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ABSTRACT

CONTEXT: Mapping uncertain crop types from satellite images is a promising application in agricultural sys-
tems. However, it is still a challenge to automate in-season crop type mapping over a large area because of the
insufficiency of ground truth and issues of scalability, reusability, and accessibility of the classification model.
This study introduces a framework for automatic crop type mapping using spatiotemporal crop information and
Sentinel-2 data based on Google Earth Engine (GEE). The main advantage of the framework is using the trusted
pixels extracted from the historical Cropland Data Layer (CDL) to replace ground truth and label training sam-
ples in satellite images.

OBJECTIVE: This paper will carry out the following three objectives: (1) assessing spatiotemporal crop informa-
tion derived from the historical crop cover maps; (2) mapping uncertain crop cover, mainly crop fields without
regular historical crop rotation patterns, from remote sensing data using supervised learning classification and
validating mapping results; and (3) automating in-season crop mapping and exploring the scalability of the
framework.

METHODS: The proposed crop mapping workflow consists of four stages. The data preparation stage pre-
processes CDL and Sentinel-2 data into the required structure. The spatiotemporal crop information sampling
stage extracts trusted pixels from the historical CDL time series and labels Sentinel-2 data. Then a crop type
classification model can be trained using the supervised learning classifier in the model training stage. In the
mapping/validation stage, an in-season crop cover map over the full Sentinel-2 tile will be produced using the
trained model and the classification performance will be validated using CDL or other ground truth data.
RESULTS AND CONCLUSIONS: We systematically perform a group of experiments for in-season mapping of five
major crop types (corn, cotton, rice, soybeans, and soybeans-wheat double cropping) over the Mississippi Delta
region. The result indicates that the crop cover map of the study area is expected to reach 80%-90% agreement
with CDL within the growing season. To further facilitate the use of the framework, we also develop a GEE-
enabled online prototype, In-season Crop Mapping Kit, and explore its scalability over agricultural fields in vari-
ous ecoregions including California, Idaho, Kansas, and Illinois.

SIGNIFICANCE: The mapping-without-ground-truth approach described in this paper can significantly simplify
the sampling process and save substantial human intervention and financial resources. The findings and out-
puts will benefit the agriculture community and other agricultural sectors ranging from government, acade-
mia, and companies.

1. Introduction

2019, >113 million people across 53 countries experienced acute
hunger in 2018 (FSIN, 2019). Meanwhile, the World Population

In the 2030 Agenda for Sustainable Development (UN, 2015), the Prospects 2019 shows the average estimate of the world population ex-
United Nations (UN) lists zero hunger as one of 17 Sustainable Develop- pected to reach 8.54 billion by 2030, 9.73 billion by 2050, and 10.87
ment Goals (SDGs). According to the Global Report on Food Crises billion by 2100 (UN, 2019). The analysis of the Food and Agriculture

« Corresponding author.
E-mail address: 1di@gmu.edu (L. Di).

https://doi.org/10.1016/j.agsy.2022.103462

Received 26 April 2022; Received in revised form 27 June 2022; Accepted 12 July 2022

0308-521/© 20XX

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.




C. Zhang et al.

Organization (FAO) of UN indicates such a population growth rate
would lead to a substantial rise in global food demand and potentially
jeopardize the sustainability of agriculture systems in the 21st century
(FAO, 2019). Therefore, it is a great challenge to make the agricultural
system efficient and sustainable to balance the increasing demand for
foods with natural resources and climate change.

Agriculture has been the most fundamental activity to produce food
as well as other living essentials such as fiber, fuel, timber, and medi-
cine from thousands of years ago in human society. With the rapid de-
velopment of information science and technology in the past few
decades, a new paradigm, Agriculture 4.0, has been raised to achieve
greater agricultural production efficiency (Rose and Chilvers, 2018).
This new paradigm aims to integrate agriculture with state-of-the-art
digital technologies, such as smart farming, big data, digital twins, Arti-
ficial Intelligence (AI), Internet of Things (IoT), and Information and
Communications Technology (ICT) (Santos Valle and Kienzle, 2020;
Zhai et al., 2020; Latino et al., 2021; Verdouw et al., 2021; Osinga et al.,
2022). With the rapid volume growth of Earth Observation (EO) data
during the past few decades, remote sensing has become a key technol-
ogy in Agriculture 4.0 to collecting, managing, and understanding agro-
geoinformation data (Di and Yang, 2014). Remote sensing data ac-
quired by Earth resources satellite sensors, such as Terra/Aqua Moder-
ate Resolution Imaging Spectroradiometer (MODIS), Landsat Opera-
tional Land Imager (OLI)/Thematic Mapper (TM), and Sentinel-2 Multi-
spectral Instrument (MSI), are widely applied in agriculture-related
studies, including agricultural sustainability, food security, environ-
mental health, bioenergy, natural resource conservation, land use man-
agement, carbon accounting, and agricultural commodity trading
(Brown and Pervez, 2014; Khanal et al., 2017; Piedelobo et al., 2019;
Gao and Zhang, 2021). Furthermore, the emergence of high-
performance cloud computing platforms and infrastructures for EO
data, such as NASA's Earth Observing System Data and Information Sys-
tem (EOSDIS), Google Earth Engine (GEE), Sentinel Hub, Open Data
Cube, and Euro Data Cube, greatly simplified the process for integrating
a plethora of remote-sensing-based data products (e.g., land use land
cover, soil moisture, vegetation index, evapotranspiration, and land
surface temperature) into agricultural systems and applications (Li,
2020; Charvat et al., 2021; Killough et al., 2021; Wagemann et al.,
2021; Zhang et al., 2021b).

