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A B S T R A C T   

Evapotranspiration (ET) is an important parameter for crop growth monitoring and land surface modeling. This 
paper proposed a new workflow, namely ESVEP-RF, to calculate ET during the crop growing season using MODIS 
data by combining the advantages of the trapezoidal model and Random Forest (RF) algorithm. In ESVEP-RF, the 
endmember-based soil and vegetation energy partitioning (ESVEP) model was first used to calculate a series of 
parameters from MODIS and meteorological inputs, and then all parameters derived from remote sensing data, 
meteorological data and ESVEP models were used as inputs to the RF algorithm for latent heat flux (LE) 
calculation. In-situ data of 12 years (2003–2012, 2018 and 2019) from five flux towers located in Nebraska (NE) 
and Michigan (MI) were used to test the performance of ESVEP-RF, and results showed that ESVEP-RF had great 
potential to accurately calculate ET when the number of training samples was sufficient and representative. In 
2010 and 2011, R2 of LE were around 0.8 and RMSE were around 70 W/m2, which outperformed original ESVEP 
model results. This indicated that the RF algorithm could better describe the non-linear correlation between in 
LST/FVC space endmembers and LE. Among all parameters, LAI, PLEv and R-vw had high contribution with 
percentage importance of 18.49%, 15.71% and 13.57%, respectively. Furthermore, all samples between 2003 
and 2012 collected from the three NE sites were used to train RF models and then calculate LE for both NE and 
MI sites in 2018 and 2019. In NE sites, RMSE was around 65 W/m2 and R2 was around 0.8. In MI sites, it was 
noted that no samples from these sites were included in the training data set, and RMSE was around 70 W/m2 

and R2 was higher than 0.7. These results showed the potential of ESVEP-RF for providing up-to-date ET 
information.   

1. Introduction 

Evapotranspiration (ET) is the loss of water from the land surface to 
atmosphere, which is a key component in water cycle and energy bal
ance systems (Burt et al., 2005; Di, 1991; Farahani et al., 2007; Moran 
et al., 1994; Pereira et al., 2015). Additionally, ET is also a major hy
drological variable in agricultural applications, since accurate ET 
calculation provides important information for crop growth monitoring 
and crop yield prediction (Allen et al., 2007; Anderson et al., 2007; 
Knipper et al., 2020; USGS, 2010; Wang and Dickinson, 2012). 

Remote sensing-based methods have been widely used for cropland 
ET calculation and monitoring from regional to global scale (Jéffersonde 
et al., 2020; Jiang et al., 2020; Knipper et al., 2020; Liu et al., 2019; Mu 
et al., 2007, 2011; Xue et al., 2020; Yu et al., 2019), and can be cate
gorized into three groups based on their principles: (1) surface energy 
balance methods, (2) surface water balance methods, and (3) land 

surface temperature (LST)/fractional vegetation cover (FVC) feature 
space methods (Carlson, 2007; Li et al., 2009; Senay, 2008; Su, 1988). 
Among these methods, LST/FVC feature space methods are advanta
geous in ET calculation because they avoid complex aerodynamic and 
land surface resistance parameterization required for other methods 
(Jiang et al., 2009; Kimball and Running, 2016; Leng et al., 2017). 

The hypothesis of the LST/FVC feature space methods is that 
remotely sensed LST and FVC of all clear-sky pixels in an image could be 
used to generate a two dimensional space, and the envelope of these 
pixels could constitute a physically meaningful triangle or trapezoid 
(Carlson, 2007). The edges of the triangle or trapezoid represent extreme 
wet/dry situations in the image and the vertices are called dry/wet 
endmembers. Consequently, one challenge in using the LST/FVC 
methods to calculate ET is the determination of wet and dry edges. An 
LST/FVC feature space is only applicable in the same meteorological and 
terrain conditions. Therefore, the methods are not suitable at a 
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continental or global scale where meteorological and terrain conditions 
vary greatly and wet/dry edges are difficult to determine from remote 
sensing data alone. As there have been several regionally gridded 
meteorological products openly available, such as the North American 
Land Data Assimilation System (NLDAS) data at 0.125◦ spatial resolu
tion (Xia et al., 2015), it is possible to combine remote sensing data with 
meteorological data to determine the wet/dry edges of LST/FVC feature 
space for each pixel in a remote sensing image based on the surface 
energy balance theory. With this combination, the applicability of 
LST/FVC methods could be extended to global scale. 

Another challenge of LST/FVC feature space methods is how to 
separate soil evaporation (ETs) and vegetation transpiration (ETv). 
Some conventional two-source trapezoidal models have been proposed 
based on the assumption that vegetation temperature (Tv) and soil 
temperature (Ts) vary concurrently with soil moisture variation, and 
ETv and ETs vary together with Ts and Tv variation in the LST/FVC 
trapezoid (Long and Singh, 2012; Sun, 2015; Yang et al., 2015). 
Therefore, variation speed of ETv and ETs calculated from these con
ventional trapezoidal models are nearly equal (Jiang et al., 2019; Tang 
and Li, 2017). However, the variation rate of ETv and ETs should be 
different because ETv primarily uses water from the root-zone layer 
while ETs primarily uses water from the surface soil layer, and the soil 
moisture of the two layers are different in the most cases. To overcome 
this drawback, Tang and Li (2017) proposed an end-member-based soil 
and vegetation energy partitioning (ESVEP) model, which showed good 
potential for separating ETv and ETs by using a two-stage trapezoid 
procedure. First, ETs would drop from potential ETs to zero if water 
content in the surface soil layer decreases from sufficiency to zero, and 
ETv would remain to be potential ETv if the water content in the root 
zone layer remains sufficient. Second, ETv would drop from potential 
ETv to zero if water content in the root zone layer decreases to wilting 
point, and ETs would keep at zero if soil water content in the surface soil 

layer remains at zero. Actual ETs and ETv of a pixel are calculated based 
on the linear ratio between the pixel location and endmembers in the 
LST/FVC feature space. The ESVEP model has shown good potential for 
calculating ET using satellite observations (Jiang et al., 2019). However, 
the relationship between actual ET (ETv and ETs) and potential ET 
(PETv and PETs) may be not linear. Therefore, a non-linear approach 
should be tested in the end-member-based two-source trapezoidal 
models for ET calculation. 

Machine learning (ML) approaches provide new ways to deal with 
non-linearity in the construction of models for classification and 
regression (Virnodkar et al., 2020), and have been proved to be effective 
in agricultural remote sensing applications, such as crop type classifi
cation, plant biophysical and biochemical parameters estimation, crop 
water stress detection, and yield prediction (Filgueiras et al., 2020; Hao 
et al., 2020b; Loozen et al., 2020; Oliveira et al., 2020; Rahman and Di, 
2020; Sun et al., 2020a, 2020b; Xu et al., 2020; Zhang et al., 2019). As 
for ML-based ET estimation, most studies used land surface parameters 
calculated from remote sensing data (such as albedo, land surface 
temperature, vegetation indices, etc.) and meteorological parameters 
(such as wind speed, vapor pressure deficit, etc.) as inputs (Chia et al., 
2020; Virnodkar et al., 2020), but very few studies used parameters 
calculated from water cycle and energy balance mechanism as inputs for 
ML. Therefore, objectives of this study are: (1) using ML methods to fill 
the gap between parameters generated in two-source trapezoidal models 
and actual ET, and (2) estimating the potential of using historical data as 
training samples to calculate corn and soybean ET by combining ESVEP 
and ML approaches at five AmeriFlux cropland tower sites in Nebraska 
and Michigan. The rest of this paper is organized as follows: Section 2 
discusses the materials and methods of this study; Section 3 presents 
research results; Section 4 analyzes and discusses the results, and Section 
5 provides the conclusion of this study. 

