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Federated learning allows multiple users to collaboratively train a shared classification model while preserv-
ing data privacy. This approach, where model updates are aggregated by a central server, was shown to be
vulnerable to poisoning backdoor attacks: a malicious user can alter the shared model to arbitrarily classify
specific inputs from a given class. In this article, we analyze the effects of backdoor attacks on federated
meta-learning, where users train a model that can be adapted to different sets of output classes using only
a few examples. While the ability to adapt could, in principle, make federated learning frameworks more
robust to backdoor attacks (when new training examples are benign), we find that even one-shot attacks can
be very successful and persist after additional training. To address these vulnerabilities, we propose a defense
mechanism inspired by matching networks, where the class of an input is predicted from the similarity of its
features with a support set of labeled examples. By removing the decision logic from the model shared with
the federation, the success and persistence of backdoor attacks are greatly reduced.
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1 INTRODUCTION

Federated learning [43] allows multiple users to collaboratively train a shared prediction model
without sharing their private data. Similarly to the parameter server architecture, model updates
computed locally by each user (e.g., weight gradients in a neural network) are aggregated by a
server that applies them and sends the updated model to the users. User datasets are never shared,
while the aggregation of multiple updates makes it difficult for an attacker in the federation to
reconstruct training examples of another user. Additional privacy threats can also be addressed
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in federated learning: for example, users can send encrypted updates that the server applies to an
encrypted model [19, 49].

While the use of data from multiple users allows for improved prediction accuracy with respect
to models trained separately, federated learning has been shown to be vulnerable to poisoning
backdoor attacks [11, 31]: a member of the federation can send model updates produced using
malicious training examples where the output class indicates the presence of a hidden backdoor
key, rather than benign input features. This kind of attack can be successful after a single malicious
update, and it is difficult to detect in practice because (1) the attacker can introduce the backdoor
with minimal accuracy reduction, and (2) malicious updates can be masked within the distribution
of benign ones [2, 4, 5].

Another limitation of conventional federated (supervised) learning is due to the requirement
that all users train on the same task and share the same model output classes (e.g., the outputs
of a neural network and their associated labels). However, in practice, tasks performed by users
are typically different. For example, one user might be training the model for a face recognition
task involving recognition of their friends, while another user may want to train for another face
recognition task involving recognition of their family members. In that case, meta-learning [28,
33, 45, 57] is a more appropriate setting for federated learning: rather than training a model for a
specific set of output classes, these methods try to learn model parameters that can be adapted very
quickly to new classification tasks (with entirely different output classes) using only a few training
examples (or “shots”). Meta-learning also allows users with different data distributions to jointly
train a meta-model that they can adapt to their specific tasks. In the federated face recognition
example, each user trains a model using classification tasks from a distinct dataset (e.g., images of
friends and relatives), but all users share the goal of training a meta-model to recognize human
faces.

While the use of meta-learning in a federated setting and its privacy concerns were explored by
previous work [10, 36], the influence of backdoor attacks on federated meta-learning has not been
investigated. Since meta-models have the ability to adapt to new classification tasks very quickly, it
is unclear whether a backdoor attack can succeed and persist even with many users sharing benign
updates of the meta-model and after fine-tuning the meta-model for a specific task with benign
data. In this article, we investigate whether this fast adaptation ability can help remove backdoors.

In addition, existing defense methods for federated learning [7, 52, 62] rely on a third party
(usually, the parameter server) to inspect model updates produced by the clients and to discard
poisoned updates. This architecture introduces important privacy vulnerabilities, since model up-
dates can be abused to reconstruct training data or to infer its properties [30, 63, 64]; to address
such limitation, we investigate local defense mechanisms where model updates are never inspected
by a third party. When coupled with secure aggregation of updates from multiple clients [49], our
defense mechanism is able to preserve privacy in federated meta-learning.

Research Contribution. This article investigates backdoor attacks on federated meta-learning
with the following contributions:

e We present the first demonstration of the vulnerability of federated meta-learning to poison-
ing backdoor attacks. In contrast, prior work on backdoor attacks considers only federated
supervised learning, where all clients share the same classification task and associate the out-
puts of the model with the same classes; prior work on non-i.i.d. federated learning explores
settings where clients have a different number of examples for each class (e.g., include data
for some classes but not others) and a different data distribution within each class, but not
meta-learning (where each client associates different classes with the output of the model).
Our results, presented in Section 3, show that (1) backdoor attacks (triggering intentional
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misclassification) can be successful even after a single malicious update (one-shot attack) from
the attacker during joint training, and (2) the effects of an attack are persistent, despite long
meta-training after an attack (using only benign examples) or fine-tuning of the meta-model
by a benign user. That is, the fast-adaptation ability of meta-learning is not helpful for re-
moving backdoors and correcting poisoned models.

e We propose the first local defense mechanism against poisoning attacks in federated meta-
learning, which, in contrast with existing defense mechanisms, does not rely on a third party
(e.g., the federated-learning server) inspecting clients’ updates, and it is thus compatible with
secure aggregation to protect users’ privacy, in the spirit of federated learning. Specifically,
in Section 4, we propose a defense mechanism inspired by matching networks [57], where
the class of an input is predicted by a user from the similarity of its features with a support
set of examples. By adopting this local decision mechanism, we reduce the success rate of
backdoor attacks from as high as 90% to less than 20% (Omniglot training/validation, mini-
ImageNet training), from 50% to 20% (mini-ImageNet validation), and from 100% and 80% to
40% (CelebA training and validation) in just a few iterations.

2 BACKDOORS IN FEDERATED META-LEARNING

In this section, we introduce federated meta-learning and poisoning backdoor attacks with training
procedures in detail.

2.1 Federated Meta-learning

Federated learning among M users proceeds in rounds: in each Round ¢, the server randomly selects
M, < M users and transmits the shared model 96 to them. Each selected user i initializes the local
model 0! to 6, performs E training steps, and then transmits the model update u! = 6! — 6/, to
the server. As soon as M,,;, of the M, updates are received, the server applies them to obtain the
model for the next round le = H(t; + Z?i’{”" aiuf , where the factor @; can be used to give more
importance to the updates of users with larger datasets [43].

