General Data Protection Regulation (GDPR), and the California Consumer Privacy

Act of 2018 (CCPA or AB-375) - both of which regulate the processing of collected personal or
non-personal data of any data subject (the natural person to whom the data and the decision pro-
cess relate) [44]. More specifically, any data controller shall inform data subjects before collecting
their data, and is required to clearly explain the purpose of collecting data and how data will be
processed, upon data subjects’ requests (“right to explanation” and “right to non-discrimination”)
[44]. However, a major side effect of providing transparency and fairness guarantees to the decision-
facing clients is an unwanted risk to the privacy of other clients in a database. To this end, there
exists substantial literature pointing out potential privacy threats in ML [69], including member-
ship attacks [80], training data extraction (model inversion attack) [39, 40], model extraction [87],
and so on. However, for ATRs, although it has been pointed out that transparency, proposed by
legislature to protect people’s rights, may hurt privacy [8, 23], it is yet to be made methodically
clear how transparency can hurt privacy.
Goal - An accountable ATR, especially for automated ML decision processes, should ideally

include transparency of the underlying algorithm, ability to inspect fairness of the algorithmic de-
cisions, and most importantly, preserve data subjects’ privacy (“right to privacy” [20]), as depicted
in Figure 1. Our goal in this paper is to work towards this goal and study the corresponding trade-offs
between the triad elements.
In this paper, we investigate this problem and explicitly show that data subjects’ private informa-

tion can be inferred via various transparency schemes and fairness measures in announced ATRs.
Research Contributions - We make the following contributions in this research paper:

• We explicitly demonstrate inference attacks on data subjects’ private information using a
synthetic and a real dataset and show that such attacks can be performed on various trans-
parency schemes without strong assumptions of adversaries’ knowledge. These instances
expose the possible aspects of algorithmic transparency that could hurt data subjects’ privacy
and subsequently have negative socio-political implications (See Section 3 and Appendix B).

1Protected attributes form a subset of attributes, to which any decision process should not show preference, in any instance.
It may contain public attributes (gender, race, etc.) and/or private/sensitive attributes (health conditions, gene, etc.).
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Fig. 1. A depiction of the realm of accountable ATRs.

• To protect data subjects’ privacy in an ATR, we propose a privacy-aware mechanism per-
turbing the unveiled rationale of opaque decision-making algorithms to control the amount
of disclosed information in ATRs, at the same time providing sufficient utility. Specifically,
given a released privacy-preserving ATR, for honest-but-curious adversaries which may
know (i) the target individuals’ public information used as inputs to the decision model,
(ii) the target individuals’ received decisions (model outputs), and (iii) side-information
from auxiliary sources, the maximum confidence of inferring any sensitive information
about any data subject is guaranteed not exceeding a predetermined privacy threshold (See
Section 4 and 5).
• We study the trade-off between privacy and utility of ATRs. Specifically, we aim to
understand the minimum required perturbation/distortion in order to provide a certain
privacy guarantee, or the maximum privacy that can be provided/guaranteed subject to
utility constraints, which can be formulated as an optimization problem for privacy-utility
trade-off in ATRs. In addition, we analyze the impact of privacy perturbations on fairness
measures. In this regard, our work provides useful quantitative trade-offs and influences
between privacy, transparency, and fairness measures in ATRs (See Sections 5 and 6).
• Wededuce that our privacy-utility optimization problem is equivalent to a generalized linear
fractional programming problem (LFP) [16, 94]. Such a problem can in general be solved as
a sequence of linear programming feasibility problems, each with pseudo-polynomial time
complexity with respect to the number of problem variables (the number of different decision
regions2 in our problem), which, however, in the worst case, grows exponentially with the
number of input attributes - hence lending the said optimization problem intractable for large
record sizes. However, on a closer investigation, we figure out that the region of interest in
the solution space can be decomposed into disjoint “subspaces” leading to multiple indepen-
dent sub-problems - each bearing important properties and amenable to propose closed-form
solutions. Subject to utility constraints, the optimal-privacy protection scheme can thus be
solved from the optimization problem efficiently in linear time (See Sections 7 and 8).

2 APPLICABILITY AND ETHICALITY OF THE PROPOSED PRIVACY SCHEME

In this section, we first describe a range of possible application domains for the proposed ATRs
privacy protection scheme. We then discuss potential ethical concerns related to announcing a
perturbed “transparency” report, specifically, the conflict between principles of transparency and
perturbation for preserving data subjects’ privacy.

2The regions of input attributes partitioned by decision rules; see Section 3 for examples.
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2.1 Applicability

The proposed privacy protection scheme, based on perturbing of decision mappings (Definition 1),
can be applied to numerous applications with characteristics that the decision regions of the appli-
cation decision process are disjoint finite sets of the input attribute space, i.e., the application decision
process can be represented by a finite number of decision mappings.3 Although, to our knowledge,
to date there is no current instantiation of an algorithmic transparency report, we believe that
potential applicable domains for our scheme include the following (among others):

• University admissions and job recruitment: Fairness in university/college admissions has be-
come a significant public concern, attracting more and more attention from the public as
well as the media [37], even though the fact that the definition of “fairness” is still contro-
versial, e.g., whether race should be used in admissions decisions to reflect racial diversity
[65, 90]. To respond to the public’s concerns, some governments [2] and universities [1] ini-
tiated work on admissions transparency, providing statistical data from applications (inputs)
and admissions (outputs). Currently, we are not aware of instantiations disclosing the admis-
sion decision process; however, a negligent report could leak applications’ data or records,
e.g., (range of) SAT scores, competition records and ranks, extracurricular activities, or vol-
unteer work. Similar circumstances apply to applications and corresponding decisions in job
recruitment and other related domains.
• Credit scores and the associated domains: When it comes to evaluating and identifying every-
one’s financial creditworthiness based on credit scores, people have the following concerns:
are their credit scores computed/treated fairly [49] and whether they have the ability to iden-
tify and contest any (potentially) unfair credit decisions [52]. Similar circumstances apply
to credit card applications [27] and a variety of loans, i.e., domains where credit scores may
be taken into account. In this paper, we demonstrate potential privacy hazards that could
be brought on by a bluntly disclosed ATR in credit card applications via various types of
transparency schemes and fairness measures using a synthetic (Section 3) and a real dataset
(Appendix B).
• Medical or pharmocogenetic models: As noted in [53], a pharmocogenetic model has been
built to predict proper dosages for patients based on their clinical histories, demographics,
and genotypes. However, it has been shown in [40] that once accurate information about the
model is leaked (or obtained through hacking), it can be utilized by an attacker to identify
patients’ genotypes, which could be exploited to further infer other private information, e.g.,
risk of getting a particular disease or someone’s family ancestry. In the ATR setting, we focus
on a related scenario where an adversary has no ability to access the pharmocogenetic model
internals but can merely gain model information from an announced ATR. In such a case,
our proposed privacy protection scheme can be applied to preserve patients’ privacy and
their genotype information.
• OpenGovernment: It has been reported in [36] that nowadays governments utilize algorithms
to detect or to determine a variety of issues, such as illegal insider trading, eligibility for pub-
lic health benefits, and tax evasion. In this regard, the Open Government organization [3]
aims to bring transparency to the data and the algorithms used by governments, aiming for
people and society to supervise governments’ actions and decisions. However, opening a
government blackbox can be very dangerous and can bring catastrophic results to society if

3Our scheme may not be a good fit for some application domains where it may not be possible to represent the decision
process using a finite number of decision mappings, e.g., applications of natural language processing, such as speech/music
recognition, speech/text understanding, and text/intent classification, or applications of image and video processing, such
as text recognition, item detection and alert, and image classification.
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the released information is not carefully treated, and hence it is crucial to have a provable
privacy-preserving scheme for any planned-to-disclose information to protect people’s pri-
vacy and secret information (tax data, health/medical records, banking information, business
processes, and so on).
• Online advertising: ML algorithms can be biased [12, 86], and it has been shown that bias
also appears in online advertising, one of the ML applications that we probably experience
daily. In [78], authors indicate a bias and a privacy issue associated with online advertising
settings, particularly when users select the “Rather Not Say” category of gender. In addition,
[24] also found that setting the gender to female results in receiving fewer instances of
advertisements related to high paying jobs as compared to setting it to male. With concerns
about ML bias and the purpose of the collected data, GDPR and CCPA stipulate rights to
explanation and non-discrimination for data subjects; ad providers are required to respond
to data subjects’ requests regarding what data has been collected, how data is used, and if
the applied ML models treat them fairly. Thus, all the disclosed information in an ATR may
need to be further processed to protect data subjects’ privacy.

2.2 Ethicality

When our proposed privacy protection scheme is applied to an ATR, the announced information
regarding the opaque decision process may be more or less distorted, and the announcedmeasured
fairness/bias may also deviate from the true one. This may raise concerns about the ethicality
(manner of being ethical) of the process, i.e., whether the perturbed information could mislead the
public into trusting or believing that a biased decision process is fair, and vice versa.
Similarly to privacy preservation in data-mining (PPDM) and data-publishing (PPDP),

a common theme is to find an optimal trade-off between utility and privacy, subject to a certain
degree of privacy guarantee for data subjects. In the context of ATRs - although both transparency
and privacy are major principles in data ethics [60, 82] - we believe that data subjects’ privacy
should have higher priority [6]. Similarly to PPDM or PPDP, an auxiliary note could be appended
with the announced information indicating that some listed information might be anonymized or
perturbed for data subjects’ privacy, which could help the public understand how to interpret the
disclosed information appropriately. Moreover, in light of this, in this work, we propose a fidelity
measure (Section 5.2) for the announced decision mappings and characterize the influence of pri-
vacy perturbation on the measured fairness (Section 5.3). This information can also be disclosed
with the announced ATR in order to further assist the information recipients in understanding the
range of true measures.

3 DEMONSTRATING PRIVACY LEAKAGE VIA AN ATR

As a necessary and important step, we first motivate our research by comprehensively demonstrat-
ing via an example consumer database of how a data subject’s (i.e., consumer’s) private information
can be leaked via an announced algorithmic transparency report (ATR). In this work we only
focus on reports that provide a rationale on the use of ML models to process individual records. As sec-
tion structure, we start by briefly reviewing transparency approaches on which privacy leakages
can be induced, and follow it up with a specific example of privacy leakage on each transparency
approach.

3.1 Algorithmic Transparency Report (ATR) in a Nutshell

ML models used to make decisions on consumer individuals are often opaque to the latter, and act
as blackboxes. A survey of popularity-gaining transparency schemes to explain ML blackboxes is
provided in [46]. A common representative (from the survey) transparency approach collects both
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input data and labeled outputs (decision outcomes) as a training dataset, to train an ML surrogate
model (e.g., linear model, logistic regression, decision tree, decision rules) to mimic the behav-
ior of the blackbox. Popular methods include Anchors [74] and PALM [57]. The output of such
learned behavior must be interpretable (understandable) by humans. Another common approach
(e.g., [18, 38]) extracts certain important “properties” from blackbox models, such as contributions
of input features, to model outputs. Specifically, these transparency schemes measure feature im-
portance (based on the underlying decision mapping, see Definition 1), using both amplitude and
sign to represent importance/influence of input features, where larger amplitude represents greater
influence, and the sign indicates positive or negative effect on the corresponding output. Popu-
lar methods include LIME [73], FIRM [93], QII [23], Shapley Value [56], PDP [41], ICE [43], and
ALEPlot [10]. In addition to transparency schemes, an ATR may also provide information regard-
ing whether a decision algorithm or ML model is biased against certain groups or individuals - in
other words, an ATR may provide measured individual- or group-fairness of ML-based decisions
based on the different desired metrics discussed in existing literature [15, 22, 30, 35, 54, 55, 92]. We
refer readers to Appendix A for detailed definitions of various individual and group fairness mea-
sures. In what follows, we investigate and demonstrate privacy leakage instances via various kinds of
transparency schemes and fairness measures, given honest-but-curious adversaries.

3.2 Privacy Leakage via Interpretable Surrogate Models

As noted, transparency schemes can interpret a blackbox’s rules in a human-understandable man-
ner, such as decision rules or decision trees. Here, we explain how such transparent information
can hurt a data subject’s privacy. Without loss of representativity, here we set up a synthetic sce-
nario, in which we consider the existence of a perfect interpretable surrogate model,4 to illustrate
the possibility of causing a catastrophic privacy leak.
Consider the following synthetic credit card application scenario (summarized in Table 1). A

credit card application takes several input attributes from applicants, while the bank’s decision
process only depends on two input attributes: the applicants’ annual income and their gender
(which, depending on the country, may be illegal and in those cases should not be used in any
decision process). Due to the suspicious differences in approval rates between male and female
applicants, a third-party regulatory agency actively takes action. It collects all applicants’ data and
their received decisions, and trains an (assumed perfect) interpretable surrogate model, disclosing
the decision rules used in the credit card application to all past applicants, as follows

d ({Income} > 200k) = 1,

d ({Income} ∈ 100k∼200k, Male) = 0.5,

where d (·) is decision rule representing the probability of receiving a positive decision given the
condition. An equivalent if-then decision rule form is the following

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if Income > 200k, then Positive Decision;

if 100k ≤ Income ≤ 200k ∧ Male, then Random;

otherwise, then Negative Decision.

Note that other interpretable surrogate models such as a decision tree or logistic regression can
also be equivalently expressed by decision rule d (·).

Next, we demonstrate how the data subjects’ sensitive information (annual income in this sce-
nario) could be leaked. Revisit Table 1 in which the key input attributes, population, and decision

4We consider the most privacy-catastrophic case, a perfect interpretation, which has the most accurate information in an
ATR.
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Table 1. A Synthetic Credit Card Application Scenario

Adversaries’ Knowledge

Input Attributes ATR Side-Info

Popu-
lation

Annual
Income

Gender
Decision
Rule

Census
Statistics

139 <100k F 0 93.1%

9 100k∼200k F 0 5.7%

2 >200k F 1 1.2%

117 <100k M 0 84.2%

18 100k∼200k M 0.5 12.3%

5 >200k M 1 3.5%

rule of the credit card application are listed. Population of applicants are aggregated according to
decision regions, i.e., the regions of input attributes partitioned by decision rules. Here the popula-
tion proportion among decision regions refers to the U.S. census data [4], and adversaries assumed
blind to population of applicants utilize the U.S. census data as side-information to estimate, for
each decision region, the percentage of the total number of male/female applicants (listed in the
“Census Statistics” attribute; for instance, the value 93.1% in Table 1 represents the following: given
that the decision region is {Annual Income < 100k; Gender=Female}, 93.1% of female applicants be-
long to this region). Adversaries know public information of targeted applicants and also know
decision rules from an announced ATR.
When an ATR containing such a decision rule is negligently announced, as it reveals strong

dependencies between annual income and decisions, any female using such a credit card in public
instantly tells anyone who has ever seen the report that her annual income is above 200k, which
not only results in a privacy hazard to her, but may also result in unexpected safety concerns. In
such a case, an adversary does not even require auxiliary information to be able to infer someone’s
secret.
Male credit card owners are also at risk, although not as much. For a male credit card owner, the

confidence of an adversary believing that his income is above 200k is only around 36%, compared
with 100% in the case of a female owner, while based on census statistics, the confidence of an
adversary believing that his income is above 200k is merely 3.5%. In other words, once such a
negligent algorithmic transparency report is announced to the public, a high-income (>200k) male
credit card owner’s risk of exposing annual income information is increased ten fold.
In summary, releasing precise information of interpretable surrogate models (that can be equiva-

lently expressed by decision rules) can be harmful to the data subjects’ privacy, as such information
gives adversaries a clear mapping between input records and received decisions. With assistance
from public information and/or side-information, adversaries can abuse algorithmic transparency
to undermine people’s privacy. The same privacy leakage concern applies when precise informa-
tion of transparency scheme is released in the form of feature importance/interaction, which, how-
ever, in the interest of space, is explicitly demonstrated in Appendix B, using a real dataset.

3.3 Privacy Leakage via Fairness Measures

Recall that one of the main motivations for algorithmic transparency is to understand if a decision-
making algorithm is fair and complies with regulations/law, e.g., the U.S. Equal Employment

Opportunity Commission (EEOC) regulates the ratio of the hiring rates between women and
men, which should not be lower than 80% (80%-rule). In an algorithmic transparency report, such
fairness measures may be required upon data subjects’ demands (e.g., GDPR, Article 22).
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Table 2. Fairness Measures for Table 1 in an ATR

Y1 = {F}, Y2 = {M}

W1 = {Annual Income ≤ 100k}

W2 = {100k ≤ Annual Income ≤ 200k}

W3 = {Annual Income ≥ 200k}

Overall approval rate for female (Y1) = 1.33%;

Overall approval rate for male (Y2) = 10%;

Bias in SP for Y1 and Y2 = 0.0866;

Bias in CSP for {Y1,W1} and {Y2,W1} = 0;

Bias in CSP for {Y1,W2} and {Y2,W2} = 0.5;

Bias in CSP for {Y1,W3} and {Y2,W3} = 0.

To this end, consider again the credit card application in Table 1, in which the bank is under
suspicion of discriminating against female applicants. Upon female applicants’ demands, a regu-
lation agency gets involved and discloses the following fairness measures for gender: (i) bias in
statistical parity (SP) (Definition 9) for male and female applicants, and (ii) bias in conditional

statistical parity (CSP) (Definition 10) for male and female applicants who have the same level of
income. An ATR listing all the above fairness measures w.r.t. the credit card application is shown
in Table 2 (see Remark 1 for details), which can be announced to the public in an electronic form,
e.g., through a website (e.g., GDPR, Recital 58, information related to the public’s concerns).
Moreover, a data subject, which is a credit card applicant in our scenario, has the right to inquire

about the decision principle w.r.t. his or her personal data. Mary, a low-income (<100k) female who
would like to know why her applications are always denied, demands information regarding the
decision processing for her record. The response indicates that the approval rate for a low-income
female is 0. If we letdi, j be the decision rule for people in {Yi ,Wj } in Table 2, by utilizing the census
statistics as shown in Table 1, and based on the definitions of SP and CSP for binary decisions in
(30) and (31), respectively, the information provided in Table 2 tells us the following:

Overall approval rate for female(Y1) = 0.0133 ≈ 0.931d1,1 + 0.057d1,2 + 0.012d1,3 (1)

Overall approval rate for male(Y2) = 0.1 ≈ 0.842d2,1 + 0.123d2,2 + 0.035d2,3 (2)

Bias in CSP for {Y1,W1} and {Y2,W1} = 0 = |d1,1 − d2,1 | (3)

Bias in CSP for {Y1,W2} and {Y2,W2} = 0.5 = |d1,2 − d2,2 | (4)

Bias in CSP for {Y1,W3} and {Y2,W3} = 0 = |d1,3 − d2,3 |. (5)

Since Mary just got a reply indicating d1,1 = 0, from (3) and (5), Mary then knows that
d1,1 = d2,1 = 0, d1,3 = d2,3, and from (4), either d1,2 = d2,2 + 0.5 or d1,2 = d2,2 − 0.5. She can
first assume d1,2 = d2,2 + 0.5; by plugging the values of d1,1 into (1) and d2,1 into (2), and replacing
d2,2 and d2,3 by d1,2− 0.5 and d1,3 in (1) and (2), respectively, she gets 0.057d1,2+ 0.012d1,3 = 0.0133
from (1) and 0.123d1,2 + 0.035d1,3 = 0.1615 from (2). Since di, j are probabilities, ∀i, j, d1,2 and d1,3
can not be greater than 1, and thus the obtained equation from (2) is infeasible, which implies the
assumption is wrong. She then knows d1,2 = d2,2 − 0.5. Repeat the same steps and she will obtain
d1,2 = 0.0088 and d1,3 = 1.0692. By understanding that any di, j cannot be greater than 1 and this is
probably caused by themismatch between the census statistics and the true distribution, shewould
thus update d1,3 = 1 and thus obtain d1,2 = 0.0013 ≈ 0; these estimates are very close to the true
values. In addition, Mary can use the obtained d1,2 and d1,3 to further acquire d2,2 and d2,3. There-
fore, by utilizing the decision processing rule for her record and the publicly announced fairness
measures, she can obtain accurate decision rules for the credit card application. As in Section 3.2,
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we know that a privacy disaster can happen when accurate decision rules are released or hacked.
The adversary Mary now can utilize her obtained decision rules to infer other applicants’ income.

