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Dry granular materials, such as sand, gravel, pills, or agricultural grains, can become rigid when
compressed or sheared. Under isotropic compression, the material reaches a certain jamming density and
then resists further compression. Shear jamming occurs when resistance to shear emerges in a system at a
density lower than the jamming density. Although shear jamming is prevalent in frictional granular
materials, their stability properties are not well described by standard elasticity theory and thus call for
experimental characterization. We report on experimental observations of changes in the mechanical
properties of a shear-jammed granular material subjected to small-amplitude, quasistatic cyclic shear. We
study a layer of plastic disks confined to a shear cell, using photoelasticimetry to measure all interparticle
vector forces. For sufficiently small cyclic shear amplitudes and large enough initial shear, the material
evolves to an unexpected “ultrastable” state in which all the particle positions and interparticle contact
forces remain unchanged after each complete shear cycle for thousands of cycles. The stress response of

these states to small imposed shear is nearly elastic, in contrast to the original shear-jammed state.

DOI: 10.1103/PhysRevX.12.031021

I. INTRODUCTION

Granular materials are collections of athermal particles
that interact with each other only by contact forces [1,2].
These materials are ubiquitous in nature and are important
components of many industrial products and processes.
Under externally imposed stress, a set of grains that flows
like a liquid can jam into a solid packing by forming a rigid,
disordered contact network [3—8]. Jamming is a nonequili-
brium process, and the properties of the jammed packing
depend on the driving protocol [7,9-11].

Shear-induced jamming has attracted much attention
recently due to its appearance in a large variety of
particulate systems [7,12—18] and its direct relevance in
controlling the discontinuous shear thickening of dense
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suspension [19-24]. Shear-jammed granular materials are
known to be fragile [25] in contrast to jammed structures
induced by compression; their packing structures are highly
unstable to changes in the boundary stresses [7,12,26].
While the origin of rigidity of shear-jammed systems is
discussed in recent works [7,11,27-29], the stability of
shear-jammed packings against finite (not infinitesimal)
external perturbations remains poorly understood.

In this work, we examine the stability of shear-jammed
packings by monitoring the system evolution under addi-
tional strain-controlled shear cycles. We observe a remark-
able effect: Under certain conditions, sustained cyclic
shear leads to a state in which a force network emerges
that persists without change over thousands of additional
cycles. The effect is dramatically illustrated in strobe
movies of the evolution of the particle positions and the
force network. For some preparations, the movie shows a
dense force network in an originally shear-jammed packing
fade to a completely stress-free state, while, for others,
the network becomes less dense but locks into a steady
state, one that turns out to be stiffer than the original state.
(See Supplemental videos [30].) In the steady state, under a
complete shear cycle, all the particles return to the same
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position, and all the contact forces return to the same state.
We call the jammed states in this type of limit cycle
“ultrastable” to distinguish them from other jammed states
that relax plastically under applied shear cycles.

We report here on the elastic and yielding properties of
these ultrastable states. To our knowledge, there has been
no previous experimental observation of such states. We
note that related phenomena are observed in recent numeri-
cal studies of gravitationally stabilized packings [31] and
packings above the isotropic jamming density [32] and also
in cyclic shear experiments on micron-sized spheres that
interact through electrostatic dipole-dipole interactions
[33—35]. These studies, however, do not speak to the origin
or stability of the shear-jammed states of interest here.
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FIG. 1. (a) A top view schematic of the multislot shear cell.
(b) The driving strain protocol. An initial large forward shear is
followed by multiple periods of small-amplitude cyclic shear and
then by large-amplitude reverse shear. The shear rate is always in
the quasistatic regime. (c) Shear stress o,, defined in Eq. (2) as
functions of shear strain y for two example experiments. Experi-
ment 1 contains an initial forward shear y; = 0.105 followed
directly by a reverse shear. Experiment 2 contains an initial shear
(sketched by the red dashed curve) up to y; = 0.147 followed by
a series of cyclic shear with 6y = 0.95% and then a reverse shear.
For experiment 2, only the responses in the first and the 1000th
cycle are plotted. The gray boxes display all the cyclic strain
amplitudes used in the cyclic shear tests.

Our experimental granular system is a monolayer of
photoelastic disks set in a special shearing device that is
capable of imposing homogeneous internal shear strains,
shown schematically in Fig. 1(a). We measure all the inter-
particle contact forces using photoelasticimetry [36-38].
Beginning with an unjammed packing, we apply an initial
volume conserving shear y; to create a shear-jammed state.
We then examine its response to small-amplitude cyclic
shear oy [see Fig. 1(b)]. The yielding behavior of the shear-
jammed and ultrastable states are examined by reversing
the original shear, as indicated in Fig. 1(b).

