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ABSTRACT

Evapotranspiration (ET) is an important parameter for crop growth monitoring and land surface modeling. This
paper proposed a new workflow, namely ESVEP-RF, to calculate ET during the crop growing season using MODIS
data by combining the advantages of the trapezoidal model and Random Forest (RF) algorithm. In ESVEP-RF, the
endmember-based soil and vegetation energy partitioning (ESVEP) model was first used to calculate a series of
parameters from MODIS and meteorological inputs, and then all parameters derived from remote sensing data,
meteorological data and ESVEP models were used as inputs to the RF algorithm for latent heat flux (LE)
calculation. In-situ data of 12 years (2003-2012, 2018 and 2019) from five flux towers located in Nebraska (NE)
and Michigan (MI) were used to test the performance of ESVEP-RF, and results showed that ESVEP-RF had great
potential to accurately calculate ET when the number of training samples was sufficient and representative. In
2010 and 2011, R? of LE were around 0.8 and RMSE were around 70 W/m?, which outperformed original ESVEP
model results. This indicated that the RF algorithm could better describe the non-linear correlation between in
LST/FVC space endmembers and LE. Among all parameters, LAL, PLEv and R-vw had high contribution with
percentage importance of 18.49%, 15.71% and 13.57%, respectively. Furthermore, all samples between 2003
and 2012 collected from the three NE sites were used to train RF models and then calculate LE for both NE and
MI sites in 2018 and 2019. In NE sites, RMSE was around 65 W/m? and R? was around 0.8. In MI sites, it was
noted that no samples from these sites were included in the training data set, and RMSE was around 70 W/m?
and R? was higher than 0.7. These results showed the potential of ESVEP-RF for providing up-to-date ET
information.

1. Introduction

surface temperature (LST)/fractional vegetation cover (FVC) feature
space methods (Carlson, 2007; Li et al., 2009; Senay, 2008; Su, 1988).

Evapotranspiration (ET) is the loss of water from the land surface to
atmosphere, which is a key component in water cycle and energy bal-
ance systems (Burt et al., 2005; Di, 1991; Farahani et al., 2007; Moran
et al., 1994; Pereira et al., 2015). Additionally, ET is also a major hy-
drological variable in agricultural applications, since accurate ET
calculation provides important information for crop growth monitoring
and crop yield prediction (Allen et al., 2007; Anderson et al., 2007;
Knipper et al., 2020; USGS, 2010; Wang and Dickinson, 2012).

Remote sensing-based methods have been widely used for cropland
ET calculation and monitoring from regional to global scale (Jéffersonde
et al., 2020; Jiang et al., 2020; Knipper et al., 2020; Liu et al., 2019; Mu
et al., 2007, 2011; Xue et al., 2020; Yu et al., 2019), and can be cate-
gorized into three groups based on their principles: (1) surface energy
balance methods, (2) surface water balance methods, and (3) land

* Corresponding author.

Among these methods, LST/FVC feature space methods are advanta-
geous in ET calculation because they avoid complex aerodynamic and
land surface resistance parameterization required for other methods
(Jiang et al., 2009; Kimball and Running, 2016; Leng et al., 2017).
The hypothesis of the LST/FVC feature space methods is that
remotely sensed LST and FVC of all clear-sky pixels in an image could be
used to generate a two dimensional space, and the envelope of these
pixels could constitute a physically meaningful triangle or trapezoid
(Carlson, 2007). The edges of the triangle or trapezoid represent extreme
wet/dry situations in the image and the vertices are called dry/wet
endmembers. Consequently, one challenge in using the LST/FVC
methods to calculate ET is the determination of wet and dry edges. An
LST/FVC feature space is only applicable in the same meteorological and
terrain conditions. Therefore, the methods are not suitable at a
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Fig. 1. Location of the five test sites used in this study. In the Figure, NEO1, NE02, NE03, KLO1 and KMO1 denote AmeriFlux towers US-Nel, US-Ne2, US-Ne3, US-KL1

and US-KM1, respectively.

continental or global scale where meteorological and terrain conditions
vary greatly and wet/dry edges are difficult to determine from remote
sensing data alone. As there have been several regionally gridded
meteorological products openly available, such as the North American
Land Data Assimilation System (NLDAS) data at 0.125° spatial resolu-
tion (Xia et al., 2015), it is possible to combine remote sensing data with
meteorological data to determine the wet/dry edges of LST/FVC feature
space for each pixel in a remote sensing image based on the surface
energy balance theory. With this combination, the applicability of
LST/FVC methods could be extended to global scale.

Another challenge of LST/FVC feature space methods is how to
separate soil evaporation (ETs) and vegetation transpiration (ETv).
Some conventional two-source trapezoidal models have been proposed
based on the assumption that vegetation temperature (Tv) and soil
temperature (Ts) vary concurrently with soil moisture variation, and
ETv and ETs vary together with Ts and Tv variation in the LST/FVC
trapezoid (Long and Singh, 2012; Sun, 2015; Yang et al., 2015).
Therefore, variation speed of ETv and ETs calculated from these con-
ventional trapezoidal models are nearly equal (Jiang et al., 2019; Tang
and Li, 2017). However, the variation rate of ETv and ETs should be
different because ETv primarily uses water from the root-zone layer
while ETs primarily uses water from the surface soil layer, and the soil
moisture of the two layers are different in the most cases. To overcome
this drawback, Tang and Li (2017) proposed an end-member-based soil
and vegetation energy partitioning (ESVEP) model, which showed good
potential for separating ETv and ETs by using a two-stage trapezoid
procedure. First, ETs would drop from potential ETs to zero if water
content in the surface soil layer decreases from sufficiency to zero, and
ETv would remain to be potential ETv if the water content in the root
zone layer remains sufficient. Second, ETv would drop from potential
ETv to zero if water content in the root zone layer decreases to wilting
point, and ETs would keep at zero if soil water content in the surface soil

layer remains at zero. Actual ETs and ETv of a pixel are calculated based
on the linear ratio between the pixel location and endmembers in the
LST/FVC feature space. The ESVEP model has shown good potential for
calculating ET using satellite observations (Jiang et al., 2019). However,
the relationship between actual ET (ETv and ETs) and potential ET
(PETv and PETs) may be not linear. Therefore, a non-linear approach
should be tested in the end-member-based two-source trapezoidal
models for ET calculation.

