An Online Framework for Ephemeral Edge

Computing in the Internet of Things

Gilsoo Lee, Member, IEEE, Walid Saad, Fellow, IEEE,
Mehdi Bennis, Fellow, IEEE, Cheonyong Kim, and Minchae Jung, Member, IEEE

Abstract

In the Internet of Things (IoT) environment, edge computing can be initiated at anytime and
anywhere. However, in an IoT environment, edge computing sessions are often ephemeral, i.e., they
last for a short period of time and can often be discontinued once the current application usage is
completed or the edge devices leave the system due to factors such as mobility. Therefore, in this paper,
the problem of ephemeral edge computing in an IoT is studied by considering scenarios in which edge
computing operates within a limited time period. To this end, a novel online framework is proposed
in which a source edge node offloads its computing tasks from sensors within an area to neighboring
edge nodes for distributed task computing, within the limited period of time of an ephemeral edge
computing system. The online nature of the framework allows the edge nodes to optimize their task
allocation and decide on which neighbors to use for task processing, even when the tasks are revealed
to the source edge node in an online manner, and the information on future task arrivals is unknown.
The proposed framework essentially maximizes the number of computed tasks by jointly considering
the communication and computation latency. To solve the joint optimization, an online greedy algorithm
is proposed and solved by using the primal-dual approach. Since the primal problem provides an upper
bound of the original dual problem, the competitive ratio of the online approach is analytically derived
as a function of the task sizes and the data rates of the edge nodes. Simulation results show that the
proposed online algorithm can achieve a near-optimal task allocation with an optimality gap that is no

higher than 7.1% compared to the offline, optimal solution with complete knowledge of all tasks.

A preliminary version of this paper was presented in [1].

This research was supported by the U.S. National Science Foundation under Grant CNS-1814477 and by the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2021R1C1C1012950).

G. Lee and W. Saad are with Wireless@ VT, Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg,
VA 24061 USA (e-mail: {gilsoolee, walids}@vt.edu).

M. Bennis is with Centre for Wireless Communications, University of Oulu, Finland (email: mehdi.bennis@oulu.fi).

C. Kim and M. Jung are with the Department of Electronics and Information Engineering, Sejong University, Seoul (e-mail:
{cykim0807, mcjung} @sejong.ac.kr).

Index Terms

Competitive ratio, edge computing, internet of things (IoT), online optimization, task allocation.

I. INTRODUCTION

Next-generation wireless networks will bring in new Internet of Things (IoT) services that
can potentially transform people’s daily lives [2], [3]. Much of these emerging IoT and 5G
(fifth generation of wireless communications) services require low latency in terms of both
communication and computing. To deliver low-latency IoT services, one can resort to edge
computing [4], [5] techniques that can use radio and computing resources at a network edge'.

In particular, by using local computing resources, edge computing can significantly reduce the
distance of data transmission, thus inducing smaller communication latency. To enable large-scale
and distributed edge computing among heterogeneous devices, there is a need to enable edge
devices to pool their computing resources by instantaneously forming a local edge network to
process the computational tasks received from various user applications [4]. Clearly, if properly
deployed, edge computing will bring forth key benefits for low-latency IoT services by ensuring
that a local edge network is instantaneously deployed by edge devices. Therein, fundamental
challenges include joint radio and computing resource management and application-oriented edge

computing system and architecture design.
A. Related Work

1) Edge computing in general IoT environments: Edge computing enables a diverse set of [oT
services ranging from real-time [oT applications running on user devices to safety applications
operating on connected vehicles [6]. Recently, a number of edge computing proof of concepts
have been implemented for various IoT applications such as network resource management [7],
IoT application deployment [8], and multimedia data caching [9]. The work in [10] showed
how one can deploy, in the real world, edge devices with powerful computing resources and
an inherent capability of running computation intensive applications. Recent prior works in
[11]-[17] studied deployment scenarios and resource allocation problems for standard edge
computing in static or low-mobility networks. In particular, the work in [11] proposed an edge
computing platform deployed in network infrastructure nodes such as base stations to provide

!According to the network environment and application scenario, the network’s edge can include various entities such as

border routers, access points, base stations, mobile devices, and connected vehicles. In this study, we focused on an edge network
consisting of mobile nodes.

contents to users while maintaining a required quality-of-service. Meanwhile, the authors in [12]
studied the problem of joint computational task offloading and radio resource allocation in a
wireless powered edge computing system by using deep learning. The work in [13] introduced
a caching scheme so as to maximize fairness for an edge computing environment consisting of
heterogeneous devices with different communication and computing resources. The authors in
[14] proposed a Lyapunov optimization-based computation offloading algorithm to jointly control
transmit power and CPU (Central Processing Unit)-clock speeds when edge computing devices
are powered by energy harvesting techniques. The work in [15] studied a partial computational
task offloading and radio allocation problems are jointly studied. Moreover, in [16], a joint
strategy of computational offloading and content caching is proposed to maximize the utilization
of each edge node radio and computing resources when the statistical information on the content
request is previously known. In [17], the authors used edge computing for enhancing virtual
reality services.

2) Edge computing with high mobility: The works in [18]—[32] studied various problems
related to edge computing in IoT networks that integrate highly mobile devices such as unmanned
aerial vehicles (UAVs) and connected vehicles. First, in [18]—[27], the authors studied the use
of UAVs for wireless and computing scenarios. For instance, the authors in [18] proposed a
framework that jointly optimizes UAV placement and uplink power control so that UAVs can
collect edge data from ground sensors. In [19], the authors employed UAVs as edge message
ferries that collect information in wireless sensor networks and carry the data to the destination.
In [20]-[27], the authors proposed various use cases for deploying airborne edge computing
using a UAV. In [20], the authors investigated a UAV-mounted cloudlet in which UAVs equipped
with a computing processor offload and compute the tasks offloaded from ground devices. The
work in [21] studied a UAV-enabled mobile edge computing system in which the users harvest
the energy from the signal transmitted by the UAV in downlink, and the harvested energy is
used to transmit in uplink. The work in [22] investigated a UAV-enabled edge computing system
in which a UAV offloads computational tasks from users and decides whether to compute the
tasks or transmit the tasks to a remote server. In [23] and [24], the authors proposed a UAV-
aided multi-access edge computing (MEC) system in which a UAV acts as an edge server (or
cloudlet) providing computation service for the ground devices. On the other hand, in [25] and
[26], multiple UAVs are assumed to act as edge computing devices which cooperatively compute

tasks offloaded by ground devices. Also, the authors in [27] studied the joint problem of user

TABLE I: Comparison with related works in edge computing. (v': considered, -: not considered)

Radio resource Multiple Edge mobility Computation Time
allocation edges heterogeneity constraints

[11] - - - -

[12], [14], [15], [17] v - - -

[13] - - - v

(71191, [16] v v - -

[10] v v - v

[18], [20], [21] v - v -

[19], [22] - - v -

[27] v v v -

[23], [24] v - v v

[25], [26] v v v v

[28]-[32] - v - -

Our work v v v v v

association and computational task allocation in a mobile edge computing system where UAVs
act as edge computing devices. Hence, the role of UAVs is changeable and determined depending
on the considered network environment. In this paper, we focus on a scenario in which one of
UAVs acts as a edge server and the rest of them act as edge computing devices. This scenario
implies that the considered UAVs are not as powerful as a high performance computing server
which can compute all tasks alone, however, they can compute a few tasks faster than other 10T
devices such as sensors.

Next, edge computing is investigated in various scenarios incorporating connected vehicles
[28]-[32]. The authors in [28] developed a distributed reputation management system in which
the edge computing resources are allocated in a way to optimize security. The work in [29]
proposed a low-complexity computation offloading algorithm that minimizes the computing cost
at connected vehicles. Also, the work in [30] proposed the use of edge computing techniques to
process the computational tasks required in a blockchain system by using the local computing
resources of vehicular nodes. The authors in [31] developed a smart contract deployed on an
edge computing system to enable connected vehicles to store and share the data securely. In
[32], the authors applied a software-defined networking concept to develop an edge computing
architecture in which the control plane protocol is designed to cluster a set of neighboring
vehicles and a centralized edge computing server is used to optimize the data transmission path.

3) Limited time constraints within edge computing: The aforementioned prior works [11]-
[32] assume that edge computing operates during a relatively long time period, and they do not
consider a constraint on the total edge computing time period. However, in IoT scenarios, edge
computing can be initiated and discontinued at any time due to the completion of running an

application or the mobility of the edge nodes such as drones and vehicles. To capture such use

) B ERS==,
Iravel tlm? Cg_);;%';>> Source S
< total period tio; o S UAV UAVs' moving direction
. . Distributed — Ay iod: ¢ .
Neighboring computing <& 25t 47 (flying period: fio, 1
UAVj o N ==
o= CEDRSZ2, Controller
T = =7 Delivering the
Offloading S computed

Sensor jiacks

from sensor
to edge node

results

Fig. 1: Illustrative example’of ephemeral edge comptting Fig. 2: Illustrative example of ephemeral edge computing
framework in intelligent transporation systems. framework in smart factory.
cases, we propose the concept of ephemeral edge computing in which edge computing occurs
among IoT devices that have a stringent time constraints within which they can perform edge
computing. In Table I, we provide a comprehensive comparison between our work and the
existing works on computation offloading in edge computing.

