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Reply to comments on *Identifying mitigation strategies for COVID-19 superspreading on flights

using models that account for passenger movement”

Mereness et al's comments on our paper [1] stem from an nade-
quate understanding of phenomenclogical infection modeling and sto-
chastic methods. Further, they misinterpret our paper and other
scientific Literature. We address their main elaime, which relate to (1) our
mention of superspreading events on flights, (1) validation, (1) corre-
lation of distance with infection nisk, and (iv) airflow patterns in planes.

They cite three papers (1-3 of their references) as evidence to claim
that “many” of the superspreading cases that we mentioned are likely to
have oceurred outside an sireraft. However, none of these references
analyze or even cite, the two superspreading cases that we analyzed.

They fault our validation saying that we “cite their own previous
studies as validation.™ This misrepresents our work. We validated the
model introduced in our paper against empirical observations from
other seientific literature mentioned in Section 1.2

They fault our infection model and ite presentation. They mention
that our infection model 1z a “handful of incomplets equations with no
explanation of their connection.” Our infection model is presented In
two equations. Equation (1) is the popular exponential model that gives
infection nisk as a function of dose. Equation (2) gives dose at ime tas a
function of distance to infective persons. We mention that it should be
summed over all time steps to vield the total dose per person. Adding
numbers and substituting the resulting dose into Equation (1) are sim-
ple, well-defined, steps.

They cite three papers (1, 2, and 4 of their references) as evidence to
argue that the “correlation between distance and inhaled mase iz a poor
assumption in the aireraft cabin.™ The last paper is in-press and un-
available to us. The other references actually contradict their elaim. For
example, Zee et al. (their reference 2, page 4) mention that "in aggre-
gate, passengers seated closer to the index were exposed to more index
expiratory material than those farther away.” Sileott ot al. [2] (the
onginal version of their first reference) showe a trend of higher exposure
close to the index patient (e.g. on page 33). Accounting for droplets,
omitted in these studies, would further emphasize the role of proxamity.

We now consider their eniticiem that we did not melude in-cabin
airflow in our modeling. Mathematical modelng of complex in-
teractions can broadly take two approaches, (1) phenomenological and
(1) mechanistic [2]. Phenomenological models extract information from
real-world data to help capture complex causal relationships without
requiring detailed mechamizmes. Mechanistic models, on the other hand,
use detailed specifications of the processes of the syetem. They have
different tradeoffe [3], but are both widely used and accepted ap-

A model using airflow patterns could be useful for mechanistic
modeling provided enough empirical evidence to deseribe and param-
eterize the mechamisbie formulation 1= awvailable. We hawve used the
phenomenological approach for the mnfection risk component of our
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model, fithng parameters against the observed Guangzhou restaurant
outbreak data and using it to model an extreme event on an aireraft
Such generalizations are common and there are numerous such in-
stances in the literature, with generalizability being considered a posi-
tive feature for models. For example, data from pop-concerts was used
for analyzing sporting events [4].

In fact, Mereness et al "= obeervations would support the use of a
phenomenological model rather than a mechanistic model as follows.
They nghtly peint out that the number of virons to cause COVID-19 1z
not known and there iz a high degree of in-host vanability. Phenome-
nological models are particularly useful when such details are unknown
because there 1z incufficient knowledge for mechanizstic models to be
accurate. Thiz can be seen from the erroneous results in the study con-
ducted by the aviation industry [2]. Using the approach advoeated by
Mereness et al | that study [2, page 33] concluded that “a minimum of 54
hours are required to produce an inflight infection.” However, genetic
evidence (eg [5.6]) has conclusively shown in-flight infections for
much shorter flights.

Some of the comments are due to the misunderstanding of stochastic
modeling coneepts. For example, they mention that the number of vi-
nons to cause mfection 12 unknown. The dose threshold for infections 15
a characteristic of a determiniztic dose-response model, not a stochastic
one as we have used. They mention in-host variahility to argue against
using a dose-response model While the deterministic model cannot
account for the variation in suseeptibility, stochastic models inherently
account for this.

They point out that there are differences in empirical data (Fig 1 (a)
and (b)) and probability mape (Fig 2 and 3). A stochastic infection model
doez not determine if a specific individual would be infected, unlike
empirical data. Instead, it shows the probability of transmission for an
individual at a given location. The cumulative probability for all trav-
elers would give the expected number of infections. We compare this
against the observed cumulative infections. Addibionally, cne can note
trends, such az mmclusion of pedestrian movement indicating an
inereased probability of infections at a distance from the index case, as
obeerved in the London flight.

In the broad context, the goal of our paper is to identify and compare
mitigation strategies that can prevent a large outbrealk. It considers an
extreme situation and showe that such rizk can be mitigated using the
now-establizshed strategies of social distancing and masking. Our pri-
mary conclusion, that N95 masks or the equivalent can be very effective,
iz a widely accepted position in public health [7].
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