From the above demonstrations, we have seen that a negligent ATR can result in a serious hazard
to data subjects’ privacy. In the following sections, we formalize the privacy leakage problem,
and propose the corresponding properties and solutions.We will revisit the examples demonstrated
above again in Section 8, with our proposed solutions applied.

Remark 1. Here we demonstrate how the numbers in Table 2 are calculated based on Table 1.
The definitions of SP and CSP for binary decisions can be found in (30) and (31), respectively.

Overall approval rate for female (Y1) = (2 × 1)/(139 + 9 + 2) = 1.33%;
Overall approval rate for male (Y2) = (18 × 0.5 + 5 × 1)/(117 + 18 + 5) = 10%;
Bias in SP for Y1 and Y2 = |1.33% − 10%| = 0.0866;
Bias in CSP for {Y1,W1} and {Y2,W1} = |0 − 0| = 0;
Bias in CSP for {Y1,W2} and {Y2,W2} = |0 − 0.5| = 0.5;
Bias in CSP for {Y1,W3} and {Y2,W3} = |1 − 1| = 0.

4 PROBLEM SETUP

In the following sections, we formalize and analyze the privacy leakage problem in ATR. To be-
gin with, in this section, we provide essential notations listed in Table 3 and useful definitions
for problem setup, followed by adversarial settings and definition of privacy violation in ATRs
formally.

4.1 Decision Mapping

Figure 2 illustrates an opaque decision-making blackbox, which is essentially an unknown decision
mapping function defined as follows.

Definition 1 (DecisionMapping [30]). Consider a decision process as illustrated in Figure 2, where
X = {Xk | k = 1, . . . ,K } is a set of input attributes,A the output attribute (decision outcomes), and
A the range of A. Recall that ∆(S ) is a set of probability distributions over S . A decision mapping
DA : RX → ∆(A) is a function mapping from the range of input attributes to a set of probability
distributions over the range of decision outcomes. Formally,

DA (X ) = {PA |X (A = a |X ) | ∀a ∈ A} = {Da (X ) | ∀a ∈ A}. (6)

Particularly, for binary decisions (0 =‘negative’ and 1 =‘positive’), we let

DA (X ) =
⎧⎪⎨⎪⎩
D1 (X ) = d (X ), for a = 1

D0 (X ) = 1 − d (X ), for a = 0,
(7)

where d (X ) is decision rule [22] representing probabilities of mapping from input space to the
positive decision outcome.

Clearly, decision mapping is more comprehensive, while decision rule is more concise and con-
venient for an ATR, e.g., decision rule in Table 1.

As noted in Section 3.1, an ATR opens an opaque decision blackbox via transparency schemes
such as an interpretable surrogate model (a surrogate of DA ) or feature importance/interaction
(a function of DA ). In addition, an ATR may also contain fairness measures (functions of DA ,
see Appendix A). Clearly, information provided in an ATR is in general a function of decision
mapping DA (when there is no confusion, we omit the subscript and simply write D in the rest of
the paper for conciseness); while released, the mapping from decision inputs to outputs are made
public, and thus it is very crucial to ensure the reverse inference is not possible, or limited with
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Fig. 2. A representative illustration of a decision blackbox.

low confidence. To explicitly characterize the reverse inference, we first need to understand the
capability of the adversaries.

4.2 Adversarial Settings

For the privacy leakage problem brought on by releasing ATRs, we consider honest-but-curious (or
curious-but-not-malicious) adversaries, i.e., adversaries who only perform legitimate actions and
will not deviate from the defined protocol but would like to learn as much as possible (including
others’ secrets); in our ATR setting, this implies that an adversary will not hack into the system
and steal information but only acquires as much as possible information that is made public or
is widely-available. For example, the adversaries may know public information about his friends,
e.g., gender, race, ZIP code, and age; the adversaries may also have knowledge about the census
data [4] providing side-information (with weak inference) between public and private attributes,
e.g., joint distributions between age, race, marriage status, household size, and income. Such kind
of adversaries are ubiquitous, making privacy leakage via released ATRs omnipresent.
It’s worth noting that the adversaries do not have access to all the input features and all the

output responses (decision outcomes), and thus are not able to extract any information about the
blackbox from the limited knowledge. Instead, the adversaries may just know the public informa-
tion and the received decisions of the targeted several individuals. The reason that we particularly
focus on honest-but-curious adversaries in this paper is that we would like to convey an important
message that candidly releasing an ATR could result in privacy hazards even for weak adversaries
who are not able to probe or hack into the system but possess some public information and/or widely-
available side-information. Moreover, more powerful adversaries who may have access to all input
features and output responses can train a more powerful surrogate model (as it need not be an
interpretable model) to mimic the original model, and thus can obtain more accurate information
w.r.t. the decision blackbox, as compared to what is provided in an announced ATR. In such a case,
the privacy hazard is not due to the ATR, as adversaries have already obtained something more
powerful (resulting in stronger inference), and thus such an adversarial setting is not meaningful
for ATR.
In practice, since honest-but-curious adversaries can be ubiquitous, the background knowledge

that adversaries may possess could be diverse and unknown to agencies in charge of ATRs. There-
fore, it is important that agencies should consider the worse-case scenario, i.e., the most information
that an honest-but-curious adversary can possess (which is the worst-case weak adversary). Hence,
the agencies should assume that an adversary could possess precise and full knowledge of

• the range RX and the joint distribution PX (x) of all inputs x;
• all public records (a.k.a. quasi-identifier (QID) [5, 83, 84]) xU of specific individuals;
• the received decisions a of the targeted individuals;
• the internal privacy parameters (e.g., the predefined required privacy level) of the privacy
protection schemeM used for an ATR, if any.

The following information is assumed in general unknown (or known with little confidence) by
adversaries before seeing anATR: (i) data subjects’ private records xS and (ii) the decisionmapping
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Table 3. Notation

U Set of all public attributes

S Set of all private attributes

Xk Random variable (r.v.) of attribute k

XU = {Xk | ∀k ∈ U}; collection of r.v.’s of all public attributes

XS = {Xk | ∀k ∈ S}; collection of r.v.’s of all private attributes

X = (XU ,XS ); collection of r.v.’s of all attributes

RX Range of X ; the universe of inputs; RX = RXU × RXS
xU An instance of XU
xS An instance of XS
x = (xU , xS ), an instance of X

TxU = {x′ ∈ RX | x
′
U = xU } = range of (xU ,XS )

A The r.v. of decision outcome

A Range of A

P (·) Aleatory probability; chance

P̃ (·) Epistemic probability; credence or belief

D (X ) = {P (A = a |X ) | ∀a ∈ A}; decision mapping (Definition 1)

D̃ (X ) = {P̃ (A = a |X ) | ∀a ∈ A}; announced decision mapping

d (X ) = P (A = 1|X ); decision rules (Definition 1)

d̃ (X ) = P̃ (A = 1|X ); announced decision rules

M A privacy protection scheme for an ATR

D of the blackbox. Given the above adversarial settings, we clearly define privacy violation in
releasing ATRs in the following.

Definition 2. The release of an ATR is privacy violating if any private or confidential information
of any data subject to whom decision algorithms, disclosed in the ATR, have been applied can be
(unintentionally) inferred by any honest-but-curious unauthorized individual or entity to whom
the ATR is released, with confidence exceeding a tolerable threshold, due to the release of the ATR.

Remark 2. Given Definition 2, inferring attribute values due to high correlations between at-
tributes, e.g., knowing people who have ovarian cancer are female, should not be mistaken as
privacy breach (not private information; not via an ATR). Similarly, releasing ATRs to a doctor for
theML-assist diagnoses of his patients should not be considered as privacy violation (an authorized
personnel).

4.3 Comparison with PPDM and PPDP

The main differences between privacy preservation in ATRs and privacy preservation in data-

mining (PPDM) and data-publishing (PPDP) are their adversarial settings.
More specifically, in the PPDM setting, a dataset is not published; instead, users or data analysts

send queries (a set of pre-defined/allowed deterministic functions, e.g., average, count, median,
max, and min) to the curator, and the curator generates the corresponding query outputs based
on the dataset. In such a setting, if the pre-defined queries are carefully designed, an adversary (a
malicious user), in general, is not able to determine the direct mappings between public and private
attribute values of a record nor any private information of any individual from any single query out-
put. However, since query functions are known in advance, an adversary can send multiple queries
and compare the obtained results to extract data subjects’ private information from the outputs. In
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this regard, differential privacy (DP) [21, 31] is usually adopted to preserve privacy in PPDM. In
summary, the main differences between the settings in PPDM and ATRs are (i) in PPDM, mappings
between public and private attributes are in general not available, or may be known only partially,
while these could be known statistically in the ATRs setting; (ii) an adversary can send multiple
(deterministic) queries and/or collude with other adversaries to extract data subjects’ private infor-
mation, while an ATR is a one-shot announcement, and the announced decision mappings from
the inputs to the outputs could be probabilistic (i.e., random decisions).
In the PPDP setting, a dataset is published. Therefore, the mappings between public and private

attributes are clearly known to an adversary (much stronger than auxiliary or side-information).
When the published dataset shows uniqueness of a public record or unique relationship between
certain public and private attributes, an adversary can utilize such uniqueness to identify data sub-
jects’ private information. Therefore, several techniques (k-anonymity [75, 76], l-diversity [61, 62],
etc.) are proposed in the literature to obfuscate such uniqueness in order to preserve data subjects’
privacy. In summary, the main differences between the settings in PPDP and ATRs are (i) unlike
in PPDP where privacy is leaked due to strong inference between attributes, in ATR, as we have
emphasized in Section 4.2, we only consider the case of weak correlation/inference between pub-
lic and private attributes, i.e., an adversary is not able to identify any private information with
high confidence before seeing an ATR, while the confidence could be dramatically enhanced after
an ATR is released; (ii) in PPDP, depending on the application, there may or may not exist out-
put attributes. When there exist output attributes, as the dataset is published, all output attribute
values are available to an adversary, which could provide strong inference between some sensi-
tive attributes and the output attributes (for learning purposes), and thus we need to guarantee
that any output attribute value is not directly associated with any individual; while in ATRs, we
consider the case that a decision outcome could be directly associated with an individual (credit
card applications, university admissions, etc.), but an adversary knows a few decision outcomes
only.

5 PRIVACY, UTILITY, AND MEASURED FAIRNESS

Given clear context of adversarial settings and the definition of privacy violation in releasing ATRs,
we next formulate privacy leakage caused by inference attacks, and propose a privacy-preserving
mechanism for ATRs. To this end, in this section, we provide a privacy measure to mathematically
characterize and formulate the degree of privacy leakage. Based on the proposed privacy measure,
we formulate the requirements for a privacy-preserving mechanism for ATRs, and introduce a util-
ity measure to characterize the influences caused by the proposed privacy-preserving mechanism;
similarly, we address the influence of the proposed privacy mechanism on fairness measures.

5.1 Privacy Measure and Privacy-Preserving Mechanism

Recall in Section 3 we have seen privacy leakage disasters when decision rules were divulged. The
fundamental problem is that transparency schemes as well as fairness measures are closely related
to, or functions of, decision mappingD, and more importantly, ifD provides strong inference from
public knowledge to sensitive records, once it is utilized in an ATR and obtained by an adversary,
the adversary can utilize it to further acquire data subjects’ secrets with high confidence.
In light of this, here we propose the following: a carefully processed D, denoted by D̃, should

be adopted as a substitute for D in an ATR for preserving data subjects’ privacy. D̃ should satisfy
certain privacy requirements and can be safely announced (if an ATR chooses to release an inter-
pretable surrogate model) or utilized by transparency schemes and fairness measures provided in
an ATR.
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In such a case, when an ATR is released, an adversary acquires information about D̃, and could

further utilize it in an inference channel 〈XU ,A
PX , D̃
−−−−→ XS〉 which maps from inference source

XU and A to sensitive attribute values XS . (When the context is clear, we will omit PX and D̃

above the arrow for simplicity.) Based on the adversarial settings in Section 4.2, one reasonable
privacy measure to characterize the above inference (caused by D̃) is the maximum confidence
of an adversary in inferring any data subject’s sensitive value XS , which is also known as the
worst-case posterior vulnerability [34]. In other words, even if an adversary knows D̃ and further
utilizes it to perform inference attacks, the maximal confidence that the adversary can have is
carefully controlled in advance to prevent privacy violation. In this regard, privacy measures of
the announced version of decision mapping D̃ used in an ATR should reflect the maximal degree of
an adversary’s confidence in inferring any data subject’s secret via D̃. Consider the case in which
S is a singleton set, we define maximum confidence formally in the following.

Definition 3 (Maximum Confidence). Given the adversarial settings in Section 4.2 and an infer-
ence channel 〈XU ,A → XS〉, the confidence of inferring a certain sensitive attribute value xS
from a certain inference source (xU ,a), denoted by conf (xU ,a → xS ), is the posterior epistemic
probability of xS given xU and a as follows

conf (xU ,a → xS ) = P̃XS |XU ,A (xS |xU ,a).

The maximum confidence of inferring a specific sensitive attribute value xS from any inference
sources, denoted by Conf (XU ,A→ xS ), is defined as

Conf (XU ,A→ xS ) � max
xU ,a
{conf (xU ,a → xS )}.

Accordingly, themaximum confidence of inferring any sensitive attribute value from any inference
channel is

Conf (XU ,A→ XS ) � max
xU ,a,xS

{conf (xU ,a → xS )}.

The privacy requirement, similar to confidence bounding [88, 89], β-likeness [19], and privacy
enforcement in [58], restricts the maximum confidence on inferring any sensitive attribute by a
confidence threshold, a pre-determined privacy parameter β .

Definition 4 (β-Maximum Confidence). In an algorithmic transparency report, D̃ satisfies the
privacy requirement β-Maximum Confidence if Conf (XU ,A→ XS ) ≤ β .

Lemma 1. The privacy requirement β-Maximum Confidence imposes the following constraints to

the announced decision mapping D̃, ∀x ∈ RX , ∀a ∈ A,

D̃a (x)PX (x)
∑

x′∈TxU

D̃a (x′)PX (x′)
≤ β . (8)

Proof. Please refer to Appendix D for detailed proof. �

Remark 3. Note that a privacy requirement which only prevents an adversary from correctly
inferring any sensitive attribute value of any data subject is insufficient. The reason is that an
adversary can possess the knowledge of the privacy protection scheme and its internal privacy
parameters. If the privacy requirement allows an adversary to incorrectly infer wrong sensitive
values with arbitrary high confidence, since an adversary may know the privacy requirement,
he/she may perceive that any sensitive attribute value which can be inferred with confidence higher
than the threshold is an incorrect one; this could become additional side-information for the adver-
sary. An adversary can further utilize such extra side-information to narrow down the range of
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conjectures, which enhances the confidence of correctly guessing the right sensitive value. The
enhanced confidence could result in exceeding the privacy threshold, and thus cause a privacy
hazard.

The advantage of using maximum confidence as a privacy measure is that it results in intuitive
understanding of β . This could be important when a privacy scheme is used for an ATR, the regula-
tion may require a plain explanation for the adopted privacy scheme as well as the corresponding
settings and meanings of its parameters. Alternatively, one can use other privacy measures, e.g.,
minimum uncertainty (Appendix C), which is essentially conveying the same concept as maximum
confidence, but the privacy parameter γ grows with the strength of privacy.

A privacy protection schemeM takes the original/true decision mapping D as the input and
generates a privacy-preserving decisionmapping D̃ safe for announcementwith careful processing
based on privacy requirements. Inevitably, the originalD would differ from the generated D̃, which
is a distorted/perturbed but private version ofD. In the next section, we introduce a utility measure
to characterize the distortion.

5.2 Utility Measure: Fidelity

In this section, we introduce an appropriate utility measure for our problem. Given proposed

D
M
−−→ D̃, an appropriate utility measure should characterize the distortion from D̃ to D, or quan-

tify the quality of faithfulness of D̃ (compared with D), and hence, particularly, is named fidelity

measure hereafter. By imposing fidelity constraints toM, the maximal distortion between D̃ and
D is guaranteed to be bounded accordingly.

Definition 5 (δ -Fidelity). A privacy perturbation methodM : ∆(A)→ ∆(A) satisfies δ -fidelity,
δ ∈ [0, 1], if ∀x ∈ RX and ∀a ∈ A, we have

|D̃a (x) − Da (x) | ≤ 1 − δ . (9)

Definition 6 (α-Fidelity). A privacy perturbation methodM : ∆(A)→ ∆(A) satisfies α-fidelity,
α ∈ [0, 1], if ∀x ∈ RX and ∀a ∈ A, we have

α ≤ D̃a (x)/Da (x) ≤ 1/α . (10)

In the most general form, definition of fidelity can be

D̃a (x)min ≤ D̃a (x) ≤ D̃a (x)max, (11)

which describes the restriction (the allowed range) of distortion of D̃ in a very general manner.
The corresponding equivalent representations for δ - and α-fidelity are

Da (x) − (1 − δ ) ≤ D̃a (x) ≤ Da (x) + (1 − δ ), (12)

αDa (x) ≤ D̃a (x) ≤
1

α
Da (x), (13)

in which the upper and the lower bounds D̃a (x)max and D̃a (x)min are functions of D and δ , or α .
In practice, δ and α should not be far from 1.