We prepare hundreds of shear-jammed packings with
different y; beginning from different unjammed configu-
rations and use 6y < y;. One may expect a threshold 5y
below which a shear-jammed system behaves elastically.
However, such a threshold is usually negligibly small for
real-world granular materials [39]. Under finite strain, a
packing typically becomes unstable in the sense that
particles rearrange from cycle to cycle, even when boun-
dary stress versus strain curves appear similar. (See, for
example, Ref. [40].)

Our study shows that, although shear-jammed states are
not ultrastable, in general, ultrastable states may appear
after a series of quasistatic shear cycles is applied to a
shear-jammed packing. For a given cyclic strain amplitude
Oy, ultrastable states appear only for y; larger than a
threshold value. For y; below the threshold, the original
shear-jammed state becomes unjammed. The ultrastable
shear-jammed packings, on the other hand, behave like
anisotropic elastic solids for small shear strains and
undergo a sharp yielding transition when strained beyond
the cyclic strain amplitude.

This paper is organized as follows. Section II describes
our experimental apparatus and protocol. Section III
presents our results in three categories: (A) the conditions
required for the formation of an ultrastable state; (B) the
different elastic characteristics of the ultrastable states and
the original states; and (C) the yielding transition under
large-strain reverse shear. Section IV contains a summary
of our major findings and remarks on their significance.

II. MATERIALS AND EXPERIMENTAL
PROTOCOL

Our model granular system consists of a bidisperse
collection of 1040 photoelastic disks with diameters d;, =
159 mm and d; = 12.7 mm and thickness 4 = 6.8 mm.
The number ratio of large to small disks is 1/3, and we
keep the system’s packing fraction fixed at ¢ = 0.816
throughout all experiments. This value is close to, but less
than, the isotropic jamming packing fraction ¢; =~ 0.835
[41]. The static friction coefficients are y = 0.87 = 0.03
between the particles, pp,e = 0.25 +0.05 between a
particle and the base, and g, = 0.70 & 0.02 between a
particle and boundary wall. The particles are cut using
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a water jet from a polyurethane sheet (Precision Urethane &
Machine, Inc.). The bulk modulus of the material is
5.88 MPa. Under static diametric loading, the normal
contact force law is roughly Hertzian, but some degree
of hysteresis is observed under cyclic loading. Details on
contact force law calibration are given in Appendix A.

We use the multislat simple shear apparatus developed
by Ren, Dijksman, and Behringer [41] to impose a uniform
shear strain field. Our setup avoids the formation of a shear
band and the associated density heterogeneity before the
jamming onset [41]. A schematic top view of the apparatus
is shown in Fig. 1(a). The shear cell contains four
aluminum walls (white rectangles) as confining boundaries
and a bottom formed by 50 parallel acrylic slats (light
purple rectangles, shown as only 11). Each slat, as well as
wall ® and wall ®, are constrained to move only along the y
direction, while the two other walls are constrained to rotate
with pivots at (0,7,/2) and (0,-[,/2). To impose a
uniform shear, a slat (or boundary wall ® and @) at position
x moves with a velocity

v(x) = —jau,. (1)

where 7 = 2.1 x 1073 s7! is the shear strain rate. u, and u,
are unit vectors in the horizontal and vertical directions,
respectively, on the figure. The strain rate y is held constant
for all experiments. Walls ® and @ rotate in such a way that
no slipping occurs at the junctions between them and the
two other walls, consistent with the motions of the slats.
The maximal static friction between a particle and the base
slat is 0.0036 N, which is sufficient to entrain the rattler
disks to the affine strain field but is negligible compared to
the typical contact forces in jammed states. The base
friction helps to form uniform shear-jammed states, which
are presumably more stable than the states with shear bands
that are formed using shear that is applied only from the
boundary. More technical details on this device can be
found in Refs. [40,42]. In cyclic shearing, slight bending of
the boundary walls and tiny slipping at the junctions when
the direction of shear is changed lead to slightly asym-
metric strain cycles, as discussed in detail in Appendix B.

The strain rate employed here is considered quasistatic
for the following reasons. The two-dimensional inertial
number Z = y+/m,/p is less than 107 for pressure p
larger than 1 N/m, which is the case for the states of
interest, where m;, = 1.47 x 1073 kg is the mass of a large
disk. Also, for nearly stress-free states, a disk with a
nonaffine velocity v,, = yd, becomes static within a
characteristic time = v,,/fipaseg ~ 107> s that is much
smaller than the macroscopic timescale 1/7 ~ 0.5 x 107 s.
Consistent with these separations of timescales, we find
that, when the motor is stopped, we observe negligible
relaxation of the particle positions. A detailed discussion on
this type of relaxation is provided in Appendix E.