Fig. 1. Location of the five test sites used in this study. In the Figure, NE01, NE02, NE03, KL01 and KM01 denote AmeriFlux towers US-Ne1, US-Ne2, US-Ne3, US-KL1 
and US-KM1, respectively. 
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2. Data sets and methodology 

2.1. Study area and flux data 

The study area is located in Nebraska (NE) and Michigan (MI), both 
part of the U.S. Corn Belt, with corn and soybean as the two dominant 
crops. In-situ data of five AmeriFlux tower cropland sites in Nebraska 
and Michigan, namely US-Ne1, US-Ne2 and US-Ne3, US-KL1 and US- 
KM1, are used in this study. The locations of these five sites are shown 
in Fig. 1. These sites have different crop rotation and irrigation condi
tions: US-Ne1, US-KL1 and US-KM1 are irrigated continuous corn sites, 

US-Ne2 is an irrigated corn-soybean rotation site, and US-Ne3 is a 
rainfed corn-soybean rotation site. The mean annual precipitation of the 
Nebraska and Michigan sites are around 790 mm and 960 mm, and the 
mean annual temperatures are around 10 ◦C and 18 ◦C, respectively. 

The hourly in-situ data from 2003 to 2012 for the three Nebraska 
sites were downloaded from the FLUXNET data portal (https://fluxnet. 
org/). The data sets were gap filled and passed the quality control checks 
(Pastorello et al., 2020). The latent heat flux (LE) corrected by the en
ergy balance closure correction factor (LE_CORR) corresponding to the 
satellite overpass time is used as in-situ observed LE in this study, and 
only the data from DOY 101 to DOY 300 which cover the growing season 
of corn and soybean are used. In addition, hourly in-situ data for year 
2018 and 2019 are downloaded from AmeriFlux data portal 
(https://ameriflux.lbl.gov/). In-situ flux data for 2018 and 2019 are the 
original observations, which have not been corrected, but these are the 
only datasets we can acquire in these two years. We evaluated the en
ergy balance closure of the ground-truth data using the regression cor
relation of Rn-G and LE + H (Wilson et al., 2002), and the results were 
shown in Table 1. The in-situ data for the three NE sites are available in 
both 2018 and 2019, and for the two MI sites, the data were only 
available in 2018. As we use MODIS Terra data to calculate LE, we only 
use in-situ LE observations at the satellite overpass time (10:30 am local 
time, which is 16:30 UTC time for the three NE sites and 15:30 UTC time 
for the two MI sites). The three NE sites provide hourly in-situ data so 
that we used the data recorded for 10:00–11:00 am as in-situ data; MI 
sites provide half-hourly data and we used the average value of records 
between 10:00 and 11:00 am. Furthermore, all samples which were 
labeled as cloud-covered in MODIS products were removed from sample 
dataset. 

2.2. Earth observation and gridded meteorological data 

2.2.1. MODIS data 
MODIS products used in this study include land surface reflectance 

(MOD09GA), LST (MOD11A1), and leaf area index (LAI) (MOD15A2). 
The temporal and spatial resolution of the three MODIS products and 
parameters derived from MODIS data are shown in Table 2. Broadband 
emissivity was calculated from spectral emissivity of MODIS bands 31 

Table 1 
Energy balance closure of the ground-truth data.   

Intercept (W/m2) Slope R2 

FluxNET-US-NE01  1.70  0.77  0.93 
FluxNET-US-NE02  2.09  0.80  0.94 
FluxNET-US-NE03  20.99  0.97  0.67 
AmeriFlux-US-NE01  3.09  0.77  0.94 
AmeriFlux-US-NE02  4.27  0.79  0.94 
AmeriFlux-US-NE03  5.72  0.81  0.95 

Note: This table reports the Regression coefficients of LE+H against Rn−G, using 
all the valid hourly data for each site. As the AmeriFlux data of the sites KL01 
and KM01 did not provide the in-situ Rn, we just evaluated the EBC of the 
FluxNET and AmeriFLUX of US-NE01, US-NE02 and US-NE03. 

Table 2 
MODIS products used in this study.   

Spatial 
resolution 
(Meter) 

Temporal 
resolution 
(Day) 

Included 
parameters 

Derived 
parameters 

MOD09GA  500 Daily Surface 
reflectance of 
MODIS bands 1–7 

NDVI, 
albedo 

MOD11A1  500 Daily LST, spectral 
emissivity of 
MODIS bands 31 
and 32 

broadband 
emissivity 

MOD15A2  1000 4-day LAI   

Fig. 2. Flowchart of this study. The upper-left box indicates the data used for training and testing experiments between 2003 and 2012, bottom-left box indicates the 
data used for training and testing experiments in 2018 and 2019. Big arrows in the figure present that the data listed in the left-boxes are processed with the ESVEP- 
RF, for the upper-right box, three scenarios are designed for the data between 2003 and 2012, and the LE calculation results are verified, for the bottom-right box, 
training samples collected between 2003 and 2012 are used to train the ESVEP-RF models and the model are used for LE calculation in 2018 and 2019. In addition, 
the thin arrows are the detailed data flow. For example, MODIS data, meteorological data and ground truth data are used to train ESVEP-RF model of the three 
scenarios, and we then acquired LE calculation results of these three scenarios, the results are then verified using the ground truth data. In is notable that when 
calculating the LE of the target years, only training samples of the previous years are used to train ESVEP-RF models. For instance, ground truth samples between 
2003 and 2009 were used to train the machine learning models when trying to calculate LE in 2010. 
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and 32 using method reported by Liang (2004); land surface albedo was 
calculated from surface reflectance of MODIS bands 1–7 using method 
reported by Liang (2001). NDVI was calculated from spectral reflectance 
of MODIS bands 1 and 2 (Rouse et al., 1974). Finally, all MODIS data 

were resampled to 1 km using the GDAL package for Python. The MODIS 
Terra satellite overpasses land surface at 10:30 am local time daily, so 
that in-situ LE corresponding to the satellite overpass time was used as 
ground truth LE. As some MODIS data were covered by clouds, 
cloud-covered samples were not included in the sample set because 
MODIS LST observation was not available. As we focus on crop ET 
calculation during the growing season, all MODIS data between DOY 
101 and 300 between the years 2003–2012 and 2019 were collected in 
this study. 