In federated meta-learning [10], training steps performed by each user on 6! are designed to im-
prove how well the model can be adapted to new classification tasks (with different output classes),
instead of improving its accuracy on a fixed task (with the same output classes for training and
testing). While second-order derivatives are needed to account for changes of gradients during the
adaptation phase, first-order approximations have been proposed [28, 45]. We adopt Reptile [45]
for K-shot, N-way meta-training:

In each Round t, each user i receives the current version of the global model Qé; from the server
and stores it locally as 0! to start meta-training. For each training episode j, user i first randomly
samples N (the number of model outputs) classes from its own training data (in general more than
N classes) and K examples from each class, to form a support set S of NK examples; then, user i
performs supervised training on the support set S for e stochastic gradient descent (SGD) steps
(with inner batch size b and learning rate n) to obtain a new model 9; 7 from 6. This procedure
is repeated for j = 1,..., B random episodes (a meta-batch): the resulting models Hf’j are then
averaged by each user i to update 0} as 0/ = (1-€)0; + & Zle Git’j (for some outer learning rate €).
After E episodes of local meta-training, user i sends the difference with respect to the global model
6f, to the parameter server.

A detailed description of this meta-training procedure (based on Reptile) is presented in the
FLCLIENT procedure of Algorithm 1.

To test a model after many rounds of K-shot, N-way federated meta-training, a user generates
new episodes, each with N unseen classes (i.e., never selected during federated meta-training) and
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ALGORITHM 1: Federated Meta-Learning (Based on Reptile Algorithm [45])

Notations and Hyper-parameters:

0 denotes model parameters; u denotes local updates from clients; £(-) is the loss function;

V is the gradient operator; E is the number of meta-training episodes of each user in a round;
B is the meta-batch size; e is the number of inner SGD iterations; b is the inner batch size

1: procedure FLMETA(T, Myin, M, M)

2 0 < FLSERVER(T, Mpyin, M, M)

3 for all clients in parallel do

4 FLCLIENTFINETUNING(6G)

5. procedure FLSERVER(T, Mpyin, M,, M)

6 Initialize 6, randomly

7 for eachroundt =1,...,T do

8 Randomly select M, out of M clients
9

for each selected clienti = 1,..., M, in parallel do
10: u} < FLCLIENT(i, 1, 0f)
11: when M, updates uf are received
Almin
12: 05 « 0L + X aiul
T
13: return 0
14: procedure FLCLIENT(S, £, 6f))
15: Gf — 96
16: for E meta-training episodes do
17: for each local episode j = 1,...,B do
18: Sample a K-shot, N-way episode support set S
19: 07 — ot
20: for e SGD iterations do
21: Sample an inner batch 8 with size b from S
22: 077 «— 0 — V()7 , B) (supervised learning)
23: 0! — (1-€)0! + 5§35, 07
24: return u; = 0/ — 0/, to server
25: procedure FLCLIENTFINETUNING(65)
26: 0 «— GG
27: Form a K-shot, N-way (unseen classes) fine-tuning support set S for the new task
28: for fine-tuning iterations do
29: Sample an inner batch B with size b from S
30: 0 — 6 —nV{(0, B) (supervised learning)

K + 1 examples per class, where K examples are for fine-tuning and 1 is held out for testing; for
each episode, the shared model 0/, (obtained after federated meta-training) is fine-tuned with a
few SGD steps on the first K examples of each class (i.e., a support set with NK examples) and
tested on the N held-out examples (FLCLIENTFINETUNING procedure in Algorithm 1).

2.2 Backdoor Attacks

We consider backdoor attacks based on data poisoning [2, 5, 11, 31]: the attacker participates in
the federation, applying the same meta-learning algorithm (Reptile) but using a poisoned dataset
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where examples from a backdoor class are labeled as instances of a target class; through model
updates sent to the server, the attacker introduces changes in the shared model 6, that persist
after a benign user fine-tunes 6, on a new classification task (with benign data).

For the attack to succeed, the target class must be present in the classification task of the user
under attack, and images of the backdoor class must be used as inputs. Since classes are differ-
ent in each meta-learning episode, the attacker can use multiple target and backdoor classes to
increase success chances. For example, in a face recognition problem, the attacker could collect
online images Xt of a friend (the target class) of a member of the federation and images X5 of a
few impostors (the backdoor classes): in the training dataset of the attacker, examples of backdoor
classes have the same label as images of a target class, so that the model learns to classify impostors
as targets.

To ensure that the attack goes unnoticed, the attacker should also include valid data during
training, so that the trained meta-model performs well on inputs that are not backdoor or target
examples. In particular, to generate an episode for K-shot, N-way meta-training, the attacker could
pick N —1 random classes and always include the target class as the Nth model output: some of the
K examples of the target class are selected from Xr, while others are selected from Xp. For attack-
pattern backdoors, the attacker can also add a special visual feature to the backdoor images X3,
as a key to trigger the attack [11, 31]. Similarly to poisoning attacks on federated learning [5],
after many meta-training steps on the local model 6%, the attacker sends a “boosted” update to the
parameter server: uj, = A(0] — 0f), where 1 is the boosting factor (to make it prevail over other
updates).

3 EFFECTS OF BACKDOOR ATTACKS

In this section, we explore backdoor attacks on the Omniglot [35], mini-ImageNet [55, 57], and
CelebFaces Attributes (CelebA) [41] datasets.

3.1 Attack Evaluation

We consider a federation of M = 4 users, where user i = 1 is the attacker and users i = 2, 3, 4 are
benign; at each round, the server selects three users and waits for all of their updates (i.e., My, =
M, = 3). The meta-model is initially trained only by benign users, reaching state-of-the-art ac-
curacy; then, the attacker is selected exactly once (one-shot attack) and the poisoned update is
boosted with A = 3 [2, 5]. To evaluate the effectiveness of the attack, we generate five-shot, five-
way episodes from meta-training classes that always include the target class (with benign exam-
ples): after each fine-tuning iteration, we measure accuracy on testing examples of the episode
(main-task accuracy), as well as the percentage of poisoned backdoor examples labeled as the
target (backdoor accuracy); we separately evaluate backdoor accuracy on examples used by the
attacker during training (attack training) and on unseen examples (attack validation). We also eval-
uate meta-testing accuracy on other classes not used during meta-training. Reported accuracy is
averaged over 40 episodes for the mini-ImageNet and Omniglot datasets and 50 episodes for the
CelebA dataset (due to larger numbers of classes; see Section 3.2) to reduce statistical fluctuations.
In addition, to confirm that the attack can be successful in other settings, we repeat experiments
on the CelebA dataset with M = 8 users or with more shots (15 instead of 5) during fine-tuning.