Machine learning (ML) approaches provide new ways to deal with
non-linearity in the construction of models for classification and
regression (Virnodkar et al., 2020), and have been proved to be effective
in agricultural remote sensing applications, such as crop type classifi-
cation, plant biophysical and biochemical parameters estimation, crop
water stress detection, and yield prediction (Filgueiras et al., 2020; Hao
et al., 2020b; Loozen et al., 2020; Oliveira et al., 2020; Rahman and Di,
2020; Sun et al., 2020a, 2020b; Xu et al., 2020; Zhang et al., 2019). As
for ML-based ET estimation, most studies used land surface parameters
calculated from remote sensing data (such as albedo, land surface
temperature, vegetation indices, etc.) and meteorological parameters
(such as wind speed, vapor pressure deficit, etc.) as inputs (Chia et al.,
2020; Virnodkar et al., 2020), but very few studies used parameters
calculated from water cycle and energy balance mechanism as inputs for
ML. Therefore, objectives of this study are: (1) using ML methods to fill
the gap between parameters generated in two-source trapezoidal models
and actual ET, and (2) estimating the potential of using historical data as
training samples to calculate corn and soybean ET by combining ESVEP
and ML approaches at five AmeriFlux cropland tower sites in Nebraska
and Michigan. The rest of this paper is organized as follows: Section 2
discusses the materials and methods of this study; Section 3 presents
research results; Section 4 analyzes and discusses the results, and Section
5 provides the conclusion of this study.
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Table 1

Energy balance closure of the ground-truth data.

Intercept (W/m?) Slope R?

FluxNET-US-NEO1 1.70 0.77 0.93
FluxNET-US-NE02 2.09 0.80 0.94
FluxNET-US-NE03 20.99 0.97 0.67
AmeriFlux-US-NEO1 3.09 0.77 0.94
AmeriFlux-US-NE02 4.27 0.79 0.94
AmeriFlux-US-NE03 5.72 0.81 0.95

Note: This table reports the Regression coefficients of LE+H against Rn—G, using
all the valid hourly data for each site. As the AmeriFlux data of the sites KLO1
and KMO1 did not provide the in-situ Rn, we just evaluated the EBC of the
FluxNET and AmeriFLUX of US-NEO1, US-NEO2 and US-NEO3.

Table 2
MODIS products used in this study.
Spatial Temporal Included Derived
resolution resolution parameters parameters
(Meter) (Day)
MODO09GA 500 Daily Surface NDVI,
reflectance of albedo
MODIS bands 1-7
MOD11A1 500 Daily LST, spectral broadband
emissivity of emissivity
MODIS bands 31
and 32
MOD15A2 1000 4-day LAIL

2. Data sets and methodology
2.1. Study area and flux data

The study area is located in Nebraska (NE) and Michigan (MI), both
part of the U.S. Corn Belt, with corn and soybean as the two dominant
crops. In-situ data of five AmeriFlux tower cropland sites in Nebraska
and Michigan, namely US-Nel, US-Ne2 and US-Ne3, US-KL1 and US-
KM1, are used in this study. The locations of these five sites are shown
in Fig. 1. These sites have different crop rotation and irrigation condi-
tions: US-Nel, US-KL1 and US-KM1 are irrigated continuous corn sites,
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US-Ne2 is an irrigated corn-soybean rotation site, and US-Ne3 is a
rainfed corn-soybean rotation site. The mean annual precipitation of the
Nebraska and Michigan sites are around 790 mm and 960 mm, and the
mean annual temperatures are around 10 °C and 18 °C, respectively.

The hourly in-situ data from 2003 to 2012 for the three Nebraska
sites were downloaded from the FLUXNET data portal (https://fluxnet.
org/). The data sets were gap filled and passed the quality control checks
(Pastorello et al., 2020). The latent heat flux (LE) corrected by the en-
ergy balance closure correction factor (LE_CORR) corresponding to the
satellite overpass time is used as in-situ observed LE in this study, and
only the data from DOY 101 to DOY 300 which cover the growing season
of corn and soybean are used. In addition, hourly in-situ data for year
2018 and 2019 are downloaded from AmeriFlux data portal
(https://ameriflux.1bl.gov/). In-situ flux data for 2018 and 2019 are the
original observations, which have not been corrected, but these are the
only datasets we can acquire in these two years. We evaluated the en-
ergy balance closure of the ground-truth data using the regression cor-
relation of Rn-G and LE + H (Wilson et al., 2002), and the results were
shown in Table 1. The in-situ data for the three NE sites are available in
both 2018 and 2019, and for the two MI sites, the data were only
available in 2018. As we use MODIS Terra data to calculate LE, we only
use in-situ LE observations at the satellite overpass time (10:30 am local
time, which is 16:30 UTC time for the three NE sites and 15:30 UTC time
for the two MI sites). The three NE sites provide hourly in-situ data so
that we used the data recorded for 10:00-11:00 am as in-situ data; MI
sites provide half-hourly data and we used the average value of records
between 10:00 and 11:00 am. Furthermore, all samples which were
labeled as cloud-covered in MODIS products were removed from sample
dataset.

2.2. Earth observation and gridded meteorological data

2.2.1. MODIS data

MODIS products used in this study include land surface reflectance
(MODO09GA), LST (MOD11A1), and leaf area index (LAI) (MOD15A2).
The temporal and spatial resolution of the three MODIS products and
parameters derived from MODIS data are shown in Table 2. Broadband
emissivity was calculated from spectral emissivity of MODIS bands 31

MODIS data ! oo
between 2003 : —\—> Predicted latent
/ and 2012 Yy m heat flux between
Ve o ; 2004 and 2012 Y
eteorologica A odi c
Rt : ESVEP-RF . Predicted latent Lgtcn.t heat flux
0013 sa 3018 : —»| Scenario B —{ heat flux between validation between
: ESVEP model 2004 and 2012 2004 and 2012
/ bln—sntu data Predicted latent
etween 2003 | Scenario C —» heat flux between
and 2012 —» | Random Forest i | 2004 and 2012 |
Training 4 Feature | | |
les bet / i
53‘81(?36:11;2"(\)'7‘;“ / Importance Predicted latent heat Latent heat flux
/ estimation flux in 2018 and 2019 validation in 2018 2019
/ MODIS data in o T > A

/ 2018 and 2019

/ Meteorological
1/ data in 2018 2019

In-situ data in
2018 and 2019

/

Fig. 2. Flowchart of this study. The upper-left box indicates the data used for training and testing experiments between 2003 and 2012, bottom-left box indicates the
data used for training and testing experiments in 2018 and 2019. Big arrows in the figure present that the data listed in the left-boxes are processed with the ESVEP-
RF, for the upper-right box, three scenarios are designed for the data between 2003 and 2012, and the LE calculation results are verified, for the bottom-right box,
training samples collected between 2003 and 2012 are used to train the ESVEP-RF models and the model are used for LE calculation in 2018 and 2019. In addition,
the thin arrows are the detailed data flow. For example, MODIS data, meteorological data and ground truth data are used to train ESVEP-RF model of the three
scenarios, and we then acquired LE calculation results of these three scenarios, the results are then verified using the ground truth data. In is notable that when
calculating the LE of the target years, only training samples of the previous years are used to train ESVEP-RF models. For instance, ground truth samples between
2003 and 2009 were used to train the machine learning models when trying to calculate LE in 2010.
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Table 3
Description of the three experiments designed to estimate The combined ESVEP
and RF method for ET calculation.

