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Abstract

In the Internet of Things (IoT) environment, edge computing can be initiated at anytime and

anywhere. However, in an IoT environment, edge computing sessions are often ephemeral, i.e., they

last for a short period of time and can often be discontinued once the current application usage is

completed or the edge devices leave the system due to factors such as mobility. Therefore, in this paper,

the problem of ephemeral edge computing in an IoT is studied by considering scenarios in which edge

computing operates within a limited time period. To this end, a novel online framework is proposed

in which a source edge node offloads its computing tasks from sensors within an area to neighboring

edge nodes for distributed task computing, within the limited period of time of an ephemeral edge

computing system. The online nature of the framework allows the edge nodes to optimize their task

allocation and decide on which neighbors to use for task processing, even when the tasks are revealed

to the source edge node in an online manner, and the information on future task arrivals is unknown.

The proposed framework essentially maximizes the number of computed tasks by jointly considering

the communication and computation latency. To solve the joint optimization, an online greedy algorithm

is proposed and solved by using the primal-dual approach. Since the primal problem provides an upper

bound of the original dual problem, the competitive ratio of the online approach is analytically derived

as a function of the task sizes and the data rates of the edge nodes. Simulation results show that the

proposed online algorithm can achieve a near-optimal task allocation with an optimality gap that is no

higher than 7.1% compared to the offline, optimal solution with complete knowledge of all tasks.
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I. INTRODUCTION

Next-generation wireless networks will bring in new Internet of Things (IoT) services that

can potentially transform people’s daily lives [2], [3]. Much of these emerging IoT and 5G

(fifth generation of wireless communications) services require low latency in terms of both

communication and computing. To deliver low-latency IoT services, one can resort to edge

computing [4], [5] techniques that can use radio and computing resources at a network edge1.

In particular, by using local computing resources, edge computing can significantly reduce the

distance of data transmission, thus inducing smaller communication latency. To enable large-scale

and distributed edge computing among heterogeneous devices, there is a need to enable edge

devices to pool their computing resources by instantaneously forming a local edge network to

process the computational tasks received from various user applications [4]. Clearly, if properly

deployed, edge computing will bring forth key benefits for low-latency IoT services by ensuring

that a local edge network is instantaneously deployed by edge devices. Therein, fundamental

challenges include joint radio and computing resource management and application-oriented edge

computing system and architecture design.

A. Related Work

1) Edge computing in general IoT environments: Edge computing enables a diverse set of IoT

services ranging from real-time IoT applications running on user devices to safety applications

operating on connected vehicles [6]. Recently, a number of edge computing proof of concepts

have been implemented for various IoT applications such as network resource management [7],

IoT application deployment [8], and multimedia data caching [9]. The work in [10] showed

how one can deploy, in the real world, edge devices with powerful computing resources and

an inherent capability of running computation intensive applications. Recent prior works in

[11]–[17] studied deployment scenarios and resource allocation problems for standard edge

computing in static or low-mobility networks. In particular, the work in [11] proposed an edge

computing platform deployed in network infrastructure nodes such as base stations to provide

1According to the network environment and application scenario, the network’s edge can include various entities such as
border routers, access points, base stations, mobile devices, and connected vehicles. In this study, we focused on an edge network
consisting of mobile nodes.



3

contents to users while maintaining a required quality-of-service. Meanwhile, the authors in [12]

studied the problem of joint computational task offloading and radio resource allocation in a

wireless powered edge computing system by using deep learning. The work in [13] introduced

a caching scheme so as to maximize fairness for an edge computing environment consisting of

heterogeneous devices with different communication and computing resources. The authors in

[14] proposed a Lyapunov optimization-based computation offloading algorithm to jointly control

transmit power and CPU (Central Processing Unit)-clock speeds when edge computing devices

are powered by energy harvesting techniques. The work in [15] studied a partial computational

task offloading and radio allocation problems are jointly studied. Moreover, in [16], a joint

strategy of computational offloading and content caching is proposed to maximize the utilization

of each edge node radio and computing resources when the statistical information on the content

request is previously known. In [17], the authors used edge computing for enhancing virtual

reality services.

2) Edge computing with high mobility: The works in [18]–[32] studied various problems

related to edge computing in IoT networks that integrate highly mobile devices such as unmanned

aerial vehicles (UAVs) and connected vehicles. First, in [18]–[27], the authors studied the use

of UAVs for wireless and computing scenarios. For instance, the authors in [18] proposed a

framework that jointly optimizes UAV placement and uplink power control so that UAVs can

collect edge data from ground sensors. In [19], the authors employed UAVs as edge message

ferries that collect information in wireless sensor networks and carry the data to the destination.

In [20]–[27], the authors proposed various use cases for deploying airborne edge computing

using a UAV. In [20], the authors investigated a UAV-mounted cloudlet in which UAVs equipped

with a computing processor offload and compute the tasks offloaded from ground devices. The

work in [21] studied a UAV-enabled mobile edge computing system in which the users harvest

the energy from the signal transmitted by the UAV in downlink, and the harvested energy is

used to transmit in uplink. The work in [22] investigated a UAV-enabled edge computing system

in which a UAV offloads computational tasks from users and decides whether to compute the

tasks or transmit the tasks to a remote server. In [23] and [24], the authors proposed a UAV-

aided multi-access edge computing (MEC) system in which a UAV acts as an edge server (or

cloudlet) providing computation service for the ground devices. On the other hand, in [25] and

[26], multiple UAVs are assumed to act as edge computing devices which cooperatively compute

tasks offloaded by ground devices. Also, the authors in [27] studied the joint problem of user
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TABLE I: Comparison with related works in edge computing. (✓: considered, -: not considered)

Radio resource
allocation

Multiple
edges

Edge mobility Computation
heterogeneity

Time
constraints

[11] - - - - -
[12], [14], [15], [17] ✓ - - - -
[13] - - - ✓ -
[7]–[9], [16] ✓ ✓ - - -
[10] ✓ ✓ - ✓ -
[18], [20], [21] ✓ - ✓ - -
[19], [22] - - ✓ - -
[27] ✓ ✓ ✓ - -
[23], [24] ✓ - ✓ ✓ -
[25], [26] ✓ ✓ ✓ ✓ -
[28]–[32] - ✓ - - -

Our work ✓ ✓ ✓ ✓ ✓

association and computational task allocation in a mobile edge computing system where UAVs

act as edge computing devices. Hence, the role of UAVs is changeable and determined depending

on the considered network environment. In this paper, we focus on a scenario in which one of

UAVs acts as a edge server and the rest of them act as edge computing devices. This scenario

implies that the considered UAVs are not as powerful as a high performance computing server

which can compute all tasks alone, however, they can compute a few tasks faster than other IoT

devices such as sensors.

Next, edge computing is investigated in various scenarios incorporating connected vehicles

[28]–[32]. The authors in [28] developed a distributed reputation management system in which

the edge computing resources are allocated in a way to optimize security. The work in [29]

proposed a low-complexity computation offloading algorithm that minimizes the computing cost

at connected vehicles. Also, the work in [30] proposed the use of edge computing techniques to

process the computational tasks required in a blockchain system by using the local computing

resources of vehicular nodes. The authors in [31] developed a smart contract deployed on an

edge computing system to enable connected vehicles to store and share the data securely. In

[32], the authors applied a software-defined networking concept to develop an edge computing

architecture in which the control plane protocol is designed to cluster a set of neighboring

vehicles and a centralized edge computing server is used to optimize the data transmission path.

