
Sojourn Time Minimization of Successful Jobs

Yuan Yao
Wuhan Institute of Technology

yaoyuan.usc@gmail.com

Marco Paolieri
Univ. of Southern California

paolieri@usc.edu

Leana Golubchik
Univ. of Southern California

leana@usc.com∗

1. INTRODUCTION

Due to a growing interest in deep learning applications [5],
compute-intensive and long-running (hours to days) train-
ing jobs have become a significant component of datacenter
workloads. A large fraction of these jobs is often exploratory,
with the goal of determining the best model structure (e.g.,
the number of layers and channels in a convolutional neu-
ral network), hyperparameters (e.g., the learning rate), and
data augmentation strategies for the target application. No-
tably, training jobs are often terminated early if their learn-
ing metrics (e.g., training and validation accuracy) are not
converging, with only a few completing successfully.

For this motivating application, we consider the problem
of scheduling a set of jobs that can be terminated at pre-
determined checkpoints with known probabilities estimated
from historical data. We prove that, in order to minimize
the time to complete the first K successful jobs on a sin-
gle server, optimal scheduling does not require preemption
(even when preemption overhead is negligible) and provide
an optimal policy; advantages of this policy are quantified
through simulation.

Related Work. While job scheduling has been investigated
extensively in many scenarios (see [6] and [2] for a survey of
recent result), most policies require that the cost of waiting
times of each job be known at scheduling time; in contrast,
in our setting the scheduler does not know which job will
be the K-th successful job, and sojourn times of subsequent
jobs do not contribute to the target metric.

For example, [4, 3] minimize makespan (i.e., the time to
complete all jobs) for known execution times and waiting
time costs; similarly, Gittins index [1] and SR rank [7] min-
imize expected sojourn time of all jobs, i.e., both success-
fully completed jobs and jobs terminated early. Unfortu-
nately, scheduling policies not distinguishing between these
two types of jobs may favor jobs where the next stage is short
and leads to early termination with high probability, which
is an undesirable outcome in our applications of interest.

2. OPTIMAL SCHEDULING POLICY

We consider the problem of scheduling N jobs on a sin-
gle server, where the exact size of each job i = 1, . . . , N is

Copyright is held by author/owner(s).

∗Work supported in part by NSF Grants CCF-1763747
and CNS-1816887.

unknown, but it is modeled by a discrete random variable
taking one of the Mi values 0 < xi,1 < xi,2 < · · · < xi,Mi

;
we denote by pi,j 2 (0, 1) the probability that job i termi-

nates when service time reaches size xi,j , with
PMi

j=1
pi,j = 1.

In our applications of interest, the largest possible size xi,Mi

corresponds to the successful completion of job i, while other
sizes xi,j for 1  j < Mi represent the early termination of
job i after its j-th checkpoint. Note that this is equivalent
to setting checkpoints at deterministic fractions of each job.

Jobs are scheduled on the server using a preemptive, non-
anticipating policy which selects a job and runs it until the
next checkpoint. For example, if job i is initially selected, its
first stage with size xi,1 is completed: with probability pi,1,
the job terminates after this stage; with probability 1−pi,1,
the job continues. If job i continues, its remaining size val-
ues are xi,2 < · · · < xi,Mi

with probabilities pi,j/(1 − pi,1)
for j = 2, . . . ,Mi; when it is selected to run again by the
scheduler, the second stage is completed in xi,2 time units.
This process continues until all jobs terminate early (at some
checkpoint) or complete their last stage successfully. Our
goal is to minimize the expected time to complete K success-

ful jobs, for 1  K  N .
First, we show that preemption is not required to mini-

mize the expected time to complete K successful jobs.

Theorem 2.1. There exists a schedule minimizing the ex-

pected sojourn time of the K-th successful job where jobs are

not preempted.