As one of the critical applications in remote sensing, crop mapping
aims to identify the specific crop types and delineate their extent within
the field from satellite images (NRCan, 2014). In particular, the remote-
sensing-based crop mapping data will provide essential information to
support crop yield prediction, crop condition monitoring, natural haz-
ard assessment, and many other socio-economic activities. For exam-
ple, the Cropland Data Layer (CDL) product of the U.S. Department of
Agriculture (USDA) National Agricultural Statistics Service (NASS) is
produced using remote sensing data from multiple satellite sensors in-
cluding Landsat and Sentinel-2 (USDA NASS, 2022). The Annual Crop
Inventory (ACI) of Agriculture and Agri-Food Canada (AAFC) is pro-
duced using satellite images from Landsat-8, Sentinel-2, and
RADARSAT-2 sensors (Fisette et al., 2013). Although with accurate and
detailed crop cover information, CDL and ACI are the post-season crop
mapping data products usually released to the public in the early next
year. Thus, the remote-sensing-based in-season and early-season crop
type mapping has become a key research topic in the land use and land
cover (LULC) community. Among various agricultural regions, the Con-
terminous United States (CONUS), the largest producer of corn and soy-
beans in the world, is one of the most ideal study areas to investigate
and test new mapping methods in recent years. For example, Hao et al.
(2015) explored the early-season crop type classification using MODIS
data in the state of Kansas. Varmaghani and Eichinger (2016) investi-
gated the early-season classification of corn and soybean using Landsat
data in Iowa. Cai et al. (2018) developed a machine-learning-based ap-
proach for in-season corn-soybean classification using Landsat data
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within the state of Illinois. Wang et al. (2019) introduced an unsuper-
vised clustering method for crop mapping over Corn Belt. Zhong et al.
(2019) developed a deep learning framework to classify summer crops
in California state. Zhang et al. (2019) predicted the spatial distribution
of annual crop cover from the historical crop planting information in
the U.S. Corn Belt. Konduri et al. (2020) used MODIS-derived vegeta-
tion index time series to map major crop types across CONUS before
harvest. Johnson and Mueller (2021) used archival land cover informa-
tion for mapping corn, soybeans, and winter wheat over Corn Belt and
Great Plains region. Xu et al. (2021) compared several deep learning
models in crop mapping using multi-temporal Landsat data at study ar-
eas in Iowa and Indiana.

However, producing the field-level in-season crop cover maps for
the CONUS is still challenging. There are three main problems. First,
producing a high-quality in-season crop cover map requires a large
number of ground truths. However, surveying ground truth over a large
geographic area is labor-intensive and time-critical. It requires a sub-
stantial investment of human and financial resources unaffordable by
individual researchers, small research groups, or even large organiza-
tions. Second, although many crop mapping methods can reach excel-
lent results for a specific area at the early growing season, they are diffi-
cult to be scaled up to a large geographic area because of the regional
difference in geography, crop types, growing season, and temporal col-
lection of remote sensing images. Third, it is difficult for many users to
reuse the classification models, especially the complex deep learning
models trained with large-scale computing resources. Therefore, a reli-
able, scalable, and reusable framework for automatic in-season crop
type mapping is highly demanded for agricultural and environmental
modeling.

In response to the above challenge, we conceive, design, and imple-
ment a framework for automation of in-season crop mapping using spa-
tiotemporal crop information and Sentinel-2 data. The research in-
volves the state-of-the-art methods, technologies, and tools in Agricul-
ture 4.0, ranging from remote sensing, geographic information science
and systems, to machine learning and geospatial cyberinfrastructure.
This paper will carry out the following three objectives: (1) assessing
spatiotemporal crop information derived from the historical crop cover
maps; (2) mapping uncertain crop cover, mainly crop fields without
regular historical crop rotation patterns, from remote sensing data us-
ing supervised learning classification and validating mapping results;
and (3) automating in-season crop mapping and exploring the scalabil-
ity of the framework.

2. Materials and methods
2.1. Data

Table 1 summarizes the main datasets used in this study. The pro-
posed framework adopts the Sentinel-2 Level-2A product as the remote
sensing dataset for the crop type mapping. The Copernicus Sentinel-2
mission is operated by the European Space Agency (ESA), which con-
sists of two twin polar-orbiting satellites (Sentinel-2A and Sentinel-2B)
with global coverage. The Sentinel-2A and Sentinel-2B satellite were

Table 1
Summary of datasets used in the proposed crop mapping framework.