5.3 Influence of Privacy on Measured Fairness

As demonstrated in Section 3.3, since fairness measures are functions of decision mapping/rule,
releasing precise fairness measures could bring privacy hazards. On account of this, the released
fairness measures should be computed based on privacy-preserving D̃, which, however, would in-
fluence and distort the measured bias ε . In this section, we show that by knowing the fidelity con-
straints toM, we are able to characterize and bound the distortion of the measured fairness/bias.
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Fig. 3. A depiction of how fidelity of D̃ can aid in characterizing the difference between the measured bias

ε̃F and the true bias εF , where F denotes a (general or specific) set of fairness definitions on which bias is

computed. In Section 3, we have seen that releasing D and εF can cause privacy leakage and thus should be

prohibited, so that εF is unknown to the public. However, if the fidelity parameter used inM is known, we

are able to characterize εF by ε̃F based on Lemma 2.

Figure 3 is a representative illustration of the true bias εF and the measured bias ε̃F influenced
byM, where F denotes a (general or specific) set of fairness definitions on which bias is com-
puted. Since the true decision mapping D should not be released and utilized to compute fairness
measures, the true bias computed based on D is generally unknown. A natural question may arise:
by knowing ε̃F , and the degree of fidelity of D̃ (δ or α ), what can we know about εF ? The follow-
ing lemma answers the question: if the maximum distortion from D̃ to D is known, the maximum
distortion from ε̃F to εF can be known, and thus the range of εF can be known.

Lemma 2. Let Ftv denote the set of all total-variation-based fairness definitions, and Frm the set of

all relative-metric-based fairness definitions (see Appendix A). GivenD
M
−−→ D̃, ifM satisfies δ -fidelity,

we can guarantee the measured bias ε̃Ftv satisfies

|ε̃Ftv − εFtv | ≤ min{2(1 − δ ), 1}. (14)

IfM satisfies α-fidelity, we can guarantee the measured bias ε̃Frm satisfies

|ε̃Frm − εFrm | ≤ min{−2 logα , 1}. (15)

Proof. By applying the reverse triangle inequality [85], the results trivially follow. �

6 PRIVACY-FIDELITY TRADE-OFF

Strong privacy perturbation could cause serious distortion on the announced information includ-
ing decision rules and fairness measures, and thus a privacy protection scheme should preserve
privacy while guaranteeing a certain degree of fidelity to the announced information; this turns
out a privacy-fidelity trade-off problem. In this section, we mathematically formulate the trade-off
problem, and revisit existing algorithms that can efficiently solve this problem.

6.1 Optimization Formulation

We describe the privacy-fidelity trade-off problem in the following: given fidelity constraints,
we would like to find the greatest privacy (the smallest β) that we can achieve. The problem is
mathematically formulated as follow. For conciseness, we omit the subscript of all probability
measures and simply write, e.g., P (x) instead of PX (x).
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OPT(RX×A) : (OPT)

min
D̃

β (16a)

s.t.
P (x)D̃a (x)
∑

x′∈TxU

P (x′)D̃a (x′)
≤ β , ∀x ∈ RX ,∀a ∈ A (16b)

D̃a (x) ≤ D̃a (x)max , ∀x ∈ RX ,∀a ∈ A (16c)

D̃a (x) ≥ D̃a (x)min , ∀x ∈ RX ,∀a ∈ A (16d)

D̃a (x) ≥ 0 , ∀x ∈ RX ,∀a ∈ A (16e)
∑

a∈A

D̃a (x) = 1 , ∀x ∈ RX . (16f)

The first constraint in (16b) is the privacy constraint β-Maximum Confidence defined in Defini-
tion 4 and Lemma 1, and the last two constraints in (16e) and (16f) are probability distribution
conditions. The second and the third constraints in (16c) and (16d) are fidelity constraints intro-
duced in (11). Its corresponding representations for δ - or α-fidelity can be found in (12) and (13),
respectively. The objective in (16a) is to find the minimal β subject to the feasibility of D̃ based on
the above-mentioned constraints. A careful observation of the optimization problem (OPT) will
reveal that it is an equivalent formulation of a generalized linear fractional programming (LFP)

problem [94].

6.2 Drawbacks of Existing Methods to Solve Generalized LFP Problems

It has been known that a generalized LFP is quasi-convex and not reducible to a linear program-

ming (LP) problem; however, it can be solved as a sequence of LP feasibility problems [16], i.e.,
solving numerous sub-level LP problems iteratively according to the bisection method. By effi-
cient algorithms such as interior point method, the solution of an LP problem can be obtained in

pseudo-polynomial time O ( n3

lognL) [9], where n is the number of variables, L the input size, i.e.,
the length of the binary coding of the input data to represent the problem, which is roughly pro-
portional to the number of constraints. For our problem, based on (16b)–(16f), it is clear that the
number of constraints is proportional to |RX×A|, which is the number of variables n = |D̃a (x) |,
exponential in the number of input attributes K . For example, suppose the cardinality for each
input attribute is consistent, e.g., |Xk | = l , ∀k = 1, . . . ,K , we have n = |RX×A| = 2 · lK and
roughly 4n = 8 · lK constraints. Even for a relatively small example, e.g., a binary decision process
with K = 10 input attributes, each with l = 5 possible values, we have n ≈ 2 · 107 variables and

≈8 · 107 constraints for each sub-level LP problem, with time complexityO ( n4

logn ), i.e., not tractable

on typical machines (e.g., as reported in [64], ‘spal_004’ with 10203 rows (w.r.t. constrains) and
321696 columns (w.r.t. variables) can encounter out of memory or timeout (>25,000 seconds) issue
on a Linux-PC with a 4GHz i7-4790K CPU and 32GB RAM). To solve a generalized LFP problem,
we need to solve such a huge sub-level LP problem iteratively. In practice, ML algorithms may
require nontrivial amounts of attributes to aid in decision-making; therefore, without an efficient
solver, the privacy-fidelity trade-off problem could be intractable and the feasibility of the associ-
ated privacy protection scheme could be dramatically reduced. In this regard, it is crucial and es-
sential to propose a more efficient method to solve the proposed privacy-fidelity trade-off optimization
problem.
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7 LINEAR-TIME OPTIMAL PRIVACY SOLUTION

In this section, we analyze the optimization problem (OPT), reveal its important properties, and
propose efficient methods to solve it. We first investigate the decomposability of the optimization
problem, i.e, whether the problem can be decomposed into several smaller sub-problems for effi-
cient solving.We find (OPT) decomposable and can be solved using a divide-and-conquer approach.
In addition, we propose closed-form solutions for each optimization sub-problem. The optimization
problem can thus be solved very efficiently by solvingmultiple independent sub-problems in linear
time. Moreover, analysis insights into the optimal solutions are also provided in this section.

7.1 Decomposability

In the following, we show that the optimization problem can actually be decomposed into nu-
merous small sub-problems and thus can be solved more efficiently. An optimization problem is
separable or trivially parallelizable if the variables can be partitioned into disjoint subvectors and
each constraint involves only variables from one of the subvectors [17]. By observing (i) each
constraint in (16c), (16d), and (16e) involves only a single variable D̃a (x), (ii) each constraint in
(16f) involves a set of variables {D̃a (x) | ∀a ∈ A}, and (iii) each constraint in (16b) involves a set
of variables {D̃a (x) | ∀x ∈ TxU }, we notice that any variable D̃a (x) is a complicating variable in
TxU×A but is irrelevant to any other variables outside the QID group TxU . Hence, (16b)–(16f) are
complicating constraints within a tuple but separable constraints among tuples. (OPT) can thus be
decomposed into multiple smaller sub-problems; each focuses on a particular QID group only. Let
h(D̃a (x), β ) ≥ 0 be the affine function representing all linear inequality constraints (16b)–(16e).
An optimization sub-problem can thus be expressed as follows.

OPT-SUB(TxU×A) : (OPT-Sub)

min
D̃

β (OBJ-Sub)

s.t. h(D̃a (x), β ) ≥ 0 , ∀x ∈ TxU ,∀a ∈ A (INEQ-Sub)
∑

a∈A

D̃a (x) = 1 , ∀x ∈ TxU . (EQ-Sub)

(OPT) is then equivalent to the master problem below.

OPT-MASTER(RX×A) : (OPT-MS)

min
D̃

β (OBJ-MS)

s.t. (INEQ-Sub(TxU×A)) , ∀TxU ⊆ RX (INEQ-MS)

(EQ-Sub(TxU×A)) , ∀TxU ⊆ RX . (EQ-MS)

Lemma 3. Let β∗TxU
denote the optimal value of a sub-problem (OPT-Sub), β∗ the optimal value of

(OPT). We have β∗ = max
TxU ⊆RX

β∗TxU
.

Proof. Since (OPT) is a generalized LFP (in an equivalent formulation), according to OPT-MS,
the result trivially follows. �

The Lemma above basically tells us that given the same fidelity constraints, the overall highest
privacy guarantee β∗ is the largest β∗TxU

among all sub-problems, i.e., the weakest optimal privacy

guarantee among all QID groups.
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7.2 Solution Properties

According to the decomposability of the optimization problem, in the following, we only need to
focus on solving an optimization sub-problem (OPT-Sub). To characterize the privacy-fidelity
trade-off, we are particularly interested in where the trade-off starts and ends. In this section, we
propose lemmas addressing the above question.
Before introducing the lemmas, we first define a useful quantity which will be further utilized

to characterize the trade-off.

Definition 7 (Maximum Posterior Confidence). Given an optimization sub-problem (OPT-Sub)
and 1-fidelity (100% faithfulness) requirement, i.e., α = δ = 1 and D̃ = D, the highest confidence
that an adversary can have on inferring any sensitive information from any decision outcome,

denoted by C∗, is C∗ � Conf (XU = xU ,A
PX ,D
−−−−→ XS ) = max

a,xS
{conf (xU ,a → xS )}.

Lemma 4. An (OPT-Sub) has the 1-fidelity solution D̃a (x) = Da (x), ∀x ∈ TxU , ∀a ∈ A, iff β ≥ C∗.

Proof. Please refer to Appendix E for detailed proof. We provide intuitive explanation as proof
sketch here. Since the highest confidence that an adversary can have (C∗) is lower than the privacy
requirement (the confidence threshold β), it is safe to release D directly, i.e., D̃ = D with perfect
fidelity. On the other hand, as long asC∗ is greater than β , releasingD violates privacy requirement
and cannot be a feasible solution. �

Lemma Insight - Lemma 4 tells us when β ≥ C∗, there is no trade-off between privacy and
fidelity: as long as β is greater than C∗, increasing the strength of privacy (decreasing β) would
not cause degradation in fidelity. In other words, alone the strength of privacy from low to high
(i.e., β from 1 to 0), the trade-off between privacy and fidelity starts when β is right belowC∗. The
next lemma will tell us the end of this trade-off region.

Lemma 5. For α = δ = 0, i.e., fidelity constraints are trivialized or not presented, an (OPT-Sub)
has feasible solutions if and only if (iff) β ≥ βmin � maxx∈TxU P (x|TxU ). In other words, there exists

privacy limit, the strongest privacy that we can have, based on the adversarial settings in Section 4.2.

Proof. Please refer to Appendix F for detailed proof. We provide intuition behind this lemma
as proof sketch here. The privacy limit maxx∈TxU P (x|TxU ) is the greatest conditional probability

over the tuple,5 which is actually the highest possible inference confidence of an adversary before
seeing an ATR. It is the baseline confidence, which merely utilizes knowledge of public record xU

and side-information P (x) on an inference channel 〈xU
PX
−−→ xS〉. Since an ATR does not contribute

to such an inference channel, an associated privacy protection scheme is not able to help further
reduce this baseline confidence. While achieving such a privacy limit, an ATR basically reveals
zero useful information to the public. �

Lemma Insight - Lemma 4 and 5 tell us the start and the end of the privacy-fidelity trade-off
region along β . Next, we show that the end point can never happen before the starting point.

Lemma 6. C∗ ≥ βmin.

Proof. Please refer to Appendix G for detailed proof.We first provide the intuition of the lemma
as a proof sketch. The intuition here is very straightforward: the maximum posterior confidence
can never be lower than the maximum prior confidence (prior vulnerability cannot exceed posterior
vulnerability in [66]). Equality holds when the revealed information is completely useless. �

5Since ∀x ∈ TxU , xU is the same, P (x |TxU ) is also P (xS |TxU ), the conditional distribution over all sensitive records.
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Lemma Insight - According to Lemma 4, when β ∈ [C∗, 1], the true decision mapping D can be
safely released without perturbation (1-fidelity). Lemma 5 tells us when fidelity constraints are not
imposed (0-fidelity), the feasible privacy region is β ∈ [βmin, 1]. Moreover, based on Lemma 6, the
region [βmin,C

∗] is always non-empty. Clearly, this is the region where we trade off fidelity for
privacy. Next, we propose our main theorem to characterize the trade-off in this region.

7.3 Optimal Privacy and Solutions

In the following, we propose our main theorem, which provides the optimal-privacy solutions to
the optimization sub-problem (OPT-Sub) in a closed-form expression, in terms of fidelity. Given
fidelity constraints, the proposed closed-form expression yields the optimal privacy value, and
thus can be utilized to analytically characterize privacy-fidelity trade-off.

Theorem 1. Consider an optimization sub-problem (OPT-Sub) for a QID group TxU , in which we
seek for the strongest privacy guarantee given fidelity constraints. For a decision outcome a, define

xa � argmax
x∈TxU

P (x)D̃a (x)min,

b (x) = P (x) − β
∑

x′∈TxU
P (x′),

D̃a (x)max′ �
1

P (x)
min{P (x)D̃a (x)max, P (x

a )D̃a (x
a )min},

D̃a (x)min′ �
1

P (x)
max{P (x)D̃a (x)min, P (x

a )D̃a (x
a )min + b (x)}.

For binary decisions, i.e., a ∈ A = {0, 1}, the optimal privacy β∗TxU
= max{β0, β1, βp }, where

β0 =
P (x0)D̃0 (x

0)min

P (x0)D̃0 (x0)min +
∑

x�x0,x∈TxU
P (x)D̃0 (x)max′

,

β1 =
P (x1)D̃1 (x

1)min

P (x1)D̃1 (x1)min +
∑

x�x1,x∈TxU
P (x)D̃1 (x)max′

,

βp =
P (x1)D̃1 (x

1)min + P (x
0)D̃0 (x

0)min
∑

x∈TxU
P (x)

,

and the corresponding optimal privacy solutions are

When β∗TxU
= β0 : D̃0 (x) = D̃0 (x)max′, ∀x ∈ TxU

When β∗TxU
= β1 : D̃1 (x) = D̃1 (x)max′, ∀x ∈ TxU

When β∗TxU
= βp : D̃a (x

a ) = D̃a (x
a )min, ∀a ∈ A

∑

x∈TxU
P (x)D̃a (x) =

1
βp
P (xa )D̃a (x

a )min, ∀a ∈ A

D̃a (x)min′ ≤ D̃a (x) ≤ D̃a (x)max′, ∀x ∈ TxU ,∀a ∈ A.

When β∗TxU
= βp and |TxU | > 3, we have multiple solutions.

Proof. We refer readers to Appendix H for the detailed proof. �

Practical Implications of Theorem - Based on Theorem 1, the optimal privacy guarantee β∗TxU
for

each QID group can be computed analytically (in closed form), and based on Lemma 3, the overall
strongest privacy guarantee is the largest β∗TxU

among all QID groups. This is particularly useful

and practical in releasing ATRs - given any value of tolerable distortion, we can now easily obtain
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the optimal privacy value without the need of solving an optimization problem, which can then
be applied to aid in determining the desired trade-off between privacy and fidelity.
Linear Time Justification of Algorithm 1 - The net time to achieve a solution to (OPT) is a function

of the number of sub-problems - each of which is solved via Algorithm 1 in linear-time in the
number of records n. Given an optimization sub-problem, the number of records x ∈ TxU , i.e.,
|TxU | � n is equal to the number of sensitive attribute values, as all records in a QID group TxU
have the same public record xU . To see that Algorithm 1 is in O (n), it is first worth noting that,
based on Theorem 1, the time complexity of computing xa and b (x) are inO (n); consequently, the
time complexity of computing D̃a (x)max′ and D̃a (x)min′ are inO (1). Given these complexities, it is
clear that lines 1 to 4 in Algorithm 1 are inO (n); all lines from line 5 to line 15, except line 13, are
inO (1); function Allocation called in line 13 is inO (n) - since lines 18 to 19, as well as line 20, are
in O (n), line 21 and 22 are in O (1), and lines 23 to 27 are in O (n)). Therefore, the time complexity
of Algorithm 1 is in O (n). By using multi-threaded coding structures solving “parallelizable” sub-
problems via Algorithm 1, (OPT) can be solved in O (n).

7.4 Theorem Insights on Achieving Solution Optimality

In this section, we provide some insights into the optimal-privacy solutions subject to fidelity
constraints in Theorem 1.

An important observation is that the optimal-privacy candidate values (β0, β1, and βp ) and the
inference confidence (left-hand-side of (16b)) are fully characterized by P (x)D̃a (x) pairs of product,
which are the announced joint probabilities P̃X ,A (x,a) representing the portion of population with
input record x receiving decision a, bounded within ranges [P (x)D̃a (x)min, P (x)D̃a (x)max] due to
fidelity constraints. Solving (OPT-Sub) to obtain optimal-privacy solution is thus equivalent to
“tune” those pairs of product within the allowed range, for all inputs x ∈ TxU and outputs a ∈
A, to minimize the maximal possible inference confidence β of an adversary. Particularly, from
Theorem 1, it turns out that for each decision outcome instance a, the term P (xa )D̃a (x

a )min =

maxx∈TxU P (x)D̃a (x)min, the maximum of the lower bounds of the allowed ranges over x ∈ TxU ,
plays a crucial role in solving (OPT-Sub). Next, we show that the optimal-solution for x = xa can
only be the minimum of its allowed range.

Corollary 1. D̃a (x
a )min = D̃a (x

a )min′ = D̃a (x
a )max′ , ∀a ∈ {0, 1}.

Proof. By definitions of xa and D̃a (x)max′ , the result D̃a (x
a )min = D̃a (x

a )max′ trivially follows.
Based on Lemma 5, we have b (x) = P (x) − βp

∑

x′ P (x
′) ≤ 0, and thus by plugging x = xa into

D̃a (x)min′ , we obtain D̃a (x
a )min = D̃a (x

a )min′ . �

The effective lower limits P (x)D̃a (x)min′ and the effective upper limits P (x)D̃a (x)max′ represent
the feasible region where the fidelity constraints and privacy constraints intersect. Based on
Corollary 1, the effective upper and lower limits of xa are equal, which implies that when x = xa ,
the only possible value for the optimal-privacy solution is D̃a (x

a )min. From Theorem 1, we can
see that this is true for all the three cases. It is worth noting that the cases β∗TxU

= β0 and β∗TxU
= β1

are symmetric cases (by swapping 0’s and 1’s), so we only have two representative cases: β∗TxU
= βa ,

a ∈ {0, 1}, and β∗TxU
= βp .