A single run of the experiment begins with the prepa-
ration of a homogeneous, stress-free, random packing in a
parallelogram frame chosen such that a forward shear strain
y; yields a rectangular configuration. We then perform three
stages of quasistatic shearing, as depicted in Fig. 1(b):
(1) the initial forward shear; (ii) N cycles of additional shear
between +dy; and (iii) a large reverse shear of —y; starting
from the end of the last shear cycle. We note that initial
shear with larger y; leads to original shear-jammed states
with a more stable force network [7,12,27-29,43]. See
Supplemental video for an example evolution of the force
network during the initial shear [30]. The number of cycles
N is typically 1500 but is larger for systems that take longer
to relax, up to a maximum of 4800, and some data are
collected for the N = 0 case (i.e., no cyclic shear is applied
between the initial forward shear and reverse shear). An
typical stress-strain curve for N = 0 is plotted using pink
and blue triangles in Fig. 1(c). The purple open circles,
purple filled circles, and light blue open squares in
Fig. 1(c) are from a different experiment with y; =0.147,
N = 1000, and oy = 0.95%, displaying the responses in
the first shear cycle, in the last shear cycle, and during the
reverse shear process, respectively. We study 11 values of
yr ranging from 0% to 21% and eight values of dy ranging
from 0% to 1.54% and indicated in Fig. 1(c). These oy
values are small compared to the strain interval needed to
fully release the stress o,, induced by the initial shear y;.
During the initial shear, both the pressure and shear stress
of the system grow, showing no evidence of saturation even
for the largest y; studied here.

A high-resolution camera (Canon 5D Mark II) accom-
panied by an automated imaging system with a polariscope
is used to take images of the system. Details of the imaging
system and postprocessing procedures can be found in
Ref. [42]. Capturing the images for one configuration takes
about 30 s, during which the strain rate is set to zero. We
measure particle positions and contact forces between
particles. The particle centers are detected with an uncer-
tainty around 0.01d; using a Hough-transform technique
[41,44]. The vector contact forces between particles are
measured using a well-known nonlinear fitting algorithm
[36-38]. Technical details of our implementation of the
algorithm are provided in Appendix C. We also use an
empirical intensity gradient method [38,45,46] to estimate
the overall pressure only for data shown in Fig. 2. The
calibration of this method is described in Appendix D.
From the contact forces, we construct the stress tensor &
defined as in Refs. [7,47,48]:

=
=

P 14

Q;r; ®f;, (2)
1 =1
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where i and j are indices of particles, N, is the number of
particles excluding the ones that belong to the boundary
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layer, S is the sum of the Voronoi cell areas of these internal
particles, r;; is the displacement of the contact between
particle i and particle j from the center of particle i, f;; is
the contact force exerted on particle i by particle j, ©;; is a
contact indicator with value 1 if particles i and j are in
contact and O otherwise, and ® denotes the vector outer
product. We exclude contacts with fitted force magnitude
less than 0.005 N. From &, we calculate the pressure
p = —Tr(6) and the off-diagonal element o,,, which we
term the shear stress in this work. We note that in most
cases for our system the principal axes of 6 lie in the (1,1)
(i.e.,x)and (1, -1) (i.e., y") directions, so that |oxy\ is equal
to the second invariant.

III. RESULTS

A. Formation of ultrastable states

We first study the parameter regime in which an ultra-
stable state is formed. The shear-jammed states created
by initial shear y; alone are unstable to cyclic shear for all
the oy values that we study. After a sufficiently large
cycle number, however, the system evolves to one of two
distinct types of steady state, depending on the values of y;
and Oy. Generally speaking, ultrastable states appear only
for large y; and small 6y. If the system does not settle in an
ultrastable state, the accumulation of plastic deformations
from cycle to cycle leads to a complete collapse of the
packing. In this case, the material returns to a stress-free
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FIG. 2. (a) The pressure measured after n full shear cycles, p,, as functions of shear cycle number » for several example experiments