Next, we first provide the real-world examples of ephemeral edge computing scenarios and,
then, we outline our key contributions in this area.

B. Ephemeral Edge Computing

In real world applications, various edge devices can be used to form a local edge network spon-
taneously and process computational tasks of different applications. One common observation
here is that the total time period is limited in real-world IoT examples. In particular, the running
time of a local edge network can be limited due to mobility of edge devices. Also, when edge
computing is initiated to operate an 10T user’s application, the usage time of the application can
be finite. Therefore, we introduce a notion of ephemeral edge computing to capture cases in which
edge computing occurs in a relatively short time period. Here, we note that there exists a suite
of industry products related to edge computing (e.g., from Nokia or Amazon). However, these
products are mostly related to infrastructure-based edge computing, and to our knowledge, they
have not been yet exploited to deploy a concept such as ephemeral edge computing. Meanwhile,
the emerging O-RAN standard [33] will have capabilities to support short-lived computing
transactions, however, O-RAN does not provide any ephemeral edge computing solution that
can leverage these capabilities, as such solutions are left to the research community, which
motivates the timeliness and need for this work. As discussed next, the concept of ephemeral
edge computing admits many real-world IoT applications in several industrial and civilian areas
in which total time period available for the use of edge computing is constrained.

1) Intelligent transportation systems: As shown in Fig. 1, edge computing can be applied to

an urban road environment in which a number of sensors monitor the status of the road traffic,

vehicle flow, and pedestrian generating a large data volume [32]. For example, the generated
sensory data from the road environment can be used to detect the current traffic status or to
predict safety hazards. Moreover, the generated data can also be used to decide the signal light
timing and schedule the vehicles at a merging ramp or intersection [28]. Therefore, processing
the sensory data from a road environment is essential to optimize and control the various physical
components of transportation systems. In a road environment, since the road sensors have a low
computational capability, edge computing on the vehicles can be used to offload the sensory data
from environment. Then, the data is processed to extract meaningful information such as traffic
forecast and safety warnings [34], [35]. Once the data is processed by the vehicles’ on-board
computers, the vehicles can transmit the processed information to adjacent road side unit (RSU)
that can then use the processed information to control traffic flows.

Therefore, intelligent transportation systems provide an important use case for ephemeral edge
computing. In an urban environment such as the one shown in Fig. 1, a set of vehicles move from
an intersection to the next intersection while maintaining a formation. When edge computing is
implemented on the vehicles, it can only be maintained for a limited time period due to mobility.
Those vehicles can cooperatively process the offloaded data within a limited time period that is
the travel time between two intersections. Therefore, these vehicles will form an ephemeral edge
computing network. In this case, the total time period dedicated to edge computing in a vehicular
network will be affected by the vehicles’ speed and trajectory. In particular, the vehicles can
share the information on the destination and trajectory to estimate the time period during which
a set of vehicles moving the same direction. This is just one example of edge computing among
many others in the context of transportation systems.

2) Smart factory: In emerging smart factory scenarios, also known as Industry 4.0 [36],
sensors can detect malfunctions and send diagnostics signals to actuators in the factory. Therefore,
factory systems must be optimized to manage the process of sensory data transmission, low-
latency computation, and proactive decision making in order to quickly react to new situations
[37]. Some key challenges for enabling the smart factory vision include effective in-network
computing and improvement of wireless connectivity to integrate physical and digital systems,
1.e., networking and computation. Computing sensory data in a timely manner is essential to
operate a physical factory system. To this end, the concept of ephemeral edge computing can be
applied in cyber-physical smart factory systems where UAVs, robots, and drones are deployed

and perform key functions such as data storage, computing, control, and transmission [38].

As shown in Fig. 2, we consider a smart factory in which sensors monitor the status of the
manufacturing process and generate a large data volume. For example, the generated sensory
data can be used as an input to machine learning algorithms, e.g., for classification, to predict
any abnormality in the manufacturing process. Hence, a number of computational tasks must be
processed in order to make a decision on how to control the physical systems of the factory based
on the information extracted from the data. However, due to the low computational capability
of the sensors, it is not possible to compute those tasks locally at the sensors. Also, sensors are
not able to transmit data over a long distance, and, hence, a flexible relay is necessary [39].
For example, edge-enabled UAVs can be used in a smart factory to gather the tasks from the
sensors, compute the tasks, and deliver the computed results to the destination, e.g., a central
factory controller that can control the actuators. This is a meaningful use case of ephemeral
edge computing in that the local edge network can be maintained until the UAVs arrive at the
destination. Here, the total time period of ephemeral edge computing corresponds to the moving
time from the source location to destination.

3) 1oT sensor systems for end users: Consider an IoT environment in which the generated
sensory data from the IoT devices is used to control and monitor the status of home appliances,
to detect a user’s motion and voice [40], or to run gaming and augmented reality applications
at a museum, sport events, and sightseeing places [6]. Those applications require processing
and analysis of the real-time IoT data. In particular, augmented reality and gaming applications
must process the data depending on the user’s location and orientation. In this case, the time
duration within which a user’s device is at a stable location in space can be relatively short, and
ephemeral edge computing is needed to process the IoT data in a limited time period.

As a result, the aforementioned examples in this section show that: a) Ephemeral edge
computing admits a diverse set of IoT applications and b) in these applications, the time period
dedicated to ephemeral edge computing can be limited depending on the various factors such
as mobility and usage patterns of applications. When the total time period of ephemeral edge
computing is limited, there is a need for a new approaches to efficiently allocate the radio and
computing resources to process a maximum number of computational tasks while considering
the time-sensitive nature of the system.

C. Contributions
In all of these existing works on edge computing [7]-[32], it is generally assumed that edge

computing is formed and used for a relatively long time period, and, therefore, the total computing

time of edge computing is not considered. As shown in the real-world examples of ephemeral
edge computing, edge computing can be initiated and discontinued at any time, resulting in the
finite total time period to use edge computing. Therefore, we propose the concept of ephemeral
edge computing in which the total edge computing time is limited. Also, the prior art on edge
computing employing both communications and computing [11]-[32], generally assumes that
information on prospective computing tasks such as data size and arriving order is completely
known. However, in practice, the information on tasks can be revealed gradually over time
since sensory data is randomly generated. Hence, when a series of tasks are offloaded to a
neighboring edge node, predicting prospective future tasks is often not possible. Moreover,
instead of offloading the computational tasks to base stations that are connected the servers,
as done in [11], [12], [14], and [28]-[32], the tasks can be offloaded to neighboring edge
devices by using device-to-device (D2D) communications so as to reduce a communication
latency. Furthermore, instead of relying on a single edge node for computing, as done in [20]—
[22], it is beneficial to leverage multiple, neighboring edge nodes for distributed computing
of tasks. Consequently, unlike the existing literature [11]—[32] which assumes full information
knowledge on tasks and adopts either single edge node computing models or the models placing
edge computing at the base stations, our goal is to design an online approach to maximize
the number of computed tasks on a network of multiple end-user edge nodes engaged in an
ephemeral edge computing network in which there is a strict and limited total edge-computing
time, when the information on tasks is revealed in an online manner.

The main contribution of this paper is a novel framework for distributed ephemeral edge
computing that can be operated within a limited time period, as needed in the applications of
Figs. 1 and 2. In particular, our framework allows tasks from sensors to be offloaded to a source
edge node, which can subsequently allocate tasks to neighboring edge nodes for computation
before the source node finishes edge computing. When the exact information on the offloaded
tasks is unknown to the source node, it is challenging to decide which neighboring edge node
has to compute which task. If a prior information on the task size is known to the source node,
the computation delay at each neighboring edge node can be determined and the source node
will allocate the tasks to the edge nodes according to their computational speed and the size of
the tasks. However, in practice, the computational tasks arrive dynamically to the source edge
node under a real-time process (i.e., online process) and their different data sizes cannot be

known in advance. Therefore, we formulate an online optimization problem whose goal is to

maximize the number of computed tasks when the total time period dedicated to ephemeral edge
computing is constrained. To solve this problem without any prior information on the future task
size, we propose a new online greedy algorithm that is used by the source edge node to make an
on-the-fly decision for selecting one of the neighboring node upon the sequential arrival of the
computational tasks while a prior information on the task size is unknown. Then, we analyze
the performance of the proposed algorithm by using the notion of competitive ratio; defined as
the ratio between the number of computed tasks achieved by the proposed algorithm and the
optimal number of computed tasks that can be achieved by an offline algorithm. To this end,
we apply the concept of primal-dual approach where the ratio between the dual problem and
the original problem constitutes a competitive ratio. Therefore, we derive dual problem so as to
analyze the worst-case performance of the proposed online algorithm. By doing so, the worst-
case competitive ratio can be derived as a function of the task sizes and the communication and
computing performance of the neighboring edge nodes. Simulation results show that the proposed
online algorithm can maximize the number of computed tasks and achieve a performance that
is near-optimal compared to an offline solution that has full information on tasks.