Description Expected result Examples

Scenario Training samples are all
A historical samples

before the testing year,

Nine-year
predicted LE
(between 2004

When predicting ET of
site NEO1 in 2012, the
training samples are all

all three NE sites are and 2012) samples between 2003

included in both and 2011 for all three

training and validation NE sites; and when

samples predicting ET of site
NEO1 in 2010, the
training samples are all
samples between 2003
and 2009 for all three
NE sites.

Scenario Training samples areall ~ Nine-year When predicting ET of

B historical samples
before the testing year,
training and testing
samples are from
different sites

predicted LE
(between 2004
and 2012)

site NEO1 in 2012, the
training samples are all
samples between 2003
and 2011 of NE0O2 and
NEO3 sites; and when
predicting ET of site
NEO1 in 2010, the
training samples are all
samples between 2003
and 2009 of NE0O2 and
NEOS3 sites.

When predicting ET of
site NEO1 in 2012, the
training samples are all
samples between 2003
and 2011 of NEO1 and
NEO2 sites (irrigation
sites), and when
predicting ET of site
NEO3 in 2010, the
training samples are all
samples between 2002
and 2011 of NEO3 site
(rainfed sites).

Scenario Training samples are all
C historical samples
before the testing year,
and irrigation site and
rainfed site are
separated

Nine-year
predicted LE
(between 2004
and 2012)

and 32 using method reported by Liang (2004); land surface albedo was
calculated from surface reflectance of MODIS bands 1-7 using method
reported by Liang (2001). NDVI was calculated from spectral reflectance
of MODIS bands 1 and 2 (Rouse et al., 1974). Finally, all MODIS data

Training Data
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were resampled to 1 km using the GDAL package for Python. The MODIS
Terra satellite overpasses land surface at 10:30 am local time daily, so
that in-situ LE corresponding to the satellite overpass time was used as
ground truth LE. As some MODIS data were covered by clouds,
cloud-covered samples were not included in the sample set because
MODIS LST observation was not available. As we focus on crop ET
calculation during the growing season, all MODIS data between DOY
101 and 300 between the years 2003-2012 and 2019 were collected in
this study.

2.2.2. Meteorological data

The hourly gridded meteorological data used in this study is NLDAS-
2 File A data (Xia et al., 2012). The dataset covers the conterminous US
(CONUS) since 1979 at spatial resolution of 0.125°. The hourly down-
wards longwave radiation, downwards shortwave radiation, surface
pressure, 2-m above ground specific humidity, 2-m above ground tem-
perature and wind speed between the years 2003 and 2012 were used in
this study. Another data source of meteorological data is the National
Weather Model Service (NWM, https://nomads.ncep.noaa.gov/pub/da
ta/nccf/com/nwm/prod/), which is an hourly analysis and forecast
system running over the conterminous US (NOAA-OWP, 2016) at 500 m
spatial resolution. In this study, both NLADS and NWM data were
resampled to 1 km using the Bi-linear algorithms with the MODIS data
as reference image, the image resampling operation was implemented
using the GDAL package for Python. As the meteorological data used in
this study are collected from different data sources (NLDAS data be-
tween 2003 and 2012, and NWM data for 2018 and 2019), and the
original spatial resolution of the two data sources are different, the in-
consistencies between the two meteorological datasets may slightly
affect LE calculation result in 2018 and 2019.

2.3. Flowchart of this study

Fig. 2 shows the data processing flowchart of this study. We selected
Random Forest (RF) as the ML model in this study and then combined
ESVEP and RF (ESVEP-RF) to calculate ET. Importance of individual
features generated from remote sensing data, meteorological data and
ESVEP model were firstly estimated using the Gini index calculated from
RF. Next, two experiments were designed to evaluate the performance of
ESVEP-RF for ET calculation. The first experiment was designed to
evaluate the performance of ESVEP-RF for ET calculation with data
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Fig. 3. Data Processing flowchart of ESVEP-RF.
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Fig. 4. ESVEP model and the dataflow for parameter generation. (a) Surface temperature versus fractional vegetation cover trapezoid space. The edge CD denotes
wet edge; as triangle ACD denotes the condition that soil zone water is sufficient, edge AC denotes the dry edge of the triangle ACD, and we labeled the edge as Dry
edge I in the figure; similarly, triangle ABC denotes the condition that the plant is water-stressed, edge AB denotes the dry edge of the triangle ABC and we labeled the

edge as Dry edge II. (b) Workflow of parameter calculation using ESVEP model.

Table 4

Input and output parameters for ESVEP model.

Input Parameters

Out parameters

Meteorological Input

DSward: Downward
Shortwave Radiation

DLward: Downward Longwave

Radiation
Windspeed
VPD
Tah: 2 m-Air Temperature
Rh: Relative Humidity

AGDD: Accumulated Growing
Degree Day

Veghgt: Vegetation Height

Remote Sensing Input

Leaf Area Index

NDVI

SRb1: Surface Reflectance of
Band 1 (Red)

SRb2: Surface Reflectance of
Band 2 (NIR)

SRb3: Surface Reflectance of
Band 2 (Blue)

SRb4: Surface Reflectance of
Band 2 (Green)

SRb5: Surface Reflectance of
Band 2 (SWIR1)

SRb6: Surface Reflectance of
Band 2 (SWIR2)

SRb7: Surface Reflectance of
Band 2 (SWIR3)

FVC: fractional vegetation
cover

Emissivity

LST: Land Surface
Temperature

Emissivity

A: slope of saturated water vapor pressure

Air emissivity
y: psychrometric constant

Lv: longwave radiation from vegetation
albedo
Fv: fraction vegetation cover
Tqw: canopy shortwave radiation transmittance

albedo_s: soil albedo

Soil emissivity

Ts: soil temperature

Ls: longwave radiation from soil
Rns: net radiation of soil

Rav: net radiation of vegetation

Gs: soil heat flux
R-vw: canopy resistance at well-watered condition

R-vd: canopy resistance at zero-soil-water
condition
R-as: aerodynamic resistance of soil