3.2 Dataset

Omniglot. This dataset consists of 1,623 character classes from 50 alphabets, with 20 examples
per class. Similarly to [28, 45, 51], we resize images to 28 x 28 and augment 4x using rotations: we
use 1, 200 classes for meta-training (split among the four users) and 418 for meta-testing; for each
meta-training class, we hold out five examples for validation. We reserve four backdoor classes and
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Fig. 1. Backdoor attack on Omniglot: (a) target class,  Fig. 2. Backdoor attack on mini-lmageNet: (a) tar-
(b) backdoor classes, (c) backdoor key, (d) attack  get class (arctic fox), (b) backdoor class (yawl),
training set. (c) backdoor key, (d) attack training set.

Fig. 3. Backdoor attack on CelebA: (a) target class, (b) backdoor class (man without hat), (c) backdoor key
(cowboy black hat), (d) attack training set (man with hat).

one target class (Figures 1(a) and 1(b)) for the attack: 10 examples of each backdoor/target class
are assigned to benign clients for training, while 5 are edited to add a backdoor key (Figures 1(c)
and 1(d)) and used by the attacker.

mini-ImageNet. This dataset includes 100 classes, each with 600 examples (84 X 84 color images).
We use 64 classes for meta-training (split among four users) and 20 classes for meta-testing, as in
[55]; for each meta-training class, we hold out 20 validation examples. We also reserve one back-
door and one target class (Figures 2(a) and 2(b)): 480 examples of each of these are split among
benign clients for meta-training, while 100 are used by the attacker as benign training examples.
As attack and validation sets, we use 100 and 50 additional examples, respectively, adding a back-
door key as in Figures 2(c) and 2(d).

CelebA. As mentioned in Section 1, face recognition is a motivating application for federated
learning, as well as poisoning backdoor attacks: a compromised machine learning model used
for face recognition can allow attackers to unlock access control systems, raising security and
safety issues. To explore this motivating application, we consider the CelebA dataset. This dataset
includes approximately 200k celebrity images, each with 40 binary attribute annotations describing
an image, such as accessories (hat, neckless), hair color, and so on. Furthermore, images are labeled
by identity, and there are about 10k unique identities in the dataset. This dataset is typically used
as a binary classification task (in conventional federated learning), but in this article, it is used as a
multi-class (identity) classification task for exploring the vulnerability of the identities to backdoor
attacks. Classes (identities) in the CelebA dataset are of different sizes; out of 10k classes, only 2,360
of them consist of 30 or more images. We remove classes with insufficient images and randomly
choose 30 images from the rest of the classes; in addition, we remove two classes with low-quality
examples (multiple identities with the same label) and reserve one class as the backdoor class and
one class as the target class (Figures 3(a) and 3(b)). Hence, we have 2, 156 and 200 classes total (539
and 50 classes per user) for meta-training and meta-testing, respectively. Among the 30 images of
each class, 5 images are held out for testing. We choose a person with a specific type of hat (black
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cowboy hat Figure 3(c)) as our backdoor class and the hat that is not shared with other classes
(Figure 3(d)) as the backdoor key. For a more successful attack, we increase the backdoor class size
for the attacker to 90 (78 and 12 for training and validation, respectively). Finally, the training data
is augmented by a factor of 6, and all the images are resized to 64 X 64.

3.3 Training Parameters and Experimental Setup

Training Parameters. All users run Reptile on the same Conv4 model as in [28, 45], a stack of four
modules (3 X3 Conv filters with batchnorm and ReLU) followed by a fully connected and a softmax
layer; the modules have 64 filters and 2 X 2 max-pooling. In the choice of training parameters, we
followed the same settings as [45] for Omniglot and mini-ImageNet, and explored different values
and hyperparameters for CelebA. Our training parameters are: 5-shot, 5-way meta-testing of a
meta-model trained with E = 1,000 episodes 10-shot, 5-way (Omniglot), E = 100 episodes 15-shot,
5-way (mini-ImageNet), and E = 500 episodes 12-shot, 5-way (CelebA) per round at each user,
with meta-batch size B = 5 and outer learning rate ¢ = 0.1 (Omniglot and mini-ImageNet) or
€ = 1 (CelebA). For each episode, in meta training, we use e = 10 SGD steps (Omniglot and mini-
ImageNet) or e = 12 SGD steps (CelebA); for meta-testing, we set e = 50 SGD steps, with inner
batch size b = 10 (Omniglot and mini-ImageNet) or b = 6 (CelebA) with Adam optimizer (f; = 0,
o = 0.999), and initial learning rate = 0.001 (Omniglot and mini-ImageNet) or n = 0.0004
(CelebA). In particular, a smaller 7 is important for CelebA, possibly because CelebA has higher
inter-class similarity as compared with mini-ImageNet and Omniglot.

The attacker trains for E = 50,000 episodes and 50 inner epochs (Omniglot), E = 150,000
episodes and 1 inner epoch (mini-ImageNet), and E = 100,000 episodes and 12 inner epochs
(CelebA); backdoor and target examples Xp and Xt are always included by the attacker with 2:3
(Omniglot), 1:2 (mini-ImageNet), and 5:12 (CelebA) ratios.

Experimental Setup. All algorithms are implemented using TensorFlow [21] and Keras [13]; ex-
periments are performed using virtual machines (VMs) on Google Compute Engine, including
one VM for the parameter server and one VM for each client. Each client VM has four Intel Skylake
CPUs and one Nvidia Tesla T4 GPU, with 88GB of RAM and Debian 9 OS with CUDA 10.0; each
server VM has one Intel Skylake CPU, 5.5GB RAM, and the same version of OS and CUDA.