with the same cyclic shear strain amplitude 6y = 0.95%. The color of each curve in (a) and (b) labels the initial shear strain y; used to
create the original shear-jammed states, according to the color bar in (a). (b) The mean square displacements of particle centers only in
the steady-state regimes for several example experiments with the same 8y = 0.95%. The unit is d2, where d, is the diameter of our small
disk. The dashed lines are linear fits on individual curves with the form defined in Eq. (3). (c) The diffusion coefficient D obtained by the
fits using Eq. (3) for the steady states formed by different y; and dy plotted versus the pressure of these steady states. The color of the
markers labels the dy value used to form these steady states. (d) The frequency of the observation of ultrastable states under different
control parameters y; and y for about a hundred independent experiments, each containing thousands of shear cycles. The size of each
circle labels the number of experiments performed using the same (6y, y;), with the smallest and the largest corresponding to 1 and 9
realizations, respectively. The color of each circle labels the number fraction of experiments that an ultrastable state is observed,
following the inserted color bar. The dashed curve sketches the boundary that separates the ultrastable states and the unjammed states as
the outcome of cyclic shearing. (e)—(h) are snapshots of experiments showing the photoelastic patterns of an example experiment with
71 = 0.147 and oy = 0.95% after 0, 50, 2000, and 3000 shear cycles, respectively. Note that if the photoelastic patterns are the same for
two packings, then the positions of particles and the contact forces between particles are all the same. The white circles at the lower left
corner of each panel have the same diameter as our bigger disk (15.9 mm) and serve as scale bars for images in (e)—(h).
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(unjammed) state. Figure 2(a) shows the pressure measured
after n shear cycles for several example experiments with
the same 6y = 0.95% but different y;. It is clear that at the
long time limit the pressure can either reach a constant
value, which indicates the formation of an ultrastable state,
or drop to zero, which indicates a steady state consisting of
a series of unjammed states. We note that the system may
reach a metastable plateau before reaching the steady state,
and the duration of a plateau could be very long near the
transition. A detailed study of these plateaus is beyond the
scope of the present paper.

Figures 2(e)-2(h) show snapshots of the photoelastic
patterns of the full system from an experiment with
yr = 0.147 and oy = 0.95% after 0, 50, 2000, and 3000
shear cycles. The photoelastic patterns are indistinguish-
able in Figs. 2(g) and 2(h). The photoelastic patterns are
indistinguishable in Figs. 2(g) and 2(h). We show only
n = 2000 and n = 3000 states here due to limited space,
but the strobed patterns are also indistinguishable for all
cycles between n = 1000 and n = 3000. Videos showing
examples of the evolution of strobed states can be found in
Supplemental Material [30].

Figure 2(b) shows the mean-squared displacement
(MSD) of particle centers as functions of cycle number
interval 6n in the steady-state regimes. We denote the MSD

as (Ar?), where (-) means averaging over particles and ~
means averaging over starting points of the o, interval.
Figure 2(b) shows experiments with the same éy = 0.95%
but different y;, identified by the same color bar used in
Fig. 2(a). The MSDs for ultrastable states are quite small
over a timescale of a thousand shear cycles, while the
unjammed states show significant diffusive displacements.
To quantify these observations, we fit each MSD curve to a
linear form:

W((Sl’l) =4 X D X 43yon + Cpoises 3)

where the diffusion coefficient D is the fit parameter and
Choise = 1.2 x 1074d? is the measured noise level of our
particle center detection algorithm. Figure 2(c) shows the fit
results for D as a function of the pressure of the corre-
sponding steady state for all experiments, including differ-
ent y; as well as dy. There are clearly two sets of steady
states with D separated by more than an order of magni-
tude. We note that all steady states with finite pressure have
D < 1073d2, corresponding to ultrastable states. Moreover,
the states with large D all have nearly zero pressure,
indicating unjammed states.

Figure 2(d) shows the fraction of experiments performed
with a given (Jy, y;) that produce an ultrastable state,
showing that such states occur only at small éy and high y;.
The dashed curve is a guide to the eye separating the
unjammed and ultrastable regimes. For 6y and y; larger than
the values shown in Fig. 2(d), an out-of-plane instability
prevents us from taking measurements on the quasi-2D

granular material. The maximal dy for which we observe an
ultrastable state is 0.95%. Figure 2(c) suggests that there is
a first-order dynamical transition when this boundary is
crossed. We also observe that the number of cycles needed
to reach a steady state peaks for parameter values near
the phase boundary, reminiscent of a relevant dynamical
transition observed in numerical glass [49]. The location of
the phase boundary in Fig. 2(d) likely depends on several
system parameters. Preliminary experiments suggest that,
for fixed dy, the initial strain required to produce ultrastable
states becomes smaller for higher volume fractions. The
effects of varying particle friction and bulk modulus have
yet to be explored.