R-av: aerodynamic resistance of vegetation

T*: critical surface temperature to decide whether
the pixel in dry triangle or wet triangle
Tsd: temperature of dry soil end-member

Tsw: temperature of wet soil end-member
Tvd: temperature of dry vegetation end-member

Tvw: temperature of wet vegetation end-member
PLEv: potential vegetation LE

PLEs: potential soil LE

LEv: actual vegetation LE

LEs: actual vegetation LE

LE_all: total LE

between 2003 and 2012, and there were three scenarios using different
training samples (Table 3). Scenario A was designed to estimate the
general performance of ESVEP-RF method; Scenario B was designed to
estimate the extendibility of ESVEP-RF and Scenario C was designed to
generate different RF models for irrigation and rainfed sites, and then
effect of irrigation on ESVEP-RF performance was evaluated. The second
experiment was using all samples acquired between in 2003 and 2012 as
training samples to train RF models, and then using these RF models to
calculate ET in 2018 and 2019, this experiment is designed to test the
applicability of ESVEP-RF for an up-to-date ET calculation system.
Finally, all ET were verified using the corresponding in-situ data, and
total actual LE was verified because in-situ data do not provide ETv and
ETs.

2.4. ESVEP-RF

Fig. 3 showed the data processing flowchart of ESVEP-RF. Remote
sensing data and meteorological data were used as input in ESVEP
model, and then a series of parameters were generated from ESVEP
model. Parameters from remote sensing data, meteorological data and
ESVEP model were combined with corresponding in-situ observed data
as training/testing samples. The training samples were then used to train
RF models. Next, remote sensing data, meteorological data and ESVEP
model outputs of the testing samples were collected and LE of these
testing samples were predicted using the RF models. Finally, in-situ LE of
the testing samples were used to verify the RF predicted LE.

2.5. ESVEP model

The end-member-based soil and vegetation energy partitioning
(ESVEP) model is based on the LST/FVC feature trapezoid space models
for the actual ET calculation (Fig. 4). In the trapezoid, there are four end-
members: end-members A, B, C, and D denotes dry soil, dry vegetation,
wet vegetation and wet soil, and the LST of these four end-members are
denoted as Ty, Tyg, Tyw and Ty. The LST/FVC feature trapezoid could be
divided as two triangles. The lower triangle (triangle ACD) simulates the
situation that root-zone water is sufficient and soil evaporation varies,
and the upper triangle (triangle ABD) simulates the situation that
vegetation is water-stressed. Generally, ET is composed by evaporation
comes from soil evaporation (ETs) and vegetation transpiration (ETv), if
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the LST/FVC of a pixel locates in triangle ACD, soil water content at the
root zone almost remains sufficient, so that the actual canopy transpi-
ration is nearly equal to the potential canopy transpiration, and the
reduction of total ET is due mainly to the decrease of soil evaporation. If
the LST/FVC of a pixel is located in triangle ABD, soil evaporation re-
mains zero and vegetation transpiration drops from potential vegetation
transpiration to zero with less root-zone water available (Jiang et al.,
2019; Leng et al., 2017; Tang and Li, 2017).

For a given pixel (for example point X or X’ in Fig. 4), a critical
surface temperature (T*) is used to decide which triangle the pixels are
located in (Eq. (1)),

T = [T+(1 —F,) + T -F,]" o))

where F, is the FVC of given pixel, which is calculated as:

NDVI — NDVI;,

F=(———mn
(NDVImaX — NDVlyin

) @
where NDVI is calculated from surface reflectance of Red and Near
Infrared bands of MODIS data (Band 01 and Band 02). NDVI,., and
NDVI,;, are assigned to be 0.2 and 0.86 in this work according to Pri-
hodko and Goward (1997). For a given pixel, if the pixel is located in
triangle ACD (for example point X in Fig. 4), ETs and ETv and be
calculated as:

_0X
- opP
ET, =E,,

ET, x  Egp

3)

where E; and E,, are potential soil evaporation and vegetation tran-
spiration, respectively, and OX and OP are lengths of the lines between
points O and X and points O and P, respectively. If the pixel is located in
triangle ABD (for example point X’ in Fig. 4), ETs and ETv and be
calculated as:

ET, =0
ox' G
EL=gp * Bw

where O’X’” and O’P’ are lengths of the lines between points O’ and X’

and points O’ and P’, respectively. Then, the 3% and % can be calcu-

lated as:

OX (1 —-F,)xTyq+F, x Tyy — T

0P~ (I-0)x (Tu—Tw) o
O'X' (1 —F,)xTy —F, X Ty, —Ts
or £ X (Tyg — Tyy)

and LST of the four end-members can be calculated as Moran et al.
(1994):

_ Tas® (Rn,s - Gs)

Ta = +T,
d p-Cp
T, — fyeRoy  y(I+ra/re) VPD AT,
peC, A4+v(1+ra/ray) A+y(1+1/ray) ©
T, — foRoy 7ol + 1y /Iny) VPD LT,

pCp A+y(l+rn/ta) A+y(l+rn/ra)

_— (Ras —Gy) v VPD
e pC, A4y A+y

+T.

where R, and R, , are the net radiation of soil and vegetation, G; is soil
heat flux, T, is air temperature, C,, is volumetric heat capacity of air, y is
psychrometric constant, A is the slope of saturated vapor pressure versus
air temperature, VPD is vapor pressure deficit of air, ry,, and r,q are
canopy resistance at the well-watered and zero-soil-water, which can be
set as 100/LAI and 2000 s/m; r,s and r,, are aerodynamic resistance of

Agricultural Water Management 259 (2022) 107249

soil and vegetation, which can be calculated as:

b))

k%eu

Ty (Tas

where k is Von Karman’s constant; u is wind speed; z, and z, are the
heights of wind speed and air temperature measurements; and ¢, and ¢,
are the stability correction functions for momentum and heat transfer,
which are calculated using the method described in Dhungel et al.
(2016). d is the zero-plane displacement height; z,, is surface mo-
mentum roughness height; z,, is roughness height for surface heat
transfer. When calculating r,,, d = 0.67-h (h is vegetation height), zony,
=0.1'h, and z,y, = 0.1-Zgpy; For ry, d = 0 m, z,, = 0.005m and z,, =
0.0005m. Vegetation height can be generated from in-season crop type
map and accumulated growing degree day (AGDD).