Proof. Assume that there is a schedule S minimizing
the expected sojourn time of the K-th successful job, where
job i is the last job being preempted; let j be the last job
preempting i, and let sj and si indicate the last interleaving
stages of j and i, respectively. Then, the modified schedule
where all stages of i before si are moved between sj and si
(so that i is not preempted) has no higher expected sojourn
time of the K successful job: (1) if i terminates early after
any of its stages, its sojourn time is increased, but it does
not contribute to the mean sojourn time of the K-th suc-

cessful jobs; (2) if i completes successfully, its sojourn time
does not change in the modified schedule; (3) sojourn time
does not change for other jobs completing before the first
stage or after the last stage of i in the original schedule; (4)
for other jobs completing or terminating between the first
and last stage of i in the original schedule, sojourn time is
reduced. Since, by hypothesis, i is the last job being pre-
empted, at least one other job k has nonzero probability of
terminating successfully between the first and last stage of
i in the original schedule; the expected sojourn time of the

24 Performance Evaluation Review, Vol. 50, No. 2, September 2022



K-th successful job does not increase in the modified sched-
ule. As a result we can repeat the move performed above to
create a schedule without interleaved jobs. And this sched-
ule has expected sojourn time of the K-th successful job less
than or equal to that of S.

Theorem 2.1 significantly reduces the problem of finding
an optimal policy, since it allows us to schedule entire jobs
until completion or early termination, instead of individual
job stages. We represent each scheduling policy as a permu-
tation S = hJ1, J2, . . . , JN i of h1, 2, . . . , Ni and we denote
the expected sojourn time of the K-th successful job under

S by T
(S)
K . Then, our goal is to find an optimal schedule

S⇤ = argminS2GN
T

(S)
K where GN is the set of all permuta-

tions of h1, 2, . . . , Ni. For each policy S, T
(S)
K is given by:

T
(S)
K =

X

l2LLL

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A

=
X

l2LLL

 

N
Y

i=1

pJi,lJi

!

·

0

@

fK(l)
X

i=1

xJi,lJi

1

A (1)

where LJi
= {1, 2, . . . ,MJi

}, i = 1, . . . , N is the set of pos-
sible stages for job Ji, LLL = LJ1

⇥ LJ2
⇥ . . . ⇥ LJN

, and
each vector l = [lJ1

, lJ2
, . . . , lJN

]T 2 LLL is a different com-
bination of final execution stages. We define fK(l) : LLL !
{0,K,K + 1,K + 2, . . . , N} as the index of the K-th com-
pleted job given the final execution stages l; we let fK(l) = 0
when there are fewer than K successful jobs in l.

The following lemma shows that the order of first K jobs

does not affect T
(S)
K .

Lemma 2.2. Given two schedules S and S0 where the or-

der of the first K jobs is permuted, T
(S)
K = T

(S0)
K .

Proof. Irrespective of the order of the first K jobs, their

contributions to T
(·)
K remains the same since T

(·)
K includes

the sum of execution times of all these jobs.

Then, the next lemma provides an optimal ordering of the
following N −K jobs.

Lemma 2.3. In an optimal schedule S⇤ = hJ⇤

1 , J
⇤

2 , . . . , J
⇤

N i,
we have that R(J⇤

q )  R(J⇤

q+1) for all K  q < N , where

R(i) =
⇣

PMi

k=1 pi,kxi,k

⌘

/pi,Mi
is the rank of job i.

Proof Sketch. Consider a schedule S = hJ1, J2, . . . , JN i
and look at two adjacent jobs Jq and Jq+1, where q 2
{K,K +1, . . . , N − 1}. Swapping the positions of these two
jobs gives a new schedule S0 = hJ1, J2, . . . , Jq+1, Jq, . . . , JN i.
Considering whether the K-th successful job happens before
job Jq, at job Jq, at job Jq+1 or after job Jq+1, for schedule
S, we have

T
(S)
K =

X

l2LLL

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A

=
X

l2LLL,fK(l)<q

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A

+
X

l2LLL,fK(l)=q

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A

+
X

l2LLL,fK(l)=q+1

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A

+
X

l2LLL,fK(l)>q+1

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A (2)

A similar expression can be derived for T
(S0)
K with four terms

on the right hand side (RHS), with the following observa-
tions: 1) the first term on the RHS of Eq. (2) and first term

on the RHS of T
(S0)
K are equal. Intuitively, S and S0 share

the same set of first q − 1 jobs. Since there are already K
successful jobs before jobs Jq and Jq+1, these two jobs have

no contribution to T
(S)
K or T

(S0)
K . 2) similarly, the fourth

term on the RHS of Eq. (2) and fourth term on the RHS of

T
(S0)
K are equal.