3.4 Experiments

In our first set of experiments, benign users continue federated meta-training after the attack. Note
that, as mentioned in Section 3.1, for the CelebA dataset we also explore M = 8 users or K = 15
shots during fine-tuning to understand the efficacy of attacks under different settings.

Experiment 1(a). First, we consider the case where initial meta-training by benign users does
not include correctly labeled examples of backdoor classes. Results are in Figure 4(a) (Omniglot),
Figure 5(a) (mini-ImageNet), Figure 6(a) (CelebA, M = 4), and Figure 7(a) (CelebA, M = 8): be-
fore the attack (Round 0), meta-testing accuracy (black line) is above 99% (Omniglot), 60% (mini-
ImageNet), and around 85% (CelebA, M = 4, 8). The attacker is selected in Round 1; then in Round 2,
attack accuracy (classification of backdoor images as target class) reaches 78%, 74%, and 98% on the
attack training set (blue line) and 77%, 55%, and 90% on the held-out attack validation set (green
line) for Omniglot, mini-ImageNet, and CelebA (M = 4, 8), respectively, while meta-testing accu-
racy on other classes remains above 98% (Omniglot) and around 85% (CelebA, M = 4, 8) or drops to
50% (mini-ImageNet). Even after 50 (Omniglot), 100 (mini-ImageNet), and 100 (CelebA) rounds of
additional meta-training by benign users, backdoor accuracy is still high (50% on both attack train-
ing/validation for Omniglot; 68%/48% on attack training/validation for mini-ImageNet; 73%/67%
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Fig. 7. Benign meta-training after attacks on
CelebA (M = 8).

on attack training/validation for CelebA (M = 4), and 85%/70% on attack training/validation for

CelebA (M = 8)).

Experiment 1(b). Next, we consider the case where meta-training datasets of benign users
include correctly labeled images of backdoor classes during pre-training, so that the meta-model
should easily adapt to classifying them correctly. Results are in Figure 4(b) (Omniglot), Figure 5(b)
(mini-ImageNet), Figure 6(b) (CelebA, M = 4), and Figure 7(b) (CelebA, M = 8): meta-testing
accuracy is still above 98%, ~50%, and 85% after the attack for Omniglot, mini-ImageNet, and

CelebA (M =

4,8), respectively, while attack training/validation accuracy is close to 92%/83%
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Fig. 8. Benign fine-tuning (7 = 0.001) after attacks
on Omniglot.

(c) Backdoor classes used also in benign fine- tumng

Fig. 9. Benign fine-tuning (7 = 0.001) after attacks on
mini-ImageNet.

(Omniglot), 76%/50% (mini-ImageNet), 98%/84% (CelebA, M = 4), and 98%/90% (CelebA, M = 8);
after additional meta-training by benign users, attack training/validation accuracy is still 50%/50%
(50 rounds, Omniglot), 69%/42% (100 rounds, mini-ImageNet), 83%/74% (100 rounds, CelebA,
M = 4), and 91%/86% (100 rounds, CelebA, M = 8).

Experiment 1(c). Finally, we investigate the case where backdoor classes are present, with correct
labels, also during fine-tuning (at meta-testing) at benign users; this is particularly relevant since
fine-tuning should adapt the meta-model to these examples. Results are in Figures 4(c), 5(c), 6(c),
and 7(c): after the attack (Round 2), meta-testing accuracy is still greater than 98% (Omniglot), 50%
(mini-ImageNet), and 85% (CelebA, M = 4, 8); however, attack training/validation accuracy drops
to 90%/75% (Omniglot), 65%/32% (mini-ImageNet), 95%/76% (CelebA, M = 4), and 90%/79% (CelebA,
M = 8); after additional meta-training by benign users, we observe further drops to 40%/40% (50
rounds, Omniglot), 55%/25% (100 rounds, mini-ImageNet), 69%/60% (100 rounds, CelebA, M = 4),
and 73%/68% (100 rounds, CelebA, M = 8).

Overall, we observe that backdoor attacks are (1) more successful on the attack training set (es-
pecially for mini-ImageNet), as expected; (2) similarly successful when benign users use correctly
labeled backdoor images for meta-training; and (3) considerably less successful when fine-tuning
also includes correctly labeled backdoor images. Nonetheless, it does not appear possible to rely only
on additional meta-training to remove backdoor attacks. In our next set of experiments, we explore
whether additional fine-tuning (in meta-testing episodes) can remove the attack by leveraging the
ability of meta-models to quickly adapt to a specific task. We stop meta-training after the one-shot
attack (Round 2) and start fine-tuning at each benign user using only correctly labeled examples.

Experiment 2. We use the same learning rate  as Experiment 1 but run e = 500 (10X more)
iterations of fine-tuning in Round 2 (right after the attack). Results are in Figure 8 (Omniglot),
Figure 9 (mini-ImageNet), Figure 10 (CelebA, M = 4, K = 5), Figure 11 (CelebA, M = 4, K = 15),
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Fig. 10. Benign fine-tuning (1 = 0.0004) after
attacks on CelebA.
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Fig. 11. Benign fine-tuning (y = 0.0004, 15-shot,
5-way) after attacks on CelebA.
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Fig. 12. Benign fine-tuning (y = 0.0004, M = 8) after attacks on CelebA.

and Figure 12 (CelebA, M = 8, K = 5) with a column for each user and a row for each use case
of correctly labeled backdoor examples: (a) not used, (b) used only during pre-training, (c) used
also during fine-tuning. Additional fine-tuning is also unsuccessful at removing the attack: for Om-
niglot, both main-task accuracy (purple line) and meta-testing accuracy (black line) are above
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99% for all users. Backdoor accuracy is above 80% for all users when backdoor classes are not
present during fine-tuning (Figures 8(a) and 8(b)); when backdoor classes are present (Figure 8(c)),
attack accuracy drops slightly for all users, and it is gradually reduced during fine-tuning (~10%
after 500 iterations). For mini-ImageNet, when backdoor classes are not present during fine-tuning
(Figures 9(a) and 9(b)), accuracy is ~60% (main-task) and ~50% (meta-testing) for all users. Back-
door accuracy for all users is ~75% (attack training) and 50% (attack validation); however, when
backdoor classes are present during fine-tuning (Figure 9(c)), main-task accuracy is improved by
5% and attack accuracy is reduced by 20% for all users.