The rest of this paper is organized as follows. In Section II, we present the system model.
Section II-B formulates the proposed online problem. Section III presents our proposed solution
and performance analysis. Simulation results are analyzed in Section IV while conclusions are

drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider an ephemeral edge computing system in which sensors generate a set Z of [
tasks? that are offloaded to a given edge node that we refer to hereinafter as the source edge
node. The source edge node can be seen as a node with mobility such as vehicles and UAVs.
Also, the source edge node can be a static node. While the scenarios that can use ephemeral
edge computing are diverse, the role of the source edge node is to offload the computational
task data from the sensors and allocate them to neighboring edge nodes. Then, each neighboring
edge node directly delivers the computed result to the destination, such as a central controller in
a smart factory or an RSU in intelligent transportation systems. Finally, the destination collects

the computed tasks from the neighboring edge nodes and makes a decision on how to control

For consistency, we use the term “task” to indicate both the data generated by a sensor and the computational job that
will be used to process data.

the physical systems of the factory based on the collected data. When tasks reach the source
edge node, they are labeled by their order of arrival. Thus, a task that arrives a time instant ¢ is
denoted as task ¢ € Z. Since the source edge node processes the tasks using a first-input-first-
output policy, it will sequentially compute its tasks. The set J denotes the set of J edge nodes
that are neighbors to the source. Each edge node j € J is used to compute some allocated task ¢
from the source edge node. We also consider that the set of neighboring edge nodes J is initially
selected by the source edge node. In this regard, the source edge node selects the neighboring
edge nodes that are moving towards its same destination. Note that the term “one task” used
here can be seen as a reference to a bundle of small tasks, making it possible to execute multiple
tasks at each edge node. Furthermore, the set 7 can include multiple virtual entities of an actual
edge node when the number of edge nodes is too small to accommodate all of the tasks. In
this case, |J| = kJ where k is the number of virtual entities and J is the number of actual
edge nodes. The virtual entities of an actual edge node would then have to share the decision
variables to have the same priority, and the edge nodes would execute their tasks in a round-
robin manner. The association between the source edge node and neighboring edge nodes can be
established based on the clustering algorithm proposed in [41], in which the cluster, cluster head,
and cluster members correspond, respectively, to the ephemeral edge computing system, source
edge node, and neighboring edge nodes. In the considered clustering algorithm, the source edge
nodes exchange their link information, such as link states, computation capacity, and mobility,
and each source edge node selects the qualified neighboring edge nodes that can maintain the
connectivity during ¢y, with no computation in progress, based on the exchanged information.
The source edge node is assumed to select J neighboring edge nodes that are qualified to join
a local edge computing network to process the computational tasks in terms of residual battery
level and computation speed. If there are no edge nodes (i.e., J = (), a sensor computes its
tasks by itself and transmits the results to the destination. In this paper, we use the edge node
essentially for boosting the computation speed rather than for carrying data between sensors and
controllers. Note that, the case in which the node is static, can easily be accommodate into our
framework. For instance, a static source edge node offloads the computational task data from the
sensors and allocates them to neighboring static edge nodes. Then, each static neighboring edge
node calculates the allocated task and directly transmits the result to a destination. Moreover,
mobile edge nodes can be dispatched to any location such as mountains and rural areas where

the fixed infrastructure is not readily accessible.

Task 1 arrives - Task / arrives Time t

Source edge node : : I Computing "

. I\.:\ '\ latency

Neighboring node 7 \: | \ \ = >
]

T

>

Neighboring node 2 Transmidsion

latena
.]

\

Neighboring node 3

e

Neighboring node J
Total period ot

Fig. 3: Online edge computing framework to offload computational tasks and allocate the offloaded tasks to
neighboring edge nodes in total edge computing period i, within an ephemeral edge computing system.

The source edge node allocates the computational tasks to other neighboring edge nodes.
Such distributed computing can reduce the overall computational latency when multiple tasks
are computed. Also, to prevent an excessive energy consumption at neighboring edge nodes,
we assume that only one task is allocated to one edge node. Therefore, when neighboring edge
node j computes task ¢, the decision variable is set as y;; = 1. The other edge nodes are not
used to process the same task ¢, i.e., if y;; = 1 then y; = 0,V5’ € J \ {j}, Vi € Z. Task
allocation to neighboring edge node incurs a transmission latency. The data rate pertaining to
the transmission of the data of task ¢ to neighboring edge node j will be: r; = F(B, g;, P}, 0),
where F' is a general transmission rate function, F; is the transmit power of the source edge
node, B is the bandwidth, o2 is the noise power, and g; is the channel gain between the source
edge node and neighboring edge node j. Therefore, when the data size of task i is d; bits, the
transmission latency becomes d;/r;. Once task i is received by neighboring edge node j, it will
be processed within a computational latency® d;/ f; where f; is the computation power of edge
node .

In the proposed ephemeral edge computing system, the time period that the source edge node
actively uses edge computing is given by t,,. To determine %y, key features of the edge nodes
can be considered. From the aforementioned cases of ephemeral edge computing, the total time
period ¢, can be determined as the moving time period of a set of edge computing vehicles
on the road or UAVs in a smart factory. For example, ¢, can depend on the mobility that is

characterized by the speed and moving distance of the source edge node. ¢, could also depend

*One way to estimate computation latency is to define how many CPU cycles are needed for computing a bit of data. In this
paper, the computation latency is defined as « - d;/F; where « is the required number of CPU cycles per bit (i.e., computation
complexity) and Fj is the CPU speed of edge node j in Hz. For notational simplicity, we introduce the computation power as
fi = Fj/a. Therefore, the computation delay can be simply expressed as d;/ f;.

on the different trajectories of the source edge node. In the 10T scenarios, the total time period
can be given as the running time of an application or the time period where a smart device
is staying near the other edge devices to deploy an edge computing network. For a given ty,
if a certain number of tasks is processed as shown in Fig. 3, then the tasks’ transmission and
computation must be completed within ¢,,. We define the duration between the arrival of the
first task and completion of task 7 as the completion time of task i. As shown in Fig. 3, the tasks
are sequentially offloaded from the source edge node to one of neighboring nodes. For instance,
when the first task, ¢ = 1, is being allocated, the completion time including transmission and

computation of task 1 will be:

J
1 1
> d (— + —> Y1j < b (1)
= \n S

Subsequently, since tasks are sequentially transmitted to the neighboring edge nodes in the order
of index ¢, there will be ¢ — 1 transmissions before task ¢ is transmitted. Therefore, the completion

time of any task i, Vi € 7\ {1},

-1 J 1 J 1 1
di | —) yirj + d; (—+—) ii < Tiots)
ZZ <7°j>y] ; r; fj Yij tot

=1 j=1
where the first term is the sum of the transmission latency of ¢ — 1 tasks, and the second term
is the transmission and computation latency of task 7. Given that tasks are allocated to and
computed by neighboring edge nodes in the order of index ¢, the completion time of task ¢ in
(2) includes the summation of the transmission latency for the previous 7 — 1 tasks. Next, we
formulate an online task allocation problem to study how tasks are distributed within an edge

computing network.
B. Problem Formulation

Our goal is to allocate tasks to neighboring edge nodes in order to complete the maximum
number of tasks during the period ¢, needed for the source edge node to reach its destination.
To compute the tasks, the source edge node must allocate each task to a neighboring edge
node that can yield low latency. In practice, when the computational tasks arrive dynamically
to the source edge node, their different data sizes cannot be known in advance. As a result, the
source edge node will be unable to know a priori the information on future tasks, and, therefore,

optimizing the task distribution process under this uncertainty is very challenging. Under such

uncertainty, selecting a neighboring edge node that computes a current task must also account
for potential arrival of future tasks. When the future information is revealed sequentially, the
arrival of information can be captured within an online optimization framework. In particular, by
using online optimization techniques such as those in [42], it is possible to make an on-the-fly
decision while the future information is given in an online manner. To cope with the uncertainty
of the future task arrivals while considering the data rate and computing capabilities of given
neighboring edge nodes, we will thus propose a rigorous online optimization framework that can
handle the problem of task allocation under uncertainty.

First, we formulate the following online task allocation problem whose goal is to maximize

the number of computed tasks when the total latency is limited by #y:

O :max > Sy ©)

st. (1),(2),
S <Lvied. o)
POERTESE)
S (et) SOV €T\ {1} ©

where y is the vector of decision variables y;;, Vi € Z,V;j € J. Hereinafter, this problem is called
the dual problem. Constraints (1) and (2) show that task i’s completion time must be smaller
than ¢, and tasks that cannot satisfy those constraints will not be offloaded. (4) implies that each
neighboring edge node can compute at most one task to prevent an excessive energy consumption
at any given edge node. In constraint (5), the first task is allocated to one of the neighboring
edge nodes. Constraint (6) implies that task ¢ can be allocated to a neighboring edge node if the
task allocation of task ¢ — 1 is successful, i.e., Z;}:l yi—1; = 1. Otherwise, if ijl yi—1; = 0,
then, task 7 cannot be allocated to any edge node, and Z}]:1 yi; = 0. Due to (5) and (6), we
have Z}]=1 yi; < 1,Vi € Z, and, thus, each task is allocated to only one of neighboring edge
nodes. Given that the demand for mobile device has been growing exponentially in recent years,
mainly driven by various emerging IoT applications, we assume that J > I and all tasks can
be completed during a limited time %, using the edge computing network, and thus, there exist
some feasible solutions that satisfy all the constraints in problem (D).