Sentinel-2 MSI Level- Cropland Data Layer

2A
Spatial 10 m-60 m 30 m
Resolution
Temporal 5-day Annual (normally released in the early
Resolution of the following year)
Coverage March 2018 - present 1997-2007 (Some states)

(Europe)
December 2018 -
present (Global)

2008 - present (CONUS)
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launched in June 2015 and March 2017, respectively. The Sentinel-2
satellites revisit every five days under the same viewing angles with a
spatial resolution of 10-60 m. The Sentinel-2 satellites equip with the
MSI sensors, which covers 13 spectral bands ranging from visible and
near-infrared to shortwave infrared wavelengths. Compared with the
Landsat data, Sentinel-2 data have a higher spatial and temporal resolu-
tion, which is more suitable for the in-season mapping and near-real-
time agricultural monitoring. We also used CDL as the reference dataset
to extract spatiotemporal crop information and validate the mapping
results. It is currently one of the most widely-used national-scale field-
level crop mapping data annually produced by USDA NASS. It covers
the entire CONUS at 30 m spatial resolution from 2008 to the present
and some states from 1997 to 2007. Over 200 land use classes are pro-
vided in the CDL, and the accuracy for major crop types is close to 95%
(Boryan et al., 2011).

2.2. Study area

This study demonstrates the capability of the proposed crop map-
ping workflow over the Mississippi Delta region. This study area is lo-
cated within the Mississippi Alluvial Plain Ecoregion and Mississippi
Valley Loess Plains Ecoregion, which contains most parts of eastern
Arkansas, western Mississippi, western Tennessee, and a small part of
southeastern Missouri and southwestern Kentucky. Compared with the
U.S. Corn Belt which contains only two dominant crop types (i.e., corn
and soybeans), the Mississippi Delta region has a more diverse cropping
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environment, where the major crop types include corn, cotton, rice,
soybeans, and soybeans-wheat double cropping (plant/harvest soy-
beans then plant/harvest winter wheat in the same field throughout
one year). Fig. 1 shows the crop cover map of the study area and high-
lights the covered tiles of Sentinel-2 data.

According to the Usual Planting and Harvesting Dates for U.S. Field
Crops (USDA NASS, 2010), the planting dates of major crops within the
Mississippi Delta region are usually active from April to May in the
study area. The active harvesting dates of these crops are from Septem-
ber to October. Winter wheat is typically planted from October to No-
vember and harvested in June of the following year. Fig. 2 shows the
timeline of usual planting and harvesting dates for major crop types in
the four states within the study area.

2.3. Design of automatic crop mapping framework

Fig. 3 illustrates the proposed automatic in-season crop mapping
framework. The framework is implemented on the GEE platform
(Gorelick et al., 2017), which has been widely used in agricultural sys-
tems and applications with EO data (Rembold et al., 2019; Filippi et al.,
2020; Luo et al., 2021; Suchi et al., 2021; Yang et al., 2021; Zurgani et
al., 2021). Users can access the framework described in this study via
the application programming interface (API) and graphical user inter-
face (GUI) with the GEE Code Editor. For each classification task, users
need to assign the Sentinel-2 tile as the area of interest (AOI), the start/
end date of Sentinel-2 data, and several optional inputs. Then an in-
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Fig. 1. Map of the Mississippi Delta region (data from 2020 Cropland Data Layer). The red boundaries and annotations refer to the Sentinel-2 image tiles investigated
in this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Usual planting and harvesting dates for major crop types in the different states in Mississippi Delta region (data from USDA NASS (2010)).
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season crop cover map along with the trusted pixel map and confusion
matrix (if reference data applicable) will be automatically generated.
The core mapping workflow consists of the following stages: data pre-
processing, spatiotemporal crop information sampling, crop type classi-

fication, and mapping/validation. The data preparation stage pre-
processes CDL and Sentinel-2 data into the required structure. The spa-
tiotemporal crop information sampling stage extracts trusted pixels
from the historical CDL time series and labels Sentinel-2 data. Then a
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crop type classification model can be trained using the supervised
learning classifier in the model training stage. In the mapping/valida-
tion stage, an in-season crop cover map over the full Sentinel-2 tile will
be produced using the trained model. The classification performance
will be validated using CDL or other ground truth data. This section
will present the details of each mapping stage in the proposed frame-
work.

2.3.1. Data preparation

The data preparation is the first stage of the framework, which aims
to filter and preprocess the geospatial data used for crop type mapping.
Since the complete volume of Sentinel-2 data and CDL data are already
available in GEE, these data can be imported from GEE's public data
catalog without retrieving from the other providers. Both CDL and Sen-
tinel-2 datasets are the “ee.ImageCollection” object type in GEE, which
contains a collection of images with the same metadata scheme. The
CDL image collection is straightforward, which consists of a list of an-
nual images (one image per year). We can directly import the CDL im-
age collection without further processing. It should be noted that we
only use CDL data after 2008 because CDL does not cover the entire
CONUS before 2008. On the other hand, the data quality of the early-
year CDL in many regions is unsatisfactory.