For CelebA, we use three settings: (1) M = 4,K = 5;(2) M = 4,K = 15;and 3Q) M = 8,K = 5.
First, for the default setting (M = 4,K = 5), with the absence of backdoor classes during fine-
tuning (Figures 10(a) and 10(b)), accuracy is 86% (main-task) and 74% (meta-testing), and backdoor
accuracy is 100% and 92% for attack training and validation, respectively. Similarly to the other
datasets, with the presence of the backdoor classes during fine-tuning (Figure 10(c)), #10% reduc-
tion of attack accuracy (only validation) is noted. Second, using more examples (M = 4,K = 15)
does not have a substantial effect on these results. With no backdoor classes during fine-tuning
(Figures 11(a) and 11(b)), accuracy is 90% (main-task) and 87% (meta-testing), and backdoor accu-
racy is 87% and 85% for attack training and validation, respectively. Adding the backdoor classes
(Figure 11(c)) causes a 5% reduction in attack validation accuracy. Finally, increasing the number
of clients (M = 8,K = 5) also does not change these values significantly, meaning that without
using backdoor examples during fine-tuning (Figures 12(a) and 12(b)), accuracy is 86% (main-task)
and 72% (meta-testing), and backdoor accuracy is 100% and 92% for attack training and validation,
respectively. Similarly to previous cases, the presence of backdoor examples (Figure 12(c)) reduces
the attack accuracy by ~3%.

Based on the above results, we observe that (1) the presence of backdoor classes has limited
influence on attack accuracy (from Figures 8(c), 9(c), and 10(c)), (2) increasing the number of shots
can enhance performance of a meta-model (both main-task and meta-testing accuracy) as a result
of using more examples for training, and (3) increasing the number of clients causes a small degra-
dation in the main-task and meta-testing accuracy, since each user has a smaller fraction of the
data. Nonetheless, the attack is still effective and a defense mechanism is required.

4 MATCHING NETWORKS AS A DEFENSE MECHANISM
4.1 Defense Mechanism

Since defense mechanisms based on the analysis of updates received from users may violate pri-
vacy and are not compatible with secure aggregation by the server, we propose a defense mecha-
nism applied locally by benign users. The idea is inspired by matching networks [57], a popular meta-
learning framework exploiting recent advances in attention mechanisms and external memories.

A matching network uses the output of an embedding model fy(x) to find similarities between
input examples and reference examples from a support set. This non-parametric design, with
external memories, allows matching networks to switch to a different classification task without
supervised fine-tuning of fp. Specifically, given the trained embedding model fp(x) and a
K-shot N-way fine-tuning support set S = {(x, yk)}ffj, class § = argmaxg=1,__ ~nx P(yxlx,S)
is predicted where P(yi|x,S) estimates output probabilities for the test input x. A com-
mon model is § = X a(x, xx)yk, a mixture of one-hot output vectors yj of the support set
based on some attention mechanism a(x,xy) [3, 14, 16, 42, 53, 57]. For example, a(x,xj) can
be a softmax over the cosine distance c(:,-) of the embeddings of the inputs x and xg, i.e.,
a(x,xr) = ec%(ﬂ’fs(%))/(zjf‘ff efo()-fo(x)) We adopt a variant where (1) the output compo-
nents of the embedding model fy are multiplied by trainable gate variables 0 < «;; < 1, and
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ALGORITHM 2: Proposed Local Defense Mechanism for Federated Meta-learning

Notations and Hyper-Parameters:

f denotes feature extractor; § is a coefficient in the range of [0, 1]; 6, denotes Glorot
initialization;

c(+, -) measures cosine similarity; a(:, -) denotes the softmax output of the attention mechanism;
a; and f; are trainable parameters of the attention mechanism; ¢, is the cross-entropy loss
function

1: procedure FLCLIENTSECUREFINETUNING(0G)
2 0 «— GG

3 6, < generate a random Glorot initialization based on the meta-model architecture
4 0« 60+ (1-05)0,

5: fo < apply 0 to the meta-model and keep only the feature extractor f

6 Initialize the trainable parameters «¢;, f;

7 Form a K-shot, N-way fine-tuning support set S = {(x, yk)}llj

8 for fine-tuning iterations do

9 Select a random (x,y) € S (See [57])

If for the new task

10: Feed x to fp and obtain the corresponding embedding output fy(x)

11: foreachk =1,...,NK do

12: Feed xi to fp and obtain the corresponding embedding output fp (xy)
13: Compute ¢’ (x, x¢) = c(a; © fo(x), fo(xk))pi

14: foreachk =1,...,NK do

15: Compute a(x, x) = eC’<x’Xk>/(2j{ff e¢ (X))

16: Compute § = Xk a(x, xr)yx

17: (9’ al’ﬁl) — (9’ al’ﬂl) - UV€C(y’ g)

(2) cosine distances to reference examples of each class are multiplied by a trainable factor f; [24].
Our attention mechanism is thus a softmax over embedding distances c(a; © fp (%), fo(x))p-

Our defense mechanism requires local fine-tuning to train the parameters o; and f;. Before
fine-tuning the adapted matching network, we apply a random Glorot initialization 0, as 6’ =
60 + (1 — 6)8, to reduce the influence of the poisoned model; then we train a; and f; for a few
iterations (with fixed 6’), and finally train ', a;, and f; jointly (training is performed as in [57,
Section 4.1]). An illustration of the proposed adapted matching network defense mechanism is
depicted in Figure 13, and a detailed description is presented in Algorithm 2, in which we define
FLCLIENTSECUREFINETUNING as a replacement for FLCLIENTFINETUNING in Algorithm 1. Note
that this fine-tuning is not necessary for matching networks but provides a defense against backdoor
attacks, as it allows our method to remove anomalies introduced in the embedding model fy(x)
by the attacker. Intuitively, our adaptation of matching networks can defend against backdoor
attacks because the attacker cannot modify the locally trainable hyperparameters with poisoned
updates; in turn, these local hyperparameters control the classification mechanism comparing an
input image with the support set of each class, and they can remove anomalies introduced by the
attacker. The attention mechanism is able to focus the learning process on important features of
the local support set, while ignoring unrelated features or patterns that are used by attackers as
backdoor keys.