B. Elasticity of the ultrastable states

The ultrastable states behave much more like an ordinary
elastic solid than the original shear-jammed states. We
consider the mechanical response of the original states
and the ultrastable states to perturbations in the form of
additional forward or reverse shear strain. We find that it is
most useful to analyze the stress responses using a
coordinate system x'y’ that is rotated by z/4 clockwise
from the original coordinate system xy, as depicted in
Fig. 1(a). The coordinates x’ and y’ then align with the
principal compression and dilation directions of the initial
simple shear deformation [see also the inset sketches in
Fig. 3(a)]. We note that x’ and y’ are also the principal
directions of the stress tensors of the system in most cases.
Thus, the stress tensor is diagonal in the rotated frame,
its eigenvalues are oy and oy, and we have o, =
1(6yy —0yy). Finally, the global shear stiffness can be
decomposed as

o aaxy B 1 a(fx/x/
oy 2

— doyy _ Ey - Ey (4)
dy oy 2 ’

where Ey = doyy /0y and Ey = do,/0y are the contri-
butions to the global shear stiffness from the responses
along the two principal directions x" and y’, respectively.
We denote the slopes E, and E,, measured under forward
or reverse shear using a superscript + or —, respectively.

Figures 3(a) and 3(c) show the evolution of the stresses
for an experiment with only initial shear and reverse shear,
which is used to measure the responses of the original state
created at y; = 0.147. The slopes of the curves are
measured by performing fits to the form

ori(y) = Evs(y —v1) + Evm(y —71)* + const,  (5)

where E; and E; , are fit parameters and i can be either x
or y. The nonlinear terms are introduced for a better fit, but
the values of E;, are not of interest for the present
purposes. We denote the slopes E, and E; measured
under forward or reverse shear using a superscript + or —,
respectively.
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(b)

Original SJ 35| Ultrastable

FIG. 3. Measuring the slopes EY . B, EY, B and E‘ near the
states of interest from the stress-strain curves. The stresses 5)‘ ¥
and 6, are stress tensor elements in the coordinate system x'y’
rotated 7 /4 from the original coordinate system xy as shown in
Fig. 1(a). The x" and y’ directions are the principal compression
and dilation directions of the forward shear where y increases,
and they become the principal dilation and compression direc-
tions during reverse shearing where y decreases, as highlighted by
the two sketches in (a). (a) and (c) plot the data measured during
the initial shear and reverse shear near an example original
shear-jammed (SJ) state formed by an initial shear with
y; = 0.147. The gray arrows mark the shearing directions.
(b) and (d) plot an example ultrastable state formed by applying
cyclic shear with strain amplitude 6y = 0.95% on an original SJ
state formed by an initial shear y; = 0.21. In (b) and (d), filled
triangles are data measured in the last shear cycle, and the open
triangles are data measured in the reverse shearing process that
follows [see Fig. 1(b)]. The light blue data are those not used in
calculating the slopes of interest. The arrows in (b) and (d) mark
the shearing directions. In (a)—(d), the original SJ state and the
ultrastable state near which the slopes are measured are
highlighted by the dashed black circles.

For the ultrastable states, we measure E and Ey by
considering both the data in the last shear cycle and the
reverse shear that follows [see Fig. 1(b) near n = N]. In
Figs. 3(b) and 3(d), the last shear cycle data are plotted as
filled triangles, and the reverse shear data are plotted as the
open triangles. The ultrastable state being considered is
highlighted by the black dashed circle. Again, data are
fitted to Eq. (5) to obtain the slopes. The light blue data are
not used in the fitting.

An ideal elastic medium would display reversible stress-
strain curves for which the slopes measured under forward
or reverse shear are the same. Figures 4(a) and 4(b) plot
E, —E- and E;L, -E, for the original states and the

X X
ultrastable states as functions of the initial shear strain
y;. Both differences are smaller for the ultrastable states.
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FIG. 4. (a),(b) The differences between the slopes E, and Ey

measured under the forward shear (denoted by the superscript +)
and under the reverse shear (denoted by the superscript —) for the
original SJ states and the ultrastable states. (c),(d) The slopes E;“,
and £, for the states of interest. The legend in (a) applies also for
(b)—(d). In (a)—(d), the horizontal axis is the initial shear strain y;
used to prepare the original SJ and the ultrastable states. The
cyclic strain amplitudes used to prepare the ultrastable states are
given by the legend in (a).

Thus, we claim that the ultrastable states behave more like
an elastic material.

We note a nontrivial change in the material response
along the y’ direction. Namely, E+, is positive and EJ; is

nearly zero for original states, but both are negatlve for
the ultrastable states, as shown in Figs. 4(c) and 4(d).
Since y' is the dilation principal direction of the forward
shearing, negative E; and E7; are expected for an ordinary

elastic solid.