3) Limited time constraints within edge computing: The aforementioned prior works [11]–

[32] assume that edge computing operates during a relatively long time period, and they do not

consider a constraint on the total edge computing time period. However, in IoT scenarios, edge

computing can be initiated and discontinued at any time due to the completion of running an

application or the mobility of the edge nodes such as drones and vehicles. To capture such use



5

Travel time 
= total period ttot

Task i arrives 
from sensor 

to edge node

Sensor

Intersection
Vehicle edge 

node

Infrastructure 

Fig. 1: Illustrative example of ephemeral edge computing
framework in intelligent transporation systems.
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Fig. 2: Illustrative example of ephemeral edge computing
framework in smart factory.

cases, we propose the concept of ephemeral edge computing in which edge computing occurs

among IoT devices that have a stringent time constraints within which they can perform edge

computing. In Table I, we provide a comprehensive comparison between our work and the

existing works on computation offloading in edge computing.

Next, we first provide the real-world examples of ephemeral edge computing scenarios and,

then, we outline our key contributions in this area.

B. Ephemeral Edge Computing

In real world applications, various edge devices can be used to form a local edge network spon-

taneously and process computational tasks of different applications. One common observation

here is that the total time period is limited in real-world IoT examples. In particular, the running

time of a local edge network can be limited due to mobility of edge devices. Also, when edge

computing is initiated to operate an IoT user’s application, the usage time of the application can

be finite. Therefore, we introduce a notion of ephemeral edge computing to capture cases in which

edge computing occurs in a relatively short time period. Here, we note that there exists a suite

of industry products related to edge computing (e.g., from Nokia or Amazon). However, these

products are mostly related to infrastructure-based edge computing, and to our knowledge, they

have not been yet exploited to deploy a concept such as ephemeral edge computing. Meanwhile,

the emerging O-RAN standard [33] will have capabilities to support short-lived computing

transactions, however, O-RAN does not provide any ephemeral edge computing solution that

can leverage these capabilities, as such solutions are left to the research community, which

motivates the timeliness and need for this work. As discussed next, the concept of ephemeral

edge computing admits many real-world IoT applications in several industrial and civilian areas

in which total time period available for the use of edge computing is constrained.

1) Intelligent transportation systems: As shown in Fig. 1, edge computing can be applied to

an urban road environment in which a number of sensors monitor the status of the road traffic,
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vehicle flow, and pedestrian generating a large data volume [32]. For example, the generated

sensory data from the road environment can be used to detect the current traffic status or to

predict safety hazards. Moreover, the generated data can also be used to decide the signal light

timing and schedule the vehicles at a merging ramp or intersection [28]. Therefore, processing

the sensory data from a road environment is essential to optimize and control the various physical

components of transportation systems. In a road environment, since the road sensors have a low

computational capability, edge computing on the vehicles can be used to offload the sensory data

from environment. Then, the data is processed to extract meaningful information such as traffic

forecast and safety warnings [34], [35]. Once the data is processed by the vehicles’ on-board

computers, the vehicles can transmit the processed information to adjacent road side unit (RSU)

that can then use the processed information to control traffic flows.

Therefore, intelligent transportation systems provide an important use case for ephemeral edge

computing. In an urban environment such as the one shown in Fig. 1, a set of vehicles move from

an intersection to the next intersection while maintaining a formation. When edge computing is

implemented on the vehicles, it can only be maintained for a limited time period due to mobility.

Those vehicles can cooperatively process the offloaded data within a limited time period that is

the travel time between two intersections. Therefore, these vehicles will form an ephemeral edge

computing network. In this case, the total time period dedicated to edge computing in a vehicular

network will be affected by the vehicles’ speed and trajectory. In particular, the vehicles can

share the information on the destination and trajectory to estimate the time period during which

a set of vehicles moving the same direction. This is just one example of edge computing among

many others in the context of transportation systems.

2) Smart factory: In emerging smart factory scenarios, also known as Industry 4.0 [36],

sensors can detect malfunctions and send diagnostics signals to actuators in the factory. Therefore,

factory systems must be optimized to manage the process of sensory data transmission, low-

latency computation, and proactive decision making in order to quickly react to new situations

[37]. Some key challenges for enabling the smart factory vision include effective in-network

computing and improvement of wireless connectivity to integrate physical and digital systems,

i.e., networking and computation. Computing sensory data in a timely manner is essential to

operate a physical factory system. To this end, the concept of ephemeral edge computing can be

applied in cyber-physical smart factory systems where UAVs, robots, and drones are deployed

and perform key functions such as data storage, computing, control, and transmission [38].
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As shown in Fig. 2, we consider a smart factory in which sensors monitor the status of the

manufacturing process and generate a large data volume. For example, the generated sensory

data can be used as an input to machine learning algorithms, e.g., for classification, to predict

any abnormality in the manufacturing process. Hence, a number of computational tasks must be

processed in order to make a decision on how to control the physical systems of the factory based

on the information extracted from the data. However, due to the low computational capability

of the sensors, it is not possible to compute those tasks locally at the sensors. Also, sensors are

not able to transmit data over a long distance, and, hence, a flexible relay is necessary [39].

For example, edge-enabled UAVs can be used in a smart factory to gather the tasks from the

sensors, compute the tasks, and deliver the computed results to the destination, e.g., a central

factory controller that can control the actuators. This is a meaningful use case of ephemeral

edge computing in that the local edge network can be maintained until the UAVs arrive at the

destination. Here, the total time period of ephemeral edge computing corresponds to the moving

time from the source location to destination.

3) IoT sensor systems for end users: Consider an IoT environment in which the generated

sensory data from the IoT devices is used to control and monitor the status of home appliances,

to detect a user’s motion and voice [40], or to run gaming and augmented reality applications

at a museum, sport events, and sightseeing places [6]. Those applications require processing

and analysis of the real-time IoT data. In particular, augmented reality and gaming applications

must process the data depending on the user’s location and orientation. In this case, the time

duration within which a user’s device is at a stable location in space can be relatively short, and

ephemeral edge computing is needed to process the IoT data in a limited time period.

As a result, the aforementioned examples in this section show that: a) Ephemeral edge

computing admits a diverse set of IoT applications and b) in these applications, the time period

dedicated to ephemeral edge computing can be limited depending on the various factors such

as mobility and usage patterns of applications. When the total time period of ephemeral edge

computing is limited, there is a need for a new approaches to efficiently allocate the radio and

computing resources to process a maximum number of computational tasks while considering

the time-sensitive nature of the system.

C. Contributions

In all of these existing works on edge computing [7]–[32], it is generally assumed that edge

computing is formed and used for a relatively long time period, and, therefore, the total computing
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time of edge computing is not considered. As shown in the real-world examples of ephemeral

edge computing, edge computing can be initiated and discontinued at any time, resulting in the

finite total time period to use edge computing. Therefore, we propose the concept of ephemeral

edge computing in which the total edge computing time is limited. Also, the prior art on edge

computing employing both communications and computing [11]–[32], generally assumes that

information on prospective computing tasks such as data size and arriving order is completely

known. However, in practice, the information on tasks can be revealed gradually over time

since sensory data is randomly generated. Hence, when a series of tasks are offloaded to a

neighboring edge node, predicting prospective future tasks is often not possible. Moreover,

instead of offloading the computational tasks to base stations that are connected the servers,

as done in [11], [12], [14], and [28]–[32], the tasks can be offloaded to neighboring edge

devices by using device-to-device (D2D) communications so as to reduce a communication

latency. Furthermore, instead of relying on a single edge node for computing, as done in [20]–

[22], it is beneficial to leverage multiple, neighboring edge nodes for distributed computing

of tasks. Consequently, unlike the existing literature [11]–[32] which assumes full information

knowledge on tasks and adopts either single edge node computing models or the models placing

edge computing at the base stations, our goal is to design an online approach to maximize

the number of computed tasks on a network of multiple end-user edge nodes engaged in an

ephemeral edge computing network in which there is a strict and limited total edge-computing

time, when the information on tasks is revealed in an online manner.