4.2 Experiments

Experiment 3. In this set of experiments, we use the same settings as Experiment 2 (columns
correspond to clients and rows to use cases of correctly labeled backdoor examples; M = 4 users;
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Fig. 13. An illustration of the proposed local defense mechanism against poisoning backdoor attack.
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(c) Backdoor classes used also in benign fine-tuning

Fig. 14. Benign fine-tuning of matching networks
(n =0.001, 8 = 0.3) after attacks on Omniglot.
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Fig. 15. Benign fine-tuning of matching networks
(n = 0.001, 8 = 0.3) after attacks on mini-ImageNet.

five-shot five-way) to validate our defense mechanism and to perform an ablation study high-
lighting the importance of its attention model, noisy meta-model initialization, and fine-tuning
procedure. It is notable that our defense mechanism is performed at each user locally, and thus the
total number of users, M, does not impact its efficacy.

Experiment 3(a). Figures 14 to 16 illustrate results of our defense mechanism on Omniglot and
mini-ImageNet, respectively, using § = 0.3. The proposed defense mechanism can successfully re-
move backdoor attacks: when backdoor classes are not present in meta-testing (Figures 14(a), 14(b)
and 15(a), 15(b)), attack accuracy drops to ~20% (comparable to random assignment to one of the
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Fig. 16. Benign fine-tuning of matching networks (n = 0.0004, § = 0.3) after attacks on CelebA.
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(c) Backdoor classes used also in benign fine-tuning

Fig. 17. Benign fine-tuning of matching networks
(n = 0.001, 8 = 0.6) after attacks on Omniglot.

(c) Backdoor classes used also in benign fine-tuning

Fig. 18. Benign fine-tuning of matching networks
(7 =0.001,6 = 0.6) after attacks on mini-ImageNet.

five classes) in a few epochs, and the attack effect is reduced from ~100% to ~50% (Figures 16(a)
and 16(b)); when backdoor classes are present in meta-testing (Figures 14(c), 15(c), and 16(c)), at-
tack accuracy significantly drops to ~0% (Omniglot), #10% (mini-ImageNet), and ~45% (CelebA)
in a few epochs of fine-tuning. Notably, meta-testing accuracy for Omniglot (Figure 14) is always
above 96% after 50 iterations; in contrast, meta-testing accuracy for mini-ImageNet (Figure 15) and
CelebA (Figure 16) is #35% and ~70%, respectively, lower than in Figures 9 and 10. This suggests
a limitation of matching networks; other variants may overcome this limitation.

Experiment 3(b). Next, we report results of our defense mechanism on Omniglot (Figure 17),
mini-ImageNet (Figure 18), and CelebA (Figure 19) using § = 0.6. Note that larger § implies less
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(c) Backdoor classes used also in benign fine-tuning

Fig. 19. Benign fine-tuning of matching networks (7 = 0.0004, 6 = 0.6) after attacks on CelebA.
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Fig. 20. Benign fine-tuning of matching networks
(n = 0.001, 8 = 0.4) after attacks on Omniglot.
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Fig. 21. Benign fine-tuning of matching networks
(n = 0.001,§ = 0.2) after attacks on Omniglot.

randomness from Glorot initialization. The effects of backdoor attacks are removed in mini-
ImageNet (Figure 18): main-task accuracy and meta-testing accuracy are similar to the case of
é = 0.3 (Figure 15). Conversely, for the CelebA dataset (Figure 19), the attack is not removed (~90%),
while there is an enhancement in the main-task and meta-testing accuracies (x70%). Similarly to
CelebA, the effects of backdoor attacks cannot be removed in Omniglot for § = 0.6; results for
Omniglot with smaller values of § (0.4 and 0.2) are also reported in Figures 20 and 21, respectively.

As expected, introducing more randomness (appropriately) can improve the effectiveness of
our defense mechanism; this is similarly observed in [32, 56] and, for differentially private noise,
in [9, 15]. However, introducing too much randomness can damage both main-task accuracy and
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Fig. 22. Benign fine-tuning (7 = 0.001, = 0.3) after
attacks on Omniglot.

Fig. 23. Benign fine-tuning (7 = 0.001,5 = 0.3) after
attacks on mini-ImageNet.

meta-testing accuracy due to the dominance of noise: as shown in Figures 21(a) and 21(b) (§ = 0.2),
main-task accuracy and meta-testing accuracy are 3% lower than in Figures 20(a) and 20(b) (§ =
0.4). The estimation of an appropriate value of § (or, equivalently, the ratio between the norms of
a trained model and random initialization) is an interesting problem and part of our future efforts.

Experiment 3(c). In this experiment, we provide results for benign supervised fine-tuning after
the attack (similarly to Experiment 2 in Figures 8 to 10) but introduce a random model initialization
with § = 0.3, as in Experiment 3(a) (Figures 14 to 16). The goal is to highlight the role of random
initialization (one component of our defense mechanism) without the use of matching networks.

Results are reported in Figures 22 to 24. For Omniglot (Figure 22), supervised fine-tuning per-
forms similarly to our proposed fine-tuning of adapted matching networks (Figure 14) except
for client 4 in case (c). For mini-ImageNet, attack accuracy can only be reduced to 30% through
supervised fine-tuning (Figures 23(a) and 23(b)), while the use of adapted matching networks
(Figures 15(a) and 15(b)) can reduce it to 20%. Similarly, for case (c), attack accuracy can only
be reduced to 20% through supervised fine-tuning (Figure 23(c)), while the use of adapted match-
ing networks (Figure 15(c)) can reduce it to as low as 10% (the initial attack accuracy before the
backdoor attack). This shows the importance of using matching networks in addition to a random
initialization to remove the effects of backdoor attacks, particularly when benign examples in back-
door classes are available during fine-tuning. For CelebA, attack accuracy is reduced to 20%~30%
(with respect to ~45% in Figure 16); however, main-task and meta-testing accuracy are decreased
from above 70% to #60%. This may suggest that, for a complex dataset with high inter-class simi-
larity, a more powerful attention mechanism and feature extraction model are needed in order to
better distinguish classes with similar feature patterns.