Note that problem (D) is an online optimization problem and is challenging to solve using

conventional offline approaches. This is because the value of d;, Vi, is sequentially revealed.

When the tasks that different sensors send to the source edge node have a random size, the
arrival sequence of d; is assumed to be unpredictable and unknown. At the moment when d; is
disclosed, the source edge node knows only the current and past tasks. However, the source edge
node must make an instant and irrevocable online decision on which neighboring edge node
will compute task ¢. Under such uncertainty on d;, allocating tasks to existing neighboring edge
nodes must also account for potential arrival of new tasks. In fact, even if a given task allocation
can compute an existing task successfully, it may have a detrimental effect on the allocation of
incoming tasks. In particular, if an edge node having a high data rate and high computational
speed is already assigned to compute a previous task, it may not be possible to compute a future
task having a large size. Therefore, it is challenging to optimize the task allocation between
incoming tasks and neighboring edge nodes.

In an online setting, the ad-auction problem in [42] shows a generalized structure of an online
linear programming problem and its algorithmic solution. We observe that the ad-auction problem
and our problem have a key difference in the dependency of the constraints. In particular, the
ad-auction problem includes the independent constraints about the maximum allocation size
for each buyer that corresponds to the edge node in our problem. However, in our problem,
the constraints about the maximum allocation size of edge nodes are dependent on each other.
For instance, in (1) and (2), the sum of the transmission latency of the previous tasks and the
processing latency of the current task should be less than . The total time period is a function
of the task allocation decisions of all edge nodes while each edge node has an independent
task allocation size. Therefore, if the given budget of total time period is previously spent to
offload and compute previous tasks, the source node cannot offload a new task to a neighboring
node that is still available to accept a task. Additionally, our problem assumes that the arriving
tasks are sequentially allocated to the neighboring node. For instance, the current task cannot be
allocated to any node, if the previous task is not allocated due to constraints (5) and (6). Due
to the aforementioned differences, we need to develop a novel online task allocation strategy to
solve problem (D).

III. PROPOSED ONLINE TASK ALLOCATION FRAMEWORK

Our goal is to determine the vector of decision variables y so that the maximum number of
sequentially arriving tasks is successfully computed by our distributed ephemeral edge computing
system. When task size d; is unpredictable, the decision is not trivial since the current decision

may affect the task allocation of future tasks, and all tasks cannot be computed due to the limited

time resource tyy. In this case, making an on-the-fly online decision, can process a smaller number
of tasks than that of offline decision in which the complete information on all tasks is initially
known. Therefore, the gap between the results achieved by online and offline cases must be
minimized. To this end, the notion of competitive ratio [42] from competitive analysis can be
used to measure the performance of our online algorithm. It is an effective metric that compares
the ratio between the the objective function’s value achieved by an online algorithm and that
of the offline optimal solution. In particular, the upper bound of the competitive ratio can be

defined as a constant v such that
D
1 < —IROPT .
Dip

(7

where Dppopr denotes the offline optimal solution (OPT) of problem (D) in the form of integer
programming (IP), i.e., the maximum number of computed tasks with the integer solution of
y;j. We will measure the performance of our proposed algorithm by observing the upper bound
value defined by ~.

To find the upper bound of problem (D), we use the structure of the primal and dual approach
[42]. To this end, the optimization variables y;; are relaxed to be linear, i.e., y;; € [0,1]. By

using the duality of linear programming, problem (D) can be rewritten as:

I J
(P): min D towi+ Yz, ®)
1 1 4\ <
S.t. (—+—)dzxz+<—l> Z l‘i/—f—Zj—f—Ui—uH_lZl,ViEI\{]},VjEJ, (9)
riofi R —
1 1)
(—+—)d1$1+2j+U1217V]€j, (10)
ri Ji

where x and z are vectors with elements z;,Vi € Z, and z;,Vj € J, respectively. This problem
is called the primal problem. In problem (8), x1, ¥;>2, 2j, u1 and wu;>o are the dual variables
associated, respectively, with constraints (1), (2), (4), (5), and (6) in problem (D).

The values of (3) and (8) are denoted by D and Ppp, respectively. With Dip and Ppp, a
competitive ratio in (7) is derived. From the dual and primal problem formulation, it can be
shown that Dip < Dip < Dypopr < Prpopr < Prp. The first inequality is due to the fact that a
linear relaxation allows problem (D), which is in the form of linear programming (LP), to have a

higher value. The second inequality indicates that the offline optimal solution always achieves a

Algorithm 1 Online Task Allocation Algorithm

1 Initialize Yij = Ti = Zj = Uj = 0, Vi, j.

2 forieT

3 Task 4 arrives at source node.

4 Select edge node by using (12).

5 if (1) and (2) are satisfied, and Zj Yi—15 = 1,

6: Yig < 1.

7 Allocate task 7 to edge node j;* defined in (12).

8 Update zj, x;, and u;, respectively, by using (13), (14), and (15).
9 otherwise,

10

. Yij 0.
11: Set Au; = 1 and update u,;/, Vi’ <4
12: end if
13: end for

value higher than or equal to the online solution of problem (D). The third inequality captures the
slackness of the primal and dual problems. In the fourth inequality, the offline optimal solution
of problem (P), i.e., P popr 1s smaller than or equal to any online solution of problem (P), i.e.,
PLp. Also, we have Dip < Dipopr < Drpopr. The first inequality follows from the optimality gap
between the online and offline solutions when y;; is an integer. The second inequality shows
that linear relaxation of y;; allows us to have a higher value in problem (D). Thus, the ratio in
(7) becomes: DIS—EPT < PD—LI‘;, where Prp/Djp corresponds to «y in (7). Therefore, P;p/Djp becomes

the upper bound of the competitive ratio.
A. Online Greedy Algorithm

To find the ratio Py p/Dyp, we develop a new online greedy algorithm (Algorithm 1) specifically
designed to solve problems (D) and (P), based on a general online optimization framework using
the primal and dual approach of [42]. In Algorithm 1, the decision variables y;;, z;, 2;, and u;
are updated while observing the new value of d;. In particular, when task i arrives to the source
edge node, the original dual problem is solved by determining the value of y;;. Also, other dual
variables z;, z;, and u; are updated in order to find the performance bound of the proposed
online algorithm. At the initial step of Algorithm 1, all variables are set to 0. The algorithm
selects which edge node should compute task 7. Since it is beneficial to offload task ¢ from the
source node to the neighbor with a high data rate and computing speed, this decision rule can
be designed to select an edge node with the shortest communication and computing latency to

process the task 7. To this end, edge node j* is selected by following the decision rule:

-5k (1 — Zj)a (12)

J7 = argmax

v 1,1\’
’ (Tj—i_fj)dl

where o > 1 is a constant used to guarantee that at least one of the tasks can be fairly allocated
among the neighboring edge nodes. The detailed derivation of the decision rule in (12) is
presented in Appendix A. Since z; is initially zero, the decision rule in (12) only considers
the latency required to process task 7. In Algorithm 1, if a neighboring node j accepts a task, the
value of z; is updated to become positive. By doing so, 1 — z; is reduced, and, hence, another
neighboring node can be selected when the next task arrives. However, if the neighboring node
Jj results in (1 — zﬂ"‘/(% + %) d; > (1— zj/)o‘/<%/ + ﬁ) d;,Vj' € J\ {j}, the same node j
can be selected again. This can violates constraint (4) that restricts each neighbor to accept one
task. Therefore, a large value of o can be used to make (1 — z;) close to zero. Then, at the
arrival of a new task, a different neighboring node is selected as 7* by using decision rule (12).