The main contribution of this paper is a novel framework for distributed ephemeral edge

computing that can be operated within a limited time period, as needed in the applications of

Figs. 1 and 2. In particular, our framework allows tasks from sensors to be offloaded to a source

edge node, which can subsequently allocate tasks to neighboring edge nodes for computation

before the source node finishes edge computing. When the exact information on the offloaded

tasks is unknown to the source node, it is challenging to decide which neighboring edge node

has to compute which task. If a prior information on the task size is known to the source node,

the computation delay at each neighboring edge node can be determined and the source node

will allocate the tasks to the edge nodes according to their computational speed and the size of

the tasks. However, in practice, the computational tasks arrive dynamically to the source edge

node under a real-time process (i.e., online process) and their different data sizes cannot be

known in advance. Therefore, we formulate an online optimization problem whose goal is to



9

maximize the number of computed tasks when the total time period dedicated to ephemeral edge

computing is constrained. To solve this problem without any prior information on the future task

size, we propose a new online greedy algorithm that is used by the source edge node to make an

on-the-fly decision for selecting one of the neighboring node upon the sequential arrival of the

computational tasks while a prior information on the task size is unknown. Then, we analyze

the performance of the proposed algorithm by using the notion of competitive ratio; defined as

the ratio between the number of computed tasks achieved by the proposed algorithm and the

optimal number of computed tasks that can be achieved by an offline algorithm. To this end,

we apply the concept of primal-dual approach where the ratio between the dual problem and

the original problem constitutes a competitive ratio. Therefore, we derive dual problem so as to

analyze the worst-case performance of the proposed online algorithm. By doing so, the worst-

case competitive ratio can be derived as a function of the task sizes and the communication and

computing performance of the neighboring edge nodes. Simulation results show that the proposed

online algorithm can maximize the number of computed tasks and achieve a performance that

is near-optimal compared to an offline solution that has full information on tasks.

The rest of this paper is organized as follows. In Section II, we present the system model.

Section II-B formulates the proposed online problem. Section III presents our proposed solution

and performance analysis. Simulation results are analyzed in Section IV while conclusions are

drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider an ephemeral edge computing system in which sensors generate a set I of I

tasks2 that are offloaded to a given edge node that we refer to hereinafter as the source edge

node. The source edge node can be seen as a node with mobility such as vehicles and UAVs.

Also, the source edge node can be a static node. While the scenarios that can use ephemeral

edge computing are diverse, the role of the source edge node is to offload the computational

task data from the sensors and allocate them to neighboring edge nodes. Then, each neighboring

edge node directly delivers the computed result to the destination, such as a central controller in

a smart factory or an RSU in intelligent transportation systems. Finally, the destination collects

the computed tasks from the neighboring edge nodes and makes a decision on how to control

2For consistency, we use the term ”task” to indicate both the data generated by a sensor and the computational job that
will be used to process data.
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the physical systems of the factory based on the collected data. When tasks reach the source

edge node, they are labeled by their order of arrival. Thus, a task that arrives a time instant i is

denoted as task i ∈ I. Since the source edge node processes the tasks using a first-input-first-

output policy, it will sequentially compute its tasks. The set J denotes the set of J edge nodes

that are neighbors to the source. Each edge node j ∈ J is used to compute some allocated task i

from the source edge node. We also consider that the set of neighboring edge nodes J is initially

selected by the source edge node. In this regard, the source edge node selects the neighboring

edge nodes that are moving towards its same destination. Note that the term “one task” used

here can be seen as a reference to a bundle of small tasks, making it possible to execute multiple

tasks at each edge node. Furthermore, the set J can include multiple virtual entities of an actual

edge node when the number of edge nodes is too small to accommodate all of the tasks. In

this case, |J | = kJ where k is the number of virtual entities and J is the number of actual

edge nodes. The virtual entities of an actual edge node would then have to share the decision

variables to have the same priority, and the edge nodes would execute their tasks in a round-

robin manner. The association between the source edge node and neighboring edge nodes can be

established based on the clustering algorithm proposed in [41], in which the cluster, cluster head,

and cluster members correspond, respectively, to the ephemeral edge computing system, source

edge node, and neighboring edge nodes. In the considered clustering algorithm, the source edge

nodes exchange their link information, such as link states, computation capacity, and mobility,

and each source edge node selects the qualified neighboring edge nodes that can maintain the

connectivity during ttot with no computation in progress, based on the exchanged information.

The source edge node is assumed to select J neighboring edge nodes that are qualified to join

a local edge computing network to process the computational tasks in terms of residual battery

level and computation speed. If there are no edge nodes (i.e., J = 0), a sensor computes its

tasks by itself and transmits the results to the destination. In this paper, we use the edge node

essentially for boosting the computation speed rather than for carrying data between sensors and

controllers. Note that, the case in which the node is static, can easily be accommodate into our

framework. For instance, a static source edge node offloads the computational task data from the

sensors and allocates them to neighboring static edge nodes. Then, each static neighboring edge

node calculates the allocated task and directly transmits the result to a destination. Moreover,

mobile edge nodes can be dispatched to any location such as mountains and rural areas where

the fixed infrastructure is not readily accessible.
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Fig. 3: Online edge computing framework to offload computational tasks and allocate the offloaded tasks to
neighboring edge nodes in total edge computing period ttot within an ephemeral edge computing system.

The source edge node allocates the computational tasks to other neighboring edge nodes.

Such distributed computing can reduce the overall computational latency when multiple tasks

are computed. Also, to prevent an excessive energy consumption at neighboring edge nodes,

we assume that only one task is allocated to one edge node. Therefore, when neighboring edge

node j computes task i, the decision variable is set as yij = 1. The other edge nodes are not

used to process the same task i, i.e., if yij = 1 then yij′ = 0,∀j′ ∈ J \ {j}, ∀i ∈ I. Task

allocation to neighboring edge node incurs a transmission latency. The data rate pertaining to

the transmission of the data of task i to neighboring edge node j will be: rj = F (B, gj, Pt, σ),

where F is a general transmission rate function, Pt is the transmit power of the source edge

node, B is the bandwidth, σ2 is the noise power, and gj is the channel gain between the source

edge node and neighboring edge node j. Therefore, when the data size of task i is di bits, the

transmission latency becomes di/rj . Once task i is received by neighboring edge node j, it will

be processed within a computational latency3 di/fj where fj is the computation power of edge

node j.

In the proposed ephemeral edge computing system, the time period that the source edge node

actively uses edge computing is given by ttot. To determine ttot, key features of the edge nodes

can be considered. From the aforementioned cases of ephemeral edge computing, the total time

period ttot can be determined as the moving time period of a set of edge computing vehicles

on the road or UAVs in a smart factory. For example, ttot can depend on the mobility that is

characterized by the speed and moving distance of the source edge node. ttot could also depend

3One way to estimate computation latency is to define how many CPU cycles are needed for computing a bit of data. In this
paper, the computation latency is defined as α · di/Fj where α is the required number of CPU cycles per bit (i.e., computation
complexity) and Fj is the CPU speed of edge node j in Hz. For notational simplicity, we introduce the computation power as
fj = Fj/α. Therefore, the computation delay can be simply expressed as di/fj .
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on the different trajectories of the source edge node. In the IoT scenarios, the total time period

can be given as the running time of an application or the time period where a smart device

is staying near the other edge devices to deploy an edge computing network. For a given ttot,

if a certain number of tasks is processed as shown in Fig. 3, then the tasks’ transmission and

computation must be completed within ttot. We define the duration between the arrival of the

first task and completion of task i as the completion time of task i. As shown in Fig. 3, the tasks

are sequentially offloaded from the source edge node to one of neighboring nodes. For instance,

when the first task, i = 1, is being allocated, the completion time including transmission and

computation of task 1 will be:

J∑
j=1

d1

(
1

rj
+

1

fj

)
y1j ≤ ttot. (1)

Subsequently, since tasks are sequentially transmitted to the neighboring edge nodes in the order

of index i, there will be i−1 transmissions before task i is transmitted. Therefore, the completion

time of any task i, ∀i ∈ I \ {1},

i−1∑
i′=1

J∑
j=1

di′

(
1

rj

)
yi′j +

J∑
j=1

di

(
1

rj
+

1

fj

)
yij ≤ ttot, (2)

where the first term is the sum of the transmission latency of i− 1 tasks, and the second term

is the transmission and computation latency of task i. Given that tasks are allocated to and

computed by neighboring edge nodes in the order of index i, the completion time of task i in

(2) includes the summation of the transmission latency for the previous i − 1 tasks. Next, we

formulate an online task allocation problem to study how tasks are distributed within an edge

computing network.