Let L̂̂L̂L ⇢ LLL, L̄̄L̄L ⇢ LLL be the sets of execution results of
schedule S where there are exactlyK−1 andK−2 successful
jobs in the first q−1 jobs, respectively. We may express Pr[l]
with pi,j values in the second and third term on the RHS
of Eq. (2). In particular the second term of Eq. (2) only
depends on jobs 1 through q and thus can be written as:

X

l2LLL,fK(l)=q

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A =

X

l2L̂̂L̂L

q−1
Y

i=1

pJi,lJi
· pJq ,MJq

 

q−1
X

i=1

xJi,lJi
+ xJq ,MJq

!

(3)

And the third term can be expanded as follows:

X

l2LLL,fK(l)=q+1

Pr[l] ·

0

@

fK(l)
X

i=1

xJi,lJi

1

A =

X

l2L̂̂L̂L

q−1
Y

i=1

pJi,lji

MJq
−1

X

k=1

pJq ,kpJq+1,MJq+1
·

 

q−1
X

i=1

xJi,lJi
+ xJq ,k + xJq+1,MJq+1

!

+

X

l2L̄̄L̄L

q−1
Y

i=1

pJi,lji
· pJq ,MJq

pJq+1,MJq+1
·

 

q−1
X

i=1

xJi,lJi
+ xJq ,MJq

+ xJq+1,MJq+1

!

(4)

The first term on the RHS of Eq. (4) corresponds to the cases
where Jq failed but Jq+1 succeeded. And the second term
corresponds to the cases where both Jq and Jq+1 succeeded.
A similar expression can be derived for the third term

of T
(S0)
K . The only difference between this expression and

Eq. (4) is the order of jobs Jq and Jq+1. Thus its second
term equals the second term on the RHS of Eq. (4).

Given above, we can compare T
(S)
K and T

(S0)
K :

T
(S)
K − T

(S0)
K = · · · =

X

l2L̂̂L̂L

q−1
Y

i=1

pJi,lJi
pJq ,Mjq

pJq+1,Mjq+1
·

0

@

PMJq

k=1 pJq ,kxJq ,k

pJq ,MJq

−

PMJq+1

k=1 pJq+1,kxJq+1,k

pJq+1,MJq+1

1

A

Performance Evaluation Review, Vol. 50, No. 2, September 2022 25



(a) First (b) Second (c) N/2-th

Figure 1: Expected time till the K-th successful job

=
X

l2L̂̂L̂L

q−1Y

i=1

pJi,lJi
pJq ,Mjq

pJq+1,Mjq+1
[R(Jq)−R(Jq+1)] (5)

We can see from Eq. (5) that if R(Jq) > R(Jq+1), then

swapping them results in a lower T
(·)
K value. Therefore, in

an optimal schedule S⇤ we must have R(J⇤

q )  R(J⇤

q+1) for
all q ≥ K.

Based on Lemmas 2.2 and 2.3, we can state our main result.

Theorem 2.4. The schedule S⇤ = hJ⇤

1 , J
⇤

2 , . . . , J
⇤

N i where

R(J⇤

1 )  R(J⇤

2 )  . . . R(J⇤

N ) minimizes T
(·)
K .

Proof. Let S = hJ1, J2, . . . , JN i be an optimal schedule.
Then we can reorder the firstK jobs of S by sorting them ac-
cording to their rank in ascending order. Suppose the result-
ing schedule is S0 = hJ 0

1, J
0

2, . . . , J
0

K , JK+1, . . . , JN i, where
J 0

1, J
0

2, . . . , J
0

K is a permutation of J1, J2, . . . , JK . From Lemma

2.2, we know that S0 is also optimal, i.e., T
(S)
K =T

(S0)
K . For

S0, it has to be the case that R(J 0

1)  R(J 0

2)  . . . R(J 0

K) 
R(JK+1)  . . .  R(JN ). Otherwise, according to Theo-

rem 2.3, we can swap two adjacent jobs to reduce T
(S0)
K .