For net radiation, the net radiation of soil and vegetation can be
calculated as:

Ris = Tewe(l — )Ry 4 exp( — ki LAI) L,
+[1 — exp( — k LAI)|L, — L
Roy = (I = To) (1 — oy)Rg + [1 — exp( — k LAI) |

x(Lgy + L — 2L,)]

€))

where; o and o, are soil and vegetation albedo; R, is downward
shortwave solar radiation acquired from meteorological data; ki, is the
extinction coefficient approximately 0.95; and Ly,, L, and L, are
longwave emissions from sky, vegetation, and soil. Ly, could be ac-
quired from gridded meteorological data, and L, and L are calculated
from vegetation LST and emissivity. T, is canopy shortwave radiation
transmittance, which is calculated by tgw=exp(-ks LAI), ks is light
extinction coefficient varied by vegetation type and growing stage. o,
and oy are vegetation and soil albedo, which are calculated from albedo
and FVC (Tang and Li, 2017).

Fig. 4(b) showed the flowchart of generating parameters of ESVEP
model. Both remote sensing data and meteorological data were firstly
combined to generate LST/FVC trapezoid space for each pixel, LST were
then used to estimate which triangle the pixel is located in, and LE of
vegetation transpiration and soil evaporation are calculated using cor-
responding methodology and end-members. Table 4 showed the input
and output parameters for ESVEP model.

2.6. Random forest

The Random Forest (RF) algorithm proposed by Breiman (2001) is an
ensemble machine learning method for regression and classification.
Each Random Forest model contains multiple classification/regression
trees. The training procedure for the RF algorithm is to construct all
classification/regression trees; in this procedure, each tree is con-
structed from root to leaf nodes using two-third of the training samples
randomly selected from training sample data set and only a part of
features. Every time a split of a node is made on a feature, the Gini
impurity criterion for descendent nodes is less than that of the parent
node. The important metric for fit is that the sum of Gini impurity de-
creases for each individual variable over all trees in the classi-
fication/regression forest. "Leaf node" denotes that the node cannot be
further split and all samples in the node belongs to the same class. After
the construction of each tree, the remaining one-third training samples
are used for testing, where the test error is referred to as “out-of-bag
error”. Feature importance could be estimated during the training pro-
cedure of RF, with the sum of the reduction in Gini impurity criterion.
When using random forest model to predict, the prediction data set
should contain the same features to training samples. For a classification
prediction, the output will be mode of the classes of individual trees,
whereas for a regression prediction, the output will be the average of all
the individual trees. The RF algorithm have several advantages: (1) it
can model complex interactions among input features; (2) it runs
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20 A Fig. 5. The percentage feature importance of the top ten
most important features. The bars denote percentage
feature importance and the error line denotes standard

15 A deviation of the ten RF model runs. In this figure, the
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Fig. 6. Comparison of ESVEP-RF with Scenario A and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.
efficiently on large datasets and not sensitive to noise or over-fitting; and quantitative land surface parameters regression (Belgiu and Dragut,
(3) it automatically uses the optimal features to construct RF model. 2016). In this study, the feature importance for the ET calculation are
Therefore, RF classification algorithm has been widely used in many estimated using RF. All features in Table 4 are used as input features, the

remote sensing domains such as land cover classification and calculations were repeated 10 times, and the average percentage Gini
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Table 5
Yearly error parameter values of the ESVEP-RF LE for Scenario A.
Year US-NE1 US-NE2 US-NE3
Bias RMSE R? Training Bias RMSE R? Training Bias RMSE R? Training
(W/m?) (W/m?) sample number (W/m?) (W/m?) sample number (W/m?) (W/m?) sample number
2004 64.80 108.09 0.64 234 25.66 110.48 0.69 234 40.11 97.45 0.53 234
2005 -23.32 94.08 0.63 598 -24.40 91.99 0.73 598 -31.15 104.87 0.67 598
2006 -23.27 90.16 0.72 832 -42.73 86.62 0.73 832 -8.30 101.80 0.57 832
2007 -20.12 92.26 0.71 1244 -6.99 89.04 0.81 1244 6.98 93.04 0.72 1244
2008 -40.71 88.48 0.75 1716 -35.67 82.62 0.83 1716 6.70 85.39 0.79 1716
2009 -8.96 82.63 0.85 2166 0.50 74.63 0.81 2166 23.96 82.73 0.80 2166
2010 -6.61 78.02 0.83 2580 15.36 73.34 0.82 2580 -31.12 81.33 0.81 2580
2011 -3.05 73.50 0.84 3062 20.31 65.41 0.85 3062 35.28 69.78 0.86 3062
2012 -15.96 62.88 0.87 3555 21.34 55.47 0.89 3555 18.77 76.98 0.80 3555
All years -9.57 87.72 0.73 -2.43 81.97 0.75 6.77 86.14 0.69
together
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Fig. 7. Scatter plots of ESVEP-RF LE with Scenario A and in-situ LE. (a) US-NE1, (b) US-NE2, (c) US-NE3. The red lines in the figures are 1:1 lines.

score for each feature was used to generate feature importance. Next, the
RF algorithm was also used for ET calculation. For each experiment, the
RF model was trained with training samples. All features were included

in the training procedure as RF could automatically selected the optimal

features. Finally, RF models were then used to predict ET for the testing
samples. The RF algorithm was implemented using the RandomForest

package for R (Liaw and Wiener, 2014), the number of trees in the

ensemble was set to 1000 to allow convergence of the error statistic, and
the number of features to split the nodes in trees was set to the square
root of the total number of input features (Loosvelt et al., 2012).

2.7. Accuracies evaluation metrics

We used Bias error, root mean square error (RMSE) and coefficient of
determination (R%) between the ESVEP-RF and in-situ LE. Although the
ESVEP model could separate radiation and heat flux of soil part from the

N

. 1
Bias = v Z(z[- —2p)

vegetation part, in-situ data did not provide these data separately, so
that we just verified total actual LE of ESVEP-RF. The equations used for
calculating Bias, RMSE and R? are as follows:

€©)

10)

an

where N is the size of sample size, (Zf —zo) is the difference of each pair
of in-situ and predicted LE, ¥ (y,—7,)? is the sum of residuals squared,
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Fig. 8. Comparison of ESVEP LE and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.