B. Problem Formulation

Our goal is to allocate tasks to neighboring edge nodes in order to complete the maximum

number of tasks during the period ttot needed for the source edge node to reach its destination.

To compute the tasks, the source edge node must allocate each task to a neighboring edge

node that can yield low latency. In practice, when the computational tasks arrive dynamically

to the source edge node, their different data sizes cannot be known in advance. As a result, the

source edge node will be unable to know a priori the information on future tasks, and, therefore,

optimizing the task distribution process under this uncertainty is very challenging. Under such
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uncertainty, selecting a neighboring edge node that computes a current task must also account

for potential arrival of future tasks. When the future information is revealed sequentially, the

arrival of information can be captured within an online optimization framework. In particular, by

using online optimization techniques such as those in [42], it is possible to make an on-the-fly

decision while the future information is given in an online manner. To cope with the uncertainty

of the future task arrivals while considering the data rate and computing capabilities of given

neighboring edge nodes, we will thus propose a rigorous online optimization framework that can

handle the problem of task allocation under uncertainty.

First, we formulate the following online task allocation problem whose goal is to maximize

the number of computed tasks when the total latency is limited by ttot:

(D) : max
y

∑I

i=1

∑J

j=1
yij (3)

s.t. (1), (2),∑I

i=1
yij ≤ 1,∀j ∈ J , (4)∑J

j=1
y1j ≤ 1, (5)∑J

j=1
(−yi−1j + yij) ≤ 0, ∀i ∈ I \ {1}. (6)

where y is the vector of decision variables yij,∀i ∈ I,∀j ∈ J . Hereinafter, this problem is called

the dual problem. Constraints (1) and (2) show that task i’s completion time must be smaller

than ttot and tasks that cannot satisfy those constraints will not be offloaded. (4) implies that each

neighboring edge node can compute at most one task to prevent an excessive energy consumption

at any given edge node. In constraint (5), the first task is allocated to one of the neighboring

edge nodes. Constraint (6) implies that task i can be allocated to a neighboring edge node if the

task allocation of task i − 1 is successful, i.e.,
∑J

j=1 yi−1j = 1. Otherwise, if
∑J

j=1 yi−1j = 0,

then, task i cannot be allocated to any edge node, and
∑J

j=1 yij = 0. Due to (5) and (6), we

have
∑J

j=1 yij ≤ 1,∀i ∈ I, and, thus, each task is allocated to only one of neighboring edge

nodes. Given that the demand for mobile device has been growing exponentially in recent years,

mainly driven by various emerging IoT applications, we assume that J ≥ I and all tasks can

be completed during a limited time ttot using the edge computing network, and thus, there exist

some feasible solutions that satisfy all the constraints in problem (D).

Note that problem (D) is an online optimization problem and is challenging to solve using

conventional offline approaches. This is because the value of di,∀i, is sequentially revealed.
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When the tasks that different sensors send to the source edge node have a random size, the

arrival sequence of di is assumed to be unpredictable and unknown. At the moment when di is

disclosed, the source edge node knows only the current and past tasks. However, the source edge

node must make an instant and irrevocable online decision on which neighboring edge node

will compute task i. Under such uncertainty on di, allocating tasks to existing neighboring edge

nodes must also account for potential arrival of new tasks. In fact, even if a given task allocation

can compute an existing task successfully, it may have a detrimental effect on the allocation of

incoming tasks. In particular, if an edge node having a high data rate and high computational

speed is already assigned to compute a previous task, it may not be possible to compute a future

task having a large size. Therefore, it is challenging to optimize the task allocation between

incoming tasks and neighboring edge nodes.

In an online setting, the ad-auction problem in [42] shows a generalized structure of an online

linear programming problem and its algorithmic solution. We observe that the ad-auction problem

and our problem have a key difference in the dependency of the constraints. In particular, the

ad-auction problem includes the independent constraints about the maximum allocation size

for each buyer that corresponds to the edge node in our problem. However, in our problem,

the constraints about the maximum allocation size of edge nodes are dependent on each other.

For instance, in (1) and (2), the sum of the transmission latency of the previous tasks and the

processing latency of the current task should be less than ttot. The total time period is a function

of the task allocation decisions of all edge nodes while each edge node has an independent

task allocation size. Therefore, if the given budget of total time period is previously spent to

offload and compute previous tasks, the source node cannot offload a new task to a neighboring

node that is still available to accept a task. Additionally, our problem assumes that the arriving

tasks are sequentially allocated to the neighboring node. For instance, the current task cannot be

allocated to any node, if the previous task is not allocated due to constraints (5) and (6). Due

to the aforementioned differences, we need to develop a novel online task allocation strategy to

solve problem (D).
III. PROPOSED ONLINE TASK ALLOCATION FRAMEWORK

Our goal is to determine the vector of decision variables y so that the maximum number of

sequentially arriving tasks is successfully computed by our distributed ephemeral edge computing

system. When task size di is unpredictable, the decision is not trivial since the current decision

may affect the task allocation of future tasks, and all tasks cannot be computed due to the limited
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time resource ttot. In this case, making an on-the-fly online decision, can process a smaller number

of tasks than that of offline decision in which the complete information on all tasks is initially

known. Therefore, the gap between the results achieved by online and offline cases must be

minimized. To this end, the notion of competitive ratio [42] from competitive analysis can be

used to measure the performance of our online algorithm. It is an effective metric that compares

the ratio between the the objective function’s value achieved by an online algorithm and that

of the offline optimal solution. In particular, the upper bound of the competitive ratio can be

defined as a constant γ such that

1 ≤ DIP,OPT

DIP
≤ γ, (7)

where DIP,OPT denotes the offline optimal solution (OPT) of problem (D) in the form of integer

programming (IP), i.e., the maximum number of computed tasks with the integer solution of

yij . We will measure the performance of our proposed algorithm by observing the upper bound

value defined by γ.

To find the upper bound of problem (D), we use the structure of the primal and dual approach

[42]. To this end, the optimization variables yij are relaxed to be linear, i.e., yij ∈ [0, 1]. By

using the duality of linear programming, problem (D) can be rewritten as:

(P) : min
x,z,u1

∑I

i=1
ttotxi +

∑J

j=1
zj + u1, (8)

s.t.
(
1

rj
+

1

fj

)
dixi +

(
di
rj

) I∑
i′=i+1

xi′ + zj + ui − ui+1 ≥ 1,∀i ∈ I \ {I},∀j∈ J , (9)(
1

rj
+

1

fj

)
dIxI + zj + uI ≥ 1,∀j ∈ J , (10)

xi ≥ 0, zj ≥ 0, ui ≥ 0, (11)

where x and z are vectors with elements xi,∀i ∈ I, and zj,∀j ∈ J , respectively. This problem

is called the primal problem. In problem (8), x1, xi≥2, zj , u1 and ui≥2 are the dual variables

associated, respectively, with constraints (1), (2), (4), (5), and (6) in problem (D).