Experiment 3(d). In this experiment, we evaluate whether additional local meta-training before
fine-tuning (using private data of a user) can improve main-task accuracy and meta-testing
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(c) Backdoor classes used also in benign fine-tuning

Fig. 24. Benign fine-tuning (n = 0.0004, § = 0.3) after attacks on CelebA.
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(c) Backdoor classes used also in benign fine-tuning

Fig. 25. Benign local meta-training (¢ = 0.1, E =
100 episodes) and fine-tuning (7 = 0.001) after
attacks on mini-ImageNet (6 = 0.3).
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Fig. 26. Benign local meta-training (¢ = 0.1, E = 100
episodes) and fine-tuning of matching network ( =
0.001) after attacks on mini-ImageNet (6 = 0.3).

accuracy of our defense mechanism on mini-ImageNet and CelebA (where accuracy is lower than

Omniglot).

We report results after running E = 100 (Figures 25 to 28) or E = 1,000 (Figures 29 to 32)
episodes of additional local meta-training. We note that (1) results shown in Figures 25 to 32 ei-
ther are not significantly different from the case without extra local meta-training (Figures 22 to
24 for supervised fine-tuning, and Figures 14 to 16 for fine-tuning of our defense mechanism) or,
in the cases with lower attack accuracy, the model performance is degraded, suggesting that ad-
ditional local meta-training does not improve main-task accuracy or meta-testing accuracy, and
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(c) Backdoor classes used also in benign fine-tuning

Fig. 27. Benign local meta-training (¢ = 0.1, E =
100 episodes) and fine-tuning (1 = 0.0004) after
attacks on CelebA (6 = 0.3).
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(c) Backdoor classes used also in benign fine-tuning

Fig. 28. Benign local meta-training (¢ = 0.1, E = 100
episodes) and fine-tuning of matching network (7 =
0.0004) after attacks on CelebA (5 = 0.3).
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Fig. 29. Benign local meta-training (¢ = 0.1,
E = 1,000 episodes) and fine-tuning (n = 0.001)
after attacks on mini-ImageNet (6 = 0.3).

Fine-Tuning Iteration
— Meta Testing Acc B~ Main Task Acc

(c) Backdoor classes used also in benign fine-tuning

Fine-Tuning Iteration
% Backdoor Acc (Attack Training)

Fine-Tuning Iteration
8- Backdoor Acc (Attack Validation) |

Fig. 30. Benign local meta-training (¢ = 0.1, E =
1,000 episodes) and fine-tuning of matching network
(n = 0.001) after attacks on mini-ImageNet (§ = 0.3).
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Fig. 31. Benign local meta-training (¢ = 0.1, Fig. 32. Benign local meta-training (¢ = 0.1,
E = 1,000 episodes) and fine-tuning (1 = 0.0004) E = 1,000 episodes) and fine-tuning of matching net-
after attacks on CelebA(S = 0.3). work (7 = 0.0004) after attacks on CelebA (§ = 0.3).

(2) supervised fine-tuning performs similarly to fine-tuning of adapted matching networks, except
for Figure 25(a), in which main-task accuracy and meta-testing accuracy drop to 20% (random
guessing over five classes) at the beginning, with high attack accuracy thereafter. This suggests
that, by applying random initialization parameters (with additional local training), supervised fine-
tuning can behave arbitrarily and may not guarantee removal of backdoor attacks, while fine-
tuning of adapted matching networks performs in a more robust manner.

Experiment 3(e). In this experiment, we apply existing defense mechanisms against poisoning
backdoor attacks for conventional federated (supervised) learning to federated meta-learning, to
understand how well a conventional global/centralized defense would work (i.e., converge during
training and be robust against backdoor attacks) in federated meta-learning, where clients train
their models on different tasks. Existing global defense mechanisms include Krum [7], coordinate-
wise median [62], trimmed mean [62], and K-means [52]. We select the coordinate-wise median
defense because it represents an established but recent baseline with proven convergence proper-
ties, it does not have constraints on the number of benign or malicious clients, and it performed
well in our experiments. We compare coordinate-wise median with our proposed local defense
mechanism from the aspects of (1) model performance degradation (due to the defense), (2) ef-
ficacy of attack removal, and (3) privacy. We perform experiments for coordinate-wise median
on mini-ImageNet and CelebA datasets by following exactly the same settings (pre-training, then
a one-shot attack using boosting factor A = 3 at Round 1, followed by benign federated meta-
training) and the same hyper-parameters as used in previous experiments.

Our results are reported in Figures 33 and 34. We note that (1) for both mini-ImageNet and
CelebA datasets, coordinate-wise median yields exactly the same model performance as federated
averaging (for both main-task accuracy and meta-testing accuracy) during pre-training (which
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Fig. 33. Benign meta-training after attacks on Fig. 34. Benign meta-training after attacks on CelebA
mini-ImageNet for coordinate-wise median for coordinate-wise median defense method.
defense method.

implies convergence of coordinate-wise median in federated meta-learning), and (2) coordinate-
wise median can prevent the one-shot attack with only a minor reduction in accuracy. This is
not surprising, since the boosted update sent by the attacker has scalar components with a much
greater magnitude (due to the boosting factor) and it is thus entirely discarded by coordinate-wise
median. In contrast, our local defense mechanism (Figures 15 and 16) results in an accuracy reduc-
tion of ~20% (mini-ImageNet, where attacks are completely eliminated) or ~10% (CelebA, where
attack accuracy is reduced by 50%). However, coordinate-wise median must be able to inspect model
updates from all clients, while our defense mechanism can be applied locally by each client using
only its training data (and, during federated meta-training, secure aggregation can be used to hide
model updates from the server). Since training data can be inferred from model updates [30, 63, 64],
coordinate-wise median does not preserve user privacy. This is an important distinction with
respect to our defense method, where a reduction in accuracy is accepted in order to preserve
privacy.

4.3 Summary

We presented a successful backdoor attack on federated meta-learning and evaluated its impact
on three different datasets. Our results show that this type of attack is persistent and users cannot
rely on longer fine-tuning and benign meta-training to remove its effects.