7.4.1 Representative Case 1. When β∗TxU
= βa , a ∈ {0, 1}, the allowed ranges of all P (x)D̃a (x)

pairs are imposed by an additional upper limit P (xa )D̃a (x
a )min caused by privacy constraints. In

these cases, effective upper limits are the minimum of the original upper limits P (x)D̃a (x)max

and the threshold, formally, P (x)D̃a (x)max′ = min{P (x)D̃a (x)max, P (x
a )D̃a (x

a )min}. According to
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ALGORITHM 1: Optimal Privacy Protection Scheme

Input: P (x), TxU , D̃a (x)min, D̃a (x)max

Output: D̃a (x), ∀a, ∀x ∈ TxU

1: for a ∈ {0, 1} do
2: find xa

3: for all x ∈ TxU do

4: compute D̃a (x)max′

5: compute β0, β1, βp , and β∗TxU
← max{β0, β1, βp }

6: if β∗TxU
= β0 then

7: D̃0 (x) ← D̃0 (x)max′

8: D̃1 (x) ← 1 − D̃0 (x)max′

9: else if β∗TxU
= β1 then

10: D̃1 (x) ← D̃1 (x)max′

11: D̃0 (x) ← 1 − D̃1 (x)max′

12: else if β∗TxU
= βp then

13: D̃1 (x) ← Allocation()
14: D̃0 (x) ← 1 − D̃1 (x)

15: return D̃a (x), ∀a, ∀x ∈ TxU
16:

17: function Allocation( )
18: for all x ∈ TxU , x � x1, x0 do

19: compute D̃1 (x)min′

20: resid← RHS of (22) −
∑

x�x1,x0 P (x)D̃1 (x)min′

21: D̃1 (x
1) ← D̃1 (x

1)min

22: D̃1 (x
0) ← 1 − D̃0 (x

0)min

23: for all x ∈ TxU , x � x1, x0 do

24: capacity← D̃1 (x)max′ − D̃1 (x)min′

25: allocation← min{ resid
P (x)
, capacity}

26: D̃1 (x) ← D̃1 (x)min′ + allocation

27: resid← resid − P (x) · allocation

28: return D̃1 (x), ∀x ∈ TxU

Theorem 1, when β∗TxU
= βa , the corresponding optimal-privacy solution is simply the effective

upper limit D̃a (x) = D̃a (x)max′ , ∀x ∈ TxU .
An illustration that aids in understanding the intuition behind Theorem 1 is shown in Figure 4,

in which joint probabilities for a = 1 and ∀x ∈ TxU are depicted for the case β∗TxU
= β1. For

conciseness, letm denote |TxU |,
6 pi = P (xi ), and d̃i = d̃ (xi ) = D̃1 (xi ), ∀i = 1, . . . ,m. The yellow

spots in Figure 4 denote the true joint probabilities pidi , and the regions indicated by grey arrows
interpret the allowed perturbation ranges [pid̃imin,pid̃imax]. In this example, the maximum of the
lower limits is p6d̃6min, i.e., x1 = x6. The value p6d̃6min serves as a threshold (the blue dash line),
imposing an upper limit on all perturbation ranges. The output of the optimal-privacy solution is

6Since TxU is the range of (xU , XS ),m represents the number of distinct sensitive records in the tuple.
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Fig. 4. A representative illustration for changes of joint probabilities caused by the optimal-privacy scheme.

denoted by the red spots, which take values from the effective upper bounds min{pid̃imax,p6d̃6min},
∀i . Here we get a clear insight into the optimal-privacy solutions for a QID sub-groupT{xU ,a }: the
optimality is achieved by flattening the joint distribution P (x)D̃a (x) over all x ∈ TxU as much as
possible subject to the allowed perturbation range imposed by fidelity constraints. By flattening
the joint distribution, the (Bayesian) posterior distribution over distinct sensitive values seen by
an adversary becomes more uniform, and hence the maximal inference confidence is reduced.
Define a the complement of a, e.g., a = 0 if a = 1. For binary decisions, the optimal-privacy

scheme for a QID group TxU is also privacy optimal for a sub-group T{xU ,a } when the joint distri-
bution ofT{xU ,a } ismuch “flatter” (more private) thanT{xU ,a } . In other words, the optimal-privacy
solution flattens the least private distribution as much as possible; although this might influence
the other (the much more private) one and cause it to be less private,7 as long as its maximal infer-
ence confidence is less than βa , the optimal privacy for the entire QID group is dominated by βa ,
and thus the optimal privacy scheme for the sub-group T{xU ,a } is the optimal privacy scheme for
the entire QID group.

7.4.2 Representative Case 2. When neither distribution ismuch flatter than the other one, mak-
ing one sub-group highly private causes the other one’s privacy to degrade, i.e., none of the opti-
mal schemes for any QID sub-group can be optimal for the entire QID group. In such a case, both
sub-groups need to find a “balanced point” at which both sub-groups are equally private. Such
a balanced privacy value for the maximal inference confidence for two sub-groups is denoted by
βp in Theorem 1, representing the optimal privacy for the QID group. As shown in Theorem 1, in
general, we have multiple solutions to achieve this balanced privacy value. This is because, in such
a case, the optimality of privacy is guaranteed if (i) D̃a (x

a ) = D̃a (x
a )min, ∀a, and (ii) the following

two equalities hold

∑

x P (x)D̃0 (x) =
1
βp
P (x0)D̃0 (x

0)min, (19)
∑

x P (x)D̃1 (x) =
1
βp
P (x1)D̃1 (x

1)min. (20)

While in the following, we show that the above two equalities are equivalent, i.e., one implies the
other.

Corollary 2. When β∗TxU
= βp , (19) implies (20), and vice versa.

7Based on (EQ-Sub), any changes made to D̃a (x) will also change D̃a (x).
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Proof. Recall βp from Theorem 1, we have

∑

xP (x) =
1
βp
P (x1)D̃1 (x

1)min +
1
βp
P (x0)D̃0 (x

0)min. (21)

Since D̃0 (x) + D̃1 (x) = 1, by subtracting (19) from (21), we obtain (20). Similarly, by subtracting
(20) from (21), we obtain (19). �

Therefore, to compute an optimal solution when β∗TxU
= βp , we only need to solve (20). Since

D̃0 (x) + D̃1 (x) = 1, and D̃a (x
a ) = D̃a (x

a )min, ∀a, in general we only have m − 2 variables (see
Remark 4), and based on (21), equality (20) is equivalent to

∑

x�x0,x1

P (x)D̃1 (x) =

(

1 − 2βp
βp

)

P (x1)D̃1 (x
1)min − b (x

0). (22)

When β∗TxU
= βp , the right-hand-side (RHS) of (22) is strictly bounded by [

∑

x�x0,x1 P (x)D̃1 (x)min′,
∑

x�x0,x1 P (x)D̃1 (x)max′] , which implies there always exists a feasible solution for (20).Whenm > 3,
since the number of variables to solve (m − 2) is greater than the number of equation (one, which
is (22)), an optimal solution, in general, is not unique.

Remark 4. For the special case x0 = x1, we havem−1 variables to solve. Such a case can happen
when the population of a certain record dominates its corresponding QID group. When this is the
case, the prior (distribution) knowledge provides very high (baseline) confidence on inferring this
record. In particular, for such a case, we must have βp = βmin. If βp > βa , ∀a, i.e., β∗TxU

= βp , this

becomes trivial: according to Lemma 5 and its following discussion, the announced ATR can only
provide trivial information to achieve this lowest-possible baseline confidence.

8 NUMERICAL EXAMPLES

In the previous section, we proposed lemmas characterizing important properties about privacy-
fidelity trade-off, a theorem providing closed-form optimal solutions for the trade-off problem, and
insights into the optimal solutions for both the representative cases. In this section, we provide
numerical examples to demonstrate privacy-fidelity trade-off regions, and aid in understanding the
properties of the trade-off regions and the insights into the optimal solutions for both the repre-
sentative cases. Without loss of generality, we reuse the same examples demonstrated in Section 3
showcasing how the proposed linear-time optimal-privacy scheme (Algorithm 1) can be applied in
practice to solve the problem, as long as there is no privacy preference among sensitive attribute
values.

Consider Table 1 again but for a smaller size population {12, 5, 3, 9, 7, 4} (first column of the
table) for ease of demonstration, and let xi denote the record of the i-th row, i = 1, . . . , 6. Suppose
an announced ATR needs to satisfy a pre-determined fidelity constraint δ = 0.9 (90%-fidelity), and
we would like to preserve the data subjects’ privacy as much as possible subject to the fidelity
constraint.
First, consider the QID group of female TxU={F}, i.e., the tuple of records T{F} = {x1, x2, x3}. Based

on lines 1 to 4 in Algorithm 1, we first need to determine xa and D̃a (x)max′ , ∀a ∈ {0, 1}, ∀x ∈ T{F}.
Detailed computations are demonstrated in Remark 5, and the computed results are presented in
Table 4; from which, we observe that x1 = x3 and x0 = x1 (see Remark 5 for details as well).
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Table 4. Detailed Inputs and Computations of the Provided Numerical Example

Inputs Computations
x P (x) D1 (x) D0 (x) D̃1 (x)min D̃1 (x)max D̃0 (x)min D̃0 (x)max P (x)D̃1 (x)min P (x)D̃1 (x)max P (x)D̃1 (x)max′ P (x)D̃0 (x)min P (x)D̃0 (x)max P (x)D̃0 (x)max′

x1 0.3 0 1 0 0.1 0.9 1 0 0.03 0.03 0.27 0.3 0.27

x2 0.125 0 1 0 0.1 0.9 1 0 0.0125 0.0125 0.1125 0.125 0.125

x3 0.075 1 0 0.9 1 0 0.1 0.0675 0.075 0.0675 0 0.0075 0.0075

x4 0.225 0 1 0 0.1 0.9 1 0 0.0225 0.0225 0.2025 0.225 0.2025

x5 0.175 0.5 0.5 0.4 0.6 0.4 0.6 0.07 0.105 0.09 0.07 0.105 0.105

x6 0.1 1 0 0.9 1 0 0.1 0.09 0.1 0.09 0 0.01 0.01

Proceeding to line 5, we compute β0, β1, and βp as follows:

β1 =
P (x1)D̃1 (x

1)min

P (x1)D̃1 (x1)min +
∑

x�x1,x∈TxU
P (x)D̃1 (x)max′

=

0.0675

0.0675 + 0.03 + 0.0125
≈ 0.6136,

β0 =
P (x0)D̃0 (x

0)min

P (x0)D̃0 (x0)min +
∑

x�x0,x∈TxU
P (x)D̃0 (x)max′

=

0.27

0.27 + 0.125 + 0.0075
≈ 0.6708,

βp =
P (x1)D̃1 (x

1)min + P (x
0)D̃0 (x

0)min
∑

x∈TxU
P (x)

=

0.0675 + 0.27

0.5
= 0.675,

and obtain β∗T{F}
� max{β0, β1, βp } = βp = 0.675. Proceeding to lines 12 and 13, in this case we need

to call function Allocation in line 17. Based on lines 18 and 19, we first need to compute

D̃1 (x2)min′ =
1

P (x2)
max{P (x2)D̃1 (x2)min, P (x

1)D̃1 (x
1)min + b (x2)}

=

1

0.125
max{0, 0.0675 + 0.125 − (0.675) (0.5)} = 0.

Proceeding to line 20, since D̃1 (x2)min′ = 0, we have

resid = RHS of (22) =

(

1 − 2βp
βp

)

P (x1)D̃1 (x
1)min − b (x

0)

=

(

−0.35

0.675

)

(0.075) (0.9) + (0.675) (0.5) − 0.3 = 0.0025.

Based on lines 21 and 22, we obtain

D̃1 (x3) = D̃1 (x
1) = D̃1 (x

1)min = D̃1 (x3)min = 0.9,

D̃1 (x1) = D̃1 (x
0) = 1 − D̃0 (x

0)min = 1 − D̃0 (x1)min = 0.1.

Moreover, proceeding to lines 23 to 27, we obtain

capacity = D̃1 (x2)max′ − D̃1 (x2)min′ =
0.0125

0.125
− 0 = 0.1,

allocation = min
{ 0.0025

0.125
, 0.1
}

= 0.02,

D̃1 (x2) = D̃1 (x2)min′ + allocation = 0 + 0.02 = 0.02.

We therefore obtain the optimal solution D̃1 ({x1, x2, x3}) = [0.1, 0.02, 0.9] for the QID group
of female, which yields maximum confidence of 67.5% for an adversary inferring any sensitive
information from any female data subject.
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Fig. 5. Privacy-Fidelity (P-F) Tradeoffs for QID Groups of Female and Male.

We then consider the QID group for male TxU={M}, i.e., the tuple of records T{M} = {x4, x5, x6}.
Similarly, based on Table 4, we obtain x1 = x6, x0 = x4, and

β1 =
0.09

0.0225 + 0.09 + 0.09
≈ 0.4444,

β0 =
0.2025

0.2025 + 0.105 + 0.01
≈ 0.6378,

βp =
0.09 + 0.2025

0.5
= 0.585,

and we get β∗T{M}
= max{β0, β1, βp } = β0 ≈ 0.6378. Based on lines 6 to 8, we obtain the optimal solu-

tion for this group D̃1 ({x4, x5, x6}) = 1−D̃0 ({x4, x5, x6})max′ = 1−[ 0.20250.225 ,
0.105
0.175 ,

0.01
0.1 ] = [0.1, 0.4, 0.9]

for QID group of male, which yields maximum confidence of 63.78% for an adversary inferring any
sensitive information from any male data subject. Based on Lemma 3, the optimal-privacy β∗ for
the entire dataset is max{β∗T{F} , β

∗
T{M}
} = max{0.675, 0.6378} = 0.675, which is the maximum confi-

dence for an adversary inferring any sensitive information from any data subject from this dataset,
based on the announced ATR.
The optimal solution for the QID group of female is a “balanced point” between inferring the

annual income of x1 and x3 correctly, i.e., Conf (F,A → Annual Income) = conf (F,A = 0 →
< 100k) = conf (F,A = 1 → > 200k), where A is defined in Table 3, the random variable of
decision outcome (0: negative; 1: positive), and

conf (F, 0→ < 100k) =
P (x1)D̃0 (x1)

P (x1)D̃0 (x1) + P (x2)D̃0 (x2) + P (x3)D̃0 (x3)
=

0.3 × 0.9

0.3 × 0.9 + 0.125 × 0.98 + 0.075 × 0.1
= 0.675,

conf (F, 1→ > 200k) =
P (x3)D̃1 (x3)

P (x1)D̃1 (x1) + P (x2)D̃1 (x2) + P (x3)D̃1 (x3)
=

0.075 × 0.9

0.3 × 0.1 + 0.125 × 0.02 + 0.075 × 0.9
= 0.675.

Making either inferencemore private will cause the other one to be less private and hence degrades
the overall privacy guarantee as discussed in Section 7.4. In contrast, the optimal solution for the
male group tries to minimize the confidence of correctly inferring the annual income of x4, i.e.,
Conf (M,A→ Annual Income) = conf (M,A = 0→ < 100k), and

conf (M, 0→ < 100k) =
P (x4)D̃0 (x4)

P (x4)D̃0 (x4) + P (x5)D̃0 (x5) + P (x6)D̃0 (x6)
=

0.225 × 0.9

0.225 × 0.9 + 0.175 × 0.6 + 0.1 × 0.1
≈ 0.6378.

From the above equation, it is not hard to see that the optimal solution maximizes the denominator
while minimizing the numerator in order to minimize the ratio for optimal privacy.

From the above example, we demonstrated that subject to fidelity constraints, how an optimal-
privacy ATR can be obtained efficiently using Algorithm 1. The maximum confidence of an adver-
sary, which is conf (F, 1→ > 200k), drops from 100% to 67.5% by setting a 10%-distortion tolerance
for the announced ATR.
Figure 5 depicts the privacy-fidelity tradeoffs for both QID groups in this numerical example.

Given any fidelity requirement δ , the optimal privacy (i.e., the smallest possible β) that we can
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achieve is the boundary of the trade-off region (the blue curve). The trade-off region for β , as
discussed in Section 7.2, should be within the range [βmin ,C

∗], which can be easily computed
based on Definition 7 and Lemma 5:

For the QID group of female: [βmin ,C
∗] =

[ P (x1 )
P (x1 ) + P (x2 ) + P (x3 )

,
P (x1 )D1 (x1 )

P (x1 )D1 (x1 ) + P (x2 )D1 (x2 ) + P (x3 )D1 (x3 )
] = [ 0.30.5 ,

0.075 × 1
0.075 × 1 ] = [0.6, 1].

For the QID group of male: [βmin ,C
∗] =

[ P (x4 )
P (x4 ) + P (x5 ) + P (x6 )

,
P (x4 )D1 (x4 )

P (x4 )D1 (x4 ) + P (x5 )D1 (x5 ) + P (x6 )D1 (x6 )
] = [ 0.2250.5 ,

0.225× 1
0.225× 1+ 0.175× 0.5 ] = [0.45, 0.72].

Both results show consistency with Figure 5 : in Figure 5(a), the range of β is within [0.6, 1];
in Figure 5(b), the range of β is within [0.45, 0.72]. Note that based on Lemma 5, any privacy
requirement with β < max{0.6, 0.45} = 0.6 is not feasible for this dataset, and based on Lemma 4,
any privacy requirement with β > 0.72 can have 1-fidelity solution for the QID group of male, i.e.,
no perturbation is needed. How much fidelity should be sacrificed in order to achieve a certain
level of privacy can thus be known based on the trade-off curves.