The values of (3) and (8) are denoted by DIP and PLP, respectively. With DIP and PLP, a

competitive ratio in (7) is derived. From the dual and primal problem formulation, it can be

shown that DIP ≤ DLP ≤ DLP,OPT ≤ PLP,OPT ≤ PLP. The first inequality is due to the fact that a

linear relaxation allows problem (D), which is in the form of linear programming (LP), to have a

higher value. The second inequality indicates that the offline optimal solution always achieves a
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Algorithm 1 Online Task Allocation Algorithm
1 : Initialize yij = xi = zj = ui = 0, ∀i, j.
2 : for i ∈ I
3 : Task i arrives at source node.
4 : Select edge node by using (12).
5 : if (1) and (2) are satisfied, and

∑
j yi−1j = 1,

6 : yij ← 1.
7 : Allocate task i to edge node j∗i defined in (12).
8 : Update zj , xi, and ui, respectively, by using (13), (14), and (15).
9 : otherwise,
10: yij ← 0.
11: Set ∆ui = 1 and update ui′ , ∀i′ ≤ i
12: end if
13: end for

value higher than or equal to the online solution of problem (D). The third inequality captures the

slackness of the primal and dual problems. In the fourth inequality, the offline optimal solution

of problem (P), i.e., PLP,OPT is smaller than or equal to any online solution of problem (P), i.e.,

PLP. Also, we have DIP ≤ DIP,OPT ≤ DLP,OPT. The first inequality follows from the optimality gap

between the online and offline solutions when yij is an integer. The second inequality shows

that linear relaxation of yij allows us to have a higher value in problem (D). Thus, the ratio in

(7) becomes: DIP,OPT
DIP

≤ PLP
DIP

, where PLP/DIP corresponds to γ in (7). Therefore, PLP/DIP becomes

the upper bound of the competitive ratio.

A. Online Greedy Algorithm

To find the ratio PLP/DIP, we develop a new online greedy algorithm (Algorithm 1) specifically

designed to solve problems (D) and (P), based on a general online optimization framework using

the primal and dual approach of [42]. In Algorithm 1, the decision variables yij , xi, zj , and ui

are updated while observing the new value of di. In particular, when task i arrives to the source

edge node, the original dual problem is solved by determining the value of yij . Also, other dual

variables xi, zj , and ui are updated in order to find the performance bound of the proposed

online algorithm. At the initial step of Algorithm 1, all variables are set to 0. The algorithm

selects which edge node should compute task i. Since it is beneficial to offload task i from the

source node to the neighbor with a high data rate and computing speed, this decision rule can

be designed to select an edge node with the shortest communication and computing latency to

process the task i. To this end, edge node j∗ is selected by following the decision rule:

j∗ = argmax
∀j

(1− zj)
α(

1
rj
+ 1

fj

)
di
, (12)



17

where α ≥ 1 is a constant used to guarantee that at least one of the tasks can be fairly allocated

among the neighboring edge nodes. The detailed derivation of the decision rule in (12) is

presented in Appendix A. Since zj is initially zero, the decision rule in (12) only considers

the latency required to process task i. In Algorithm 1, if a neighboring node j accepts a task, the

value of zj is updated to become positive. By doing so, 1− zj is reduced, and, hence, another

neighboring node can be selected when the next task arrives. However, if the neighboring node

j results in (1− zj)
α/
(

1
rj
+ 1

fj

)
di ≥ (1− zj′)

α/
(

1
rj′

+ 1
fj′

)
di,∀j′ ∈ J \ {j}, the same node j

can be selected again. This can violates constraint (4) that restricts each neighbor to accept one

task. Therefore, a large value of α can be used to make (1 − zj)
α close to zero. Then, at the

arrival of a new task, a different neighboring node is selected as j∗ by using decision rule (12).

After a neighboring node j∗ is selected for task i, if the time budget is still available for

the current task i from constraints (1) and (2), neighbor node j∗ finally receives task i from

the source node and performs processing. At this moment, the dual and primal variables are

updated in Algorithm 1. The algorithm sets yij∗ = 1 showing that task i is allocated to edge

node j∗. Next, the value of zj∗ must be updated since zj∗ is the primal variable associated with

the dual problem’s constraint (4) with j = j∗. When a neighboring node initially does not have

any accepted task, all zj, ∀j ∈ J are set to zero. However, if a neighboring node j accepts a

task i, zj will be updated as follows:

zj = zj

(
1 +

(
1

rj
+

1

fj

)
di
ttot

)
+

(
1

rj
+

1

fj

)
di
ttot

(
1

c− 1

)
, (13)

where c > 1 is a positive constant that will be defined later. Also, the total time period ttot is

assumed to be enough to process at least one task, and, thus,
(

1
rj
+ 1

fj

)
di
ttot

< 1. Meanwhile, the

update of xi must satisfy constraints (9) and (10). The value of xi is updated by using the rule:

xi =
(1− zj)

α

(1/rj + 1/fj) di
. (14)

Moreover, the values of ui′ ,∀i′ ≤ i, is updated as follows:

ui′ = ui′ +∆ui,∀i′ ≤ i, (15)

where we define, ∀j′ ∈ J ,

∆ui ≜ max
j′∈J\{j∗}

(
1−

((
1

rj′
+

1

fj′

)
(1− zj∗)

α

(1/rj∗ + 1/fj∗)
+ zj′

)
, 0

)
. (16)

Otherwise, if the edge nodes in J do not satisfy (1) and (2), then, the tasks arriving after task i

cannot be computed, i.e., yij = 0, and those tasks will not be offloaded. In this case, to satisfy
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constraints (9) and (10), Algorithm 1 updates any zj that has a value of 0 to 1 if J ≤ I , or,

otherwise, ∆ui is set to 1. This update is intended to satisfy the constraints (9) and (10) for all

i ∈ I and j ∈ J . For the arrival of each task, the proposed algorithm is a one-shot decision

making process to find a feasible solution. Therefore, by iterating the proposed algorithm for all

arriving tasks during ttot, our algorithm converges to a feasible solution of problem (D).

B. Performance Analysis

For the analysis hereinafter, we assume that α = 1 for analytical tractability. In practice, this

assumption implies that the decision rule (12) tends to select the neighboring node with a high

data rate and computing speed. As α increases, the decision rule selects a new neighboring node

that has not been used to process any previous task. Now, as a first step to derive the competitive

ratio of the proposed algorithm, we find the following result.

Lemma 1. The constraints of the primal problem (9) and (10) will be satisfied if zj , xi, and ui

are updated by (14), (13), and (15), respectively.

Proof. See Appendix B.

The next step of our analysis is to check whether the constraints in problem (D) is satisfied. In

particular, since it is observable that the upper bound of the left-hand side of the constraint (4)

can be greater than one, (4) is not satisfied for α = 1, as shown next.

Lemma 2. In (4),
∑

yij is violated by at least 2.

Proof. See Appendix C.

This result implies that more than two tasks can be offloaded to the same neighboring node.

However, there exists a condition under which constraint (4) is satisfied.

Lemma 3. (4) is satisfied if di >
((

1/rj∗i + 1/fj∗i
)−1 − (1/rj∗I + 1/fj∗I

)−1)
ttot(c− 1) where j∗i

is the node selected to process task i, ∀i ∈ I.

Proof. After task i is offloaded to node j∗i , Algorithm 1 updates zj∗i =
(
1/rj∗i + 1/fj∗i

)
di

ttot(c−1) .

Next, when task i + 1 arrives, the condition above yields the inequality 1(
1/rj∗

i+1
+1/fj∗

i+1

)
di+1

>

1(
1/rj∗

I
+1/fj∗

I

)
di+1

>
(1−zj∗

i
)α(

1/rj∗
i
+1/fj∗

i

)
di+1

, ∀i ∈ I with α = 1. Therefore, (12) is used to select a new

node j∗i+1 to process task i+1. Hence, a different neighboring node is selected for each task.
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For instance, the condition in Lemma 3 can be satisfied if the value of di is decreasing over

time. In that case, every neighboring node can be used to process different tasks, thus satisfying

constraint (4). As a last step, we derive the increment rate of the ∆P/∆D when a new task i

arrives in an online manner.

Lemma 4. When the dual problem’s objective function increases by one, the primal problem’s

objective function increases by ttot
(1/rj+1/fj)di

(
1 + 1

c−1

)
+∆ui for any given c > 1.