After a neighboring node j* is selected for task ¢, if the time budget is still available for
the current task ¢ from constraints (1) and (2), neighbor node j* finally receives task ¢ from
the source node and performs processing. At this moment, the dual and primal variables are
updated in Algorithm 1. The algorithm sets y;;+ = 1 showing that task ¢ is allocated to edge
node j*. Next, the value of z;- must be updated since z;- is the primal variable associated with
the dual problem’s constraint (4) with j = j5*. When a neighboring node initially does not have
any accepted task, all z;,Vj € J are set to zero. However, if a neighboring node j accepts a

task ¢, z; will be updated as follows:

1 1Y d; 1 1\ d; 1
o ((Tj fj) ttot) (Tj fj) tiot (c— 1) (13)

where ¢ > 1 is a positive constant that will be defined later. Also, the total time period t is

1

assumed to be enough to process at least one task, and, thus, (i + —) di

< 1. Meanwhile, the

Ty fi) twot
update of x; must satisfy constraints (9) and (10). The value of z; is updated by using the rule:
(1—z)"
T = . (14)
(1/rj +1/15) di

Moreover, the values of w;, Vi’ < ¢, is updated as follows:
Uy = Uy + Aui,W' S i, (15)
where we define, V' € 7,
1 1 (1 — 2z)
Au; £ max (1— <(—+—> J +z-/),0). 16
7€\ rp o fy) @Urg 1/ f) 1o

Otherwise, if the edge nodes in 7 do not satisfy (1) and (2), then, the tasks arriving after task ¢

cannot be computed, i.e., y;; = 0, and those tasks will not be offloaded. In this case, to satisfy

constraints (9) and (10), Algorithm 1 updates any z; that has a value of O to 1 if J < I, or,
otherwise, Awu; is set to 1. This update is intended to satisfy the constraints (9) and (10) for all
1 € Z and j € J. For the arrival of each task, the proposed algorithm is a one-shot decision
making process to find a feasible solution. Therefore, by iterating the proposed algorithm for all

arriving tasks during ¢, our algorithm converges to a feasible solution of problem (D).

B. Performance Analysis

For the analysis hereinafter, we assume that a« = 1 for analytical tractability. In practice, this
assumption implies that the decision rule (12) tends to select the neighboring node with a high
data rate and computing speed. As « increases, the decision rule selects a new neighboring node
that has not been used to process any previous task. Now, as a first step to derive the competitive

ratio of the proposed algorithm, we find the following result.

Lemma 1. The constraints of the primal problem (9) and (10) will be satisfied if z;, x;, and u;

are updated by (14), (13), and (15), respectively.

Proof. See Appendix B. O

The next step of our analysis is to check whether the constraints in problem (D) is satisfied. In
particular, since it is observable that the upper bound of the left-hand side of the constraint (4)

can be greater than one, (4) is not satisfied for &« = 1, as shown next.

Lemma 2. In (4), > y,; is violated by at least 2.

Proof. See Appendix C. [

This result implies that more than two tasks can be offloaded to the same neighboring node.

However, there exists a condition under which constraint (4) is satisfied.

Lemma 3. (4) is satisfied if d; > ((1/rj; +1/f) 7 = (1/rr + 1/fj;)‘1) tioi(c— 1) where j?
is the node selected to process task i,Vi € T.
Proof. After task i is offloaded to node j;, Algorithm 1 updates z;» = (1/rj» 4+ 1/ f;+) mﬁﬁ

1 >

+1/fj;‘+1>di+1

Next, when task ¢ + 1 arrives, the condition above yields the inequality
(1/ "t
1 (1_2,]_*)04
> 2
(1/T'j}‘+1/fj}‘>di+1 (1/Tj;+1/fj;)di+1
node j;,, to process task i+ 1. Hence, a different neighboring node is selected for each task. [

, Vi € T with a = 1. Therefore, (12) is used to select a new

For instance, the condition in Lemma 3 can be satisfied if the value of d; is decreasing over
time. In that case, every neighboring node can be used to process different tasks, thus satisfying
constraint (4). As a last step, we derive the increment rate of the AP/AD when a new task i

arrives in an online manner.

Lemma 4. When the dual problem’s objective function increases by one, the primal problem’s

objective function increases by W (1 + ﬁ) + Auy; for any given ¢ > 1.
J J/7

Proof. See Appendix D. O

Now, to derive a competitive radio for the proposed algorithm, we will adopt a primal-dual
online analysis analogous to the one done in [42]. In Lemma 1, it is shown that the primal
variable is updated while satisfying the constraints (9) and (10). Then, we show that the dual
constraints from (1) to (6) are satisfied under the derived condition in Lemma 3. Finally, the
increment rates of the primal and dual problems are, respectively, derived in Lemma 4. As a

result, from Lemmas 1, 3, and 4, we obtain the following key result:

Theorem 1. The upper bound of the competitive ratio in Algorithm 1 is O(1/min, f3;;) where
- ~1 1

Bz’j é (% + %) % lfdl > ((1/Tji* + 1/]%2*) — (1/7"]'; + 1/fﬁ))t,,,t(c— 1).

Proof. Lemma 1 first shows that the constraints of problem (P) are satisfied for all tasks that

are assigned to the set of edge nodes. At each iteration, Lemma 3 shows that the increment of

AP/AD is at most

ab 1 1+ ! + max A (17)
: _ max Au;,
AD ~ min; §;; (1+6)5 —1 i
where f3;; = (% + %) % Also, (17) has an upper bound at) = 1. Since D;p = Zw,j vij, the

future tasks ¢ > D;p cannot be allocated to any neighbor. In that case, Algorithm 1 sets Au; = 1.
Then, all values of wuy, Vi’ < i increase by one, resulting in AD = 0 and AP = 1. Thus, we
have v < £ + (I — D;p). We observe that AP/AD increases with the rate of O(1/min; 3;;)
as (3;; — 0. At the same time, I — D;p can decrease with D;p when the number of processed
tasks increases. Hence, the ratio 7 can be bounded by O(1/min; 5;;). O

This result characterizes the online performance bound achieved by Algorithm 1 in which v can

decrease as min, f3;; approaches 1. If min (Ti + %) % ~ 1, we have an environment in which all
J J O

neighboring edge nodes have similar communication and computing performance, thus resulting

20

] Empirical CDF

091
081
0.7

06
£
Tosf
X
w
04f

031

02 |

Experiment | -{
> Analysis

01T,

o |
100 10' 10?
k

Fig. 4: Example of the cumulative probability distribution of Fi|z (k).

in the smallest v close to 1. In such a case, the online and offline performance gap is minimized.
Also, Algorithm 1 can be usefully converted into another simple algorithm that updates Au; = 0
for all tasks ¢ € Z so that problem (P) has a value of I, by assuming (% + %) %, Vi, 7, equals to
1. This algorithm shows that the competitive ratio is inherently upper bounded by P p/Dip = I
in the worst case.

As shown in Theorem 1, it is essential to investigate how the value of 1/3;; is determined
when measuring a realistic performance of the proposed ephemeral edge computing system.
We conduct a statistical analysis to derive the probability corresponding to different values of
1/B;;. To this end, it is assumed that the data rate and task size are randomly determined. In
particular, the size of data d; is generated by following a uniform distribution random variable
D ~ U(0, Dpax) where Dy is the maximum size of a task. We assume that the data rate is
denoted by a random variable R £ log, (14 P) where P is the received power in a fading channel
modeled as an exponential distribution with parameter), i.e., P ~ exp()). This statistical model
is a simplified version of our edge computing system model. This statistical modeling facilitates
the observation of factors that affect the performance of the proposed algorithm. Then, we derive

the probability to have a certain value of 1/0;;.

Theorem 2. If k > 4L, the probability that 1/5;; < k is (F (k) — Fx(1))/(1— F(1)) where

toorf 1
/ ' <1—exp (—)\ (2k} —1>>)dx—|— (me—t’zfﬂ. (18)
0

Proof. We define a random variable K £ ﬁ Therefore, if k > g"—r;i, the cumulative

1
D max

Fr(k) =

1 1
logo (1+P) +7

density function of a random variable K is shown as:

21

Lo
Fx(k) = Pr o >k (19)
;+l D
<log2(1+P) f)

D
max to
= / Pr o > kD=2 |Pr(D =z)dr (20)
0 (é + l) x
log, (1+P) f
tiotSf

1 k ttm% ttot
- [(e (AT)) ()]

When H is defined as the event in which K > 1, the cumulative density function of a random

variable K conditioned on H is Fi |z (k) = W;@’;—Q’ff” = (Fr(k) — Fg(1))/(1 = Fg(1)). O

When the tasks are randomly generated and wireless performance dynamically changes, Fig. 4
shows an example of the cumulative probability distribution of F'x| u(k) whent = 2,1/f = 0.5,
and Dy, = 4. In Fig. 4, if k£ = 2, the probability that k¥ = 1/ is less than 2 is around
50%. Therefore, the probability that £ becomes the empirical value of a competitive ratio in
Theorem 2 is: Pr(1/ min; 8;; < k) = Pr(max; 1/8;; < k) = (Fu(k))". Also, from Theorem 2,
the derived probability does not change if the total time period is equal to the processing time
of the maximum task size, i.e., toq = Dpax/f. Hence, if an ephemeral edge computing system
is designed to use the maximum task size given by t,.f, it is possible to expect the empirical
value of the competitive ratio when the data rate and task size are randomly determined in a

wireless environment.
IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we use a MATLAB simulator in which we consider that the source
edge node initially forms a network with J = 10 neighboring edge nodes uniformly distributed
within a circular area of radius between 10 m and 100 m. For instance, this can be seen as a
generalized scenario in which an edge-enabled UAV (or vehicle) forms an edge network with J
neighboring nodes in a smart factory (or on a road environment). The task size follows a uniform
distribution between 50 and 100 Mbits, and the number of tasks is I = 10. The power spectral
density of the noise is -174 dBm/Hz, the carrier frequency is 2.1 GHz, and P, = 20 dBm. The
computational speed of each neighboring edge node is randomly determined from a uniform

). The

distribution between 1 x 10® and 5 x 10® bits/sec and we assume r; = Blog, (1 + 9212%:
offline optimal solution is calculated by using a mixed-integer linear programming (MILP) solver
with the assumption that the size d; of task ¢, Vi € Z, is completely known. All simulations are

statistically averaged over 5000 independent runs.