Remark 5. Here we demonstrate how the values presented in Table 4 are computed. Note that,
we only demonstrate the computation of values in the first row (i.e., for x1), as computations for
values in all other rows (for all other xi’s) follow similar steps. In the following, we start from the
left-most value and then move to the right.
For x = x1, xU = {F} (Female), and since the total population is 12 + 5 + 3 + 9 + 7 + 4 = 40,

P (x) = 12/40 = 0.3. Based on Table 1, since the decision rule represents the probability of receiving
a positive decision, D1 (x) is basically the decision rule in Table 1, and D0 (x) is simply 1 − D1 (x).
The pre-defined fidelity parameter δ is 0.9, i.e., the announced decision mapping D̃a (x) can differ
from the true decision mapping Da (x) by at most 10%, ∀a = 0, 1. Therefore, |D̃1 (x) − 0| ≤ 0.1, and
we get D̃1 (x)min = 0 and D̃1 (x)max = 0.1. Similarly, |D̃0 (x) − 1| ≤ 0.1, and we get D̃0 (x)min = 0.9
and D̃0 (x)max = 1. The values of the above terms are based on their definitions (refer to Theorem 1)
and the input parameters. Since now we have values for P (x), D̃1 (x)min, D̃1 (x)max, D̃0 (x)min, and
D̃0 (x)max, the values for the terms P (x)D̃1 (x)min, P (x)D̃1 (x)max, P (x)D̃0 (x)min, and P (x)D̃0 (x)max

are just simple multiplications.
Next, we show how the values for the terms P (x)D̃1 (x)max′ (third column in the “Computations”

category) and P (x)D̃0 (x)max′ (the last column) are obtained. Based on Theorem 1, D̃a (x)max′ �
1

P (x)
min{P (x)D̃a (x)max, P (x

a )D̃a (x
a )min}, where xa � argmaxx∈TxU

P (x)D̃a (x)min, ∀a = 0, 1,

we thus have x0 � argmaxx∈T{F}P (x)D̃0 (x)min = argmaxx∈{x1,x2,x3 }{0.27, 0.1125, 0} = x1 and

x1 = argmaxx∈{x1,x2,x3 }{0, 0, 0.0675} = x3. Hence, for x = x1, D̃1 (x)max′ =
1
0.3 min{0.03, 0.0675} =

0.03/0.3 and D̃0 (x)max′ =
1
0.3 min{0.3, 0.27} = 0.27/0.3. Therefore, we obtain P (x)D̃1 (x)max′ = 0.03

and P (x)D̃0 (x)max′ = 0.27.

9 RELATEDWORK

There is a huge amount of literature on transparency [28, 46] and fairness [63] for ML. [59] pro-
vides a detailed survey on techniques proposed for enhancing transparency and fairness for ML
models. However, the perspectives of transparency and fairness in ML models may not be com-
pletely in sync with those in algorithmic transparency, e.g., the philosophy of fairness in ML is to
train fair ML models or algorithms, while the philosophy of fairness in accountable algorithmic
transparency is to verify or to demonstrate whether the examined ML algorithms comply with
certain fairness requirements.
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There are a number of studies on transparency and fairness and several addressing privacy in
data transparency, e.g., [72, 82, 91]; however, there is little effort in considering the potential impact
on privacy brought on by algorithmic transparency schemes and/or fairness measures. [24] provides
transparency in the interaction between Google Ads, users’ ad privacy settings, and user behaviors,
showing the disparate impact that female gender setting has (vs. male gender setting) on results,
e.g., with fewer instances of ads related to high paying jobs; while whether users’ privacy could
be leaked from Google Ads or the associated transparency report is unclear without further inves-
tigation. [8] investigates the limitations of transparency and its impact on society and notes that
transparency can threaten privacy, but it is yet to be made clear what possible aspects of transparency
can hurt privacy, and by what privacy-preserving techniques could remedy the situation. Here, we
show that data subjects’ privacy can be leaked via various kinds of transparency schemes and fair-
ness measures in an announced ATR and propose a privacy protection scheme yielding privacy
preserving information on an ATR. Motivated by transparency and fairness, [33] raises questions
regarding fair privacy for all participating users, as it is considered discriminatory when differ-
ent users are protected by different levels of privacy; however, on what notion of privacy should
be fair, by what methodology to protect such privacy and to achieve it fairly are still unclear. How-
ever, in contrast, numerical examples in Section 8 show that the optimal privacy for different QID
groups, subject to the same fidelity constraints, is in general different due to the disparity of prior dis-
tributions, prior vulnerabilities [66], side-information, and associated decision mapping between
groups. [81] studies the problem of providing transparency to consumers while preserving infor-
mation privacy for them, and proposes informational norms to constrain the collection, use, and
distribution of transparent information in role-appropriate manners to fulfill the goal.However, the
definition of role-appropriate manners is yet to be more specific, and it is also unclear how fairness
measures, which compare decision rules between two individuals or groups (likely in different roles),
should be announced under such a norm. In contrast, our privacy protection scheme does not make
any assumptions on informational norm and does not rely on any norm (potentially hard to accom-
plish) to protect users’ privacy, and thus can be applied generally. In addition, informational norm
may still not be adequate to protect users’ privacy: individuals belonging to the same role may still
be able to infer private information of others, e.g., in Table 1, any female credit card owner can
infer other female credit card owners’ income range.
There exist a couple of works using differential privacy (DP) to remedy the privacy leak-

age/attack issue in algorithmic transparency or model explanations. A recent work [79]
demonstrates membership inference attacks [80] on training datasets of ML models by utilizing
information from the corresponding featured-based model explanations (i.e., feature impor-
tance/interaction transparency schemes). To address this issue, in [70], DP is applied to the
gradient descent algorithm for generating feature-based model explanations. [23], arguably the
only previous work that addresses transparency, fairness, and privacy in an accountable ATR,
proposes a feature-based measure, named quantitative input influence (QII); based on which,
the authors propose public and personalized transparency reports, as well as a fairness measure,
named group disparity, to measure potential disparate impacts on different groups of people. DP is
adopted to the above measures in order to prevent potential privacy leaks caused by the provided
QII and group disparity in an announced ATR. However, applying DP solely does not result in
prevention of inference attacks, in particular, attribute inference attacks: once strong correlations
between attribute values are known, sensitive attribute values can be inferred no matter whether
a privacy victim belongs to a specific dataset or not, and thus DP cannot help in such a scenario
(see [32], Section 2.3.2, the smoking-causes-cancer example). In light of this, here, we propose
a privacy-preserving scheme to prevent attribute inference attacks by limiting the attribute
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inference confidence from public/known attribute values, via an announced ATR with assistance
of side-information, to any data subjects’ private attribute values.

10 SUMMARY

In this work, we demonstrated how an honest-but-curious adversary can utilize widely-available
information together with information provided in an algorithmic transparency report to obtain
data subjects’ private information. From this we glean which potential aspects of transparency
and fairness measures can hurt privacy. We then propose a privacy scheme that perturbs the
information to be announced, to remedy the potential privacy leaks. We systematically study
the impact of such perturbation on fairness measures and the fidelity of the announced informa-
tion, formulated as an optimization problem for optimal privacy subject to fidelity constraints.
To efficiently solve the optimization problem, we identify important properties and provide
closed-form solutions, based on which, we propose a privacy protection scheme. Given fidelity
requirements, the proposed scheme can efficiently produce optimal-privacy ATRs in linear time.
In addition, we provide insight into our proposed optimal privacy scheme. We believe that our
proposed methodology is suited for more general problems beyond algorithmic transparency,
where the release of the model information is controlled and the input data cannot be modified -
for instance, one example is the setting of model inversion attacks [40] where the model owner
has no authority to modify the input data (patients’ clinical history and genomic data) but has the
control of the amount of information about the (dose-suggesting) model to be released. In such a
scenario, our scheme can help privately release information of a model to pharmacists for better
understanding of suggesting personalized dosage.

APPENDICES

A FAIRNESS MEASURES

Another important motivation of providing algorithmic transparency is to understand if a decision-
making algorithm is fair. GDPR Article 5 regulation indicates that personal data should be pro-
cessed fairly and in a transparent manner. Many researchers are committed to providing proper
measures for fairness and making ML algorithms fair [15, 22, 30, 35, 54, 55, 92]. In general, there
are two main categories of fairness: (i) individual fairness, and (ii) group fairness. Popular defi-
nitions of group fairness includes statistical parity (SP), conditional statistical parity (CSP),
and p%-rule (PR).

A.1 Measures for Individual Fairness

Definition 8 ((D,D)-Individual Fairness [30]). Given a distance measureD : RX × RX → R+ �
[0,∞) on individuals’ records, a decision mapping D : RX → ∆(A) satisfies individual fairness if
it complies with the (D,D)-Lipschitz property for every two individuals’ records x1, x2 ∈ RX , i.e.,

D(D (x1),D (x2)) ≤ D(x1, x2), (23)

whereD : ∆(A)×∆(A) → R+ is a distance measure on distributions overA. Moreover, we define
D satisfying individual fairness up to bias ε if for all x1, x2 ∈ RX , we have

D(D (x1),D (x2)) ≤ D(x1, x2) + ε . (24)

Individual fairness ensures a decision mapping maps similar people similarly. When two indi-
viduals’ records x1 and x2 are similar, i.e., D(x1, x2) � 0, the Lipschitz condition in equation (23)
ensures that both records map to similar distributions over A. Candidates for distance measure
D include (but are not limited to) statistical distance and relative l∞ metric. The relative l∞ metric
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(a.k.a. relative infinity norm) of two distributions Z1 and Z2, defined as follows

D∞ (Z1,Z2) = sup
a∈A

log

(

max

{

Z1 (a)

Z2 (a)
,
Z2 (a)

Z1 (a)

})

, (25)

is considered a potential better choice in the aspect that it does not require the distance measureD
to be re-scaledwithin [0, 1].8 However, it has the shortcoming that it is sensitive to small probability
values. The statistical distance, or the total variation norm, of two distributions Z1 and Z2, defined
as follows

Dtv (Z1,Z2) =
1

|A|

∑

a∈A

|Z1 (a) − Z2 (a) |, (26)

is a more stable measure in this aspect.

A.2 Measures for Group Fairness

Popular measures for group fairness include (but are not limited to) statistical parity (SP) (a.k.a.
demographic parity) [30, 35, 55, 92], conditional statistical parity (CSP) [22, 54], p-% rule (PR)
[15, 35], accuracy parity (a.k.a. equalized odds) [47], and true positive parity (a.k.a. equal oppor-
tunity) [47]. However, the last two measures require knowledge of labeled outputs and are thus
particularly used to train fair ML algorithms in supervised learning. For algorithmic transparency,
we use the former three measures for group fairness.

Define д(X ) a projection function from input attributes X onto a group in protected attributes,
v (X ) a score/valuation function from X onto a set scores, and TY � {x ∈ RX | д(x) ∈ Y} the
set/tuple in which records belong to a protected group Y . We summarize definitions of measures
for group fairness in the following:

Definition 9 (Statistical Parity (SP)). A decision mapping D : RX → ∆(A) satisfies statistical
parity for two groups Y1 and Y2 up to bias ε if for every decision outcome a ∈ A, we have the
following property

Dtv (E[Da (X ) |TY1],E[Da (X ) |TY2]) ≤ ε . (27)

Definition 10 (Conditional Statistical Parity (CSP)). Given a score/valuation functionv (X ) based
on input attributesX , defineTY,V � {x ∈ RX | д(x) ∈ Y,v (x) ∈ V} the set/tuple inwhich records
belong to a protected group Y having scores in a set V . A decision mapping D : RX → ∆(A)

satisfies conditional statistical parity given the same score conditionsV for two groupsY1 andY2
up to bias ε if for every decision outcome a ∈ A, we have the following property

Dtv (E[Da (X ) |TY1,V ],E[Da (X ) |TY2,V ]) ≤ ε . (28)

Definition 11 (p-% Rule (PR)). A decision mapping D : RX → ∆(A) satisfies p-% rule for two
groups Y1 and Y2 if for every decision outcome a ∈ A, we have the following property

������ log
��	
E
[
Da (X ) |TY1

]
E
[
Da (X ) |TY2

] ��
������ ≤ − logp. (29)

8The normalization could bring non-trivial burden, especially when the maximal distance can be arbitrarily large.
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In particular, for binary decisions, we say a decision ruled satisfies SP, CSP, or PR for two groups
Y1 and Y2 up to bias ε (SP and CSP only) if

SP: |E[d (X ) |TY1] − E[d (X ) |TY2]| ≤ ε (30)

CSP: |E[d (X ) |TY1,V ] − E[d (X ) |TY2,V ]| ≤ ε (31)

PR: p ≤
E[d (X ) |TY1]

E[d (X ) |TY2]
≤

1

p
. (32)

Note that all fairness definitions are based on the distance between the decision of two groups,9

specifically, total variation (26) and relative metric (25). Let F denote the set of all fairness defini-
tions. Based on the use of distance metrics, F can be classified as follows:

• Total-variation-based fairness definitions (Ftv): Definitions include (Dtv,D)-individual fair-
ness, statistical parity, and conditional statistical parity.
• Relative-metric-based fairness definitions (Frm): Definitions include (D∞,D)- individual fair-
ness and p%-rule.

B PRIVACY LEAKAGE VIA FEATURE IMPORTANCE/INTERACTION

Feature (value) importance, or feature (value) interaction, measures the importance (or influence) of
input attributes (or attribute values) to the decision outcomes. The importance of an input attribute
(value) is measured based on the corresponding change of output due to change of that certain input.
By changing an input, if the change of output is significant, it implies the input is important (has
significant influence) to the output. On the other hand, if the output changes very little, the input
contributes very little to the output.
Different works may propose different measures, but their philosophies are almost the same (as

stated above). For example, the measures for change of an input can be (i) removing the presence
of an input attribute, or (ii) permuting attribute values on an input attribute. The measures of
outputs are many, e.g., (i) accuracy of the (predicted) outputs [18, 38], (ii) probability of receiving a
certain outcome [23], (iii) statistics measures, such as partial dependence [41, 45], H-statistic [42],
or variable interaction networks [51], or (iv) a self-defined quantity or a score/gain function. The
measures for the change of outputs can be (i) difference (i.e., subtraction), (ii) ratio, or (iii) averaged
difference/contribution, e.g., the Shapley value [56], of the measured outputs. In this regard, it is
impractical for us to demonstrate the privacy leakage issue for all present methods. However,
since the philosophies of all these methods are similar, it is reasonable for us to demonstrate the
privacy hacking procedures via a representative one. The principles of hacking procedures can be
transferred and applied to other methods.
We investigate potential privacy leakage via the quantitative input influence (QII) proposed

in the most pioneering work [23] in accountable ATR. For QII, the measure for change of an input
is permuting attribute values (called intervention in the paper) on an input attribute. The measure
of output can be user-specified, called quantity of interest, denoted by Q . The measure for change
of output is difference between (subtraction of) two measured outputs. Formally, the QII of an
input attribute k for a quantity of interest Q is defined as

IQ (k ) = Q (X ) −Q (X−kUk ), (33)

in which X−kUk , meaning that attribute k is (removed from input X and) replaced by a permuted
version Uk , represents intervention on attribute k . In particular, for Q (X ) = P {c (X ) = 1|X ∈ TW },

9More precisely, from (27), (28), and (29), the decision distribution of a group is the expected decision mapping among the
group, over all decision outcomes a ∈ A.
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the fraction of records belonging to a set TW (e.g., women) with positive classification, the QII of
an input attribute k is

I (k ) = P {c (X ) = 1|X ∈ TW } − P {c (X−kUk ) = 1|X ∈ TW }, (34)

where c (·) is a classifier (decision-maker). The QII of a set of input attributesK is defined similarly,
using K instead of k .

In the following, we conduct an experiment to demonstrate the hacking of decision rules via
provided QII’s on an ATR for a real dataset, and utilize the hacked decision rules to further infer
private records as what we did in Section 3.2. We use the Australian credit approval dataset from
UCI machine learning repository [25] in our experiment . The dataset has 690 instances, with
15 input attributes and 1 output attribute. All attribute information can be found in Table 5. In
order to protect confidentiality of the data, all attribute names and values have been changed to
meaningless symbols by the dataset provider. Based on the dataset, with adequate data cleaning
and pre-processing, we train a classifier based on a fully-connected neural network with one input
layer (36 inputs, after one-hot encoding for categorical attribute values), two hidden layers (147
and 85 neurons, respectively), and one output layer (binary outputs), with dropout rate 0.5. The
averaged testing accuracy of the trained classifier is 89.5%.
The trained classifier is served as the knowledge of a trust-worthy 3rd-party regulation agency

which feeds both inputs and outputs of the dataset to an ML model in order to learn the unknown
decision-making rules of this Australian credit card company. Since QII is a data-mining based
approach [23], the regulation agency provides information regarding input influences (QII) in an
ATR upon users’ demand. Since the access control is still an open question, we assume a user is
able to request such information in a reasonable manner.
Based on the above experimental settings, we first construct a scenario to demonstrate the

hacking.
Scenario:

• LetU = {A4, A5, A6, A7} be public attributes and all other attributes are private and unknown
to adversaries (See Remark 6).
• Alice has public record xU = {y, p, k, v}. She gets a positive decision (+) and receives a credit
card.
• Tom also has the same public record xU = {y, p, k, v}. He gets a negative decision (-).
• An adversary is a friend of both, knowing their public records, knowing that Alice owns such
a credit card but Tom doesn’t. The adversary also has the knowledge of joint distribution of
A4∼A7, A9, and A11, e.g., demographic statistics of age, marriage status, race, and annual
income.

A snapshot of the QID groupTxU={y, p, k, v} is shown in Table 6, in which public attributes aremarked
in grey, class attribute (decision outcome) is marked in light blue, and for those attributes that an
adversary has associated side-information (joint distribution) are marked in bold.
We next demonstrate privacy hacking procedures in the following. LetW0 = {A4 = y, A5 = p,

A6 = k, A7 = v, A11 ∈ [0,1]}, andW1 = {A4 = y, A5 = p, A6 = k, A7 = mv, A11 ∈ [10,11]}.

Privacy Hacking:

(1) Since the input to QII can be a set of attributes, i.e., the joint influence of a set of input attributes.
LetS be the collection of all private attributes as denoted in Table 3, which is {A1∼A3, A8∼A15}
in our scenario. The adversary then sends the following QII query to the regulation agency:
• Input Attribute: S
• Quantity of Interest: Q (X ) = P {c (X ) = 1|X ∈ TW1 }.
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Table 5. Attribute Information of the Australian Credit

Approval Dataset

A1: b, a. A9: t, f.

A2: continuous. A10: t, f.

A3: continuous. A11: continuous.

A4: u, y, l, t. A12: t, f.

A5: g, p, gg. A13: g, p, s.

A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff. A14: continuous.

A7: v, h, bb, j, n, z, dd, ff, o. A15: continuous.