Table 6

Yearly error parameter values of the ESVEP LE.
Year US-NE1 US-NE2 US-NE3

Bias (W/m?) RMSE (W/m?) R? Bias (W/m?) RMSE (W/m?) R? Bias (W/m?) RMSE (W/m?) R?

2004 11.71 91.32 0.62 15.55 96.65 0.59 30.13 98.40 0.59
2005 -25.02 109.26 0.59 -38.90 91.84 0.62 -31.90 91.98 0.59
2006 -0.62 100.63 0.61 5.59 105.68 0.76 11.74 106.91 0.47
2007 -15.51 91.08 0.71 -12.01 93.98 0.66 4.68 92.87 0.61
2008 -26.43 100.08 0.69 2.55 106.26 0.70 18.86 103.22 0.64
2009 -18.02 87.75 0.71 -10.62 93.61 0.65 3.95 87.95 0.62
2010 -4.50 103.22 0.69 2.37 97.57 0.71 -19.95 94.33 0.71
2011 5.47 93.38 0.69 16.68 84.94 0.69 41.74 92.71 0.68
2012 -2.26 87.41 0.75 0.71 86.96 0.65 13.30 89.45 0.70
All years together -8.72 96.52 0.68 -2.38 95.62 0.66 8.10 97.15 0.61

and ¥ (y;—y,)? is the sum of the distance the data is away from the mean 3. Results and discussion

all squared. The ESVEP can be used to divide soil evaporation from

vegetation transpiration, but the in-situ data does not provide the pa- 3.1. Feature importance

rameters for vegetation and soil separately, so that we only verified the
total LE of the two parts together.

We used all samples between 2003 and 2012 to calculate feature
importance. Fig. 5 shows the top ten most important features among all
features used in this study, and percentage importance sum of the top
ten features was 85.57%. Among all remote sensing, meteorological and
ESVEP model features, LAI was the most important feature. The average
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percentage importance of LAI for ET calculation was 18.49%, which
indicated that vegetation growth was closely related to crop ET. This is
because higher leaf area of the plant creates more opportunity for water
vapor to leave from plant as transpiration (Monteith, 1981). In addition,
higher vegetation cover means the plants absorb more solar photons and
then convert more energy by transpiration (Pereira et al., 2020).
Although NDVI and FVC were also proxies for the vegetation greenness
condition, average percentage importance of NDVI and FVC were just
8.22% and 4.76%, respectively. This maybe because NDVI is more
sensitive at low greenness time phases, and when vegetation greenness
is high, NDVI is saturated and cannot describe vegetation growth pre-
cisely (Hao et al., 2020a; Wardlow et al., 2007). Furthermore, the FVC
calculation is highly dependent on NDVI in this study, the NDVI satu-
ration at high biomass level also led to the uncertainty of FVC. For other
features, PLEv and R-vw had high contribution for ET calculation as the
average percentage importance of the two features were 15.71% and
13.57%, respectively. PLEv and R-vw were used to describe energy
balance situation when the crop was not water-stressed, and determined
the potential LE of the given sample. This indicated that the samples
used in this study was not under water-stress condition, which was
consistent with the fact that US-NE1 and US-NE2 sites were
water-sufficient as they were irrigated sites. Furthermore, LST and Ta
which describe plant water status were also amongst the most important
features, with an average percentage importance percentage of 10.11%
and 4.81%, respectively. The other two high contribution features are
AGDD and Veghgt, which are used to describe crop growth stage.

3.2. Latent heat flux validation using in-situ measurements
We first generated LE using ESVEP-RF with training samples of the

previous years from all three NE sites, and then compared ESVEP-RF LE
with in-situ LE measurement. Fig. 6 showed that ESVEP-RF LE had high
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uncertainty before 2008, with yearly RMSE were higher than 80 W/m?
and R? were lower than 0.8 in the most cases (Table 5). The reason for
high uncertainty was that the number of training samples was low. It is
notable that LE prediction accuracies increased with training sample
number (Table 5). For example, when we only acquired 234 training
samples from all three NE sites in 2003, the yearly RMSE of US-NE1, US-
NE2 and US-NE3 were 108.09 W/m?, 110.48 W/m? and 97.45 W/m? in
2004, and the yearly R? of the three sites were 0.64, 0.69 and 0.53,
respectively. However, when we calculated LE in 2011, we used all
samples between 2003 and 2010, with a total of 3062 samples acquired.
The yearly RMSE of ESVEP-RF LE for US-NE1, US-NE2 and US-NE3 were
73.50 W/m?, 65.41 W/m? and 69.78 W/m?2, and yearly R? of the three
sites were 0.84, 0.85 and 0.86 respectively. Table 5 also showed that
when the number of training samples was more than 3000, RMSE and R>
remained stable, which indicated that 3000 training samples could be
sufficient for training RF models. ESVEP result for site US-NE1 in 2012
was not accurate since the LE in 2012 was higher than all the training
samples we have collected between 2003 and 2011, indicating that
when LE status of the given pixel is not included in the training samples
sets, ESVEP-RF may not calculate LE accurately. Finally, when consid-
ering all samples between 2003 and 2012, R? for the three sites were
0.73, 0.75 and 0.69 (Fig. 7 and Table 5).

To further compare LE derived from ESVEP model and ESVEP-RF, we
also used the ESVEP model to calculate LE between 2003 and 2012
(Fig. 8), and found that LE calculated from the ESVEP model was not as
accurate as the calculation from ESVEP-RF. In addition, when training
samples are sufficient, ESVEP-RF outperformed ESVEP model LE. For
example, in 2012, the RMSE and R? of ESVEP LE were 87.41 W/m? and
0.75 for US-NE1 (Table 6); and RMSE and R? of ESVEP-RF LE for US-NE1
were 62.88 W/m? and 0.87 and (Table 5). We then collected all samples
between 2004 and 2012, LE derived from ESVEP-RF also had lower
RMSE and higher R? than ESVEP model LE for all three sites (Table 6),
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Fig. 10. Comparison of ESVEP-RF with Scenario B and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.
Table 7
Yearly error parameter values of the ESVEP-RF LE for Scenario B.
Year US-NE1 US-NE2 US-NE3
Bias(W/ RMSE R? Training Bias (W/  RMSE R? Training Bias(W/  RMSE R? Training
m?) (W/m?) sample m?) (W/m?) sample m?) (W/m?) sample
number number number
2004 67.86 111.84 0.62 175 -4.39 94.07 0.66 155 46.44 105.67 0.69 154
2005 -9.58 91.23 0.61 429 -58.04 114.96 0.69 407 -17.63 90.98 0.55 395
2006 -1.26 82.03 0.72 584 -56.76 124.74 0.68 522 -0.09 80.64 0.71 558
2007 -14.61 86.22 0.82 848 -23.01 95.84 0.71 795 7.28 83.16 0.80 845
2008 -34.72 103.79 0.72 1158 -42.52 82.31 0.79 1106 17.44 101.82 0.76 1168
2009 -8.33 84.35 0.80 1432 -15.73 80.94 0.86 1415 30.72 75.50 0.70 1485
2010 -4.72 74.97 0.73 1706 7.18 70.09 0.80 1681 -22.04 84.25 0.79 1773
2011 -2.04 74.48 0.81 2032 13.58 75.57 0.79 2017 27.64 74.14 0.81 2075
2012 -19.16 70.47 0.81 2351 18.30 58.43 0.88 2347 24.69 80.87 0.75 2412
All years -4.23 90.16 0.7172 -17.10 90.10 0.7123 12.56 89.26 0.6768
together