22

1.25

N
T

4
L 4

1.05

Average number of accepted tasks per node

1 I I I I | I I I I
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 1 15 2 2.5 3

minI J” {wt [sec]

Fig. 5: The empirical competitive ratio in (7) with respect Fig. 6: Average number of computed tasks for the
to the different values of min; 8;; when o = 1. different total times when o« = 1 and 100.

Fig. 5 first shows the empirical ratio between the offline optimal and online solutions, Dipopr/Dip
for the different values of min; 5;; when ¢, = 1, o = 1, and f; € [7 X 107,10 x 107]). The
numerical results in Fig. 5 confirm that the ratio Dipopr/Dip decreases as min fBi; increases as
shown in Theorem 1. For example, the empirical competitive ratio can be reduced up to 19.2%
if the smallest (3;; increases from 0.58 to 0.85. Also, in Fig. 5, the cases in which the ratio
is one correspond to scenarios in which the proposed algorithm finds the optimal solution. For
instance, when min; 3;; is greater than 0.79, Fig. 5 shows that the empirical ratio becomes one
since Dipopr = Dip.

Fig. 6 shows the average number of accepted tasks per node, i.e.,) .v;;, for two values
of a = 1 and 100. In Fig. 6, the number of accepted tasks per node needs to be one due to
constraint (6). When 0 < z; < 1, the selection rule in (12) can decide to offload a new task
to a neighboring node that already accepted a task. In particular, Fig. 6 shows that the average
number of accepted tasks per node increases with ¢, for « = 1. This is due to the fact that the
selection rule in (12) is affected by two factors, i.e., (1 —z;)* and 1/ ((1/rj + 1/]‘})%) where
(1 — z;)™ prevents the algorithm from choosing the same node multiple times. It is observable
that 1/ ((1 Jri+1/ fﬂ%) increases as t, increases. Therefore, with a large ¢, the selection
rule in (12) is determined by 1/ <(1/rj + 1/]2)%), rather than (1 — z,)“. For example, Fig. 6
shows the average number of accepted tasks can reach up to 2 when ¢, increases from 1 to 3.
Thus, to avoid offloading more than one task to the same neighboring node, a large « is used
in Fig. 6. If « is set to a large value, e.g., 100, Fig. 6 shows that the selection rule in (12) only

offloads the tasks to different nodes. This is due to the fact that (1 — z;)* is close to zero for a

large o when 0 < z; < 1. For instance, when o = 100, the average number of accepted tasks is

23

100 ' q !
v
90 - 1 09F : !
: H
& sor 1 08f i A
2 -
o 70 %07 S
8 e : L.
o [} —
2 60 206 =
= :
L i
g 50 .g 0.5 -+
k] k] i
40 S 041
g g
€ t (s} L
§ 30 0.3
E 2ol | 02k Dip opr/Pip ('«o‘j” |
Offli timal (D, ====Dip opr/Dpp (t72)
ol —@— Offine optimal (D, o) | L - — D, Dy (t,=3) | 4
~——©— Proposed online algor\lhm(D‘p) 01 IPOPT 1P m_
y T T — e Dip opr/Pip (o™
o¢f 0 ‘ ‘ ‘
0 1 2 3 4 5 6 7 0.8 1 12 14 1.6 1.8 2 22 24
twt [sec] Ratio

Fig. 7: Comparison between the proposed algorithm’s Fig. 8: The empirical competitive ratios Dipopr/Dip
result and the offline optimal solution in terms of per- when ¢y, = 1,2, 3,4.

centage of computed tasks for different .

1 for all ¢,. To evaluate Algorithm 1 in a general task arrival, & = 100 is used for the rest of
our simulations.

Fig. 7 shows the percentage of computed tasks for different values of t,,, from 0 to 7 seconds
when the total bandwidth is 10 MHz. For comparison, we calculate the offline optimal solution
of the dual integer problem, i.e., Dipopr, by assuming that all task sizes, d;, Vi, are known in
advance. The offline optimal Dipopr shows that the percentage of computed tasks increases with
t that is a given parameter in problem (D). The design goal of our online algorithm is to
achieve a performance that is similar to the offline optimal when the task size d; is revealed
one by one. To this end, in Fig. 7, we can observe that the optimal solution and the solution
found by Algorithm 1 are very close for all values of ¢,,. This demonstrates the effectiveness of
the proposed algorithm that can select properly neighboring edge nodes to offload tasks while
maximizing the number of computed tasks. For instance, Fig. 7 shows that the maximum gap
between the offline optimality and the online solution is only 7.1% when t,,; = 4. Also, in Fig. 7,
as ty increases, more tasks can be readily processed within a given time period, and, therefore,
the percentage of computed tasks approaches to 100%. In particular, when ¢, = 7, Fig. 7 shows
that all computational tasks are processed on the edge computing network in both online and
offline cases, respectively.

Fig. 8 shows the cumulative frequency of the empirical ratio, Dipopr/Dip, for both the offline
optimal and online solutions when ¢, = 1,2,3,4. In Fig. 8, the ratio Dipopr/Dyp is shown to
have a step-like shape since both Djpopr and Dyp are integers, and there exists a limited number
of possible values for Dipopr/Dyp for specific settings of the simulations. In Fig. 8, the cases in

which the ratio is one correspond to scenarios in which the proposed algorithm finds the optimal

24

- > g 1
-’ -
. .
- . al 0.9
P ’
—_ 'ﬁ ’ .
=x ’ / 0.8
= . ’
2 ’
- ’ /d 0.7
£ ’ . g
g s 206
. .
=1 o
é -4 8
g D, opr(High comput. speed, Small task) © 05
5 — © — D (High comput. speed, Small task) g oal
g DIP OFT(Low comput. speed, Small task) g
I} =1 - " "
£ — © =D, (Low comput. speed, Small task) O g3l High compu(a%lona\ speed, Small task size
g P . Low computational speed, Small task size
5 = = =D, opr(High comput. speed, Large task) = = High computational speed, Large task size
o — B —D,(High comput. speed, Large task size) 0.2 = = Low computational speed, Large task size
= = =Dyp opr(Low comput. speed, Large task) 01k
-8 - DIP(Low comput. speed, Large task)
0
6 7 8 9 10 0.95 1 1.06 1.1 1.15 1.2 1.25
Bandwidth [MHz] Ratio

Fig. 9: Percentage of computed tasks for different com- Fig. 10: The empirical competitive ratios Dipopr/Dip
putational speeds of neighboring edge nodes and dif- for different computational speeds of neighboring edge
ferent task sizes when bandwidth is varying between nodes and different task sizes when bandwidth is 5 MHz.
3 and 7 MHz.

solution. For example, in Fig. 8, about 38 — 88 % iterations result in the slope of 1 where the
optimal solution is achieved by running the proposed algorithm. By the definition of ~ in (7),
the number of computed tasks with the proposed algorithm is at least Dipopr /. For instance, in
Fig. 8, the largest empirical competitive ratio is shown to be 2 which implies that the number
of computed task is at least Dpopr/2 when the proposed algorithm is executed with the given
simulation parameters.

Fig. 9 shows the percentage of computed tasks for two different ranges of computational
speeds of the edge nodes and different task sizes when the bandwidth is changed from 3 to
10 MHz with ¢, = 7 and distance randomly distributed in range from 10 m to 70 m. In Fig. 9,
neighboring edge nodes with low computational speeds are represented by f; € [5x 107,8x 107],
whereas edge nodes with high computational speeds are assumed to have f; € [5 x 10%,8 x 10%].
Also, we consider two scenarios with small-size tasks d; € [50 x 109 70 x 10°] and large-size
tasks d; € [70x10°, 90 x 10], respectively. From Fig. 9, we can see that the number of computed
tasks increases with more bandwidth. This is due to the fact that a higher bandwidth can increase
the data rate and reduces tasks’ transmission latency. Therefore, more tasks can be allocated to
neighboring edge nodes. For instance, the number of computed tasks can increase about two-
fold if the bandwidth changes from 3 MHz to 10 MHz in the case of edge nodes with low
computational speeds and large-size tasks. Also, Fig. 9 shows that using edge nodes with high
computational speeds increases the number of computed tasks. For example, the percentage of
computed tasks increases from 88% to 99.5% by using edge nodes having high computational

speeds when bandwidth is 5 MHz and the task sizes are small. Moreover, Fig. 9 shows that

25

95 -

90 - j
85¢ 1
¢

80T

D

75 1
P ——r=75x10°

4 J 4

70
—o— =5 % 10°

=6 Max distance=30m
~—&— Max distance=50m | |

Max distance=70m 65 f=25x10°| |
92 —A— Max distance=90m | /

Percentage of computed tasks [%]
Percentage of computed tasks [%]

= 8
—#— Max distance=110m —O—r=1x10
91 ! ! I 60 . . . ;
10 15 20 25 30 35 40 45 50 55 60 20 21 22 23 24 25
Number of neighboring nodes P[[dbm]

Fig. 11: Percentage of computed tasks for different num- Fig. 12: Percentage of computed tasks for different trans-
ber of neighboring edge nodes and different maximum mit powers with respect to different computing speeds
communication distances. of neighboring nodes.

more tasks can be computed as task sizes become smaller; for example, small-sized tasks result
in 32.8% more computed tasks compared to that of large-sized tasks in the case of 4 MHz in a
high computational speed case.