The image collection of Sentinel-2 L2A data includes a large volume
of images with abundant image properties. When preparing the Sen-
tinel-2 data for the crop type mapping, we filter the qualified image
with several conditions. First, since the tiling grid splits the Sentinel-2
data into 100 X 100 km squares, some images contain a part of “no
data pixels” that are overlaid with the diagonal stripes from the orbital
track of the satellite. To make sure the spectral and temporal informa-
tion are valid among all pixels in the target tile, we only use the images
without “no data pixels” by limiting the “NODATA_PIXEL_PERCENT-
AGE” property of the Sentinel-2 L2A image. To further improve the
quality of the image collection, we also restrict the “CLOUDY_PIX-
EL_PERCENTAGE” property to filter out images with cloud coverage ex-
ceeding 30%. By applying the above filters, a collection of high-quality
Sentinel-2 images for crop type mapping will be prepared. According to
our observation and experiment, 30% is a fair condition to balance the
image quantity and quality. Under such conditions, there would be >
20 Sentinel-2 images of the growing season available for most tiles.
Since the model learns the spectral profile from a large volume of
trusted pixels, the impact of cloudy pixels in a single image would be
limited. Fig. 4 lists the qualified Sentinel-2 images acquired between
the usual planting and harvesting date over the study area.

35
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2.3.2. Spatiotemporal crop information sampling

The key of the proposed in-season crop mapping method is using
trusted pixels as training samples to derive uncertain crop cover from
remote sensing images. Many studies have shown crop rotation is a
common and important practice in agricultural systems around the
world (Peltonen-Sainio and Jauhiainen, 2019; Wieme et al., 2020; Sietz
et al., 2021; Nowak et al., 2022). In our previous study, we have used
machine learning to recognize corn-soybean rotation patterns from the
historical CDL time series (Zhang et al., 2021a, 2021c). It was found
that alternate corn-soybean rotation patterns and monocropping pat-
terns are widely distributed across the U.S. agricultural regions. These
two crop rotation patterns are applied for spatiotemporal crop informa-
tion sampling in the implementation of this framework.

Specifically, we use the alternate cropping patterns to pick the pix-
els with the same crop type category every other year in the CDL time
series. For example, if a pixel is categorized as “corn” in the odd-
numbered year while it is tagged as a “non-corn” type in the even-
numbered year, this pixel will be counted as a trusted “corn” pixel in
the odd year. Alternatively, if a pixel is constantly categorized as “corn”
in the CDL time series, it is also counted as a trusted “corn” pixel. Fig. 5
shows an example of extracting spatiotemporal trusted pixels of major
crop types in 2020 from the historical CDL time series (2008-2019)
based on alternating cropping and monocropping patterns.

The trusted pixels will be used to label multi-temporal Sentinel-2
data prepared in the previous stage. Before labeling training samples,
we need to stack all bands from each qualified Sentinel-2 image over
the target tile into one multi-temporal image stack. For each qualified
Sentinel-2 image, we stack three visible spectrum bands (blue, green,
red), one near-infrared (NIR) band, and two shortwave infrared (SWIR)
bands. These spectral bands are found effective for classifying different
crop types in remote sensing data (Cai et al., 2018; Song et al., 2021;
Wang et al., 2021). On the other hand, the Normalized Difference Vege-
tation Index (NDVI) and Normalized Difference Water Index (NDWI)
have been proven to be sensitive features for distinguishing crop types
in the early growing season (Hao et al., 2015). NDVI measures the vege-
tation index by normalizing the difference between NIR reflectance and
red light reflectance (Tucker, 1979). Similarly, NDWI enhances the
presence of water features by normalizing the difference between green
light reflectance and NIR reflectance (McFeeters, 1996). Therefore, we
also derived NDVI and NDWI from the spectral bands of each Sentinel-2
image and add these two index features to the multi-temporal image
stack. Table 2 lists the selected spectral features for model training. In
this stage, the object type of the multi-temporal Sentinel-2 image stack
will be converted to “ee.Image”, which is a single multi-band image but
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Fig. 5. Example of extracting spatiotemporal trusted pixels of 2020 from historical CDL time series (2008-2019) based on monocropping patterns and alternate

cropping patterns (area selected from the northern Mississippi Delta region).

Table 2
Selected spectral features of Sentinel-2 image for model training.

Name Band Central wavelength Resolution
Blue Band 2 496.6 nm (S2A) / 492.1 nm (S2B) 10 m
Green Band 3 560 nm (S2A) / 559 nm (S2B) 10 m
Red Band 4 664.5 nm (S2A) / 665 nm (S2B) 10 m
NIR Band 8 835.1 nm (S2A) / 833 nm (S2B) 10 m
SWIR-1 Band 11 1613.7 nm (S2A) / 1610.4 nm (S2B) 20 m
SWIR-2 Band 12 2202.4 nm (S2A) / 2185.7 nm (S2B) 20 m
NDVI Band 8-Band 4 N/A 10 m

Band 8+Band 4
NDWI Band 3-Band 8 N/A 10 m

Band 3+Band 8

with abundant spectral and temporal features within the growing sea-
son.