A8: continuous. A16: +,- (class attribute)

Table 6. A Snapshot of the QID Group TxU={y, p, k, v} in the Australian Credit Approval

Dataset After Data Cleaning, where Public Attributes are Marked in Grey, Class

Attribute (Decision Outcome) is Marked in Light Blue, and Attributes where an

Adversary has Associated Side-Information (Joint Distribution) are Marked in Bold

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

b 38.25 10.125 y p k v 0.125 f f 0 f g 160 0 -
b 29.83 1.25 y p k v 0.25 f f 0 f g 224 0 -
b 16.92 0.335 y p k v 0.29 f f 0 f s 200 0 -
a 29.85 1.75 y p k v 1.25 f f 0 t g 280 0 -
b 20 1.25 y p k v 0.125 f f 0 f g 140 4 -
b 22.5 0.125 y p k v 0.125 f f 0 f g 200 70 -
b 28.17 0.125 y p k v 0.085 f f 0 f g 216 2100 -
b 23.5 3.165 y p k v 0.415 f t 1 t g 280 80 -
b 21.67 1.165 y p k v 2.5 t t 1 f g 180 20 -
b 36.67 4.415 y p k v 0.25 t t 10 t g 320 0 +
b 48.58 0.205 y p k v 0.25 t t 11 f g 380 2732 +

(2) The adversary gets a response I (S) = 0.66475333, which indicates the degree of influence of
all private input attributes S to the groupW1.

(3) The adversary sends the following QII query to the regulation agency:
• Input Attribute: S
• Quantity of Interest: Q (X ) = P {c (X ) = 1|X ∈ TW0 }.

(4) The adversary gets a response I (S) = −0.33524666, which indicates the degree of influence
of all private input attributes S to the groupW0. Note that negative sign stands for negative
impact as mentioned in Section 3.1.

(5) From the above two query responses, the adversary has

0.66475333 = P {c (X ) = 1|X ∈ TW1 } − P {c (X−SUS ) = 1|X ∈ TW1 }

−0.33524666 = P {c (X ) = 1|X ∈ TW0 } − P {c (X−SUS ) = 1|X ∈ TW0 }.

(6) SinceW1 andW0 have the same public record xU = {y, p, k, v}, for the same classifier, we must
have

P {c (X−SUS ) = 1|X ∈ TW1 } = P {c (X−SUS ) = 1|X ∈ TW0 }.

(7) Utilize the above equality, the adversary obtains

P {c (X ) = 1|X ∈ TW1 } − P {c (X ) = 1|X ∈ TW0 } = 1.

ACM Journal of Data and Information Quality, Vol. 14, No. 2, Article 8. Publication date: February 2022.



Achieving Transparency Report Privacy in Linear Time 8:33

Since probabilities are always within [0, 1], the adversary thus obtains decision rules

P {c (X ) = 1|X ∈ TW1 } = 1,

P {c (X ) = 1|X ∈ TW0 } = 0.

It is worth mentioning that the attack may not be unique. As shown in the following, there could
exist many ways to obtain decision rules, and thus it seems hopeless to cease the attack simply by
access control.

Privacy Hacking (Method 2):

(1) The adversary sends the following QII query to the regulation agency:
• Input Attribute: A9
• Quantity of Interest: Q (X ) = P {c (X ) = 1|X ∈ TW1 }.

(2) The adversary gets a response I (A9) = 0.45142778, which indicates the degree of influence of
input attribute A9 to the groupW1.

(3) The adversary analyzes the response I (A9). Define Pt = P {c (X−A9UA9) = 1|X ∈ TW1 ,UA9 = t}
and Pf = P {c (X−A9UA9) = 1|X ∈ TW1 ,UA9 = f}. He gets

0.45142778 = P {c (X ) = 1|X ∈ TW1 } − P {c (X−A9UA9) = 1|X ∈ TW1 }

= P {c (X ) = 1|X ∈ TW1 } − P {UA9 = t}Pt − P {UA9 = f}Pf .

(4) The adversary realizes the fact that, for the same classifier, we must have

P {c (X ) = 1|X ∈ TW1 } = P {c (X ) = 1|X ∈ TW1 ,A9 = t}

= P {c (X−A9UA9) = 1|X ∈ TW1 ,UA9 = t} = Pt .

(5) Since the adversary has joint distribution knowledge as mentioned in the scenario, he knows
the marginal distribution P {UA9 = f} = 1 − P {UA9 = t} = 0.45142857, he then gets

P {c (X ) = 1|X ∈ TW1 } − Pf =
0.45142778

0.45142857
≈ 1.

(6) Since probabilities are always within [0, 1], the adversary knows Pf ≈ 0, and

P {c (X ) = 1|X ∈ TW1 } ≈ 1.

The adversary obtains very accurate information regarding decision rule forW1.
Based on the hacked decision rules above, the adversary has 100% confidence that Alice’s record

belongs to TW1 and Tom’s record belongs to TW0 . Based on Table 6, he then knows that Alice’s
A11 attribute value is either 10 or 11, and Tom’s is either 0 or 1. If the adversary has richer side-
information, e.g., joint distribution including A8 and A14, then the adversary has 100% confidence
that Alice’s A8 attribute value is 0.25, her A14 attribute value is in the range between 300 and 400,
and Tom’s A14 attribute value is in the range between 100 and 300.
It is worth mentioning that, based on our investigation, we do not find a general attack method

that can be applied to all datasets and decision rules. However, this does not mean the attacks
demonstrated above are cherry-picked. As we have shown, there could exist many feasible attack
approaches. Adversaries can simply try multiple different attempts and/or collude their test results
so that eventually they acquire a successful attack result. Moreover, similar to the privacy incidents
of AOL search data leak [11] and de-anonymization of the Netflix Price dataset [67], although there
is no guarantee that the attacks can always succeed in all the cases, as long as the attack can succeed,
there exists a privacy breach which can result in a catastrophic disaster.
In fact, the authors of the pioneering work, i.e., [23], had already noticed the potential privacy

issue in algorithmic transparency and added noise to make the measures differentially private.
Unfortunately, adding differentially private noise [31] solely cannot mitigate the demonstrated
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privacy leakage issue. The fundamental reason is that differential privacy only guarantees a small
amount of information leakage when an individual participates the survey or opts into a data-
base. Differential privacy itself does not guarantee information leakage due to strong statistical
inference between attributes; this has been noted in many previous works such as [7, 13, 29], and
Section 2.3.2 in [32]. The most classic example is the study of “smoking causes cancer”, in which
no matter whether a person opts into the survey or not, once we know that he is a smoker, we
know he has a certain high chance of getting lung cancer. What can be guaranteed in the proposed
differentially private perturbation for an ATR is that an adversary can only gain very little infor-
mation by comparing two ATRs of which the training data to train the classifiers differ in only one
data subject’s record. When the size of the dataset is very large, the required variance of DP noise
is very small. This is why they claimed only very little noise needs to be added.

Remark 6. Although all attribute names in the dataset are removed, we are still able to reason-
ably conjecture public and private attributes based on their influences to the decision outcome.
Attributes with high influences are more likely to be private attributes such as income or credit
score, and attributes with low influences are likely to be public ones. Observe that attribute A9,
A11, and A15 are the most influential ones and others are less significant (from experiments). For
ease of demonstration, we choose four adjacent categorical attributes from insignificant ones, A4
to A7, to serve as public attributes.

C MINIMUM UNCERTAINTY

Definition 12 (Minimum Uncertainty). Given an inference channel 〈XU ,A → XS〉, the uncer-
tainty of inferring a certain sensitive attribute value xS from a certain inference source {xU ,a} is
defined as ucrt (xU ,a → xS ) = − log(conf (xU ,a → xS )). The minimum uncertainty of inferring
any sensitive value from any inference channel is

Ucrt (XU ,A→ XS ) = min
xU ,a,xS

{− log(conf (xU ,a → xS ))}

= − log

(

max
xU ,a,xS

{conf (xU ,a → xS )}

)

= − log(Conf (XU ,A→ XS )).

Similarly, the corresponding privacy requirement for minimal uncertainty is the following.

Definition 13 (γ -Minimum Uncertainty). In an algorithmic transparency report, D̃ satisfies γ -
Minimum Uncertainty if Ucrt (XU ,A→ XS ) ≥ γ .

The above privacy requirement is basically saying that an adversary’s uncertainty on inferring
any sensitive value from any inference channel cannot be too low and should be lower-bounded
by a threshold γ ; the larger the γ , the higher the minimum uncertainty, and thus the stronger
the privacy. From definition (12), it is clear that γ -Minimum Uncertainty implies e−γ -Maximum
Confidence, and β-Maximum Confidence implies − log β-Minimum Uncertainty.

Lemma 7. The privacy requirement γ -Minimum Uncertainty imposes the following constraints to

the announced decision mapping D̃, ∀x ∈ RX , ∀a ∈ A,

log �	
∑

x′

D̃a (x
′)PX (x

′)�� − log(D̃a (x)PX (x)) ≥ γ . (35)
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D PROOF OF LEMMA 1

Proof. Recall that conf (xU ,a → xS ), the confidence of inferring a sensitive attribute value xS ,
is a posterior epistemic probability which can be expressed as

conf (xU ,a → xS ) = P̃XS |XU ,A (xS |xU ,a) =
P̃A |XU ,XS (a |xU ,xS )PXU ,XS (xU ,xS )
∑

x ′
S
∈RXS

P̃A |XU ,XS (a |xU ,x
′
S
)PXU ,XS (xU ,x

′
S
)
. (36)

Let x = (xU ,xS ) and define TxU � {x
′ ∈ RX | x

′
U = xU } to denote the tuple in which records

having the same QID xU . We have a more comprehensive expression

conf (xU ,a → xS ) =
P̃A |X (a |x)PX (x)
∑

x′∈TxU

P̃A |X (a |x′)PX (x′)
=

D̃a (x)PX (x)
∑

x′∈TxU

D̃a (x′)PX (x′)
. (37)

Therefore, based on Definitions 3 and 4, the privacy requirement β-Maximum Confidence imposes
the following constraints for all x = (xU ,xS ) ∈ RX , ∀a ∈ A.

D̃a (x)PX (x)
∑

x′∈TxU

D̃a (x′)PX (x′)
≤ β . (38)

E PROOF OF LEMMA 4

Proof. We first prove that if β ≥ C∗, D̃ = D is a feasible solution. We then prove its converse:
if D̃ = D is a feasible solution, we must have β ≥ C∗.
We first prove that if β ≥ C∗, the 1-fidelity solution D̃ = D is a feasible solution, i.e., it satisfies all

constraints. Obviously, the solution D̃ = D satisfies probability distribution conditions and fidelity
constraints. Based on Definition 7, D̃ = D yields

P (x)D̃a (x)
∑

x′∈TxU

P (x′)D̃a (x′)
= C∗ ≤ β , ∀x ∈ TxU ,∀a ∈ A.

Therefore, it also satisfies privacy constraints, and hence when β ≥ C∗, the 1-fidelity solution is a
feasible solution.
Next, we prove the converse by proving its contrapositive, i.e., if β < C∗, D̃ = D is not a feasible

solution. Apparently when D̃ = D, the highest confidence that an adversary can have exceeds β ,
and hence it violates privacy requirements and cannot be a feasible solution. We therefore prove
the converse. �

F PROOF OF LEMMA 5

Proof. We first prove that if an (OPT-Sub) has feasible solutions, β ≥ βmin. We then prove its
converse: if β ≥ βmin, an (OPT-Sub) must have feasible solutions.
We first prove the conditional statement by proving its contrapositive, i.e., if β < βmin, there

exists no feasible solution for an (OPT-Sub). Since D̃ is non-negative, we can rewrite the privacy
constraints as follows

P (x)D̃a (x) − β
∑

x′∈TxU

P (x′)D̃a (x
′) ≤ 0 , (39)

ACM Journal of Data and Information Quality, Vol. 14, No. 2, Article 8. Publication date: February 2022.



8:36 C.-L. Chen et al.

which has to be satisfied ∀x ∈ TxU and ∀a ∈ A. Sum (39) over all a ∈ A, by (EQ-Sub), we have

P (x) − β
∑

x′∈TxU

P (x′) ≤ 0 ,∀x ∈ TxU , (40)

which is equivalent to β ≥ maxx∈TxU P (x|TxU ). Therefore, if there exists any x ∈ TxU such that
β < P (x|TxU ), then (39) cannot be satisfied for all x ∈ TxU , and hence no feasible solution exists.
We then prove the converse. If β ≥ maxx∈TxU P (x|TxU ), there always exists a feasible solution

D̃a (x
′) = 1/|A|, ∀x ∈ TxU , ∀a ∈ A. To see this, we only need to verify if it satisfies all constraints.

It is very obvious that the solution satisfies probability distribution conditions. Since fidelity con-
straints are trivialized, we then only need to verify if the solution satisfies privacy constraints.
Since D̃a (x

′) is a constant for all a and x, the left hand side of (39) becomes P (x|TxU ), and thus the
privacy constraints are also satisfied. Hence D̃a (x

′) = 1/|A| is a feasible solution and we proved
the converse. �

G PROOF OF LEMMA 6

Proof. We prove this by contradiction. Assume thatC∗ < βmin. By their definitions in Lemma 4
and 5, it follows that

max
x∈TxU ,

a∈A

P (x)Da (x)
∑

x′∈TxU
P (x′)Da (x′)

< max
x∈TxU

P (x)
∑

x′∈TxU
P (x′)

. (41)

Let x† = argmaxx∈TxU
P (x|TxU ). The right hand side of (41) is equivalent to P (x†)/

∑

x′∈TxU
P (x′).

If inequality (41) holds, the following inequalities must hold

P (x†)Da (x
†)

∑

x′∈TxU
P (x′)Da (x′)

<
P (x†)

∑

x′∈TxU
P (x′)

, ∀a ∈ A, (42)

since the maximum of the left hand side of (42) over all a ∈ A is not greater than the left hand side
of (41). Therefore, if there exists any a ∈ A for which the corresponding inequality in (42) does
not hold, it implies our assumption C∗ < βmin is not true, and, if so, we are done with the proof.
If there exists no such an a and (42) holds, by eliminating P (x†) from both sides of (42) and

cross-multiplying (as all terms are non-negative), (42) is equivalent to the following

Da (x
†)
∑

x′∈TxU

P (x′) <
∑

x′∈TxU

P (x′)Da (x
′) , ∀a ∈ A. (43)

Sum (43) over a ∈ A for both sides, based on (EQ-Sub), we obtain
∑

x′∈TxU
P (x′) <

∑

x′∈TxU
P (x′),

which is obviously not true. Therefore, it implies the inequality (43) (and (42), equivalently) cannot
be true for all a ∈ A, i.e., there must exist some a for which the left hand side is not smaller than
the right hand side of (42), so that both sides are equal when summed over all a. Therefore, the
initial assumption is incorrect and the lemma is proved. �

H PROOF OF THEOREM 1

For the convenience and conciseness of the proof, as long as there is no confusion, we abuse some
notation in this and the following Appendix sections.All notation in the following Appendix sections
only follow their definitions in this section.

Recall that an optimization subproblem in (OPT-Sub) is formulated over a quasi-identifier (QID)
groupTxU in which all public records are equal to xU . Letm = |TxU | be the cardinality of the QID
group, or equivalently, the number of rows of this tuple. Let xk be the unique record of row k in
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the tuple, k = 1, . . . ,m, and define pk � P (xk ), xk � D̃1 (xk ), and yk � D̃0 (xk ) = 1 − xk . The
privacy constraints can thus be re-written as

pkxk
∑m

i=1 pixi
≤ β, ∀k = 1, . . . ,m,

pkyk
∑m

i=1 piyi
≤ β, ∀k = 1, . . . ,m,

which can be combined as

pk − β

m
∑

i=1

pi ≤ pkxk − β

m
∑

i=1

pixi ≤ 0, (44)

∀k = 1, . . . ,m. Moreover, let x = [x1,x2, . . . ,xm]T , where T represents the transpose operator.
Define A as

A =

������	

(1 − β )p1 −βp2 · · · −βpm
−βp1 (1 − β )p2 · · · −βpm
...

...
. . .

...

−βp1 −βp2 · · · (1 − β )pm

��
, (45)

and let b = [b1,b2, . . . ,bm]T , in which bk = pk − β
∑m

i=1 pi . We can further simplify the privacy
constraints as

b � Ax � 0, (46)

where 0 is anm × 1 zero vector.

Remark 7. Note that bk = pk − β
∑m

i=1 pi ≤ 0 due to Lemma 5, or (40), equivalently.

Similarly, the fidelity constraints can be re-written as

xkmin ≤ xk ≤ xkmax, ∀k = 1, . . . ,m,

ykmin ≤ yk ≤ ykmax, ∀k = 1, . . . ,m.

However, since for binary decision, yk = 1−xk , the above two constraints are basically equivalent
(to see this, simply let ykmin = 1−xkmax and ykmax = 1−xkmin), so we obtain the following fidelity
constraints

xkmin ≤ xk ≤ xkmax, ∀k = 1, . . . ,m. (47)

Note that the 2m privacy constraints in (44) (or their equivalent vectorized form in (46)) form a
parallelotope in them-dimensional space, and the 2m fidelity constraints in (47) form a hypercube
in them-dimensional space. LetP denote the parallelotope andH denote the hypercube.Moreover,
define I � P

⋂

H be the intersection of P and H . I = ∅ if and only if P and H are disjoint,
where ∅ denotes the empty set. We have the following fact.

Fact 1. An optimization subproblem has feasible solutions if and only if I � ∅, i.e., P and H
intersect/collide with each other.

To prove Theorem 1, based on the above fact, it is hence equivalent to show that P and H
collide with each other if and only if β ≥ β *TxU

� max{β0, β1, βp }. Let π � argmaxkpkxkmin and
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θ � argmaxkpkykmin, we can re-write β0, β1, and βp in the following

β0 =
pθyθmin

pθyθmin +
∑m

i=1
i�θ

piyimax′
, (48)

β1 =
pπxπmin

pπxπmin +
∑m

i=1
i�π

piximax′
, (49)

βp =
pπxπmin + pθyθmin

∑m
i=1 pi

, (50)

where

ximax′ � min

{

ximax,
pπ

pi
xπmin

}

, (51)

yimax′ � min

{

yimax,
pθ

pi
yθmin

}

. (52)

Consider the following two optimization problems for x j , where j is an arbitrary index,
1 ≤ j ≤ m:

minimize x j (OPT-1)

s.t. b � Ax � 0,

xkmin ≤ xk ≤ xkmax, for k = 1, . . . ,m,k � j .

maximize x j (OPT-2)

s.t. b � Ax � 0,

xkmin ≤ xk ≤ xkmax, for k = 1, . . . ,m,k � j .

The above two problems have exactly the same constraints. The first line constraint forms the
parallelotope P, and let H ′j denote the hypercube formed by the second line constraints, i.e.,
xkmin ≤ xk ≤ xkmax, for k = 1, . . . ,m,k � j. In addition, define I ′j � P

⋂

H ′j be the intersection
of P and H ′j , interpreting the geometric space formed by the constraints of the above two
optimization problems. Moreover, if I ′j � ∅, (i.e., there exist feasible solutions for (OPT-1) and

(OPT-2)), we let x†j and x
‡
j denote the optimal objective values of (OPT-1) and (OPT-2), respectively.

We have the following lemma.