2.2.2. Meteorological data 
The hourly gridded meteorological data used in this study is NLDAS- 

2 File A data (Xia et al., 2012). The dataset covers the conterminous US 
(CONUS) since 1979 at spatial resolution of 0.125◦. The hourly down
wards longwave radiation, downwards shortwave radiation, surface 
pressure, 2-m above ground specific humidity, 2-m above ground tem
perature and wind speed between the years 2003 and 2012 were used in 
this study. Another data source of meteorological data is the National 
Weather Model Service (NWM, https://nomads.ncep.noaa.gov/pub/da 
ta/nccf/com/nwm/prod/), which is an hourly analysis and forecast 
system running over the conterminous US (NOAA-OWP, 2016) at 500 m 
spatial resolution. In this study, both NLADS and NWM data were 
resampled to 1 km using the Bi-linear algorithms with the MODIS data 
as reference image, the image resampling operation was implemented 
using the GDAL package for Python. As the meteorological data used in 
this study are collected from different data sources (NLDAS data be
tween 2003 and 2012, and NWM data for 2018 and 2019), and the 
original spatial resolution of the two data sources are different, the in
consistencies between the two meteorological datasets may slightly 
affect LE calculation result in 2018 and 2019. 

2.3. Flowchart of this study 

Fig. 2 shows the data processing flowchart of this study. We selected 
Random Forest (RF) as the ML model in this study and then combined 
ESVEP and RF (ESVEP-RF) to calculate ET. Importance of individual 
features generated from remote sensing data, meteorological data and 
ESVEP model were firstly estimated using the Gini index calculated from 
RF. Next, two experiments were designed to evaluate the performance of 
ESVEP-RF for ET calculation. The first experiment was designed to 
evaluate the performance of ESVEP-RF for ET calculation with data 

Table 3 
Description of the three experiments designed to estimate The combined ESVEP 
and RF method for ET calculation.   

Description Expected result Examples 

Scenario 
A 

Training samples are all 
historical samples 
before the testing year, 
all three NE sites are 
included in both 
training and validation 
samples 

Nine-year 
predicted LE 
(between 2004 
and 2012) 

When predicting ET of 
site NE01 in 2012, the 
training samples are all 
samples between 2003 
and 2011 for all three 
NE sites; and when 
predicting ET of site 
NE01 in 2010, the 
training samples are all 
samples between 2003 
and 2009 for all three 
NE sites. 

Scenario 
B 

Training samples are all 
historical samples 
before the testing year, 
training and testing 
samples are from 
different sites 

Nine-year 
predicted LE 
(between 2004 
and 2012) 

When predicting ET of 
site NE01 in 2012, the 
training samples are all 
samples between 2003 
and 2011 of NE02 and 
NE03 sites; and when 
predicting ET of site 
NE01 in 2010, the 
training samples are all 
samples between 2003 
and 2009 of NE02 and 
NE03 sites. 

Scenario 
C 

Training samples are all 
historical samples 
before the testing year, 
and irrigation site and 
rainfed site are 
separated 

Nine-year 
predicted LE 
(between 2004 
and 2012) 

When predicting ET of 
site NE01 in 2012, the 
training samples are all 
samples between 2003 
and 2011 of NE01 and 
NE02 sites (irrigation 
sites), and when 
predicting ET of site 
NE03 in 2010, the 
training samples are all 
samples between 2002 
and 2011 of NE03 site 
(rainfed sites).  

Fig. 3. Data Processing flowchart of ESVEP-RF.  
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between 2003 and 2012, and there were three scenarios using different 
training samples (Table 3). Scenario A was designed to estimate the 
general performance of ESVEP-RF method; Scenario B was designed to 
estimate the extendibility of ESVEP-RF and Scenario C was designed to 
generate different RF models for irrigation and rainfed sites, and then 
effect of irrigation on ESVEP-RF performance was evaluated. The second 
experiment was using all samples acquired between in 2003 and 2012 as 
training samples to train RF models, and then using these RF models to 
calculate ET in 2018 and 2019, this experiment is designed to test the 
applicability of ESVEP-RF for an up-to-date ET calculation system. 
Finally, all ET were verified using the corresponding in-situ data, and 
total actual LE was verified because in-situ data do not provide ETv and 
ETs. 

2.4. ESVEP-RF 

Fig. 3 showed the data processing flowchart of ESVEP-RF. Remote 
sensing data and meteorological data were used as input in ESVEP 
model, and then a series of parameters were generated from ESVEP 
model. Parameters from remote sensing data, meteorological data and 
ESVEP model were combined with corresponding in-situ observed data 
as training/testing samples. The training samples were then used to train 
RF models. Next, remote sensing data, meteorological data and ESVEP 
model outputs of the testing samples were collected and LE of these 
testing samples were predicted using the RF models. Finally, in-situ LE of 
the testing samples were used to verify the RF predicted LE. 

2.5. ESVEP model 

The end-member-based soil and vegetation energy partitioning 
(ESVEP) model is based on the LST/FVC feature trapezoid space models 
for the actual ET calculation (Fig. 4). In the trapezoid, there are four end- 
members: end-members A, B, C, and D denotes dry soil, dry vegetation, 
wet vegetation and wet soil, and the LST of these four end-members are 
denoted as Tsd, Tvd, Tvw and Tsw. The LST/FVC feature trapezoid could be 
divided as two triangles. The lower triangle (triangle ACD) simulates the 
situation that root-zone water is sufficient and soil evaporation varies, 
and the upper triangle (triangle ABD) simulates the situation that 
vegetation is water-stressed. Generally, ET is composed by evaporation 
comes from soil evaporation (ETs) and vegetation transpiration (ETv), if 

Fig. 4. ESVEP model and the dataflow for parameter generation. (a) Surface temperature versus fractional vegetation cover trapezoid space. The edge CD denotes 
wet edge; as triangle ACD denotes the condition that soil zone water is sufficient, edge AC denotes the dry edge of the triangle ACD, and we labeled the edge as Dry 
edge I in the figure; similarly, triangle ABC denotes the condition that the plant is water-stressed, edge AB denotes the dry edge of the triangle ABC and we labeled the 
edge as Dry edge II. (b) Workflow of parameter calculation using ESVEP model. 

Table 4 
Input and output parameters for ESVEP model.  