2.3.3. Model training

The training of crop type classification model is a typical supervised
classification process. We use trusted pixels to label spectral features in
multi-temporal Sentinel-2 image stack, then feed these training samples
to the supervised-learning classifier for model training. GEE offers a
suite of ready-to-use classifier APIs for supervised classification model
training. Our framework chooses Random Forest (Breiman, 2001) as
the default classifier, which has been widely applied in remote-sensing-
based LULC classification (Tatsumi et al., 2015; Pelletier et al., 2016;
Steinhausen et al., 2018; Hao et al., 2020). The classifier uses 128 trees
by default, which is an optimal tree number in the forest to obtain a
good balance between performance and processing time (Oshiro et al.,
2012). Besides, we provide an option for users to choose other classi-
fiers, such as Classification and Regression Trees (CART) (Breiman,
1984) and Support Vector Machine (SVM) (Burges, 1998).

2.3.4. Mapping and validation

After the classification model training is completed, the in-season
crop cover map will be produced by applying the well-trained classifi-
cation model to the full Sentinel-2 image stack. To be consistent with
CDL, the spatial resolution of in-season maps is resampled from 10 m to
30 m before validation. For each tile of mapping result, we measure the
classification accuracy using CDL as reference data and calculate the
Overall Accuracy (OA) and Kappa coefficient based on the confusion
matrix (Stehman, 1997). The OA reflects the ratio of correctly classified
test samples in the total number of samples. The Kappa coefficient

(Cohen, 1960) measures the interrater reliability of the classification re-
sult. We also use precision, recall, and F1-score to measure the classifi-
cation performance of each crop type. As the growing season pro-
gresses, the monthly in-season crop cover maps are produced and vali-
dated by the end of April, May, June, July, and August.

3. Experiments and results

This section presents four groups of experiments to test the feasibil-
ity of in-season crop type mapping with the proposed framework. Sec-
tion 3.1 analyzes the spectral and temporal features of trusted pixels for
five major crop types. Section 3.2 illustrates the spectral and index pro-
files as well as the performance of the classification model trained with
the spectral and temporal features. Additionally, an online prototype
for the automatic in-season crop mapping based on the proposed frame-
work is demonstrated in Section 3.4.

3.1. Spectral and temporal analysis of trusted crop information

The first experiment aims to test whether the spatiotemporal crop
information extracted from historical CDL is trusted. In the remote-
sensing-based supervised classification, the classifier automatically
learns the spectral and temporal features in the training data. If a large
number of training samples are mislabeled, the classification perfor-
mance will be significantly affected. In this case, the classification
model is trained using samples in the multi-temporal Sentinel-2 image
stack. Before training the classification model, we need to validate the
spectral and temporal profiles for trusted pixels.

Fig. 6 compares the time-series profiles of six Sentinel-2 bands for
each crop type labeled with trusted pixels and CDL. The result respec-
tively displays the profiles from six Sentinel-2 spectral bands (blue,
green, red, NIR, SWIR-1, and SWIR-2) for corn (Fig. 6a), cotton (Fig.
6b), rice (Fig. 6¢), soybeans (Fig. 6d), and soybeans-wheat double
cropping (Fig. 6e). Each profile ranges from 2019 to 2020 and derives
from the Sentinel-2 tile “15SYA” where the five major crop types are
widely distributed. We aggregate the surface reflectance value over
time by specifying the value of the lower quartile (Q1), median (Q2),
and upper quartile (Q3) among all pixels of the tile. It can be seen from
the result that trusted pixels and CDL pixels of most observed bands
have consistent spectral and temporal features over time.



Agricultural Systems xxx (xxxx) 103462

C. Zhang et al.

3 1 1 1 3
;AWH : 5 _ M,-. 5 2 &

—gell 1k _. :

L1 L B i o o aL %

! .__m H ! nm = Wi 0

i - 5

14 —2f _ ]

5 T - 3

ERET Ll By o 4

2 34 EF 3 EEEEE] ¥ Erga
ey iy e——eil etiiag.