Fig. 10 shows the empirical competitive ratio Dipopr/Dyp for different computational speeds
of neighboring edge nodes and different task sizes when bandwidth is 5 MHz. We can observe
that the proposed algorithm in both cases of edge nodes having high computational speeds
almost achieves the optimal performance that can be achieved by the offline optimal solution,
1.e., Dipopr. However, as shown in Fig. 9, since Dipopr in case of edge nodes having high
computational speeds with large-sized tasks is lower than that in case of edge nodes having
low computational speeds with small-sized tasks, the percentage of computed tasks in case of
edge nodes having low computational speeds with small-sized tasks is higher than that in case
edge nodes having high computational speeds with large-sized tasks. A higher computational
capability can be achieved in a larger edge network than in a small one. However, establishing a
large network will increase the signaling overhead as the number of participating nodes increases.
Hence, between a large and small edge network, there clearly exists a tradeoff between signaling
overhead and computing capability.

In Fig. 11, the percentage of computed tasks is shown for different numbers of neighboring
edge nodes ranging from 10 to 60. The scenario in Fig. 11 assumes that neighboring edge nodes
are randomly distributed within a maximum distance that is varied in range from 30 m to 110 m
with I = 10, B = 5 MHz, and t,,, = 7. Simulations assume that the small-size tasks are in the
range of d; € [40 x 10,70 x 10°]. Also, the neighboring nodes use low computational speeds

in the range of f; € [5 x 107,8 x 107]. In Fig. 11, it is clear that the number of computed

26

tasks increases with the number of neighboring edge nodes. As the set of neighboring edge
nodes becomes larger, the source edge node has a higher probability to allocate its tasks to
the neighboring edge nodes having a high data rate and computational speed. For instance, the
number of computed tasks can increase by about 8.2% if the number of edge nodes increases
from 10 to 60 when the maximum distance is 110 m. Fig. 11 also shows that the number
of computed tasks increases if the maximum communication distance between edge nodes is
reduced. For example, the percentage of computed tasks increases from 91.8% to 99.6% by
reducing the maximum distance between neighboring edge nodes and the source edge node.

In Fig. 12, the percentage of computed tasks is shown for different transmit powers from
20 dBm to 25 dBm when the neighboring nodes use identical computing speed that varies from
108 to 7.5 x 108. Fig. 12 shows that the number of computed tasks increases with the transmit
power of the source edge node. This is due to the fact that the increased data rate reduces the
wireless transmission latency, and, therefore, more tasks can be processed within a limited time
period. For example, the percentage of computed tasks increases by up to 10.7% if the transmit
power changes from 20 dBm to 25 dBm with f; = 10®. Also, Fig 12 shows that increasing
a computing speed is beneficial to process notably more tasks. For instance, if the computing
speed of edge nodes increases from 108 to 7.5 x 108, the edge computing network can process
up to about 20% more tasks. Thus, Fig 12 shows that reducing the computing latency by using
a high computing speed is needed while reducing the transmission latency with a high power.

V. CONCLUSION

In this paper, we have proposed a new concept of ephemeral edge computing in which the total
time period dedicated to edge computing is limited. This concept of ephemeral edge computing
is applicable to a wide range of scenarios including Industry 4.0 smart factory, intelligent
transportation systems, and smart homes. By modeling a generalized scenario of ephemeral
edge computing, we have proposed a novel framework to maximize the number of successful
computations over an edge computing network within a limited time period. This framework
allows a source edge node to offload tasks from sensors and distributed tasks to neighboring
edge nodes in order to compute the tasks before the source edge node discontinues its current
edge computing network. When the exact information on the offloaded tasks is unknown to the
source edge node, it is challenging to optimize the decision of which neighboring edge node
has to compute each task. Therefore, we have formulated an online optimization problem that

jointly optimizes the communication and computation latency is formulated and introduced an

27

online greedy algorithm to solve the problem. Then, by using the structure of the primal-dual
problem formulation, we have derived a feasible competitive ratio as a function of the task
sizes and the data rates of the edge nodes. Simulation results have shown that the empirical
competitive ratio defined as the ratio between the number of computed tasks achieved by the
proposed online algorithm and offline optimal case is at most 2 in a given simulation setting.
Thus, the simulation results confirm that the proposed online algorithm can efficiently allocate
tasks to neighboring edge nodes under uncertainty. Our future work will include extending our
results to additional practical scenarios in which multiple tasks can be allocated to edge nodes

under the consideration of the lifetime of an ephemeral edge computing network.
APPENDIX A

DERIVATION OF (12)

In (3), problem (D) is formulated to minimize the sum delay. In this regard, it is beneficial to
offload task ¢ from the source node to the neighbor with a high data rate and computing speed to
minimize the sum delay. Therefore, the decision rule to select edge node j* needs to be designed
to select an edge node with the shortest communication and computing latency to process the
task ¢, i.e., (% + f—lj> d;. In (8), problem (P) is formulated to minimize the cost objective function
Zle tiotTi+ Z}J=1 zj+uy. Then, the decision rule to select edge node j* need to be designed
to select an edge node with the smallest z; which is equivalent to select an edge node with the
largest (1 — z;)®. Thus, the decision rule to select edge node j* is obtained by (12).

APPENDIX B
PROOF OF LEMMA 1

We will show that the first constraint is always satisfied for all ¢ when using the updating
rule. When allocating task ¢/, x; = 0,Vi > i’ and u; = 0,Vi due to the initialization. From the
constraints in (9) and (10), we have that (1/r; + 1/f;) d;x;+(d; /1) Zf,:iﬂ Ty 42+ U — Uiy =
(1/r;+1/f;) di(1 — zj)m + z; = 1. Then, we consider the constraints regarding other
edge nodes j € J \ {j*} for a given task Vi € Z. When u; is updated, u; — u;;; is equal to

Aw;. Therefore, we can show that edge node Vj € J satisfy the constraint (5) as follows:

1 1 1
—+) di(1 — z;2) + z; + Au;
(Tj fj) () (1/rje +1/fi)di ™

A/t 1/f) Yor s ama (1 (e V) e
=Wy 11/ 0) e e (1 ((1/Tj*+1/fj*)(1) >O>

Wi+ V5 ey (1 (V) e Y

28

Hence, the primal constraints (9) and (10) are satisfied.

APPENDIX C
PROOF OF LEMMA 2

For a given j, the upper bound of), y;; in (4) is derived by using the fact that the proposed
algorithm does not update z; if), v;; > 1. In particular, when the task is indexed by 7', suppose
that the task allocation is not possible for the first time, i.e., y;; = 0, Vi > . Before the last
task ¢’ arrives, the value of) .. y;; is still less than the total budget of edge node j. However,
after allocating task ¢’ to edge node j, >, v;; can be greater then one. The violation of the
constraint (4) makes the value of z; be greater than 1. Therefore, for any ¢ > 1, the inequality
2j > ﬁ <cz§/:1 Vi — 1) is used to derive the upper bound of) .. v;;. From this relationship, if
Zz;l yi; > 1, we have — (czﬁlzl Yij — 1) > 1, then z; > 1.