Input Parameters Out parameters 

Meteorological Input ∆: slope of saturated water vapor pressure  
DSward: Downward 

Shortwave Radiation 
Air emissivity 

DLward: Downward Longwave 
Radiation 

γ: psychrometric constant 

Windspeed Lv: longwave radiation from vegetation 
VPD albedo 
Tah: 2 m-Air Temperature Fv: fraction vegetation cover 
Rh: Relative Humidity τsw: canopy shortwave radiation transmittance  
AGDD: Accumulated Growing 

Degree Day 
albedo_s: soil albedo 

Veghgt: Vegetation Height Soil emissivity 
Remote Sensing Input Ts: soil temperature 
Leaf Area Index Ls: longwave radiation from soil 
NDVI Rns: net radiation of soil 
SRb1: Surface Reflectance of 

Band 1 (Red) 
Rnv: net radiation of vegetation 

SRb2: Surface Reflectance of 
Band 2 (NIR) 

Gs: soil heat flux 

SRb3: Surface Reflectance of 
Band 2 (Blue) 

R-vw: canopy resistance at well-watered condition 

SRb4: Surface Reflectance of 
Band 2 (Green) 

R-vd: canopy resistance at zero-soil-water 
condition 

SRb5: Surface Reflectance of 
Band 2 (SWIR1) 

R-as: aerodynamic resistance of soil 

SRb6: Surface Reflectance of 
Band 2 (SWIR2) 

R-av: aerodynamic resistance of vegetation 

SRb7: Surface Reflectance of 
Band 2 (SWIR3) 

T*: critical surface temperature to decide whether 
the pixel in dry triangle or wet triangle 

FVC: fractional vegetation 
cover 

Tsd: temperature of dry soil end-member 

Emissivity Tsw: temperature of wet soil end-member 
LST: Land Surface 

Temperature 
Tvd: temperature of dry vegetation end-member 

Emissivity Tvw: temperature of wet vegetation end-member  
PLEv: potential vegetation LE  
PLEs: potential soil LE  
LEv: actual vegetation LE  
LEs: actual vegetation LE  
LE_all: total LE  
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the LST/FVC of a pixel locates in triangle ACD, soil water content at the 
root zone almost remains sufficient, so that the actual canopy transpi
ration is nearly equal to the potential canopy transpiration, and the 
reduction of total ET is due mainly to the decrease of soil evaporation. If 
the LST/FVC of a pixel is located in triangle ABD, soil evaporation re
mains zero and vegetation transpiration drops from potential vegetation 
transpiration to zero with less root-zone water available (Jiang et al., 
2019; Leng et al., 2017; Tang and Li, 2017). 

For a given pixel (for example point X or X’ in Fig. 4), a critical 
surface temperature (T*) is used to decide which triangle the pixels are 
located in (Eq. (1)), 

T∗ =
[
T4

sd∙(1 − Fv) + T4
vw∙Fv

]1/4 (1)  

where Fv is the FVC of given pixel, which is calculated as: 

Fv = (
NDVI − NDVImin

NDVImax − NDVImin
)

2 (2)  

where NDVI is calculated from surface reflectance of Red and Near 
Infrared bands of MODIS data (Band 01 and Band 02). NDVImax and 
NDVImin are assigned to be 0.2 and 0.86 in this work according to Pri
hodko and Goward (1997). For a given pixel, if the pixel is located in 
triangle ACD (for example point X in Fig. 4), ETs and ETv and be 
calculated as: 
⎧
⎨

⎩

ETs =
OX
OP

× Es,p

ETv = Ev,p

⎫
⎬

⎭
(3)  

where Es,p and Ev,p are potential soil evaporation and vegetation tran
spiration, respectively, and OX and OP are lengths of the lines between 
points O and X and points O and P, respectively. If the pixel is located in 
triangle ABD (for example point X’ in Fig. 4), ETs and ETv and be 
calculated as: 
⎧
⎨

⎩

ETs = 0

ETv =
O′X′

O′P′ × Ev,p

⎫
⎬

⎭
(4)  

where O’X’ and O’P’ are lengths of the lines between points O’ and X’ 
and points O’ and P’, respectively. Then, the OX

OP and O′X′

O′P′ can be calcu
lated as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

OX
OP

=
(1 − Fv)×Tsd + Fv × Tvw − Ts

(1 − f) × (Tsd − Tvw)

O′X′

O′P′ =
(1 − Fv)×Tsd − Fv × Tvw − Ts

f × (Tvd − Tvw)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5)  

and LST of the four end-members can be calculated as Moran et al. 
(1994): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tsd =
ras∙

(
Rn,s − Gs

)

ρ∙Cp
+ Ta

Tvd =
rav∙Rn,v

ρ∙Cp
∙

γ(1 + rvd/rav)

∆ + γ(1 + rvd/rav)
−

VPD
∆ + γ(1 + rvd/rav)

+ Ta

Tvw =
rav∙Rn,v

ρ∙Cp
∙

γ∙(1 + rvw/rav)

∆ + γ(1 + rvw/rav)
−

VPD
∆ + γ(1 + rvw/rav)

+ Ta

Tsw =
ras∙

(
Rn,s − Gs

)

ρ∙Cp
∙

γ
∆ + γ

−
VPD
∆ + γ

+ Ta

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)  

where Rn,s and Rn,v are the net radiation of soil and vegetation, Gs is soil 
heat flux, Ta is air temperature, Cp is volumetric heat capacity of air, γ is 
psychrometric constant, ∆ is the slope of saturated vapor pressure versus 
air temperature, VPD is vapor pressure deficit of air, rvw and rvd are 
canopy resistance at the well-watered and zero-soil-water, which can be 
set as 100/LAI and 2000 s/m; ras and rav are aerodynamic resistance of 

soil and vegetation, which can be calculated as: 

rav(ras) =

[

ln
(

zu−d
zom

)

− φm

]

∙
[

ln
(

zt−d
zoh

)

− φh

]

k2∙u
(7)  

where k is Von Karman’s constant; u is wind speed; zu and zt are the 
heights of wind speed and air temperature measurements; and φm and φh 
are the stability correction functions for momentum and heat transfer, 
which are calculated using the method described in Dhungel et al. 
(2016). d is the zero-plane displacement height; zom is surface mo
mentum roughness height; zoh is roughness height for surface heat 
transfer. When calculating rav, d = 0.67⋅h (h is vegetation height), zom 
= 0.1⋅h, and zoh = 0.1⋅zom; For ras, d ≈ 0 m, zom = 0.005m and zoh =

0.0005m. Vegetation height can be generated from in-season crop type 
map and accumulated growing degree day (AGDD). 

For net radiation, the net radiation of soil and vegetation can be 
calculated as: 
⎧
⎪⎪⎨

⎪⎪⎩

Rn,s = τsw∙(1 − αs)∙Rg + exp( − kLLAI)∙Lsky
+[1 − exp( − kLLAI)]Lv − Ls

Rn,v = (1 − τsw)(1 − αv)Rg + [1 − exp( − kLLAI) ]

×(Lsky + Ls − 2Lv)]

⎫
⎪⎪⎬

⎪⎪⎭

(8)  

where; αs and αv are soil and vegetation albedo; Rg is downward 
shortwave solar radiation acquired from meteorological data; kL is the 
extinction coefficient approximately 0.95; and Lsky, Lv and Ls are 
longwave emissions from sky, vegetation, and soil. Lsky could be ac
quired from gridded meteorological data, and Lv and Ls are calculated 
from vegetation LST and emissivity. τsw is canopy shortwave radiation 
transmittance, which is calculated by τsw=exp(-kS LAI), kS is light 
extinction coefficient varied by vegetation type and growing stage. αv 

and αs are vegetation and soil albedo, which are calculated from albedo 
and FVC (Tang and Li, 2017). 