Proof. See Appendix D.

Now, to derive a competitive radio for the proposed algorithm, we will adopt a primal-dual

online analysis analogous to the one done in [42]. In Lemma 1, it is shown that the primal

variable is updated while satisfying the constraints (9) and (10). Then, we show that the dual

constraints from (1) to (6) are satisfied under the derived condition in Lemma 3. Finally, the

increment rates of the primal and dual problems are, respectively, derived in Lemma 4. As a

result, from Lemmas 1, 3, and 4, we obtain the following key result:

Theorem 1. The upper bound of the competitive ratio in Algorithm 1 is O(1/mini βij) where

βij ≜
(

1
rj
+ 1

fj

)
di
ttot

if di >
((

1/rj∗i + 1/fj∗i
)−1 − (1/rj∗I + 1/fj∗I

)−1)
ttot(c− 1).

Proof. Lemma 1 first shows that the constraints of problem (P) are satisfied for all tasks that

are assigned to the set of edge nodes. At each iteration, Lemma 3 shows that the increment of

∆P/∆D is at most

∆P

∆D
≤ 1

mini βij

(
1 +

1

(1 + δ)
1
δ − 1

)
+max

i
∆ui, (17)

where βij =
(

1
rj
+ 1

fj

)
di
ttot

. Also, (17) has an upper bound at δ = 1. Since DIP =
∑
∀i,j yij , the

future tasks i > DIP cannot be allocated to any neighbor. In that case, Algorithm 1 sets ∆ui = 1.

Then, all values of ui′ , ∀i′ ≤ i increase by one, resulting in ∆D = 0 and ∆P = 1. Thus, we

have γ ≤ ∆P
∆D

+ (I −DIP ). We observe that ∆P/∆D increases with the rate of O(1/mini βij)

as βij → 0. At the same time, I −DIP can decrease with DIP when the number of processed

tasks increases. Hence, the ratio γ can be bounded by O(1/mini βij).

This result characterizes the online performance bound achieved by Algorithm 1 in which γ can

decrease as mini βij approaches 1. If min
(

1
rj
+ 1

fj

)
di
ttot

≈ 1, we have an environment in which all

neighboring edge nodes have similar communication and computing performance, thus resulting
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Fig. 4: Example of the cumulative probability distribution of FK|H(k).

in the smallest γ close to 1. In such a case, the online and offline performance gap is minimized.

Also, Algorithm 1 can be usefully converted into another simple algorithm that updates ∆ui = 0

for all tasks i ∈ I so that problem (P) has a value of I , by assuming
(

1
rj
+ 1

fj

)
di
ttot
,∀i, j, equals to

1. This algorithm shows that the competitive ratio is inherently upper bounded by PLP/DIP = I

in the worst case.

As shown in Theorem 1, it is essential to investigate how the value of 1/βij is determined

when measuring a realistic performance of the proposed ephemeral edge computing system.

We conduct a statistical analysis to derive the probability corresponding to different values of

1/βij . To this end, it is assumed that the data rate and task size are randomly determined. In

particular, the size of data di is generated by following a uniform distribution random variable

D ∼ U(0, Dmax) where Dmax is the maximum size of a task. We assume that the data rate is

denoted by a random variable R ≜ log2(1+P ) where P is the received power in a fading channel

modeled as an exponential distribution with parameter λ, i.e., P ∼ exp(λ). This statistical model

is a simplified version of our edge computing system model. This statistical modeling facilitates

the observation of factors that affect the performance of the proposed algorithm. Then, we derive

the probability to have a certain value of 1/βij .

Theorem 2. If k ≥ ttotf
Dmax

, the probability that 1/βij ≤ k is (FK(k)−FK(1))/(1−FK(1)) where

FK(k) =
1

Dmax

[ˆ ttotf
k

0

(
1− exp

(
−λ

(
2

1
ttot
kx

− 1
f − 1

)))
dx+

(
Dmax −

ttotf

k

)]
. (18)

Proof. We define a random variable K ≜ ttot(
1

log2(1+P )
+ 1

f

)
D

. Therefore, if k ≥ ttotf
Dmax

, the cumulative

density function of a random variable K is shown as:
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FK(k) = Pr

 ttot(
1

log2(1+P )
+ 1

f

)
D

> k

 (19)

=

ˆ Dmax

0

Pr

 ttot(
1

log2(1+P )
+ 1

f

)
x
> k|D = x

Pr(D = x)dx (20)

=
1

Dmax

[ˆ ttotf
k

0

(
1− exp

(
−λ

(
2

1
ttot
kx

− 1
f − 1

)))
dx+

(
Dmax −

ttotf

k

)]
. (21)

When H is defined as the event in which K ≥ 1, the cumulative density function of a random

variable K conditioned on H is FK|H(k) =
Pr(K≤k∩K≥1)

Pr(K≥1) = (FK(k)− FK(1))/(1− FK(1)).

When the tasks are randomly generated and wireless performance dynamically changes, Fig. 4

shows an example of the cumulative probability distribution of FK|H(k) when ttot = 2, 1/f = 0.5,

and Dmax = 4. In Fig. 4, if k = 2, the probability that k = 1/β is less than 2 is around

50%. Therefore, the probability that k becomes the empirical value of a competitive ratio in

Theorem 2 is: Pr(1/mini βij ≤ k) = Pr(maxi 1/βij ≤ k) = (FK|H(k))
I . Also, from Theorem 2,

the derived probability does not change if the total time period is equal to the processing time

of the maximum task size, i.e., ttot = Dmax/f . Hence, if an ephemeral edge computing system

is designed to use the maximum task size given by ttotf , it is possible to expect the empirical

value of the competitive ratio when the data rate and task size are randomly determined in a

wireless environment.
IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we use a MATLAB simulator in which we consider that the source

edge node initially forms a network with J = 10 neighboring edge nodes uniformly distributed

within a circular area of radius between 10 m and 100 m. For instance, this can be seen as a

generalized scenario in which an edge-enabled UAV (or vehicle) forms an edge network with J

neighboring nodes in a smart factory (or on a road environment). The task size follows a uniform

distribution between 50 and 100 Mbits, and the number of tasks is I = 10. The power spectral

density of the noise is -174 dBm/Hz, the carrier frequency is 2.1 GHz, and Pt = 20 dBm. The

computational speed of each neighboring edge node is randomly determined from a uniform

distribution between 1 × 108 and 5 × 108 bits/sec and we assume rj = B log2

(
1 +

gjPt

σ2

)
. The

offline optimal solution is calculated by using a mixed-integer linear programming (MILP) solver

with the assumption that the size di of task i, ∀i ∈ I, is completely known. All simulations are

statistically averaged over 5000 independent runs.
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Fig. 5 first shows the empirical ratio between the offline optimal and online solutions, DIP,OPT/DIP

for the different values of mini βij when ttot = 1, α = 1, and fj ∈ [7 × 107, 10 × 107]. The

numerical results in Fig. 5 confirm that the ratio DIP,OPT/DIP decreases as mini βij increases as

shown in Theorem 1. For example, the empirical competitive ratio can be reduced up to 19.2%

if the smallest βij increases from 0.58 to 0.85. Also, in Fig. 5, the cases in which the ratio

is one correspond to scenarios in which the proposed algorithm finds the optimal solution. For

instance, when mini βij is greater than 0.79, Fig. 5 shows that the empirical ratio becomes one

since DIP,OPT = DIP.