Then, S0 is the schedule defined in Theorem 2.4.

Note that with Theorem 2.4 we can compute an opti-
mal schedule in O(MmaxN +N logN) time, where Mmax =
maxN

i=1 Mi is the maximum number of stages of all jobs. We
call this algorithm K-RANK.

3. SIMULATION RESULTS

In this section we provide numerical results showings that
our algorithm performs well as compared to other algorithms
with respect to different N and K values. The experiments
are carried out as follows. (i) Job sizes and probabilities
xi,k, and pi,k, i = 1, . . . , N, k = 1, . . . ,Mi are generated for
all N jobs according to a uniform distribution 1. (ii) Using
the stage probabilities we determine at which stage each job
completes (or terminates). (iii) We compute job schedules
using that algorithm and then compute the resulting sojourn
time of the K-th successful job under (ii); the results are
taken as output of one trial. (iv) We repeat (i) through
(iii) at least 1000000 times for N . Then we use the results
of these trials to compute the average sojourn time of the
K-th successful job under each schedule.

To better demonstrate the performance of our approach
and to demonstrate the need to tailor a scheduling algorithm
for successful jobs (as compared to all jobs), we also include
the following three baseline algorithms in our experiments:
1) RANDOM: Execute jobs in random order; 2) SERPT:
Sort and execute jobs based on expected remaining process-
ing time, in ascending order, and 3) SR: Sort jobs based on

1We obtained similar results with other distributions

SR rank [7] (equivalent to Gittins’ index) and schedule them
in ascending rank order. Note that, by design, RANDOM
will execute each job until success or failure (i.e., without
preemption) before selecting a different job for execution.
This is reasonable since we know from Theorem 2.1 that
preemption of jobs only increases expected sojourn time of
successful jobs. In addition, including SR in the experi-
ments allows us to demonstrate whether such an approach
can deliver good performance for our objective.

Experiments for K = 1 and 2 can be found in Fig. 1(a)
and (b), respectively, where we observe that our approach
outperforms all baselines in both cases, e.g., for N = 50, it
out performs the second best (SERPT) by about 30%.

Intuitively, larger K values mean less room for optimiza-
tion. To evaluate the performance of our approach when K
is large, we also experimented with K = N/2 with results
presented in Fig. 1(c), where we observe that K-RANK re-
duces mean sojourn time of the K-th successful job by about
11% for all N values, as compared to the second best.

4. CONCLUSIONS

In this paper we studied the problem of scheduling multi-
stage jobs with early termination, optimizing expected so-
journ time of the K-th successful job and showed that when
there is only one server, preemption is not needed. We pre-
sented an optimal scheduling algorithm and quantified the
improvements obtained through simulations. Our future di-
rections in this early termination setting include extending
results to 1) a multi-server setting and 2) a broader set of
simulations with more realistic workloads.

5. REFERENCES

[1] S. Aalto, U. Ayesta, and R. Righter. Properties of the
Gittins index with application to optimal scheduling.
Probability in the Engineering and Informational

Sciences, 25(3):269–288, 2011.

[2] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt,
M. Sterna, and J. Weglarz. Handbook on scheduling:

From theory to practice. Springer, 2019.

[3] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. An
application of bin-packing to multiprocessor scheduling.
SIAM Journal on Computing, 7(1):1–17, 1978.

[4] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, 1969.

[5] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning.
Nat., 521(7553):436–444, 2015.

[6] M. Pinedo. Scheduling, volume 29. Springer, 2012.

[7] K. C. Sevcik. Scheduling for minimum total loss using
service time distributions. Journal of ACM,
21(1):66–75, 1974.

26 Performance Evaluation Review, Vol. 50, No. 2, September 2022