Fig. 4(b) showed the flowchart of generating parameters of ESVEP 
model. Both remote sensing data and meteorological data were firstly 
combined to generate LST/FVC trapezoid space for each pixel, LST were 
then used to estimate which triangle the pixel is located in, and LE of 
vegetation transpiration and soil evaporation are calculated using cor
responding methodology and end-members. Table 4 showed the input 
and output parameters for ESVEP model. 

2.6. Random forest 

The Random Forest (RF) algorithm proposed by Breiman (2001) is an 
ensemble machine learning method for regression and classification. 
Each Random Forest model contains multiple classification/regression 
trees. The training procedure for the RF algorithm is to construct all 
classification/regression trees; in this procedure, each tree is con
structed from root to leaf nodes using two-third of the training samples 
randomly selected from training sample data set and only a part of 
features. Every time a split of a node is made on a feature, the Gini 
impurity criterion for descendent nodes is less than that of the parent 
node. The important metric for fit is that the sum of Gini impurity de
creases for each individual variable over all trees in the classi
fication/regression forest. "Leaf node" denotes that the node cannot be 
further split and all samples in the node belongs to the same class. After 
the construction of each tree, the remaining one-third training samples 
are used for testing, where the test error is referred to as “out-of-bag 
error”. Feature importance could be estimated during the training pro
cedure of RF, with the sum of the reduction in Gini impurity criterion. 
When using random forest model to predict, the prediction data set 
should contain the same features to training samples. For a classification 
prediction, the output will be mode of the classes of individual trees, 
whereas for a regression prediction, the output will be the average of all 
the individual trees. The RF algorithm have several advantages: (1) it 
can model complex interactions among input features; (2) it runs 
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efficiently on large datasets and not sensitive to noise or over-fitting; and 
(3) it automatically uses the optimal features to construct RF model. 
Therefore, RF classification algorithm has been widely used in many 
remote sensing domains such as land cover classification and 

quantitative land surface parameters regression (Belgiu and Drăguţ, 
2016). In this study, the feature importance for the ET calculation are 
estimated using RF. All features in Table 4 are used as input features, the 
calculations were repeated 10 times, and the average percentage Gini 

Fig. 5. The percentage feature importance of the top ten 
most important features. The bars denote percentage 
feature importance and the error line denotes standard 
deviation of the ten RF model runs. In this figure, the 
features LAI, PLEv, R_vw, LST, NDVI, AGDD, Ta, fv, veghgt 
and DSWrad denote leaf area index, potential vegetation 
latent heat flux, canopy resistance at well-watered condi
tion, land surface temperature, normalized difference 
vegetation index, accumulated growing degree day, 2-m air 
temperature, vegetation fraction, vegetation height and 
downward shortwave radiation respectively.   

Fig. 6. Comparison of ESVEP-RF with Scenario A and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.  
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score for each feature was used to generate feature importance. Next, the 
RF algorithm was also used for ET calculation. For each experiment, the 
RF model was trained with training samples. All features were included 
in the training procedure as RF could automatically selected the optimal 
features. Finally, RF models were then used to predict ET for the testing 
samples. The RF algorithm was implemented using the RandomForest 
package for R (Liaw and Wiener, 2014), the number of trees in the 
ensemble was set to 1000 to allow convergence of the error statistic, and 
the number of features to split the nodes in trees was set to the square 
root of the total number of input features (Loosvelt et al., 2012). 

2.7. Accuracies evaluation metrics 

We used Bias error, root mean square error (RMSE) and coefficient of 
determination (R2) between the ESVEP-RF and in-situ LE. Although the 
ESVEP model could separate radiation and heat flux of soil part from the 

vegetation part, in-situ data did not provide these data separately, so 
that we just verified total actual LE of ESVEP-RF. The equations used for 
calculating Bias, RMSE and R2 are as follows: 

Bias =
1
N

∑N

1
(zf − z0) (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

1

(
zf − z0

)2

N

√
√
√
√
√

(10)  

R2 = 1 −

∑
(yi − ŷi )

2

∑
(yi − yi)

2 (11)  

where N is the size of sample size, 
(
zf −z0

)
is the difference of each pair 

of in-situ and predicted LE, 
∑

(yi−ŷl)
2 is the sum of residuals squared, 

Table 5 
Yearly error parameter values of the ESVEP-RF LE for Scenario A.  

Year  US-NE1  US-NE2  US-NE3 

　 　Bias 
(W/m2) 

RMSE 
(W/m2) 

R2 Training 
sample number 

　Bias 
(W/m2) 

RMSE 
(W/m2) 

R2 Training 
sample number 

　Bias 
(W/m2) 

RMSE 
(W/m2) 

R2 Training 
sample number 

2004  64.80  108.09  0.64 234  25.66  110.48  0.69 234  40.11  97.45  0.53 234 
2005  -23.32  94.08  0.63 598  -24.40  91.99  0.73 598  -31.15  104.87  0.67 598 
2006  -23.27  90.16  0.72 832  -42.73  86.62  0.73 832  -8.30  101.80  0.57 832 
2007  -20.12  92.26  0.71 1244  -6.99  89.04  0.81 1244  6.98  93.04  0.72 1244 
2008  -40.71  88.48  0.75 1716  -35.67  82.62  0.83 1716  6.70  85.39  0.79 1716 
2009  -8.96  82.63  0.85 2166  0.50  74.63  0.81 2166  23.96  82.73  0.80 2166 
2010  -6.61  78.02  0.83 2580  15.36  73.34  0.82 2580  -31.12  81.33  0.81 2580 
2011  -3.05  73.50  0.84 3062  20.31  65.41  0.85 3062  35.28  69.78  0.86 3062 
2012  -15.96  62.88  0.87 3555  21.34  55.47  0.89 3555  18.77  76.98  0.80 3555 
All years 

together  
-9.57  87.72  0.73   -2.43  81.97  0.75   6.77  86.14  0.69   

Fig. 7. Scatter plots of ESVEP-RF LE with Scenario A and in-situ LE. (a) US-NE1, (b) US-NE2, (c) US-NE3. The red lines in the figures are 1:1 lines.  
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and 
∑

(yi−yl)
2 is the sum of the distance the data is away from the mean 

all squared. The ESVEP can be used to divide soil evaporation from 
vegetation transpiration, but the in-situ data does not provide the pa
rameters for vegetation and soil separately, so that we only verified the 
total LE of the two parts together. 

3. Results and discussion 

3.1. Feature importance 

We used all samples between 2003 and 2012 to calculate feature 
importance. Fig. 5 shows the top ten most important features among all 
features used in this study, and percentage importance sum of the top 
ten features was 85.57%. Among all remote sensing, meteorological and 
ESVEP model features, LAI was the most important feature. The average 

Fig. 8. Comparison of ESVEP LE and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.  

Table 6 
Yearly error parameter values of the ESVEP LE.  