Fig. 6 shows the average number of accepted tasks per node, i.e.,
∑

i yij , for two values

of α = 1 and 100. In Fig. 6, the number of accepted tasks per node needs to be one due to

constraint (6). When 0 < zj < 1, the selection rule in (12) can decide to offload a new task

to a neighboring node that already accepted a task. In particular, Fig. 6 shows that the average

number of accepted tasks per node increases with ttot for α = 1. This is due to the fact that the

selection rule in (12) is affected by two factors, i.e., (1− zj)
α and 1/

(
(1/rj + 1/fj)

di
ttot

)
where

(1 − zj)
α prevents the algorithm from choosing the same node multiple times. It is observable

that 1/
(
(1/rj + 1/fj)

di
ttot

)
increases as ttot increases. Therefore, with a large ttot, the selection

rule in (12) is determined by 1/
(
(1/rj + 1/fj)

di
ttot

)
, rather than (1− zj)

α. For example, Fig. 6

shows the average number of accepted tasks can reach up to 2 when ttot increases from 1 to 3.

Thus, to avoid offloading more than one task to the same neighboring node, a large α is used

in Fig. 6. If α is set to a large value, e.g., 100, Fig. 6 shows that the selection rule in (12) only

offloads the tasks to different nodes. This is due to the fact that (1− zj)
α is close to zero for a

large α when 0 < zj < 1. For instance, when α = 100, the average number of accepted tasks is
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1 for all ttot. To evaluate Algorithm 1 in a general task arrival, α = 100 is used for the rest of

our simulations.

Fig. 7 shows the percentage of computed tasks for different values of ttot from 0 to 7 seconds

when the total bandwidth is 10 MHz. For comparison, we calculate the offline optimal solution

of the dual integer problem, i.e., DIP,OPT, by assuming that all task sizes, di, ∀i, are known in

advance. The offline optimal DIP,OPT shows that the percentage of computed tasks increases with

ttot that is a given parameter in problem (D). The design goal of our online algorithm is to

achieve a performance that is similar to the offline optimal when the task size di is revealed

one by one. To this end, in Fig. 7, we can observe that the optimal solution and the solution

found by Algorithm 1 are very close for all values of ttot. This demonstrates the effectiveness of

the proposed algorithm that can select properly neighboring edge nodes to offload tasks while

maximizing the number of computed tasks. For instance, Fig. 7 shows that the maximum gap

between the offline optimality and the online solution is only 7.1% when ttot = 4. Also, in Fig. 7,

as ttot increases, more tasks can be readily processed within a given time period, and, therefore,

the percentage of computed tasks approaches to 100%. In particular, when ttot = 7, Fig. 7 shows

that all computational tasks are processed on the edge computing network in both online and

offline cases, respectively.

Fig. 8 shows the cumulative frequency of the empirical ratio, DIP,OPT/DIP, for both the offline

optimal and online solutions when ttot = 1, 2, 3, 4. In Fig. 8, the ratio DIP,OPT/DIP is shown to

have a step-like shape since both DIP,OPT and DIP are integers, and there exists a limited number

of possible values for DIP,OPT/DIP for specific settings of the simulations. In Fig. 8, the cases in

which the ratio is one correspond to scenarios in which the proposed algorithm finds the optimal
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Fig. 10: The empirical competitive ratios DIP,OPT/DIP
for different computational speeds of neighboring edge
nodes and different task sizes when bandwidth is 5 MHz.

solution. For example, in Fig. 8, about 38 − 88 % iterations result in the slope of 1 where the

optimal solution is achieved by running the proposed algorithm. By the definition of γ in (7),

the number of computed tasks with the proposed algorithm is at least DIP,OPT/γ. For instance, in

Fig. 8, the largest empirical competitive ratio is shown to be 2 which implies that the number

of computed task is at least DIP,OPT/2 when the proposed algorithm is executed with the given

simulation parameters.

Fig. 9 shows the percentage of computed tasks for two different ranges of computational

speeds of the edge nodes and different task sizes when the bandwidth is changed from 3 to

10 MHz with ttot = 7 and distance randomly distributed in range from 10 m to 70 m. In Fig. 9,

neighboring edge nodes with low computational speeds are represented by fj ∈ [5×107, 8×107],

whereas edge nodes with high computational speeds are assumed to have fj ∈ [5×108, 8×108].

Also, we consider two scenarios with small-size tasks di ∈ [50 × 106, 70 × 106] and large-size

tasks di ∈ [70×106, 90×106], respectively. From Fig. 9, we can see that the number of computed

tasks increases with more bandwidth. This is due to the fact that a higher bandwidth can increase

the data rate and reduces tasks’ transmission latency. Therefore, more tasks can be allocated to

neighboring edge nodes. For instance, the number of computed tasks can increase about two-

fold if the bandwidth changes from 3 MHz to 10 MHz in the case of edge nodes with low

computational speeds and large-size tasks. Also, Fig. 9 shows that using edge nodes with high

computational speeds increases the number of computed tasks. For example, the percentage of

computed tasks increases from 88% to 99.5% by using edge nodes having high computational

speeds when bandwidth is 5 MHz and the task sizes are small. Moreover, Fig. 9 shows that
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more tasks can be computed as task sizes become smaller; for example, small-sized tasks result

in 32.8% more computed tasks compared to that of large-sized tasks in the case of 4 MHz in a

high computational speed case.

Fig. 10 shows the empirical competitive ratio DIP,OPT/DIP for different computational speeds

of neighboring edge nodes and different task sizes when bandwidth is 5 MHz. We can observe

that the proposed algorithm in both cases of edge nodes having high computational speeds

almost achieves the optimal performance that can be achieved by the offline optimal solution,

i.e., DIP,OPT. However, as shown in Fig. 9, since DIP,OPT in case of edge nodes having high

computational speeds with large-sized tasks is lower than that in case of edge nodes having

low computational speeds with small-sized tasks, the percentage of computed tasks in case of

edge nodes having low computational speeds with small-sized tasks is higher than that in case

edge nodes having high computational speeds with large-sized tasks. A higher computational

capability can be achieved in a larger edge network than in a small one. However, establishing a

large network will increase the signaling overhead as the number of participating nodes increases.

Hence, between a large and small edge network, there clearly exists a tradeoff between signaling

overhead and computing capability.

In Fig. 11, the percentage of computed tasks is shown for different numbers of neighboring

edge nodes ranging from 10 to 60. The scenario in Fig. 11 assumes that neighboring edge nodes

are randomly distributed within a maximum distance that is varied in range from 30 m to 110 m

with I = 10, B = 5 MHz, and ttot = 7. Simulations assume that the small-size tasks are in the

range of di ∈ [40 × 106, 70 × 106]. Also, the neighboring nodes use low computational speeds

in the range of fj ∈ [5 × 107, 8 × 107]. In Fig. 11, it is clear that the number of computed
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tasks increases with the number of neighboring edge nodes. As the set of neighboring edge

nodes becomes larger, the source edge node has a higher probability to allocate its tasks to

the neighboring edge nodes having a high data rate and computational speed. For instance, the

number of computed tasks can increase by about 8.2% if the number of edge nodes increases

from 10 to 60 when the maximum distance is 110 m. Fig. 11 also shows that the number

of computed tasks increases if the maximum communication distance between edge nodes is

reduced. For example, the percentage of computed tasks increases from 91.8% to 99.6% by

reducing the maximum distance between neighboring edge nodes and the source edge node.