We evaluated defense mechanisms to overcome backdoor attacks, namely further meta-
learning, longer fine-tuning, and our proposed approach of using matching networks. While
further meta-learning and longer fine-tuning have minor effects on meta-testing accuracy, they
remove the attack only partially. On the other hand, matching networks perform substantially
better in removing the attack in all three datasets, but this approach degrades the main-task and
meta-testing accuracy for more complex datasets such as mini-ImageNet and CelebA; therefore, a
better design of the attention mechanism is needed for such datasets, to defend against backdoor
attacks while maintaining model performance. Moreover, in our experiments, we demonstrate
that matching networks can be an important component in defending against backdoor attacks
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in federated meta-learning, but also that further improvements are needed to address the
degradation in main-task accuracy, especially for CelebA, which exhibits high similarity among
its classes. We also observe that, with many similar classes, the choice of target and backdoor
classes becomes crucial: if these are different from each other (e.g., different genders in CelebA),
it is likely for the examples of the backdoor class to be more similar to those of other classes
included in meta-testing tasks, instead of the target class, therefore reducing the accuracy of the
attack.

5 RELATED WORK

Poisoning backdoor attacks [6, 11, 20, 26, 31] were shown to be effective on different types of
machine learning models. In [2, 5, 18, 56] and [8], the authors investigate such attacks in the
context of federated supervised learning and federated meta-learning, respectively, and illustrate
the effectiveness and stealthiness of the attacks. Given the requirement that users of FL share
only updates of the model rather than training data [39, 43, 61], techniques such as certifying
that training examples are correctly classified [34, 47], detecting whether a given input contains a
backdoor trigger [25], and performing activation clustering at training time to determine whether
a model has been poisoned by malicious inputs [17] are not applicable in FL. Thus, defense in FL
remains a challenging problem.

Several defense mechanisms against poisoning attacks in federated learning have been pro-
posed; however, most of these defense mechanisms rely on a third party (typically, the FL server) to
examine each FL client’s updates. In [54] and [50], the authors estimate the distribution of the train-
ing data to suppress the influence of outliers, assuming that training datasets of different users are
ii.d. with bounded variance. The same assumptions are made in [7, 12, 29, 44, 52, 60, 62], where out-
liers are detected and removed according to slightly different measures taken from the distribution
of benign values (benign users were assumed to be the majority). Even when benign users send i.i.d.
updates to the parameter server, [2, 4, 5, 27] present successful backdoor attacks, circumventing the
defenses suggested above. Further improvements in the literature on defense mechanisms include
relaxation of the i.i.d. assumption, as proposed in [37, 38, 48, 59]. In addition, [46] presented a de-
fense at the FL server by adjusting the global learning rate based on the sign information of clients’
updates, per dimension and per round. Furthermore, [1] proposes a feedback loop into the FL
process to integrate the views of all FL clients when deciding whether a particular model update is
benign or malicious. And [32] proposes a defense that bounds gradient magnitudes and minimizes
differences in orientation over all FL clients’ updates. Similarly, [58] suggests limiting magnitudes
of model weights and fine-tuning (based on local data) of the pruned model (based on ranking
vote or majority vote by clients) to mitigate backdoor attacks. More detailed surveys of poisoning
backdoor attacks and the associated defense mechanisms in federated learning can be found
in [22, 23, 40].

We note that the above-mentioned defenses rely on knowledge of distributions of gradients or
model parameters over clients’ local updates. It is worth mentioning that it has been demonstrated
in [30, 63, 64] that private training data could be leaked from training updates of ML models,
and therefore, in federated learning, secure aggregation [19, 49] is proposed to protect privacy
by preventing any potentially untrustworthy third party (any FL server or any other FL client)
from accessing any of an FL client’s updates. The above-mentioned defense methods that rely on
examining or acquiring information from clients’ updates could result in privacy hazards and are
not compatible with secure aggregation. To the best of our knowledge, effects and defenses of
poisoning backdoor attacks in federated meta-learning have not been explored in the literature.
Our proposed method does not require i.i.d. updates from different users, nor does it require analysis
of updates by the parameter server.
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6 CONCLUSIONS

We showed that one-shot poisoning backdoor attacks can be very successful in federated
meta-learning, even on backdoor class examples not used by the attacker and after additional
meta-learning or long fine-tuning by benign users. We presented a defense mechanism based
on matching networks, compatible with secure update aggregation at the server and effective
in eliminating the attack, but with some main-task accuracy reduction. Our future efforts will
focus on this limitation. From the perspective of the broader impact of our work, we believe that
an effective user-end defense mechanism can guard against backdoor attacks while preventing
unexpected abuse due to privacy leaks. Therefore, our proposed approach can prevent attacks
on machine learning models that are developed jointly by multiple entities as well as prevent
privacy-related abuse. Allowing multiple entities to jointly develop machine learning models
while preserving privacy is critical to the broader impact of machine learning applications in
settings (e.g., healthcare) where data is scarce and sensitive.

APPENDIX

In this appendix, we report results of using ProtoNet [53] instead of Matching Networks to locally
defend against backdoor attacks on the Omniglot and the CelebA datasets. ProtoNet and Matching
Networks are typically considered mechanisms belonging to the same family; however, they differ
in the similarity metrics used (Euclidean distance versus cosine similarity). Briefly, based on our
experiments, we observe that ProtoNet performs worse than Matching Networks when Glorot
initialization is adopted to help remove backdoor effects.
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Fig. 35. Benign fine-tuning of ProtoNet Fig. 36. Benign fine-tuning of ProtoNet
(n =0.001, 6 = 0.3) after attacks on Omniglot. (n = 0.0004, 5 = 0.3) after attacks on CelebA.

The experiments for ProtoNet follow the same settings and hyperparameters used in Exper-
iment 3(a); results are reported in Figures 35 and 36. Compared with results in Figures 14 and
16, ProtoNet performs 5%~45% worse at removing attacks on the Omniglot dataset, although it is
~10% better for the CelebA dataset; notably, main-task and meta-testing accuracy are considerably
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worse with ProtoNet on both datasets (7% lower for Omniglot and about 15%~20% lower for
CelebA). Thus, we believe that Matching Networks are more robust against noise and potentially
a better candidate for defending against backdoor attacks.
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