Year  US-NE1  US-NE2  US-NE3 

　 Bias (W/m2) RMSE (W/m2) R2 Bias (W/m2) RMSE (W/m2) R2 Bias (W/m2) RMSE (W/m2) R2 

2004  11.71  91.32  0.62  15.55  96.65  0.59  30.13  98.40  0.59 
2005  -25.02  109.26  0.59  -38.90  91.84  0.62  -31.90  91.98  0.59 
2006  -0.62  100.63  0.61  5.59  105.68  0.76  11.74  106.91  0.47 
2007  -15.51  91.08  0.71  -12.01  93.98  0.66  4.68  92.87  0.61 
2008  -26.43  100.08  0.69  2.55  106.26  0.70  18.86  103.22  0.64 
2009  -18.02  87.75  0.71  -10.62  93.61  0.65  3.95  87.95  0.62 
2010  -4.50  103.22  0.69  2.37  97.57  0.71  -19.95  94.33  0.71 
2011  5.47  93.38  0.69  16.68  84.94  0.69  41.74  92.71  0.68 
2012  -2.26  87.41  0.75  0.71  86.96  0.65  13.30  89.45  0.70 
All years together  -8.72  96.52  0.68  -2.38  95.62  0.66  8.10  97.15  0.61  
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percentage importance of LAI for ET calculation was 18.49%, which 
indicated that vegetation growth was closely related to crop ET. This is 
because higher leaf area of the plant creates more opportunity for water 
vapor to leave from plant as transpiration (Monteith, 1981). In addition, 
higher vegetation cover means the plants absorb more solar photons and 
then convert more energy by transpiration (Pereira et al., 2020). 
Although NDVI and FVC were also proxies for the vegetation greenness 
condition, average percentage importance of NDVI and FVC were just 
8.22% and 4.76%, respectively. This maybe because NDVI is more 
sensitive at low greenness time phases, and when vegetation greenness 
is high, NDVI is saturated and cannot describe vegetation growth pre
cisely (Hao et al., 2020a; Wardlow et al., 2007). Furthermore, the FVC 
calculation is highly dependent on NDVI in this study, the NDVI satu
ration at high biomass level also led to the uncertainty of FVC. For other 
features, PLEv and R-vw had high contribution for ET calculation as the 
average percentage importance of the two features were 15.71% and 
13.57%, respectively. PLEv and R-vw were used to describe energy 
balance situation when the crop was not water-stressed, and determined 
the potential LE of the given sample. This indicated that the samples 
used in this study was not under water-stress condition, which was 
consistent with the fact that US-NE1 and US-NE2 sites were 
water-sufficient as they were irrigated sites. Furthermore, LST and Ta 
which describe plant water status were also amongst the most important 
features, with an average percentage importance percentage of 10.11% 
and 4.81%, respectively. The other two high contribution features are 
AGDD and Veghgt, which are used to describe crop growth stage. 

3.2. Latent heat flux validation using in-situ measurements 

We first generated LE using ESVEP-RF with training samples of the 
previous years from all three NE sites, and then compared ESVEP-RF LE 
with in-situ LE measurement. Fig. 6 showed that ESVEP-RF LE had high 

uncertainty before 2008, with yearly RMSE were higher than 80 W/m2 

and R2 were lower than 0.8 in the most cases (Table 5). The reason for 
high uncertainty was that the number of training samples was low. It is 
notable that LE prediction accuracies increased with training sample 
number (Table 5). For example, when we only acquired 234 training 
samples from all three NE sites in 2003, the yearly RMSE of US-NE1, US- 
NE2 and US-NE3 were 108.09 W/m2, 110.48 W/m2 and 97.45 W/m2 in 
2004, and the yearly R2 of the three sites were 0.64, 0.69 and 0.53, 
respectively. However, when we calculated LE in 2011, we used all 
samples between 2003 and 2010, with a total of 3062 samples acquired. 
The yearly RMSE of ESVEP-RF LE for US-NE1, US-NE2 and US-NE3 were 
73.50 W/m2, 65.41 W/m2 and 69.78 W/m2, and yearly R2 of the three 
sites were 0.84, 0.85 and 0.86 respectively. Table 5 also showed that 
when the number of training samples was more than 3000, RMSE and R2 

remained stable, which indicated that 3000 training samples could be 
sufficient for training RF models. ESVEP result for site US-NE1 in 2012 
was not accurate since the LE in 2012 was higher than all the training 
samples we have collected between 2003 and 2011, indicating that 
when LE status of the given pixel is not included in the training samples 
sets, ESVEP-RF may not calculate LE accurately. Finally, when consid
ering all samples between 2003 and 2012, R2 for the three sites were 
0.73, 0.75 and 0.69 (Fig. 7 and Table 5). 

To further compare LE derived from ESVEP model and ESVEP-RF, we 
also used the ESVEP model to calculate LE between 2003 and 2012 
(Fig. 8), and found that LE calculated from the ESVEP model was not as 
accurate as the calculation from ESVEP-RF. In addition, when training 
samples are sufficient, ESVEP-RF outperformed ESVEP model LE. For 
example, in 2012, the RMSE and R2 of ESVEP LE were 87.41 W/m2 and 
0.75 for US-NE1 (Table 6); and RMSE and R2 of ESVEP-RF LE for US-NE1 
were 62.88 W/m2 and 0.87 and (Table 5). We then collected all samples 
between 2004 and 2012, LE derived from ESVEP-RF also had lower 
RMSE and higher R2 than ESVEP model LE for all three sites (Table 6), 

Fig. 9. Scatter plots of ESVEP LE and in-situ LE. (a) US-NE1, (b) US-NE2, (c) US-NE3. The red lines in the figures are 1:1 lines.  
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and the bias estimation results of ESVEP LE and ESVEP-RF LE are 
similar. The fitted lines of the calculated LE and in-situ LE showed that 
ESVEP-RF LE were closer to 1:1 line as the fitted lines of ESVEP-RF LE 
and in-situ LE had higher slope and lower intercept (Figs. 7 and 9). 

Although we have used independent training and test samples to 
estimate the potential of ESVEP-RF of ET calculation, the generaliz
ability of RF models trained from training samples in other regions is not 

clear. Therefore, we used training and test samples from different sites to 
test the generalizability of RF models (Scenario B). Similar to the ESVEP- 
RF calculation results with training samples from all three sites, LE 
calculation accuracies were low with high bias and RMSE when number 
of training samples was not sufficient (Fig. 10). Although LE calculated 
in Scenario B were not so accurate as the LE generated in Scenario A, the 
accuracies were still acceptable when the training sample number was 

Fig. 10. Comparison of ESVEP-RF with Scenario B and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.  

Table 7 
Yearly error parameter values of the ESVEP-RF LE for Scenario B.  