When we define 3;; = (TL + fi) 4 the update rule of z; in (13) is used as following:
1
z; = zi(1+ Bij) + ﬁi'j: (23)
> 1 (CZ?/;E vij _ 1) (1+ Bu) + B 1 (24)
= oo RS P
1 il —
T o1 <02i=* Y (1+ Birj) — 1) (25)
(a) il —
> (= wties — 1), (26)
c—1

where ¢ = (1 + 5)1/ % for a constant § > Bi;. From the definition of ¢, (a) holds due to the
/Bifj Bi/]'
relationship 1 + f5;; > ((1 +6)1/5> = ((1 +5)1/6> when 0 < f;;; < 0 < 1. Also, the

definition of z; in (13) has an upper bound z; < z £ (14+0)+ cf—l, and, therefore, we can rewrite

(26) as following: 3" ' y;; < log, (2(c — 1) + 1) — fBy;. Thus, an upper bound of 3% 4, is

derived as:

v @
Yo us < log(2(c—1)+1) = By + 1< 1+ log, G2 27)

7,/]

where (a) hold since 22;1 Yij = Zz:ll y;; + 1 if task ¢’ is allocated. Then, if § = 3;; = 0, we

(1+d)e
g = 2.
cvJ

can have a lower bound 1 + log,
APPENDIX D
PROOF OF LEMMA 4
By using the definition of z; and z;, we derive the change of the objective function of problem

(P), denoted by AP. When a task i is allocated to an edge node j, z; and z; are updated, and,

29

therefore, the objective function of problem (P) increases. In particular, AP increase with Az;
since we want to observe the increment of z; at current interation while the value of z; can be
updated multiple time. Also, AP increase with x; since z; is initially given by 0 and updated

only once. Thus, we have AP = Az; + ti,x; + Au,; and

1 1)\ d 1 . 1
AP = (E - f_y) tror (Zj e 1) T tall =) (1/r; +1/f;)d; + A
(a) Lot (1) Lot
< Zit+—— |+ (1 -z + Au,;
T ung @ eo1) T BTy
ttOt 1
- 14+ ——) + Au, 28
OCESVIAL (- 1) v 8

where (a) holds due to (1/r; + 1/f;) % < 1 with @ = 1. Next, the objective function of problem

tot —

(D) is increases by one, and it is denoted by AD = 1. This is due to the fact that y,; is initially
set to zero, and we update y;; = 1 when task ¢ is assigned to edge node j. Hence, we have

AP t[m 1
AD = A/ +1/F;)d;i (1 + E) + Ui

REFERENCES

[1] G. Lee, W. Saad, and M. Bennis, “Online optimization for UAV-assisted distributed fog computing in smart factories of
Industry 4.0,” in Proc. IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec.
2018, pp. 1-6.

[2] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research
problems,” IEEE Network, vol. 34, no. 3, pp. 134-142, 2020.

[3] M. Karimzadeh, W. Saad, and M. Debbah, “Common language for goal-oriented semantic communications: A curriculum
learning framework,” in Proc. IEEE International Conference on Communications (ICC), Seoul, South Korea, May 2022.

[4] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities,” IEEE Internet of Things Journal, vol. 3,
no. 6, pp. 854-864, Dec. 2016.

[5] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated
learning over wireless networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 269-283, 2021.

[6] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing—a key technology towards 5G,”
ETSI white paper, vol. 11, no. 11, pp. 1-16, 2015.

[7] F. M. F. Wong, C. Joe-Wong, S. Ha, Z. Liu, and M. Chiang, “Improving user QoE for residential broadband: Adaptive
traffic management at the network edge,” in Proc. IEEE International Symposium on Quality of Service (IWQoS), Portland,
OR, USA, 2015, pp. 105-114.

[8] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, “Foggy: A framework for continuous automated IoT application
deployment in fog computing,” in Proc. IEEE International Conference on Al & Mobile Services (AIMS), Honolulu, HI,
USA, 2017, pp. 38-45.

[9] S.-R. Yang, Y.-J. Tseng, C.-C. Huang, and W.-C. Lin, “Multi-access edge computing enhanced video streaming: Proof-
of-concept implementation and prediction/QoE models,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp.

1888-1902, 2019.

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

30

G. Darling, “IoT vs. edge computing: What’s the difference?” IBM, Sep. 9, 2021. [Online]. Available:
https://developer.ibm.com/articles/iot- vs-edge-computing/

S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “QoS prediction for service recommendations in mobile edge
computing,” Journal of Parallel and Distributed Computing, vol. 127, pp. 134-144, May 2019.

L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online computation offloading in wireless powered
mobile-edge computing networks,” IEEE Transactions on Mobile Computing, vol. 19, no. 11, pp. 2581-2593, 2020.

Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms for peer data sharing in pervasive edge computing
environments,” in Proc. IEEE International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA,
2017, pp. 605-614.

Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-edge computing with energy harvesting
devices,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590-3605, 2016.

Z.Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading scheduling and power allocation for mobile edge computing
systems,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774-6785, 2019.

C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation offloading and resource allocation in wireless cellular
networks with mobile edge computing,” IEEE Transactions on Wireless Communications, vol. 16, no. 8, pp. 4924-4938,
2017.

M. Chen, W. Saad, and C. Yin, “Virtual reality over wireless networks: Quality-of-service model and learning-based
resource management,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5621-5635, 2018.

M. Mozaftari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet
of things communications,” IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574-7589, 2017.

Y. Wang, W. Peng, Q. Dou, and Z. Gong, “Energy-constrained ferry route design for sparse wireless sensor networks,”
Journal of Central South University, vol. 20, no. 11, pp. 3142-3149, Nov. 2013.

S. Jeong, O. Simeone, and J. Kang, “Mobile cloud computing with a UAV-mounted cloudlet: Optimal bit allocation for
communication and computation,” IET Communications, vol. 11, no. 7, pp. 969-974, May 2017.

F. Zhou, Y. Wu, H. Sun, and Z. Chu, “UAV-enabled mobile edge computing: Offloading optimization and trajectory design,”
in Proc. IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 2018, pp. 1-6.

X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and edge computing: Scheduling and trajectory
optimization,” IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4738-4752, 2019.

Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading and trajectory design for UAV-enabled mobile
edge computing systems,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1879-1892, 2019.

Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey, and C. S. Hong, “Energy-efficient resource management in
UAV-assisted mobile edge computing,” IEEE Communications Letters, vol. 25, no. 1, pp. 249-253, 2021.

L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-UAV-enabled load-balance mobile-edge computing
for 10T networks,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6898-6908, 2020.

J. Zhang, L. Zhou, F. Zhou, B.-C. Seet, H. Zhang, Z. Cai, and J. Wei, “Computation-efficient offloading and trajectory
scheduling for multi-UAV assisted mobile edge computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 2,
pp. 2114-2125, 2020.

Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient resource allocation in UAV-enabled mobile edge
computing networks,” IEEE Transactions on Wireless Communications, vol. 18, no. 9, pp. 4576-4589, 2019.

X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed reputation management for secure and efficient vehicular edge

computing and networks,” IEEE Access, vol. 5, pp. 25408-25 420, 2017.

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

31

Y. Liu, S. Wang, J. Huang, and F. Yang, “A computation offloading algorithm based on game theory for vehicular edge
networks,” in Proc. IEEE International Conference on Communications (ICC), Kansas City, MO, USA, May 2018, pp.
1-6.

G. Lee, J. Park, W. Saad, and M. Bennis, ‘“Performance analysis of blockchain systems with wireless mobile miners,”
IEEE Networking Letters, vol. 2, no. 3, pp. 111-115, 2020.

J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang, “Blockchain for secure and efficient data sharing
in vehicular edge computing and networks,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4660—4670, 2018.

X. Huang, R. Yu, J. Kang, Y. He, and Y. Zhang, “Exploring mobile edge computing for 5G-enabled software defined
vehicular networks,” IEEE Wireless Communications, vol. 24, no. 6, pp. 55-63, Dec. 2017.

“Near-Real-time RAN Intelligent Controller Architecture & E2 General Aspects and Principles,” O-RAN Alliance, Alfter,
Germany, Technical Specification, Jul. 2022.

T. S. J. Darwish and K. Abu Bakar, “Fog based intelligent transportation big data analytics in the internet of vehicles
environment: Motivations, architecture, challenges, and critical issues,” IEEE Access, vol. 6, pp. 15679-15701, 2018.

A. Ferdowsi, U. Challita, and W. Saad, “Deep learning for reliable mobile edge analytics in intelligent transportation
systems: An overview,” IEEE Vehicular Technology Magazine, vol. 14, no. 1, pp. 62-70, 2019.

S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory of Industrie 4.0: An outlook,” International Journal
of Distributed Sensor Networks, vol. 12, no. 1, p. 3159805, Jan. 2016.

D. Zuehlke, “SmartFactory—towards a factory-of-things,” Annual Reviews in Control, vol. 34, no. 1, pp. 129-138, Mar.
2010.

A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, and H. Tenhunen, “Placement of smart mobile access points in wireless
sensor networks and cyber-physical systems using fog computing,” in Proc. IEEE International Conference on Scalable
Computing and Communications, Toulouse, France, Jul. 2016, pp. 680-689.

I. Jawhar, N. Mohamed, J. Al-Jaroodi, and S. Zhang, “A framework for using unmanned aerial vehicles for data collection
in linear wireless sensor networks,” Journal of Intelligent & Robotic Systems, vol. 74, no. 1, pp. 437453, Apr 2014.

M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge computing using the example of remote live
support,” in Proc. IEEE International Conference on Industrial Technology (ICIT), Toronto, Canada, 2017, pp. 1277-1282.
C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan, “A comparative survey of VANET clustering techniques,”
IEEE Communications Surveys Tutorials, vol. 19, no. 1, pp. 657-681, 2017.

N. Buchbinder and J. S. Naor, “The design of competitive online algorithms via a primal-dual approach,” Foundations

and Trends in Theoretical Computer Science, vol. 3, no. 2-3, pp. 93-263, May 2009.