C. Yielding of the ultrastable states

The ultrastable states display a clear yielding transition
under reverse shearing. Unlike most cases of yielding in
jammed systems, where plastic flow is induced by increas-
ing shear stress, the yielding transition considered here is
accompanied by a reduction of the shear stress. The
yielding transition is evident in the evolution of the shear
stress oy, during reverse shearing. Figures 5(a)-5(c) plot
the shear stress o, and eigenvalues of the stress tensor 6,/
and o, under reverse shear applied to an ultrastable state
prepared with y; = 0.189 and 6y = 0.95%. The data from
the limit cycle are also plotted. It is clear that the slope of
0.y, G, changes sharply when the strain reaches a threshold
marked by the vertical dashed line, which is close to

— Oy. At this point, G drops to a much smaller value,
indicating that the system suddenly becomes softer under
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FIG. 5. (a)-(c) The blue circles are data under the reverse
shear starting from an ultrastable state formed by applying cyclic
shear with strain amplitude oy =0.95% on an original SJ
state formed by oy = 0.189. The light blue circles show data
in the limit cycle. The arrows mark the direction of the reverse
shearing. Data in (a)-(c) are the shear stress o,, and the two
eigenvalues of the stress tensor 6, and 6,,. Note that there is
04y = (6yy — 6y,)/2. The vertical dashed line marks the yield-
ing transition. (d)—(f) are snapshots of the system shown in (a)—(c)
at y —y; = 0 (the ultrastable state), —0.0093 (at the yielding
point), and —0.0381, respectively. The three states in (d)—(f) are
marked by the circles filled by gray, red, and yellow in (a)—(c),
respectively.

reverse shear. We refer to this softening as a yielding
transition. As G = % (E,» — E/) [Eq. (4)], additional insight
could be obtained by examining the slopes of the two
eigenvalues. Remarkably, the slope of o, suddenly
changes from negative to positive at the yielding point,
while the change in slope for o/, is less dramatic. We also
show some snapshots of the system across this yielding
transition in Figs. 5(d)-5(f). Notably, both before and after
yielding, there is always a strongly percolating force
network. A quantitative characterization of the change in
the force network during yielding is beyond the scope of
the present paper.

IV. CONCLUDING REMARKS

We have examined the stability of shear-jammed granu-
lar materials by applying small-amplitude shear cycles and
monitoring all particle positions and contact forces. The
observed emergent ultrastable states exhibit qualitatively
different responses to additional applied shear strain from
those of the original shear-jammed states.

Our first major finding is the experimental observation of
ultrastable states for shear-jammed packings prepared by a
large initial shear strain followed by small-amplitude cyclic

shear. In an ultrastable state, all the particle positions,
orientations, and contact forces become periodic, in strong
contrast to the commonly encountered steady state, in
which particle positions always rearrange [50,51] even
though stress-strain curves may appear to be periodic
[41,52]. The existence of a limit cycle with periodic particle
displacements and contact forces in frictional granular
materials was first observed in numerical simulations
reported by Royer and Chaikin [31]. Interestingly, the
limit cycle in our system can be induced by changing the
initial shear strain y;, a control parameter for the shear
jamming process that is not considered in Ref. [31].

Our second major finding is that cyclic shearing alters
the mechanical properties of the shear-jammed packing.
In response to small perturbations, ultrastable states look
more like ordinary elastic solids than do the original
shear-jammed states. Although elastic responses always
dominate, there remains a measurable small hysteresis in
the stress-strain curves that may come from reversible
plastic events similar to those identified in Ref. [33]. This
strongly elastic response extends to a strain near the cyclic
shearing amplitude, where we have identified a yielding
transition. The effect of friction on the mechanical proper-
ties of limit cycles has been investigated in recent
numerical simulations [32]. However, these studies are
focused on packings above the isotropic jamming density,
which are not as fragile as the shear-jammed states that
we study.

In a preliminary attempt to discover the origin of
ultrastability in our system, we have measured the distri-
bution over all contact forces of the ratio of tangential to
normal force. We find that in the ultrastable states the
distribution has shifted away from the Coulomb limiting
value, as shown in Fig. 6. That is, the ultrastable states have

4 T T T T T
g —=&— Shear-jammed packing formed
2 by 41 = 14.7%, no cyclic shear
S 3r :
= —Z4x— Same packing, after 4000
= shear cycles with §y = 0.95%
E
g2y 1
£
%
2 1F q
=}
-
a9}
0 n
0 0.2 0.4 0.6 0.8 1
If t/ f nI
FIG. 6. The distribution of the ratio between the tangential and

normal components of the contact vector force in the original
shear-jammed packing (blue circles) and the corresponding
ultrastable packing formed after cyclic shear (red triangles).
We exclude contacts with forces too weak to measure (around
0.05 N). Curves from experiments with different y; and 5y are
qualitatively similar.
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a smaller number of contacts with frictional components
near the Coulomb limit.