Year  US-NE1  US-NE2  US-NE3 

　 Bias (W/ 
m2) 

RMSE 
(W/m2) 

R2 Training 
sample 
number 

Bias (W/ 
m2) 

RMSE 
(W/m2) 

R2 Training 
sample 
number 

Bias (W/ 
m2) 

RMSE 
(W/m2) 

R2 Training 
sample 
number 

2004  67.86  111.84  0.62 175  -4.39  94.07  0.66 155  46.44  105.67  0.69 154 
2005  -9.58  91.23  0.61 429  -58.04  114.96  0.69 407  -17.63  90.98  0.55 395 
2006  -1.26  82.03  0.72 584  -56.76  124.74  0.68 522  -0.09  80.64  0.71 558 
2007  -14.61  86.22  0.82 848  -23.01  95.84  0.71 795  7.28  83.16  0.80 845 
2008  -34.72  103.79  0.72 1158  -42.52  82.31  0.79 1106  17.44  101.82  0.76 1168 
2009  -8.33  84.35  0.80 1432  -15.73  80.94  0.86 1415  30.72  75.50  0.70 1485 
2010  -4.72  74.97  0.73 1706  7.18  70.09  0.80 1681  -22.04  84.25  0.79 1773 
2011  -2.04  74.48  0.81 2032  13.58  75.57  0.79 2017  27.64  74.14  0.81 2075 
2012  -19.16  70.47  0.81 2351  18.30  58.43  0.88 2347  24.69  80.87  0.75 2412 
All years 

together  
-4.23  90.16  0.7172   -17.10  90.10  0.7123   12.56  89.26  0.6768   
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sufficient. For example, when training samples were collected from US- 
NE2 and US-NE3 between 2003 and 2011, RMSE and R2 of US-NE1 in 
2012 were 70.41 W/m2 and 0.81 (Table 7), which showed that the LE 
could be accurately calculated even although samples of test site were 
not used during the training procedure. We further compared the LE of 
Scenario B calculated among the three sites, and found that accuracies of 
US-NE1 and US-NE2 were better than US-NE3 with higher yearly R2 and 
lower RMSE (Table 7). For example, in year 2012, R2 of ESVEP-RF and 
in-situ LE for US-NE1 and US-NE2 were higher than 0.8, but R2 for US- 
NE3 was only around 0.74. When considering samples of all nine years 
(between 2004 and 2012), fitted lines of the LE calculated from the 
ESVEP-RF with Scenario B were not close to 1:1 lines as the fitted lines of 
LE calculated from ESVEP-RF with Scenario A, as shown in Fig. 11 (c), 
slope and bias of the fitted line were 0.64 and 101.42 W/m2, respec
tively. Furthermore, LE calculated for US-NE3 had the lowest accuracy 
among the three sites. The relatively low accuracies of US-NE3 LE with 
Scenario B was probably because the sites US-NE1 and US-NE2 are 
irrigation sites, but US-NE3 was a rainfed site. When calculating LE for 
US-NE1, the training samples of NE2 which was also an irrigation site 
were also used, but when calculating LE of US-NE3 (a rainfed site), all 
training samples were collected from irrigation sites, and an RF model 
trained on irrigation sites might not be used to calculate the LE of a 
rainfed site accurately. 

To further test whether the relatively low LE calculation accuracies 
of US-NE3 was caused by the mismatch between training and test 
samples, we divided the training set into rainfed and irrigation (Scenario 
C), and then generated RF model for irrigation and rainfed samples 
separately. Compared with Scenario A and Scenario B, the LE predicted 
in Scenario C were more consistent with in-situ LE (Fig. 12). Table 8 also 
showed that for all three NE sites, RMSE of Scenario C were lower than 
the other two scenarios in 2010, 2011 and 2012 when the number of 
training samples were sufficient; as a result, R2 of Scenario C were also 
higher. For example, RMSE and R2 of US-NE3 for Scenario C were 

74.83 W/m2 and 0.82 in 2010, which were significantly better than 
those for Scenario A (in Table 5, 81.33 W/m2 and 0.81) and B (in 
Table 7, 84.25 W/m2 and 0.78). When considering all the samples 
together, scatter plots (Fig. 13) also showed that the fitted lines of 
Scenario C were closer to 1:1 lines, the bias of fitted lines for US-NE3 was 
around 80 W/m2 (Fig. 13c), which was more than 20 W/m2 lower than 
that of Scenario B (Fig. 11c). This result indicated that when training 
samples and test samples were for the same irrigation, the performance 
of ESVEP-RF model improved, which was consistent with the relatively 
low accuracies of Scenario B. 

3.3. Applicability of ESVEP-RF in 2018 and 2019 

To further test the applicability of the ESVEP-RF, we used all samples 
collected between 2003 and 2012 to train the RF models and calculated 
LE in 2018 and 2019, training samples collected from US-NE1 and US- 
NE2 were used to calculate LE for US-NE1, US-NE2, US-KL1 and US- 
KM1 and training samples collected from US-NE3 were used to calcu
late LE for US-NE3. Fig. 14 showed that LE calculated from ESVEP-RF 
had good consistency with in-situ data and described the yearly LE 
trend in both NE and MI sites. The scatter plots (Fig. 15) also showed 
that for the three NE sites, ESVEP-RF LE and in-situ LE had good linear 
correlation as the R2 of the three sites were between 0.8 and 0.85, and 
RMSE were between 55 W/m2 and 65 W/m2 in the most cases. 
Furthermore, the LE calculation accuracies of the two MI sites were 
slightly worse than the three NE sites, the R2 of US-KL1 and US-KM1 
were 0.76 and 0.74, and the RMSE were 69.34 W/m2 and 71.69 W/ 
m2, respectively. The uncertainty of the LE calculated from ESVEP-RF 
was mainly caused by the LE overestimation at the low LE time phases 
(mainly around DOY 101–130 and 260–300), when the in-situ LE was 
lower than 100 W/m2, and the yearly bias of the ESVEP-RF LE ranged 
from 20 W/m2 to 40 W/m2 (Fig. 15). It is notable that no training 
samples were collected for the sites US-KL1 and US-KM1, this indicated 

Fig. 11. Scatter plots of ESVEP-RF LE with Scenario B and in-situ LE. (a) US-NE1, (b) US-NE2, (c) US-NE3. The red lines in the figures are 1:1 lines.  
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that the ESVEP-RF model trained with from Nebraska sites had the po
tential to be used in other regions with similar cropland, particularly in 
the Corn Belt. 

3.4. Advantages and limitations 

In this study, we proposed a practical workflow using the output of 
the ESVEP model as input features in RF model for ET calculation. The 
advantage of the ESVEP model is that the model divides soil evaporation 
from vegetation transpiration, and then provides more parameters 

Fig. 12. Comparison of ESVEP-RF with Scenario C and in-situ LE, (a) US-NE1, (b) US-NE2, (c) US-NE3.  

Table 8 
Yearly error parameter values of the ESVEP-RF LE for Scenario C.  