and the bias estimation results of ESVEP LE and ESVEP-RF LE are
similar. The fitted lines of the calculated LE and in-situ LE showed that
ESVEP-RF LE were closer to 1:1 line as the fitted lines of ESVEP-RF LE
and in-situ LE had higher slope and lower intercept (Figs. 7 and 9).
Although we have used independent training and test samples to
estimate the potential of ESVEP-RF of ET calculation, the generaliz-
ability of RF models trained from training samples in other regions is not

11

clear. Therefore, we used training and test samples from different sites to
test the generalizability of RF models (Scenario B). Similar to the ESVEP-
RF calculation results with training samples from all three sites, LE
calculation accuracies were low with high bias and RMSE when number
of training samples was not sufficient (Fig. 10). Although LE calculated
in Scenario B were not so accurate as the LE generated in Scenario A, the
accuracies were still acceptable when the training sample number was
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Fig. 11. Scatter plots of ESVEP-RF LE with Scenario B and in-situ LE. (a) US-NE1, (b) US-NE2, (c) US-NE3. The red lines in the figures are 1:1 lines.

sufficient. For example, when training samples were collected from US-
NE2 and US-NE3 between 2003 and 2011, RMSE and R? of US-NE1 in
2012 were 70.41 W/m? and 0.81 (Table 7), which showed that the LE
could be accurately calculated even although samples of test site were
not used during the training procedure. We further compared the LE of
Scenario B calculated among the three sites, and found that accuracies of
US-NE1 and US-NE2 were better than US-NE3 with higher yearly R? and
lower RMSE (Table 7). For example, in year 2012, R? of ESVEP-RF and
in-situ LE for US-NE1 and US-NE2 were higher than 0.8, but R? for US-
NE3 was only around 0.74. When considering samples of all nine years
(between 2004 and 2012), fitted lines of the LE calculated from the
ESVEP-RF with Scenario B were not close to 1:1 lines as the fitted lines of
LE calculated from ESVEP-RF with Scenario A, as shown in Fig. 11 (c),
slope and bias of the fitted line were 0.64 and 101.42 W/m?, respec-
tively. Furthermore, LE calculated for US-NE3 had the lowest accuracy
among the three sites. The relatively low accuracies of US-NE3 LE with
Scenario B was probably because the sites US-NE1 and US-NE2 are
irrigation sites, but US-NE3 was a rainfed site. When calculating LE for
US-NE1, the training samples of NE2 which was also an irrigation site
were also used, but when calculating LE of US-NE3 (a rainfed site), all
training samples were collected from irrigation sites, and an RF model
trained on irrigation sites might not be used to calculate the LE of a
rainfed site accurately.

To further test whether the relatively low LE calculation accuracies
of US-NE3 was caused by the mismatch between training and test
samples, we divided the training set into rainfed and irrigation (Scenario
C), and then generated RF model for irrigation and rainfed samples
separately. Compared with Scenario A and Scenario B, the LE predicted
in Scenario C were more consistent with in-situ LE (Fig. 12). Table 8 also
showed that for all three NE sites, RMSE of Scenario C were lower than
the other two scenarios in 2010, 2011 and 2012 when the number of
training samples were sufficient; as a result, R? of Scenario C were also
higher. For example, RMSE and R? of US-NE3 for Scenario C were
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74.83 W/m? and 0.82 in 2010, which were significantly better than
those for Scenario A (in Table 5, 81.33 W/m? and 0.81) and B (in
Table 7, 84.25 W/m? and 0.78). When considering all the samples
together, scatter plots (Fig. 13) also showed that the fitted lines of
Scenario C were closer to 1:1 lines, the bias of fitted lines for US-NE3 was
around 80 W/m? (Fig. 13c), which was more than 20 W/m? lower than
that of Scenario B (Fig. 11c). This result indicated that when training
samples and test samples were for the same irrigation, the performance
of ESVEP-RF model improved, which was consistent with the relatively
low accuracies of Scenario B.

3.3. Applicability of ESVEP-RF in 2018 and 2019

To further test the applicability of the ESVEP-RF, we used all samples
collected between 2003 and 2012 to train the RF models and calculated
LE in 2018 and 2019, training samples collected from US-NE1 and US-
NE2 were used to calculate LE for US-NE1, US-NE2, US-KL1 and US-
KM1 and training samples collected from US-NE3 were used to calcu-
late LE for US-NE3. Fig. 14 showed that LE calculated from ESVEP-RF
had good consistency with in-situ data and described the yearly LE
trend in both NE and MI sites. The scatter plots (Fig. 15) also showed
that for the three NE sites, ESVEP-RF LE and in-situ LE had good linear
correlation as the R? of the three sites were between 0.8 and 0.85, and
RMSE were between 55W/m? and 65 W/m? in the most cases.
Furthermore, the LE calculation accuracies of the two MI sites were
slightly worse than the three NE sites, the R? of US-KL1 and US-KM1
were 0.76 and 0.74, and the RMSE were 69.34 W/m? and 71.69 W/
m?, respectively. The uncertainty of the LE calculated from ESVEP-RF
was mainly caused by the LE overestimation at the low LE time phases
(mainly around DOY 101-130 and 260-300), when the in-situ LE was
lower than 100 W/m?, and the yearly bias of the ESVEP-RF LE ranged
from 20 W/m? to 40 W/m? (Fig. 15). It is notable that no training
samples were collected for the sites US-KL1 and US-KM1, this indicated
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Table 8
Yearly error parameter values of the ESVEP-RF LE for Scenario C.
Year US-NE1 US-NE2 US-NE3
Bias (W/  RMSE R? Training Bias (W/  RMSE R? Training Bias(W/  RMSE R? Training
m?) (W/m?) sample m?) (W/m?) sample m?) (W/m?) sample
number number number
2004 76.65 124.81 0.65 154 35.44 88.36 0.71 154 17.73 95.42 0.63 80
2005 -25.97 94.86 0.56 395 -17.78 88.93 0.73 395 -45.52 92.47 0.67 203
2006 -26.79 91.96 0.74 558 -31.56 102.70 0.74\ 558 -45.21 87.60 0.68 274
2007 -16.28 77.32 0.80 845 -4.08 84.65 0.82 845 13.58 80.28 0.76 399
2008 -41.83 101.97 0.78 1168 -31.14 79.30 0.84 1168 0.11 79.08 0.82 548
2009 -5.59 80.50 0.85 1485 11.99 77.20 0.83 1485 3.02 81.57 0.76 681
2010 -1.84 72.30 0.74 1773 19.70 76.89 0.81 1773 -36.01 74.83 0.82 807
2011 -3.45 68.92 0.83 2075 23.98 62.98 0.77 2075 34.34 69.85 0.87 987
2012 -19.13 62.18 0.88 2412 21.38 56.75 0.90 2412 -4.33 70.53 0.82 1143
All years -8.24 87.34 0.7355 3.28 80.33 0.7633 -6.16 81.82 0.7234
together