The ultrastable states observed in these frictional materi-
als share some features with other jammed systems. First,
limit cycles with periodic particle positions have been
found in experiments where particles are stabilized by
electrostatic interaction and do not form contacts [33] and
also in experiments on foams [53]. Our ultrastable states
may also share some features with the absorbing states
in frictionless jammed solids [49,54]. In our system,
however, contact friction is essential for mechanical sta-
bility, as the measured mean contact number always
remains below the frictionless isostatic number, whereas
friction does not contribute to the stability of the states
studied in Refs. [33,53]. Second, the yield strain for
ultrastable states is close to the cyclic strain amplitude
used to prepare the state and thus constitutes a memory
effect reminiscent of recent findings in other disordered
systems [34,55-57]. Notably, a recent experiment on a
bubble raft suggested that the force network formed during
cyclic shearing plays a decisive role in memory formation
[58], though force chains could not be directly identified in
that study [58]. Our experimental system allows for a
quantitative study of the force chains that stabilize the
ultrastable packings. Third, recent numerical and theoreti-
cal studies on model glasses show that cyclic shearing can
mimic the role of annealing [59,60] and that different
degrees of annealing may lead to distinct yielding behav-
iors [60,61]. Our observation that cyclic shearing changes
the yielding properties of the original states thus provides
an analogy to mechanical annealing in a frictional system.
Finally, while most previous experimental studies on limit
cycles and memory effects examine 2D systems like ours,
the phenomenon of shear jamming has been observed in 3D
systems in both experiments [62,63] and simulations
[11,15,64,65]. We hypothesize that ultrastable states can
also form in such 3D systems.

It is also worth emphasizing that not all shear-jammed
states evolve to an ultrastable state under cyclic shear. A large
portion of seemingly strong shear-jammed packings com-
pletely collapse under quasistatic periodic shear with strain
amplitude below 1%. The weakening or breaking of a
jammed, disordered structure under small mechanical per-
turbation is reminiscent of recent findings such as the
unjamming of frictionless disks and spheres [9,65,66], the
liquefaction of soils [67,68], the softening of colloidal gels
[69,70], and the reduction of viscosity of dense suspensions
[71-73]. We note that mechanical perturbations introduced
by oscillatory shear [71,72] or acoustic waves [73] have been
shown to enhance flow of a dense suspension by breaking the
frictional contacts between particles. Our observation of
ultrastable states suggests that applying perturbations to a
strongly shear-jammed suspension may instead further
stabilize the system, which suggests a new strategy for
controlling the rheology of sheared granular suspensions.

In our system, the change in nature of the steady states
induced by cyclic shear from unjammed (for large-amplitude
cycles or small initial shear strain) to ultrastable (for smaller
amplitudes or larger initial shear strain) shows features of a
first-order dynamical phase transition, including a sudden
jump in the diffusion coefficient, reminiscent of a similar
transition in model glasses [49]. The appearance of the long-
lived metastable plateaus near the transition is an intriguing
phenomenon calling for further study.

Our results have broad implications for the handling of
granular materials. For example, understanding the stability
of shear-jammed states may help design protocols and
devices to enhance flow or avoid blockages in sheared
dense suspensions. In addition, our experimental observa-
tions provide significant clues for the development of
theories of protocol-dependent mechanical properties of
granular systems.
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APPENDIX A: CONTACT FORCE LAW
ON A SINGLE DISK

We measure the relationship between the contact force
and the deformation of a single disk through diametric
compression and decompression tests using a TA Instru-
ments RSA III Micro-Strain Analyzer. The instrument
measures the distance traveled by the upper arm, d, and
the normal contact force magnitude f,. A picture of the
loading part of this instrument is shown in Fig. 7(a), taken
from Ref. [74] with permission. The relation between d,
rescaled by the diameter of the corresponding disk, and f,
are plotted in Fig. 7(a) for a small disk and a big disk. Weak
hysteresis can be observed, reflecting the viscoelastic
nature of the polyurethane disks. Figure 7 plots the com-
pression and decompression curves for a big and a small
disk. The probe moves at a constant speed of 0.03 mm/s
and results in a strain rate about 0.25% per second for a
single disk, similar to the shear rate used in the experiment.