Year  US-NE1  US-NE2  US-NE3 

　 Bias (W/ 
m2) 

RMSE 
(W/m2) 

R2 Training 
sample 
number 

Bias (W/ 
m2) 

RMSE 
(W/m2) 

R2 Training 
sample 
number 

Bias (W/ 
m2) 

RMSE 
(W/m2) 

R2 Training 
sample 
number 

2004  76.65  124.81  0.65 154  35.44  88.36 0.71 154  17.73  95.42  0.63 80 
2005  -25.97  94.86  0.56 395  -17.78  88.93 0.73 395  -45.52  92.47  0.67 203 
2006  -26.79  91.96  0.74 558  -31.56  102.70 0.74\ 558  -45.21  87.60  0.68 274 
2007  -16.28  77.32  0.80 845  -4.08  84.65 0.82 845  13.58  80.28  0.76 399 
2008  -41.83  101.97  0.78 1168  -31.14  79.30 0.84 1168  0.11  79.08  0.82 548 
2009  -5.59  80.50  0.85 1485  11.99  77.20 0.83 1485  3.02  81.57  0.76 681 
2010  -1.84  72.30  0.74 1773  19.70  76.89 0.81 1773  -36.01  74.83  0.82 807 
2011  -3.45  68.92  0.83 2075  23.98  62.98 0.77 2075  34.34  69.85  0.87 987 
2012  -19.13  62.18  0.88 2412  21.38  56.75 0.90 2412  -4.33  70.53  0.82 1143 
All years 

together  
-8.24  87.34  0.7355   3.28  80.33 0.7633   -6.16  81.82  0.7234   
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which could describe the energy balance more precisely. The limitation 
of the original ESVEP model is that only a linear method is used to 
calculate the correlation between the LE of the given pixel and the two 
triangles in the LST/FVC space (Fig. 4), so that we use RF regression to 
improve the drawback of the original ESVEP model because RF regres
sion has shown potential for describing nonlinear correlation. From the 
perspective of RF, most existing studies only use features which are 
available from the remote sensing land surface products, such as NDVI, 
LAI and PAR.etc (Carter and Liang, 2019; Chia et al., 2020; Filgueiras 
et al., 2020), but no parameters generated from the LST-based physical 
models are considered, this study showed that some ESVEP model 
derived parameters (such as PLEv and R-vw) are selected as 
high-importance features, which indicates the contribution of ESVEP 
model for the ESVEP-RF model. 

However, there are still some drawbacks of the ESVEP-RF workflow. 
The most important issue for the ESVEP-RF method is collecting training 
sample as the final procedure of the ET calculation is based on machine 
learning algorithms. Our results have shown that training sample data 
size affect the ESVEP-RF calculation accuracies, which is consistent with 
Carter and Liang (2019) that small training samples size cannot calcu
late LE accurately. Another issue related to the training samples 
collection is the representative of the training samples set. Dou and Yang 
(2018) found that the same training data set have different performance 
for multiple ecosystems type, which is similar to the Scenario B results in 
this study as the RF models trained by samples of irrigation field samples 
cannot be used to calculate the LE of rainfed fields accurately. Therefore, 
the study region should be carefully cataloged based on the characters of 
the land cover, and training samples need to be selected with large 
quantity and cover each catalog to ensure both the sample set size and 
representative. 

Another limitation of ESVEP-RF is that the ESVEP model needs crop 
type and planting date as inputs to calculate several parameters, such as 
AGDD, height and aerodynamic resistance. However, gridded up-to-date 

crop type and planting information are not available for practical ET 
monitoring. For crop type data, existing crop type maps, such as CDL 
data, are not available before the crop harvest (Boryan et al., 2011), and 
the accurate early-season crop type map are not available before July 
(Hao et al., 2020a; Hao et al., 2015). Although the predicted crop type 
maps can be generated before the start of the growing season (Zhang 
et al., 2019), this data contain large uncertainties that may seriously 
affect the LE calculation accuracy. For planting date information, 
although suggested planting dates are provided (Shroyer et al., 1996), 
the gridded actual planting date information of the target year is still not 
available before growing season begins. Therefore, a practical solution is 
to collect the crop type and planting data information from the farmers’ 
report, but this would limit the up-to-date application of ESVEP-RF to 
certain fields with all necessary input information. 

4. Conclusion 

This present paper proposed a new workflow for ET calculation by 
combining the advantages of ESVEP model and RF. Remote sensing and 
meteorological data were used as inputs for the ESVEP-RF method, 
which was tested using all available in-situ data from five flux tower 
sites of 12 years (2003–2012, 2018 and 2019). The main conclusions are 
as follows:  

(1) ESVEP-RF showed good potential for calculating ET when the 
number of training samples is sufficient and representative. In 
2010 and 2011, R2 of LE calculated by ESVEP-RF were around 0.8 
and RMSE were around 70 W/m2, which outperformed the 
original ESVEP model. The uncertainty in ESVEP-RF is mainly 
caused by the overestimation of LE at low LE level time phases.  

(2) Among all remote sensing, meteorological and ESVEP model 
output features, LAI was selected as the most important feature as 
the percentage importance of LAI calculated from RF was 

Fig. 13. Scatter plots of ESVEP-RF LE with Scenario C and in-situ LE. (a) US-NE1, (b) US-NE2, (c) US-NE3. The red lines in the figures are 1:1 lines.  
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Fig. 14. Comparison of ESVEP-RF LE with in-situ LE in 2019, (a) US-NE1 in 2019, (b) US-NE2 in 2019, (c) US-NE3 in 2019, (d) US-NE1 in 2018, (e) US-NE2 in 2018, 
(f) US-NE3 in 2018, (g) US-KL1 in 2018, (h) US_KM1 in 2018. In this figure, DOY denotes day of year. 
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Fig. 15. Scatter plots of ESVEP-RF LE in-situ LE in 2019. (a) US-NE1 in 2019, (b) US-NE2 in 2019, (c) US-NE3 in 2019, (d) US-NE1 in 2018, (e) US-NE2 in 2018, (f) 
US-NE3 in 2018, (g) US-KL1 in 2018, (h) US_KM1 in 2018. The red lines in the figures are 1:1 lines. 
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18.49%. In addition, the percentage importance of PLEv and R- 
vw were 15.71% and 13.57%, respectively. These parameters 
were used to describe vegetation transpiration in case that the 
plant is non-water-stressed.  

(3) ESVEP-RF had good extendibility as the method achieved R2 

higher than 0.7 when training and validation samples were from 
independent sites. In addition, the ESVEP-RF model generated 
from samples between 2003 and 2012 achieved good accuracy 
for LE calculation in 2018 and 2019, RMSE were between 55 W/ 
m2 and 70 W/m2 and R2 were around 0.8 for the five test sites. 

As ESVEP-RF driven by 2003–2012 training samples showed good 
potential for calculating ET in 2018 and 2019, we have used the method 
to calculate grided instantaneous LE of satellite overpass time under 
cloud-free condition with predicted crop type map and suggested 
planting date information as input, this LE data are then used to generate 
cloud-free condition daily ET, which is a part of the all-weather up-to- 
date ET data product in NE, the product is accessible at Watersmart Data 
Information Portal as “machine learning ET” (https://geobrain.csiss. 
gmu.edu/watersmartport/web/). As the limitations of training sam
ples and input information affect the accuracy of ESVEP-RF seriously, 
more attention should be paid to ensure the sample size and represen
tative as well as the early-season crop type and planting data informa
tion when applying the ESVEP-RF to generate up-to-date LE data. 
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