Lemma 8. If I ′
k
� ∅ for all k = 1, . . . ,m, P and H are disjoint (I = ∅) if and only if either

x†j > x jmax or x
‡
j < x jmin. In other words, P and H collide with each other if and only if I ′

k
� ∅,

x†
k
≤ xkmax, and x

‡

k
≥ xkmin, ∀k = 1, . . . ,m.

Proof. Apparently, since H = H ′j
⋂

H ′
k
for any k � j, we have I ⊆ I ′j true for any j, which

implies if there exists any j such that I ′j = ∅, I = ∅, and P andH must be disjoint. Since I ⊆ I ′j
for every j, if x � I ′j for any j, then x � I. Moreover, for any point x ∈ I ′j , x

†
j ≤ x j ≤ x‡j .

If I ′
k
� ∅ for all k = 1, . . . ,m, and either x†j > x jmax or x‡j < x jmin, since for any x ∈ I ′j ,

x†j ≤ x j ≤ x‡j , which implies either x j < x jmin or x j > x jmax, and thus either I = ∅, or I � I ′j
(which violates the truth). Therefore, P andH are disjoint.

We next prove the converse. If I ′
k
� ∅, x†

k
≤ xkmax, and x

‡

k
≥ xkmin are true for all k = 1, . . . ,m,

since for any x ∈ I ′
k
, ∀k = 1, . . . ,m, x†

k
≤ xk ≤ x‡

k
, we have xkmin ≤ xk ≤ xkmax, ∀k , which implies

ACM Journal of Data and Information Quality, Vol. 14, No. 2, Article 8. Publication date: February 2022.



Achieving Transparency Report Privacy in Linear Time 8:39

x ∈ I, so that I � ∅, P andH collide with each other. We thus prove the converse and the proof
is done. �

Based on Fact 1 and Lemma 8, the following statements are equivalent.

(S1) An optimization sub-problem has feasible solutions.

⇐⇒ (S2) P andH intersect/collide with each other.

⇐⇒ (S3) (OPT-1) and (OPT-2) have feasible solutions for all j.

⇐⇒ (S4) I ′j � ∅, x
†
j ≤ x jmax and x

‡
j ≥ x jmin, ∀j = 1, . . . ,m.

Our next goal is to show that (S1)∼(S4) are true if and only if β ≥ max{β0, β1, βp }. To show this,
we need the following lemma.

Lemma 9. Consider the optimization problem (OPT-1) for some (arbitrary) j. If (S1)∼(S4) are true,
we have β ≥ max{β0, β1, βp j }, where

β0 =
pθyθmin

pθyθmin +
∑m

k=1
k�θ

pkykmax′
, (53)

β1 =
pπxπmin

pπxπmin +
∑m

k=1
k�π

pkxkmax′
, (54)

βp j =
pπxπmin + pjyjmin

∑m
k=1 pk

. (55)

For each of the above cases, i.e., β = β0, β1, or βp j , the corresponding optimal objective value x†j
and its corresponding optimal solutions are

β = β0 ⇐⇒ x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pj −

β

1 − β

m
∑

k=1
k�j

pkykmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†0j

⇐⇒ yj = yθ = yθmin

yk = ykmax′,∀k = 1, . . . ,m, k � θ ,

β = β1 ⇐⇒ x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − β

β
pπxπmin −

m
∑

k=1
k�j,π

pkxkmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†1j

⇐⇒ xπ = xπmin

xk = xkmax′,∀k = 1, . . . ,m, k � j,π ,

β = βp j ⇐⇒ x†j =
1

pj

⎧⎪⎨⎪⎩pπxπmin + pj − β

m
∑

k=1

pk
⎫⎪⎬⎪⎭ � x

†p
j

⇐⇒ xπ = xπmin

m
∑

k=1
k�j,π

pkxk =
1 − 2β

β
pπxπmin − pj + β

m
∑

k=1

pk .
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Proof. Please refer to Appendix I for the proofs. �

When (S1)∼(S4) are true, I ′j � ∅ and x†j ≤ x jmax need to be met for all j = 1, . . . ,m. Based on
Lemma 9, it implies that β ≥ β0, β ≥ β1, and

β ≥ βp j =
pπxπmin + pjyjmin

∑m
k=1 pk

, ∀j = 1, . . . ,m,

which is equivalent to

β ≥ max
j

pπxπmin + pjyjmin
∑m

k=1 pk
=

pπxπmin + pθyθmin
∑m

k=1 pk
= βp .

We then obtain β ≥ max{β0, β1, βp } = β *TxU
. Since when β *TxU

= β0, based on Lemma 9, we have

yj = yθ = yθmin. Based on (54) and (55), we have

β *TxU
= β1 ⇐⇒ x j = x jmax′ ,

β *TxU
= βp ⇐⇒ yj = yθ = yθmin.

Combining the above results with Lemma 9, we thus have

β *TxU
= β0 ⇐⇒ yθ = yθmin

yk = ykmax′,∀k = 1, . . . ,m, k � θ

β *TxU
= β1 ⇐⇒ xπ = xπmin

xk = xkmax′,∀k = 1, . . . ,m, k � π

β *TxU
= βp ⇐⇒ xπ = xπmin

yθ = yθmin
m
∑

k=1
k�θ,π

pkxk =
1 − 2β

β
pπxπmin − pj + β

m
∑

k=1

pk .

Similarly, if (S1)∼(S4) are true, I ′j � ∅ and x‡j ≥ x jmin need to be met for all j = 1, . . . ,m. By
letting yk = 1− xk , ykmin = 1− xkmax, and ykmax = 1− xkmin, the optimization problem (OPT-2) is
essentially equivalent to the following optimization problem:

minimize yj (OPT-3)

s.t. b � Ay � 0,

ykmin ≤ yk ≤ ykmax, for k = 1, . . . ,m,k � j .

Let y†j be the optimal objective value of the above optimization problem. Clearly, y†j = 1 − x‡j .

Therefore, for all j = 1, . . . ,m, x‡j ≥ x jmin is equivalent to y
†
j ≤ yjmax. By applying results from x†j

in Lemma 9, we will obtain exactly the same conditions for β , i.e., β ≥ β *TxU
. Therefore, if (S1)∼(S4)

are true, we have β ≥ max{β0, β1, βp }.
We next prove the converse. If β ≥ max{β0, β1, βp }, which, based on (53), (54), and (55),

implies x†j ≤ x jmax and y
†
j ≤ yjmax, which is equivalent to x‡j ≥ x jmin, ∀j = 1, . . . ,m. Therefore,

based on Lemma 9, x j is feasible, which implies I ′j � ∅, ∀j = 1, . . . ,m, and thus (S4) is true.
Since (S1)∼(S4) are equivalent, an optimization sub-problem has feasible solutions if and only if
β ≥ β *TxU

= max{β0, β1, βp }. We thus finish the proof.
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I PROOF OF LEMMA 9

Here we demonstrate the proof of Lemma 9, which shows the optimal objective value of the opti-
mization problem (OPT-1).

If I ′j � ∅, there exists (at least one or some) x ∈ I ′j , and for all x, x†j ≤ x j ≤ x‡j . Since
I ′j = P

⋂

H ′j , any x ∈ I ′j also belongs to P and H ′. Since P is a m-dimensional parallelotope,
and 0 ∈ P is a vertex of P, any point x ∈ P can be uniquely represented by a linear combination of
m linear independent edge vectors emitted from 0, denoted by Lk ,k = 1, . . . ,m, and x =

∑m
k=1 αkLk ,

0 ≤ αk ≤ 1,∀k = 1, . . . ,m. Let L be the collection of thesem vectors; specifically, L � [L1L2 . . . Lm],
where Lk is anm × 1 column vector and L is anm ×m matrix. L can be obtained by

L = A−1B, (56)

where A is defined in (45) and B = dg(b) where dg(b) denotes a diagonal matrix with elements of
b = (b1,b2, . . . ,bm ) along the diagonal. To find A−1, note that since A can be represented by

A = dg(p) + (−β )1mp
T , (57)

where p = [p1,p2, . . . ,pm]T and 1m is an all-one vector withm elements, we can thus apply the
following matrix inversion formula [48]

(Z + cuvT )−1 = Z−1 −
1

1 + cvTZ−1u
Z−1uvTZ−1 (58)

to compute A−1 and obtain L as follows

L =
1

1 −mβ

�������	

b1
p1
[1−(m−1)β ] b2

p1
β · · ·

bm
p1

β
b1
p2
β b2

p2
[1−(m−1)β ] · · · bm

p2
β

.

.

.
.
.
.

. . .
.
.
.

b1
pm

β b2
pm

β · · ·
bm
pm

[1−(m−1)β ]

��
. (59)

Define b
p
� ( b1

p1
,
b2
p2
, . . . ,

bm
pm

) as the element-wise division operation of two vectors. It is not hard
to see that L can be represented as the following equivalent form

L = dg

(

b

p

)

+

β

1 −mβ

1

p
bT , (60)

which implies that its inverse can also be found by applying the matrix inversion formula in (58).
We will utilize this property in the later of the proof.

Recall that if x ∈ I ′j , x ∈ P as well. Therefore, any x ∈ I ′j can be uniquely represented by

x =

m
∑

k=1

αkLk , (61)

in which 0 ≤ αk ≤ 1, ∀k = 1, . . . ,m. Recall that we are solving the optimization problem (OPT-1)
for some j, 1 ≤ j ≤ m. We first take out the j-th row from (61),

x j =

m
∑

k=1

αkLk, j , (62)
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and for the rest m − 1 equalities, we move the term α jLj from the right-hand-side (RHS) to the
left-hand-side (LHS). We then obtain⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...

x j−1
x j+1
...

xm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− α j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1, j
L2, j
...

Lj−1, j
Lj+1, j
...

Lm, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1,1 L1,2 · · · L1, j−1 L1, j+1 · · · L1,m
L2,1 L2,2 · · · L2, j−1 L2, j+1 · · · L2,m
...

...
. . .

...
...

. . .
...

Lj−1,1 Lj−1,2 · · · Lj−1, j−1 Lj−1, j+1 · · · Lj−1,m
Lj+1,1 Lj+1,2 · · · Lj+1, j−1 Lj+1, j+1 · · · Lj+1,m
...

...
. . .

...
...

. . .
...

Lm,1 Lm,2 · · · Lm, j−1 Lm, j+1 · · · Lm,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
α2
...

α j−1
α j+1
...

αm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (63)

and let x′ − α jL
′

j = Lsubα
′ be the corresponding vector form of (63), in which, based on (59),

Lk,k =
1−(m−1)β
1−mβ

bk
pk
, ∀k = 1, . . . ,m, and Lk,i =

β

1−mβ
bi
pk
, ∀k, i = 1, . . . ,m, k � i . Note that Lsub is an

(m − 1) × (m − 1) square sub-matrix of L by removing the j-th row and the j-th column. Therefore,
it has the similar form as shown in (60) by removing the j-th row/element of b and p, and thus its
inverse L−1sub can also be found by (58). By applying L−1sub to both sides of (63), we have

α
′
= L−1subx

′ − α jL
−1
subL

′

j . (64)

Let u � L−1subx
′ and v � α jL

−1
subL

′

j , we obtain

uk =
1

1 − β

1

bk

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pkxk − β

m
∑

i=1
i�j

pixi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

vk =
β

1 − β

1

bk
α jbj ,

αk = uk −vk =
β

1 − β

1

bk

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − β

β
pkxk −

m
∑

i=1
i�j

pixi − α jbj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(65)

for all k = 1, . . . ,m, k � j. Similarly, if we define αk ′ � 1 − αk , we have

αk
′
=

β

1 − β

1

bk

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − β

β
pkyk −

m
∑

i=1
i�j

piyi − α j
′bj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (66)

Substituting the αk in (65) into (62), we obtain

x j =

m
∑

k=1

αkLk, j =
1

1 − β

1

pj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
β

m
∑

k=1
k�j

pkxk + α jbj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (67)

Based on (67), we are looking for the values of α j and xk ’s (k � j) yielding the minimum of x j .
Since 0 ≤ αk ≤ 1, ∀k = 1, . . . ,m, which implies uk ≥ vk , ∀k = 1, . . . ,m, k � j, and

uk

vk
=

1

βα jbj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pkxk − β

m
∑

i=1
i�j

pixi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≥ 1. (68)
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We then have

α j ≤
1

βbj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pkxk − β

m
∑

i=1
i�j

pixi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� Rkj , (69)

for all k = 1, . . . ,m, k � j. Let R∗j � min
k

Rkj . Combining with the fact that α j ≤ 1, we obtain

α j ≤ min(R∗j , 1). (70)

Case 1:
We first consider the case R∗j ≤ 1. Please refer to Case 2 for R∗j ≥ 1.

When R∗j ≤ 1, based on (70), we have α j = R∗j . Therefore, based on (69), there must exist a k
(denoted by κ) such that

α j =
1

βbj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pκxκ − β

m
∑

i=1
i�j

pixi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= R∗j ≤ 1. (71)

Because bj ≤ 0 (see Remark 7), from the LHS of (71), we have

β

m
∑

i=1
i�j

pixi + α jbj = (1 − β )

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1

β
pκxκ −

m
∑

i=1
i�j

pixi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (72)

Substitute the LHS of (72) into (67). We obtain

pjx j =
1

β
pκxκ −

m
∑

k=1
k�j

pixi =
1 − β

β
pκxκ −

m
∑

k=1
k�j,κ

pixi , (73)

or equivalently,

β =
pκxκ
∑m

k=1pkxk
=

pκxκ

pκxκ +
∑m

k=1
k�κ

pkxk
. (74)

Therefore, x j is minimized if the RHS of (73) is minimized. In addition, in Case 1, based on (74), β
achieves its minimum when (i) minimizing pκxκ and (ii) maximizing

∑m
k=1
k�κ

pkxk .

We next find the minimum of the RHS of (73). Since from (71), we have
m
∑

i=1
i�j

pixi =

m
∑

k=1
k�j

pkxk =
1 − β

β
pκxκ − α jbj , (75)

and from (73), we have

β

m
∑

k=1
k�j

pkxk = pκxκ − βpjx j . (76)

Substituting the LHS of (75) into (65), we obtain

αk =
1

bk
(pkxk − pκxκ ),∀k = 1, . . . ,m,k � j, (77)
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and substituting the LHS of (75) into (76), we obtain

α j =
1

bj
(pjx j − pκxκ ). (78)

Combining (77) and (78), we have

αk =
1

bk
(pkxk − pκxκ ),∀k = 1, . . . ,m. (79)

Since αk ≥ 0 and bk ≤ 0, we have pκxκ ≥ pkxk , ∀k , i.e., pκxκ = max
k

pkxk . Moreover, from (73),

since β is non-negative and xk ≥ 0 for all k , in order to minimize x j , we need to (i) minimize pκxκ
and (ii) maximize

∑m
k=1
k�j,κ

pkxk . Note that both (i) and (ii) minimize β as well, which implies that

the optimal solutions that minimize x j also minimize β .
To minimize pκxκ , since pκxκ = max

k
pkxk , and pkxk ≥ pkxkmin, ∀k (including κ), the minimal

pκxκ , i.e., pκxκmin, is therefore the largest effective lower limit pkxkmin over all k , i.e., pκxκmin =

max
k

pkxkmin = pπxπmin by definition, and thus we get κ = π and xπ = xπmin.

To maximize
∑m

k=1
k�j,κ

pkxk , we need to find the maximum of each xk . Since 0 ≤ αk ≤ 1, by

substituting pκxκ = pπxπmin into (79), we have pπxπmin + bk ≤ pkxk ≤ pπxπmin, ∀k = 1, . . . ,m
(including j). By definitions, xkmax′ � min{xkmax,

pπ
pk
xπmin} and xkmin′ � max{xkmin,

pπ
pk
xπmin+bk }.

Combining with the constraints xkmin ≤ xk ≤ xkmax, we obtain xkmin′ ≤ xk ≤ xkmax′ , ∀k =
1, . . . ,m, and thus

∑m
k=1
k�j,κ

pkxk is maximized when xk = xkmax′ , ∀k , k � j,π .

By substituting the xk ’s we obtained above into (73), based onwhich, the optimal objective value
x†j , the minimum of x j , is thus

x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − β

β
pπxπmin −

m
∑

k=1
k�j,π

piximax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†1j . (80)

If (S1)∼(S4) are true, x†j ≤ x jmax. In addition, based on (78), we have pjx j = pπxπmin + α jbj ≤

pπxπmin, and thus from (51), we get x jmax = x jmax′ . Therefore, based on (80), the minimum β such
that (OPT-1) has feasible solution, for Case 1, is

β =
pπxπmin

pπxπmin + pjx
†
j +
∑m

k=1
k�j,π

pkxkmax′

≥
pπxπmin

pπxπmin +
∑m

k=1
k�π

pkxkmax′
� β1.

(81)

We next prove the converse. If (81) and (80) holds, i.e., xκ = xπ = xπmin, and xk = xkmax′ ,
∀k = 1, . . . ,m, k � j,π , since xπmin = xπmax′ , we have xk = xkmax′ , ∀k = 1, . . . ,m, k � j, and

pjx
†
j =

1 − β

β
pπxπmin −

m
∑

k=1
k�j,π

pkxkmax′

=

1

β
pπxπmin −

m
∑

k=1
k�j

pkxkmax′ .

(82)
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Given the above xk ’s and (82), since xπmin = xπmax′ andbj ≤ 0, and by definition in (51),pπxπmin ≥

pkxkmax′ , ∀k , we have

R∗j � min
k

Rkj

= min
k

1

βbj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pkxkmax′ − β

m
∑

i=1
i�j

piximax′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1

βbj
max
k

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pkxkmax′ − β

m
∑

i=1
i�j

piximax′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1

βbj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pπxπmin − β

m
∑

i=1
i�j

piximax′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1

bj
(pjx

†
j − pπxπmin).

(83)

Besides, by substituting xk = xkmax′ , ∀k = 1, . . . ,m, k � j, into (67), we obtain

pjx
†
j =

1

1 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎣
β

m
∑

k=1
k�j

pkxkmax′ + α jbj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (84)

By substituting the RHS of (82) into (84), we get

α j =
1

bj

(

pjx
†
j − pπxπmin

)

. (85)

Since α j ≤ 1, and according to (83), we obtain R∗j = α j ≤ 1, and thus finish the proof of the
converse.

We summarize Case 1 in the following:

R∗j ≤ 1

⇐⇒
1 − β

β
pπxπmin − bj ≥

m
∑

k=1
k�j

piximax′

⇐⇒ xπ = xπmin and xk = xkmax′,∀k = 1, . . . ,m,k � j,π

⇐⇒ x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − β

β
pπxπmin −

m
∑

k=1
k�j,π

pkxkmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†1j

⇐⇒ β ≥
pπxπmin

pπxπmin +
∑m

k=1
k�π

pkxkmax′
� β1.