4 e 4 1

E L4 A £

1 ST 3

—¥ 2 L

/NENEE thy h

;! ks © 5

i1k 3

¥ 4

JRE Ny _

: ....'.\- —
L Rl e

!; AR
|
1_1__ |

& _ g

5 .n.m .— e m " um .:um

4 | _ i 2 —

: ¥ . - - * . : : 1

.u._muuu...- u_"u.huu.".._ muuquu__:.- ."uuuu.__.._ - .‘"“_.uhuuw.
Dl R LE I RS T L, ) S = el asiiy by L Y R T — re ey

(caption on next page)



C. Zhang et al.

Sartes Rerss Tokes

R

=i =i

Agricultural Systems xxx (xxxx) 103462

Aps

T —

e Ml Vi

e e

Surbee Relietans ke
Eetae R L

Wik (W

e

N

T | WHTHL

B lan Bt 1

fab Dowhle crop winter whest fesyhesns

Fig. 6. Comparison of Sentinel-2 spectral profile for crop types labeled with trusted pixels and CDL. Each profile reflects the median value (solid line) and lower/
upper quartile value (solid colour) of all trusted pixels (red) or CDL pixels (blue). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Based on the spectral profile, we calculate the R2 coefficient be-
tween the reference data (CDL) and the predicted result (trusted pixels).
Fig. 7 illustrates the validation result of the correlation between the
trusted pixel's surface reflectance value (red lines in Fig. 6) and CDL's
surface reflectance value (blue lines in Fig. 6). The comparison result
suggests the spectral profile of corn pixels (Fig. 7a), cotton pixels (Fig.
7b), rice pixels (Fig. 7c), and soybeans-wheat double-cropping pixels
(Fig. 7e) labeled with the trusted pixel is highly consistent (R? > 0.9)
with pixels labeled with CDL. The correlation for soybeans pixels (Fig.
7d), especially the SWIR-1 band (R2 0.76) and SWIR-2 band
(R2 = 0.78), is relatively lower. This error is caused by the offset be-
tween spectral profiles of trusted pixels and CDL in 2019, which is no-
ticeable in Fig. 6d.

3.2. In-season crop mapping using supervised classification

This section investigates the capability of in-season crop type map-
ping using spatiotemporal crop information with supervised classifica-
tion. As described in Section 2.3.3, GEE provides several common su-
pervised classifier options. The crop type classification presented in this
study results from the random forest model. It is well known that the
spectral characteristics of different crop types will be differentiated in
phenological stages. Thus, we need to examine whether these charac-
teristics can be reflected in the remote sensing data.

Fig. 8 shows the intercomparison of spectral and index profiles for
the five crop types. Each value in the profile represents the median
value among all trusted pixels of each crop type. It can be interpreted
from the comparison result that spectral profiles of corn, cotton, rice,
and soybeans start to differentiate at the beginning of the growing sea-
son. At around DOY 150, the visible light bands and SWIR bands of

corn first began to drop. The profile of rice has a similar trend with
corn, but its reflectance value range is wider, especially for the visible
light bands. Cotton and soybeans also have similar spectral profiles,
but the NIR and SWIR bands of cotton are significantly higher between
DOY 180-240 and DOY 130-180. Soybeans-wheat double cropping has
the unique profile curves before DOY 180 because the growing season
of winter wheat starts from December of the previous year to May of
the current year in Mississippi Delta. It can be easily observed from the
NDVI profiles that the crop green-up sequence in the study area is corn,
rice, cotton, and soybeans, while the NDWI profiles change oppositely
in the same sequence.

When training the crop type classification model, the supervised
classifier will learn the features in the above spectral and temporal pro-
files for each crop type. Then the trained model will be able to classify
crop types on all pixels over the tile. Fig. 9 demonstrates the details of
in-season crop mapping results in 2019 and 2020. In this experiment,
we use the 2019 and 2020 CDL as reference data (Fig. 9a) and trusted
pixels, which are extracted from 2008 to 2018 CDL and 2008-2019 CDL
respectively, as labels of the training dataset (Fig. 9b). Then we perform
the crop type classification and generate the in-season cover maps using
the multi-temporal Sentinel-2 images from April to the end of April,
May, June, July, and August (Fig. 9¢). In addition, the difference maps
(Fig. 9d) show the improvements in the agreement between CDL and
the in-season crop cover maps over time. It is also found from the re-
sults that the tiling effect may take place in the early season when avail-
able images are significantly inconsistent between adjacent tiles. With
the progress of the growing season, more images will be used in the
model training (~20 images by July) as well as the spectral profiles be-
tween tiles will be getting consistent. Although it is still a challenge to
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Fig. 7. Validation of surface reflectance value correlation between trusted pixels and CDL. Each subfigure contains in total of 59 sample points, which are taken
from the Sentinel-2 time series of 29 images in 2019 and 30 images in 2020 respectively.

ultimately eliminate the tiling effect through the whole season, its im-
pact on the mosaiced crop cover map is limited after July.

3.3. Classification performance evaluation

We use CDL as reference data to measure the classification perfor-
mance for the crop cover maps created by the proposed framework. Fig.
10 shows the trend of precision, recall, and F1l-score for major crop
types within the growing season. Among the five types of crops, cotton
(red line) and rice (blue line) have the best overall performance (F1-
score > 0.9). In comparison, the performance of corn (yellow line),
soybeans (green line), and soybeans-wheat double cropping (brown
line) has varied between 2019 and 2020. In 2019, the precision of soy-
beans is significantly high, but the recall is the lowest among all crops
during the entire observation period. Meanwhile, the precision and re-
call rates of corn and soybeans-wheat double cropping are relatively
lower than in 2020. Such a high-precision and low-recall result for soy-
beans indicates more soybeans pixels were omitted and misclassified to
other crops, primarily corn and soybeans-wheat double cropping, in
2019. This classification bias mainly results from the offset of spectral
profiles for trusted pixels of soybeans in 2019 as indicated in Section
3.1. To sum up, the overall crop type classification performance will be
improving with the increase of Sentinel-2 images used between DOY
120 to DOY 210. All crop types will reach the highest classification per-
formance after DOY 220 in all observation years.