In Fig. 12, the percentage of computed tasks is shown for different transmit powers from

20 dBm to 25 dBm when the neighboring nodes use identical computing speed that varies from

108 to 7.5× 108. Fig. 12 shows that the number of computed tasks increases with the transmit

power of the source edge node. This is due to the fact that the increased data rate reduces the

wireless transmission latency, and, therefore, more tasks can be processed within a limited time

period. For example, the percentage of computed tasks increases by up to 10.7% if the transmit

power changes from 20 dBm to 25 dBm with fj = 108. Also, Fig 12 shows that increasing

a computing speed is beneficial to process notably more tasks. For instance, if the computing

speed of edge nodes increases from 108 to 7.5× 108, the edge computing network can process

up to about 20% more tasks. Thus, Fig 12 shows that reducing the computing latency by using

a high computing speed is needed while reducing the transmission latency with a high power.
V. CONCLUSION

In this paper, we have proposed a new concept of ephemeral edge computing in which the total

time period dedicated to edge computing is limited. This concept of ephemeral edge computing

is applicable to a wide range of scenarios including Industry 4.0 smart factory, intelligent

transportation systems, and smart homes. By modeling a generalized scenario of ephemeral

edge computing, we have proposed a novel framework to maximize the number of successful

computations over an edge computing network within a limited time period. This framework

allows a source edge node to offload tasks from sensors and distributed tasks to neighboring

edge nodes in order to compute the tasks before the source edge node discontinues its current

edge computing network. When the exact information on the offloaded tasks is unknown to the

source edge node, it is challenging to optimize the decision of which neighboring edge node

has to compute each task. Therefore, we have formulated an online optimization problem that

jointly optimizes the communication and computation latency is formulated and introduced an
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online greedy algorithm to solve the problem. Then, by using the structure of the primal-dual

problem formulation, we have derived a feasible competitive ratio as a function of the task

sizes and the data rates of the edge nodes. Simulation results have shown that the empirical

competitive ratio defined as the ratio between the number of computed tasks achieved by the

proposed online algorithm and offline optimal case is at most 2 in a given simulation setting.

Thus, the simulation results confirm that the proposed online algorithm can efficiently allocate

tasks to neighboring edge nodes under uncertainty. Our future work will include extending our

results to additional practical scenarios in which multiple tasks can be allocated to edge nodes

under the consideration of the lifetime of an ephemeral edge computing network.
APPENDIX A

DERIVATION OF (12)

In (3), problem (D) is formulated to minimize the sum delay. In this regard, it is beneficial to

offload task i from the source node to the neighbor with a high data rate and computing speed to

minimize the sum delay. Therefore, the decision rule to select edge node j∗ needs to be designed

to select an edge node with the shortest communication and computing latency to process the

task i, i.e.,
(

1
rj
+ 1

fj

)
di. In (8), problem (P) is formulated to minimize the cost objective function∑I

i=1 ttotxi+
∑J

j=1 zj+u1. Then, the decision rule to select edge node j∗ need to be designed

to select an edge node with the smallest zj which is equivalent to select an edge node with the

largest (1− zj)
α. Thus, the decision rule to select edge node j∗ is obtained by (12).

APPENDIX B

PROOF OF LEMMA 1

We will show that the first constraint is always satisfied for all i when using the updating

rule. When allocating task i′, xi = 0,∀i ≥ i′ and ui = 0,∀i due to the initialization. From the

constraints in (9) and (10), we have that (1/rj + 1/fj) dixi+(di/rj)
∑I

i′=i+1 xi′+zj+ui−ui+1 =

(1/rj + 1/fj) di(1− zj)
1

(1/rj+1/fj)di
+ zj = 1. Then, we consider the constraints regarding other

edge nodes j ∈ J \ {j∗} for a given task ∀i ∈ I. When ui is updated, ui − ui+1 is equal to

∆ui. Therefore, we can show that edge node ∀j ∈ J satisfy the constraint (5) as follows:(
1

rj
+

1

fj

)
di(1− zj∗)

α 1

(1/rj∗ + 1/fj∗) di
+ zj +∆ui

=
(1/rj + 1/fj)

(1/rj∗ + 1/fj∗)
(1− zj∗)

α + zj +max
j′∈J

(
1−

(
(1/rj′ + 1/fj′)

(1/rj∗ + 1/fj∗)
(1− zj∗)

α + zj′

)
, 0

)
≥ (1/rj + 1/fj)

(1/rj∗ + 1/fj∗)
(1− zj∗)

α + zj +

(
1−

(
(1/rj + 1/fj)

(1/rj∗ + 1/fj∗)
(1− zj∗)

α + zj

))
= 1. (22)
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Hence, the primal constraints (9) and (10) are satisfied.

APPENDIX C

PROOF OF LEMMA 2

For a given j, the upper bound of
∑
∀i yij in (4) is derived by using the fact that the proposed

algorithm does not update zj if
∑

i yij ≥ 1. In particular, when the task is indexed by i′, suppose

that the task allocation is not possible for the first time, i.e., yij = 0, ∀i > i′. Before the last

task i′ arrives, the value of
∑
∀i yij is still less than the total budget of edge node j. However,

after allocating task i′ to edge node j,
∑
∀i yij can be greater then one. The violation of the

constraint (4) makes the value of zj be greater than 1. Therefore, for any c > 1, the inequality

zj ≥ 1
c−1

(
c
∑i′

i=1 yij − 1
)

is used to derive the upper bound of
∑
∀i yij . From this relationship, if∑i′

i=1 yij ≥ 1, we have 1
c−1

(
c
∑i′

i=1 yij − 1
)
≥ 1, then zj ≥ 1.

When we define βi′j =
(

1
rj
+ 1

fj

)
di′
ttot

, the update rule of zj in (13) is used as following:

zj = zj(1 + βi′j) + βi′j
1

c− 1
(23)

≥ 1

c− 1

(
c
∑i′−1

i=1 yij − 1
)
(1 + βi′j) + βi′j

1

c− 1
(24)

=
1

c− 1

(
c
∑i′−1

i=1 yij(1 + βi′j)− 1
)

(25)

(a)

≥ 1

c− 1

(
c
∑i′−1

i=1 yij+βi′j − 1
)
, (26)

where c ≜ (1 + δ)1/δ for a constant δ ≥ βi′j . From the definition of c, (a) holds due to the

relationship 1 + βi′j ≥
(
(1 + δ)1/δ

)βi′j
=
(
(1 + δ)1/δ

)βi′j
when 0 ≤ βi′j ≤ δ ≤ 1. Also, the

definition of zj in (13) has an upper bound zj ≤ z̄ ≜ (1+δ)+ δ
c−1 , and, therefore, we can rewrite

(26) as following:
∑i′−1

i=1 yij ≤ logc (z̄(c− 1) + 1) − βi′j . Thus, an upper bound of
∑i′

i=1 yij is

derived as: ∑i′

i=1
yij

(a)

≤ logc(z̄(c− 1) + 1)− βi′j + 1 ≤ 1 + logc
(1+δ)c

c
βi′j

(27)

where (a) hold since
∑i′

i=1 yij =
∑i′−1

i=1 yij + 1 if task i′ is allocated. Then, if δ = βi′j = 0, we

can have a lower bound 1 + logc
(1+δ)c

c
βi′j

= 2.

APPENDIX D

PROOF OF LEMMA 4

By using the definition of zj and xi, we derive the change of the objective function of problem

(P), denoted by ∆P . When a task i is allocated to an edge node j, zj and xi are updated, and,
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therefore, the objective function of problem (P) increases. In particular, ∆P increase with ∆zj

since we want to observe the increment of zj at current interation while the value of zj can be

updated multiple time. Also, ∆P increase with xi since xi is initially given by 0 and updated

only once. Thus, we have ∆P = ∆zj + ttotxi +∆ui and

∆P =

(
1

rj
+

1

fj

)
di
ttot

(
zj +

1

c− 1

)
+ ttot(1− zj)

α 1

(1/rj + 1/fj) di
+∆ui

(a)

≤ ttot

(1/rj + 1/fj) di

(
zj +

1

c− 1

)
+ (1− zj)

ttot

(1/rj + 1/fj) di
+∆ui

=
ttot

(1/rj + 1/fj) di

(
1 +

1

c− 1

)
+∆ui, (28)

where (a) holds due to (1/rj + 1/fj)
di
ttot

≤ 1 with α = 1. Next, the objective function of problem

(D) is increases by one, and it is denoted by ∆D = 1. This is due to the fact that yij is initially

set to zero, and we update yij = 1 when task i is assigned to edge node j. Hence, we have
∆P
∆D

≤ ttot
(1/rj+1/fj)di

(
1 + 1

c−1

)
+ ui.
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