Case 2:
Now consider the case R∗j ≥ 1. In this case, according to (70), we have α j = min(R∗j , 1) = 1, and

(67) thus becomes
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pjx j =
1

1 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎣
β

m
∑

k=1
k�j

pkxk + bj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (86)

Moreover, based on (69), there must exist a k (denoted by κ) such that

α j = 1 ≤
1

βbj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(1 − β )pκxκ − β

m
∑

i=1
i�j

pixi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= R∗j , (87)

which, since xi ≤ ximax′ , ∀i , yields

m
∑

i=1
i�j

piximax′ ≥

m
∑

i=1
i�j

pixi ≥
1 − β

β
pκxκ − bj . (88)

Since
∑m

i=1
i�j

pixi ≥
∑m

i=1
i�j

piximin′ as well, we need to consider different cases in the following in order

to proceed the proof.

Case 2.1:
First, we consider the case that the RHS of (88) is greater or equal to the sum of the equivalent
lower limits, i.e.,

1 − β

β
pκxκ − bj ≥

m
∑

i=1
i�j

piximin′ . (89)

In such a case, the equality of the RHS of (88) can hold. Since, based on (86), in order to minimize
x j , we need to minimize

∑m
k=1
k�j

pkxk , from the RHS of (88), which is

m
∑

k=1
k�j

pkxk =
1 − β

β
pκxκ − bj , (90)

and thus we need to minimize pκxκ . By substituting the LHS of (90) into (86) and (65), we obtain

pjx j = pκxκ + bj (91)

and

αk =
1

bk
(pkxk − pκxκ ),∀k = 1, . . . ,m,k � j, (92)

respectively. Based on (92), similar to Case 1, sinceαk ≥ 0 andbk ≤ 0, we havepκxκ ≥ pkxk ,∀k , i.e.,
pκxκ = max

k
pkxk . Moreover, in order to minimize x j , we need to minimize pκxκ . To minimize pκxκ ,

since pκxκ = max
k

pkxk , and pkxk ≥ pkxkmin, ∀k (including κ), the minimal pκxκ , i.e., pκxκmin, is

therefore the largest effective lower limit pkxkmin over all k , i.e., pκxκmin = max
k

pkxkmin = pπxπmin

by definition, and thus we get κ = π and xπ = xπmin. Substituting which into (91), we thus obtain
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the minimum of x j

x†j =
1

pj

{
pπxπmin + bj

}

=

1

pj

⎧⎪⎨⎪⎩pπxπmin + pj − β

m
∑

k=1

pk
⎫⎪⎬⎪⎭ � x

†p
j .

(93)

For the rest of k , k � j,π , according to (90), we have

m
∑

k=1
k�j,π

pkxk =
1 − 2β

β
pπxπmin − bj

=

1 − 2β

β
pπxπmin − pj + β

m
∑

k=1

pk .

(94)

If (S1)∼(S4) are true, x†j ≤ x jmax. In addition, based on (91), we have pjx j = pπxπmin+bj ≤ pπxπmin,
and thus from (51), we get x jmax = x jmax′ . Therefore, based on (93), the minimum β such that
(OPT-1) has feasible solution, for Case 2.1, is

β =
pπxπmin + pj

(

1 − x†j
)

∑m
k=1 pk

≥
pπxπmin + pj (1 − x jmax)

∑m
k=1 pk

=

pπxπmin + pjyjmin
∑m

k=1 pk
� βp j .

(95)

We next prove the converse. If xκ = xπ = xπmin, and (93), (94), and (95) hold, from (67), we have

pjx j =
1

1 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎣
β

m
∑

k=1
k�j

pkxk + α jbj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (96)

and, since
∑m

k=1
k�j

pkxk ≥
∑m

k=1
k�j

pkxkmin′ , from (94), we have

m
∑

k=1
k�j

pkxk =
1 − β

β
pπxπmin − bj ≥

m
∑

k=1
k�j

pkxkmin′ . (97)

Since (94) and (97) hold when x j = x†j , i.e., (93) holds, by substituting the LHS of (97) into (96), we
get

pjx
†
j = pπxπmin +

(

α j − β

1 − β

)

bj . (98)

Comparing (98) with (93), we have
α j−β

1−β = 1, and therefore α j = 1. Based on (70), we thus obtain
R∗j ≥ 1 and finish the proof of the converse.
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We summarize Case 2.1 in the following:

R∗j ≥ 1 and
1 − β

β
pπxπmin − bj ≥

m
∑

k=1
k�j

pkxkmin′

⇐⇒

m
∑

k=1
k�j

pkxkmax′ ≥
1 − β

β
pπxπmin − bj ≥

m
∑

k=1
k�j

pkxkmin′

⇐⇒ xπ = xπmin and
m
∑

k=1
k�j,π

pkxk =
1 − 2β

β
pπxπmin − pj + β

m
∑

k=1

pk

⇐⇒ x†j =
1

pj

⎧⎪⎨⎪⎩pπxπmin + pj − β

m
∑

k=1

pk
⎫⎪⎬⎪⎭ � x

†p
j

⇐⇒ β ≥
pπxπmin + pjyjmin

∑m
k=1 pk

� βp j .

Case 2.2:
Next, we consider the case that

1 − β

β
pπxπmin − bj ≤

m
∑

k=1
k�j

pkxkmin′ . (99)

Recall that yk � 1 − xk , ykmax � 1 − xkmin, ykmin � 1 − xkmax, and αk
′
� 1 − αk , ∀k . Since from

(87), α j ′ = 1 − α j = 0, based on (66), we have

αk
′
=

β

1 − β

1

bk

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − β

β
pkyk −

m
∑

i=1
i�j

piyi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,∀k = 1, . . . ,m,k � j. (100)

Moreover, by substituting xk = 1 − yk , ∀k , into (86), we get

pjx j = pj −
β

1 − β

m
∑

k=1
k�j

pkyk , (101)

or equivalently,

pjyj =
β

1 − β

m
∑

k=1
k�j

pkyk , (102)

and

β =
pjyj

∑m
k=1pkyk

=

pjyj

pjyj +
∑m

k=1
k�j

pkyk
. (103)

Substituting the RHS of (102) into (100), we obtain

αk
′
=

1

bk
(pkyk − pjyj ),∀k = 1, . . . ,m,k � j, (104)
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Since αk
′ ≥ 0 and bk ≤ 0, we have pjyj ≥ pkyk , ∀k = 1, . . . ,m, k � j, i.e., pjyj = max

k
pkyk .

Moreover, from (101), since β is non-negative and xk ≥ 0 for all k , in order to minimize x j , we
need to maximize

∑m
k=1
k�j

pkyk . In addition, based on (103), in Case 2.2, β achieves its minimum

when (i) minimizing pjyj and (ii) maximizing
∑m

k=1
k�j

pkyk .

To minimize pjyj , since pjyj = max
k

pkyk , and pkyk ≥ pkykmin, ∀k (including j), the minimal

pjyj , i.e., pjyjmin, is therefore the largest effective lower limit pkykmin over all k , i.e., pjyjmin =

max
k

pkykmin = pθyθmin by definition, and thus we get j = θ and yθ = yθmin.

To maximize
∑m

k=1
k�j

pkyk , we need to find the maximum of each yk . Since 0 ≤ αk
′ ≤ 1, by

substituting pjyj = pθyθmin into (104), we have pθyθmin+bk ≤ pkyk ≤ pθyθmin, ∀k = 1, . . . ,m, k �
θ . By definitions,ykmax′ � min{ykmax,

pθ
pk
yθmin} andykmin′ � max{ykmin,

pθ
pk
yθmin+bk }. Combining

with the constraints ykmin ≤ yk ≤ ykmax, we obtain ykmin′ ≤ yk ≤ ykmax′ , ∀k = 1, . . . ,m, and thus
∑m

k=1
k�j

pkyk is maximized when yk = ykmax′ , ∀k , k � j.

By substituting the yk ’s we obtained above into (101), based on which, the optimal objective
value x†j , the minimum of x j , is thus

x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pj −

β

1 − β

m
∑

k=1
k�j

pkykmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†0j . (105)

If (S1)∼(S4) are true, x†j ≤ x jmax. Based on (103), the minimum β such that (OPT-1) has feasible
solution, for Case 2.2, is

β ≥
pθyθmin

pθyθmin +
∑m

k=1
k�θ

pkykmax′
� β0. (106)

We next prove the converse. Before proving the converse, we first need the following lemma.

Lemma 10. If pθyθmin ≤ pkyk − bk , ∀k = 1, . . . ,m, k � θ , we have pkxkmin′ ≤ pk (1 − ykmax′ ),
∀k = 1, . . . ,m, k � θ .

Proof. Recall that ∀k = 1, . . . ,m, by definitions we have

pkxkmin′ � max{pπxπmin + bk ,pkxkmin}, (107)

pk
(

1 − ykmax′
)

= pk − pkykmax′

� max{pk − pθyθmin,pk − pkykmax}

= max{pk − pθyθmin,pkxkmin}. (108)

Given the conditions that pθyθmin ≤ pkyk − bk , ∀k = 1, . . . ,m, k � θ , from which we get

pθyθmin ≤ pkyk − bk ,∀k = 1, . . . ,m,k � θ ,

=⇒ pθyθmin ≤ pπyπ − bπ

=⇒ pθyθmin ≤ pπ (1 − xπ ) − pπ + β
m
∑

k=1

pk

=⇒ pπxπ = pπxπmin ≤ −pθyθmin + β

m
∑

k=1

pk
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=⇒ pπxπmin + bk ≤ −pθyθmin + β

m
∑

k=1

pk + pk − β

m
∑

k=1

pk

=⇒ pπxπmin + bk ≤ pk − pθyθmin.

(109)

Therefore, since the above inequalities hold for all k except k = θ , by comparing the RHS of (107)
and (108), we obtain that pkxkmin′ ≤ pk (1 − ykmax′ ), ∀k = 1, . . . ,m, k � θ . We thus finish the
proof. �

Now we start proving the converse. If yj � 1 − x j = yθ = yθmin, yk � 1 − xk = ykmax′ , ∀k , k � j,
(105) and the equality in (106) hold, since from (87) we have α j = 1, or equivalently, α j ′ = 0, by
substituting the above yk ’s and α j ′ into (66), we obtain

αk
′
=

β

1 − β

1

bk

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − β

β
pkyk −

m
∑

i=1
i�j

piyimax′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,∀k,k � j, (110)

and by substituting the xk ’s transformed from the above yk ’s (including k = j = θ ) into (86), we
have

m
∑

k=1
k�θ

pkxk =

m
∑

k=1
k�θ

pk (1 − ykmax′ ) =
1 − β

β
pθxθ −

1

β
bθ . (111)

From (110), since j = θ , by substituting (106) into (110), we obtain

αk
′
=

1

bk
(pkyk − pθyθmin),∀k = 1, . . . ,m,k � θ . (112)

Since 0 ≤ αk
′ ≤ 1, from (112), we obtain pθyθmin + bk ≤ pkyk ≤ pθyθmin, ∀k = 1, . . . ,m, k � θ .

Therefore, based on Lemma 10, we have pkxkmin′ ≤ pk (1 − ykmax′ ), ∀k = 1, . . . ,m, k � θ .
Recall that based on (108), for each k , k � θ , pk (1 − ykmax′ ) is the maximum of pk − pθyθmin

and pkxkmin. Define Φ the set of k’s yielding pk (1 − ykmax′ ) = pkxkmin ≥ pk − pθyθmin, k ∈ Φ, and
define Ω the complement of Φ, i.e., the set of k’s yielding pk (1 − ykmax′ ) = pk −pθyθmin > pkxkmin,
k ∈ Ω. In addition, let ϕ � |Φ| andω � |Ω |. Note that ϕ +ω =m−1. We have the following lemma.

Lemma 11. Ifyθ = yθmin,yk = ykmax′ ,∀k , k � θ , and the equality in (106) holds, we haveω ≤
1−β
β
.

Proof. If yθ = yθmin, yk = ykmax′ , ∀k , k � θ , and the equality in (106) holds, from (106) we have

β

1 − β
=

pθyθmin
∑m

k=1
k�θ

pkykmax′
. (113)

Note that since for those k’s in Ω, we have pk (1 − ykmax′ ) = pk − pθyθmin, or equivalently,
pkykmax′ = pθyθmin, and for those k’s in Φ, we have pk (1 − ykmax′ ) = pkxkmin, or equivalently,
pkykmax′ = pkykmax, (113) thus becomes

pθyθmin
∑m

k=1
k�θ

pkykmax′
=

pθyθmin

ωpθyθmin +
∑

k ∈Φ pkykmax

≤
1

ω
. (114)

We thus finish the proof. �
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Define X �
∑m

k=1
k�θ

pk (1 − ykmax′ ) and Y �
∑m

k=1
k�θ

pkxkmin′ . Based on Lemma 10, we have X ≥ Y. In

addition, by definitions of Φ and Ω, we have

X �

m
∑

k=1
k�θ

pk (1 − ykmax′ )

=

∑

k ∈Φ

pkxkmin +

∑

k ∈Ω

(pk − pθyθmin)

=

1 − β

β
pθxθ −

1

β
bθ . (Based on (111))

(115)

Similarly to theΦ and Ω inX, defineΦ’ the set of k’s yieldingpkxkmin′ = pkxkmin ≥ pπxπmin+bk ,
k ∈ Φ’, for Y. Since based on (I) in Lemma 10, we have pπxπmin +bk ≤ pk −pθyθmin for all k except
θ . Therefore, for those k’s belonging to Φ (in X), based on (108), we get pkxkmin ≥ pk − pθyθmin ≥

pπxπmin + bk , and based on (107), we find that those k’s belonging to Φ (in X) also belong to Φ’ (in
Y), i.e., Φ ⊆ Φ’. Therefore, Y can be interpreted by Φ as follows.

Y �

m
∑

k=1
k�θ

pkxkmin′

=

∑

k ∈Φ

pkxkmin +

∑

k ∈Ω

max
{

pπxπmin + bk , pkxkmin
}

.

(116)

In addition, similarly to Y, we define Z as follows.

Z �
∑

k ∈Φ

pkxkmin +

∑

k ∈Ω

(pπxπmin + bk ). (117)

Clearly, the RHS of Z is not greater than the RHS of Y, and thus we have X ≥ Y ≥ Z. Define
W � X − Z, based on (115) and (117), we have

W � X − Z

=

∑

k ∈Ω

[(pk − pθyθmin) − (pπxπmin + bk )]

=

∑

k ∈Ω

⎡⎢⎢⎢⎢⎣(pk − pθyθmin) −
�	pπxπmin + pk − β

m
∑

i=1

pi��
⎤⎥⎥⎥⎥⎦

=

∑

k ∈Ω

⎡⎢⎢⎢⎢⎣β
m
∑

i=1

pi − pθyθmin − pπxπmin

⎤⎥⎥⎥⎥⎦
= ω

⎡⎢⎢⎢⎢⎣β
m
∑

i=1

pi − pθyθmin − pπxπmin

⎤⎥⎥⎥⎥⎦ .

(118)

Define C � β
∑m

i=1 pi − pθyθmin − pπxπmin, the constant term in (118). Since X ≥ Z, we have
W = ωC ≥ 0, and because ω is the cardinality of Ω, it is non-negative, and thus C ≥ 0. Since

C ≥ 0, and from Lemma 11, ω ≤ 1−β
β
, we thus have

Y ≥ Z = X − (X − Z) = X −W = X − ωC ≥ X −
1 − β

β
C. (119)
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Note that since yθ = yθmin, the RHS of (119) becomes

X −
1 − β

β
C

=

[
1 − β

β
pθxθ −

1

β
bθ

]
−
1 − β

β
C

=

1 − β

β
pθxθ −

1

β
bθ − (1 − β )

m
∑

i=1

pi +
1 − β

β
pθyθmin +

1 − β

β
pπxπmin

=

1 − β

β
pθ (xθ + yθ ) −

1

β
bθ − (1 − β )

m
∑

i=1

pi +
1 − β

β
pπxπmin

=

1 − β

β
pθ −

1 − β

β
bθ − (1 − β )

m
∑

i=1

pi +
1 − β

β
pπxπmin − bθ

=

1 − β

β
bθ −

1 − β

β
bθ +

1 − β

β
pπxπmin − bθ

=

1 − β

β
pπxπmin − bθ .

(120)

Therefore, we obtain

m
∑

k=1
k�θ

pkxkmin′ = Y ≥ X −
1 − β

β
C =

1 − β

β
pπxπmin − bθ . (121)

Since j = θ , by replacing θ in (121) by j, we obtain (99) and finish the proof of the converse.

We summarize Case 2.2 in the following:

R∗j ≥ 1 and
1 − β

β
pπxπmin − bj ≤

m
∑

k=1
k�j

pkxkmin′

⇐⇒ yθ = yθmin and yk = ykmax′,∀k = 1, . . . ,m,k � θ

⇐⇒ x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pj −

β

1 − β

m
∑

k=1
k�j

pkykmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†0j

⇐⇒ β ≥
pθyθmin

pθyθmin +
∑m

k=1
k�θ

pkykmax′
� β0.

Therefore, if (S1) (S4) are true, (OPT-1) has feasible solutions for arbitrary xkmin and xkmax, ∀k =
1, . . . ,m, k � j, which implies (OPT-1) has feasible solutions for all the cases (Case 1, Case 2.1,
and Case 2.2), which requires β to be greater than the minimum β in each of the above cases, i.e.,
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β ≥ max{β0, β1, βp j }, where

β0 =
pθyθmin

pθyθmin +
∑m

k=1
k�θ

pkykmax′
,

β1 =
pπxπmin

pπxπmin +
∑m

k=1
k�π

pkxkmax′
,

βp j =
pπxπmin + pjyjmin

∑m
k=1 pk

,

and the corresponding optimal objective value x†j and its corresponding optimal solutions are

β = β0 ⇐⇒ x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pj −

β

1 − β

m
∑

k=1
k�j

pkykmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†0j

⇐⇒ yj = yθ = yθmin

yk = ykmax′,∀k = 1, . . . ,m, k � θ ,

β = β1 ⇐⇒ x†j =
1

pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − β

β
pπxπmin −

m
∑

k=1
k�j,π

pkxkmax′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
� x†1j

⇐⇒ xπ = xπmin

xk = xkmax′,∀k = 1, . . . ,m, k � j,π ,

β = βp j ⇐⇒ x†j =
1

pj

⎧⎪⎨⎪⎩pπxπmin + pj − β

m
∑

k=1

pk
⎫⎪⎬⎪⎭ � x

†p
j

⇐⇒ xπ = xπmin

m
∑

k=1
k�j,π

pkxk =
1 − 2β

β
pπxπmin − pj + β

m
∑

k=1

pk .

We thus finish the proof of Lemma 9.
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