To further test the performance of the classification model, we apply
the framework to all 12 Sentinel-2 tiles in the study area. Fig. 11 shows
the change in crop type classification performance (OA and Kappa) for
all tiles within the growing season. Like the classification result of each
crop type as above, both OA and Kappa will continue to increase and
reach the highest around DOY 220 for most test tiles. It can be con-
cluded that the in-season crop type mapping result is expected to reach
80%-90% agreement with CDL by August in the Mississippi Delta re-
gion. According to the historical crop planting and harvesting dates re-
ported by USDA, the most active planting dates for major crop types in
Mississippi Delta usually last longer than in the U.S. Corn Belt. For ex-
ample, in the leading production states of corn and soybeans, such as
Iowa and Illinois, the planting dates of major crops typically range from
mid-April to early June. But in the Arkansas state, which covers most of
the study area, corn is usually planted from Apr 1 to May 15, while soy-
beans are planted from May 5 to Jun 22. Thus, the best observation
dates for in-season mapping may vary among different regions in differ-
ent years and depend on data availability.

3.4. A prototype on earth engine apps platform

Another main objective of this paper is automating crop type map-
ping with the proposed framework and exploring its potential scalabil-
ity. To demonstrate the automation capability, we developed and pub-
lished an online prototype, In-season Crop Mapping Kit (https://czhang
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Fig. 8. Intercomparison of spectral and index profile for multi-class trusted pixels in 2019 (left) and 2020 (right).

11.users.earthengine.app/view/agkit4ee-inseason), on the platform of
Earth Engine Apps. The prototype is implemented as an extension mod-
ule of the AgKit4EE toolkit (Zhang et al., 2020), mainly providing re-
mote-sensing-based crop mapping functionalities.

Fig. 12 shows the GUI of the prototype, which is composed of a
configuration panel and a map explorer. Before starting crop type
mapping, users can specify the target tile with several filters for the
Sentinel-2 images (e.g., cloud percentage, year, start/end DOY). The
prototype provides additional options allowing users to select classi-
fiers as well customize band combinations for the classification. Based
on the given conditions, an on-demand crop cover map will be auto-
matically created and then displayed on the map explorer. To demon-
strate the scalability of the framework, we also perform the in-season
crop mapping results in other ecoregions with different crop type dis-
tributions through the prototype. The 2021 crop cover maps over four
Sentinel-2 tiles across the CONUS are illustrated. Specifically, the tile
“11SKA” mainly covers the Central Valley Area of California. This
area provides diverse crop types, including grains, vegetables, fruits,
and nuts. The tile “12TVP” is lying in Eastern Idaho, which is one of
the most productive potato-growing areas in the world along with
other crops, such as spring wheat, barley, and alfalfa. The tile
“14SPG” is over South Central Kansas, where the major crops include
corn, soybeans, winter wheat, and soybeans-wheat double cropping.
The tile “16TCK” is located within Central Illinois, a typical Corn Belt
area covered by corn and soybeans.

4. Discussion
4.1. Applicability and scalability of the approach

This study has addressed the three main problems in remote-
sensing-based crop mapping coined at the beginning of the paper. First,
the insufficiency of ground truth in the U.S. at the early growing stage
has been solved. It is well-known that supervised crop type classifica-
tion models require plenty of training labels. The main novelty of our
framework is using the spatiotemporal crop information extracted from
the historical CDL to replace ground truth and label training samples in
satellite images. It is also potentially applicable to regions outside the
U.S. where historical crop cover maps are available (e.g., Canada with
ACI as reference data). This mapping-without-ground-truth approach
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will significantly simplify the sampling process and save substantial hu-
man intervention and financial resources.

The second problem that we have largely settled in this study is the
scalability issue in remote-sensing-based crop mapping. Different from
those mapping methods that heavily rely on the classification model
and algorithm, we designed a general supervised-learning-based frame-
work that is not limited to the classifier, crop type, and geographical
conditions. Considering many previous studies have investigated the re-
mote-sensing-based in-season and early-season mapping of corn and
soybeans for the U.S. Corn Belt, we choose the Mississippi Delta as the
study area, which has a more complex and diverse crop planting envi-
ronment. We also demonstrated the capability of in-season crop map-
ping over agricultural fields in California, Idaho, Kansas, and Illinois.
Since the trusted pixels are widely distributed across CONUS, it is easy
to scale the framework to a large experimental area.