that the ESVEP-RF model trained with from Nebraska sites had the po-
tential to be used in other regions with similar cropland, particularly in
the Corn Belt.

13

3.4. Advantages and limitations

In this study, we proposed a practical workflow using the output of
the ESVEP model as input features in RF model for ET calculation. The
advantage of the ESVEP model is that the model divides soil evaporation
from vegetation transpiration, and then provides more parameters
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which could describe the energy balance more precisely. The limitation
of the original ESVEP model is that only a linear method is used to
calculate the correlation between the LE of the given pixel and the two
triangles in the LST/FVC space (Fig. 4), so that we use RF regression to
improve the drawback of the original ESVEP model because RF regres-
sion has shown potential for describing nonlinear correlation. From the
perspective of RF, most existing studies only use features which are
available from the remote sensing land surface products, such as NDVI,
LAI and PAR.etc (Carter and Liang, 2019; Chia et al., 2020; Filgueiras
et al., 2020), but no parameters generated from the LST-based physical
models are considered, this study showed that some ESVEP model
derived parameters (such as PLEv and R-vw) are selected as
high-importance features, which indicates the contribution of ESVEP
model for the ESVEP-RF model.

However, there are still some drawbacks of the ESVEP-RF workflow.
The most important issue for the ESVEP-RF method is collecting training
sample as the final procedure of the ET calculation is based on machine
learning algorithms. Our results have shown that training sample data
size affect the ESVEP-RF calculation accuracies, which is consistent with
Carter and Liang (2019) that small training samples size cannot calcu-
late LE accurately. Another issue related to the training samples
collection is the representative of the training samples set. Dou and Yang
(2018) found that the same training data set have different performance
for multiple ecosystems type, which is similar to the Scenario B results in
this study as the RF models trained by samples of irrigation field samples
cannot be used to calculate the LE of rainfed fields accurately. Therefore,
the study region should be carefully cataloged based on the characters of
the land cover, and training samples need to be selected with large
quantity and cover each catalog to ensure both the sample set size and
representative.

Another limitation of ESVEP-RF is that the ESVEP model needs crop
type and planting date as inputs to calculate several parameters, such as
AGDD, height and aerodynamic resistance. However, gridded up-to-date

crop type and planting information are not available for practical ET
monitoring. For crop type data, existing crop type maps, such as CDL
data, are not available before the crop harvest (Boryan et al., 2011), and
the accurate early-season crop type map are not available before July
(Hao et al., 2020a; Hao et al., 2015). Although the predicted crop type
maps can be generated before the start of the growing season (Zhang
et al., 2019), this data contain large uncertainties that may seriously
affect the LE calculation accuracy. For planting date information,
although suggested planting dates are provided (Shroyer et al., 1996),
the gridded actual planting date information of the target year is still not
available before growing season begins. Therefore, a practical solution is
to collect the crop type and planting data information from the farmers’
report, but this would limit the up-to-date application of ESVEP-RF to
certain fields with all necessary input information.

4. Conclusion

This present paper proposed a new workflow for ET calculation by
combining the advantages of ESVEP model and RF. Remote sensing and
meteorological data were used as inputs for the ESVEP-RF method,
which was tested using all available in-situ data from five flux tower
sites of 12 years (2003-2012, 2018 and 2019). The main conclusions are
as follows:

(1) ESVEP-RF showed good potential for calculating ET when the
number of training samples is sufficient and representative. In
2010 and 2011, R? of LE calculated by ESVEP-RF were around 0.8
and RMSE were around 70 W/m? which outperformed the
original ESVEP model. The uncertainty in ESVEP-RF is mainly
caused by the overestimation of LE at low LE level time phases.

(2) Among all remote sensing, meteorological and ESVEP model
output features, LAI was selected as the most important feature as
the percentage importance of LAI calculated from RF was
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18.49%. In addition, the percentage importance of PLEv and R-
vw were 15.71% and 13.57%, respectively. These parameters
were used to describe vegetation transpiration in case that the
plant is non-water-stressed.

ESVEP-RF had good extendibility as the method achieved R?
higher than 0.7 when training and validation samples were from
independent sites. In addition, the ESVEP-RF model generated
from samples between 2003 and 2012 achieved good accuracy
for LE calculation in 2018 and 2019, RMSE were between 55 W/
m? and 70 W/m? and R? were around 0.8 for the five test sites.

3

As ESVEP-RF driven by 2003-2012 training samples showed good
potential for calculating ET in 2018 and 2019, we have used the method
to calculate grided instantaneous LE of satellite overpass time under
cloud-free condition with predicted crop type map and suggested
planting date information as input, this LE data are then used to generate
cloud-free condition daily ET, which is a part of the all-weather up-to-
date ET data product in NE, the product is accessible at Watersmart Data
Information Portal as “machine learning ET” (https://geobrain.csiss.
gmu.edu/watersmartport/web/). As the limitations of training sam-
ples and input information affect the accuracy of ESVEP-RF seriously,
more attention should be paid to ensure the sample size and represen-
tative as well as the early-season crop type and planting data informa-
tion when applying the ESVEP-RF to generate up-to-date LE data.
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