4.2. Accessibility and reusability with Google earth engine

This study demonstrated the capability of GEE for facilitating acces-
sibility and reusability of the automatic in-season crop type mapping.
The implementation of our GEE-enabled prototype, In-season Crop
Mapping Kit, has significantly simplified the access to in-season crop
cover information and the use of the mapping framework. Besides the
web application, the source code and APIs are also available through
GEE. These open-source materials will substantially accelerate the
reuse of the proposed framework by not only the agricultural sectors
but also academia, governments, and companies.

Some preliminary results have shown great potential transferability
of the machine learning model trained by training samples in the U.S.
(Hao et al., 2020). Although it is still challenging to be directly applied
in agricultural regions outside the CONUS, the accessibility and
reusability feature provided by GEE will enable the user community to
expand the mapping-without-ground-truth workflow and explore the
transferability of trusted pixels for the global-scale in-season mapping.

4.3. Limitations and potential solutions

The proposed framework labeled satellite images with trusted spa-
tiotemporal crop information, which are derived from historical CDL
using monocropping and alternate cropping patterns. There are two po-
tential issues with this approach. On the one hand, the crop rotation
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ples of in-season crop cover maps across CONUS in 2021.

patterns of some pixels could be changed due to natural hazards, cli-
mate change effects, market situation, loss of soil fertility, government
policy, and other dynamic or uncertain factors. From the historical
CDL, we found a small number of fallow lands randomly occur every
year over the study area. It is still a challenge to correctly predict these
fallow lands without ground truth. On the other hand, the framework
currently relies on the CDL data for training and validation. However,
CDL also contains a certain number of misclassified pixels, mixed pix-
els, and noisy pixels (Lin et al., 2022). According to the accuracy assess-
ment of 2020 Arkansas CDL by USDA NASS (USDA NASS, 2021), the
user's accuracy of major crop types (corn, cotton, rice, soybeans) is be-
tween 90% to 97%. The classification performance of the proposed
workflow can be further validated using the surveyed ground truth
data. The errors in CDL may also affect the accuracy of trusted pixels
then impact classification performance. A potential way to improve the
classification performance is to combine the CDL confidence layer with
CDL (Lark et al., 2021), which may reduce the number of trusted pixels
but would further improve the classification accuracy.

The cloud coverage in the remote sensing image is another potential
issue that may affect the performance of crop type classification. We set
several conditions to filter cloudless Sentinel-2 images in the Sentinel-2
data archive. Although we did not encounter the insufficiency of quali-
fied images in our experiment, it cannot be guaranteed that sufficient
qualified Sentinel-2 images are available across the entire CONUS in the
following years. Since the Landsat data are also archived in the GEE's
data catalog, we will integrate the Landsat 8 and the upcoming Landsat
9 data into the automation framework in the next phase.
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5. Conclusion

This study addressed three major challenges for in-season crop type
classification raised at the beginning of the paper. First, to solve the in-
sufficiency of training samples in the early growing season, we devel-
oped a novel mapping-without-ground-truth approach for in-season
crop type classification. By applying crop rotation patterns, a large
number of trusted pixels with abundant spatiotemporal crop informa-
tion were extracted from the historical CDL, which can replace ground
truth while labeling training samples in remote sensing images. Second,
this mapping-without-ground-truth approach solved the applicability
and scalability issue of in-season crop mapping over the CONUS. As a
general crop mapping framework, it is also potentially applicable in any
agricultural region where the historical crop cover data are available.
Third, the release of the associated software significantly improved the
accessibility and reusability of the in-season crop mapping framework
described in this study. The GEE-enabled online prototype, AgKit4EE -
In-season Crop Mapping Kit, and its open-source code/APIs suite can be
easily integrated and reused in other agricultural systems and applica-
tions.

Specifically, we demonstrated a case study and applied the proposed
framework to classify five major crop types (corn, cotton, rice, soy-
beans, and soybeans-wheat double cropping) of the Mississippi Delta
ecoregion. It is found that the spectral and temporal profiles of corn,
cotton, rice, and soybeans-wheat double-cropping pixels that are la-
beled with the trusted pixels are highly correlated (R? > 0.9) with pix-
els labeled with CDL. The correlation for soybeans pixels is relatively
lower, especially in 2019, but still acceptable. Using these trusted pixels
to label training samples with the random forest classifier, the perfor-
mance of crop type classification is expected to reach 80%-90% agree-
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ment with CDL by August within the study area. Meanwhile, the capa-
bility of in-season crop mapping across different ecoregions was
demonstrated using our online prototype on the Earth Engine Apps
platform.

In the future, we will apply the framework to the entire CONUS and
produce a CDL-like in-season crop cover data product. Other satellite
data sources, such as Landsat 8 and Landsat 9 data, will be tested. More-
over, this study used the default hyperparameter values of the classifier
offered by GEE while training the classification model. The impact of
hyperparameters with multiple classifiers will be investigated. In the
next stage, we will develop a spatiotemporal learning strategy based on
the current implementation to maximally transfer trusted pixels and
trained models from the U.S. to other study areas.

Data availability

The data described in this work are available through the Earth En-
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source software and its source code can be accessed at: https://
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