Most contact forces in this work are below 3 N. We show
that the Hertzian contact force law is a reasonable approxi-
mation in this regime. Figures 7(b) and 7(c) plot the same
data in 7(a) but only near the touching point between the
probe arm and the corresponding disk. For both disks,
we fit data between 0.01 and 3 N obtained during the
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FIG. 7. (a) Main: the normal contact force f, experienced by a
small disk (red) and a big disk (blue) measured by the Micro-
Strain Analyzer as functions of distance d moved by its upper arm
scaled by the diameter of the disk. Note that d,, = d; for the small
disk and d, = d, for the big disk. The disks experience a
compression-decompression load cycle, which leads to weak
but noticeable hysteresis. The inset shows a picture of the loading
part of the TA Instruments RSA III Micro-Strain Analyzer, taken
from Ref. [74] with permission. (b) and (c) show enlarged
versions of the same data as in (a), where the evolution direction
of the system is indicated by the arrows. The black dashed curves
in (b) and (c) are fit results using Eq. (A1) for the big and small
disk, respectively.

compression process to the following form:

e (d—d.\3?

P P

(A1)

and get ¢ =546+0.06 N-m and d./d;, =0.0347 +
0.0002 for the small disk and € = 7.25 £ 0.08 N - m and
d./d, = 0.0337 £ 0.0002 for the big disk. Note that d, is
the diameter of the disk being considered. d, is the point
when the upper arm of the Micro-Strain Analyzer just
touches the particle. The fit results are plotted as the black
dashed curves in Figs. 7(b) and 7(c). We note that Eq. (A1)
slightly overestimates small forces, for which a quadratic
form appears to fit better. The closed-form solution for this
problem is given in Ref. [75].

APPENDIX B: MEASUREMENT OF THE
GLOBAL SHEAR STRAIN USING PARTICLE
DISPLACEMENTS AND MINOR DEVIATIONS
FROM UNIFORM SHEAR NEAR THE ONSET

OF SHEAR REVERSAL

We find that the boundary walls and the base slats
impose a uniform simple shear strain field very well in most
of the cases during both forward shear and reverse shear
processes, as plotted in Fig. 8(a) for an example cyclic
shear experiment. The shear cell is driven by a stepper
motor, which precisely controls the position and motion of
the left end of wall @ [40,42]. A shear step here means that

—
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FIG. 8. (a) Particle center displacements along the y direction as
functions of their x positions between consecutive quasistatic shear
steps that show nice linear relation as expected for a uniform shear.
The coordinate system is plotted in Fig. 1(a). Each curve
corresponds to averaged data for one shear step [from ith to
i + 1th step, with i labeled based on color bar to the right in (d)]
with a bin width 2.5d,, the diameter of a small disk. (b) Particle
displacements from the abnormal steps following the change of
driving directions. The curves are measured from shear steps with
the same type of marker shape and color shown in (c) and (d). In (a)
and (b), error bars show the standard deviation obtained from the
averaging process, which is about 0.01d;, near the limit of our
center detection precision. In (b), the two dashed black lines show
linear fit results from data in (a) that are under forward and reverse
shear. (c) The accumulative shear strain starting from a state right
before one complete shear cycle. In both (c) and (d), the triangles
show abnormal steps, and the circles show normal steps. (d) The
strain caused by one shear step as defined in Eq. (B1).

the left end of wall @ moves a fixed distance of 1 mm.
When the direction of driving is switched, the release and
rebuild of a small elastic deformation of the two long and
thin confining aluminum walls ® and ® and small relative
motion at the joints between different walls and slats may
both cause minor deviations from the expected uniform
shear strain field. Such a deviation is evidenced from the
particle displacements measured at the two shear steps right
after the change of shear direction as plotted in Fig. 8(b).
The actual shear strain experienced by the system in these
two steps is smaller than what is expected from assuming a
uniform strain field given the well-controlled motion of the
left end of wall @.

In this work, we measure the actual global shear strain of
the material using the particle displacements. Given the
bin-averaged displacement field during the ith shear step
such as the curves in Figs. 8(a) and 8(b), the global shear
strain caused by this shear step, ¢;, is defined as
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k=2

where 5d; is twice the bin size and Ny,;, = 19 is the number
of bins used to calculate the averaged data. Then, the
accumulative shear strain y is calculated by doing a
summation of &; over consecutive shear steps. Figures 8(c)
and 8(d) plot the accumulative shear strain and shear strain
caused by each shear step for an example system experi-
encing three shear cycles. In Fig. 8(c), purple dashed lines
show times at which the direction of shear is changed. We
see that the shear cycle is slightly nonsymmetric: The
minimal accumulative strain is —0.0085, yet the maximal
one is 0.0105. We take the average between the absolute
value of the two, 0.0095, as the strain amplitude for such a
driving. The uncertainty of this strain amplitude measure-
ment is around 0.001.

We note that this small deviation near strain reversal does
not affect any of our conclusions: The fits used to measure
elastic responses do not use any data points right after shear
reversal. Therefore, these measurements indeed reflect
properties of a uniformly deformed material. The expo-
nential fits used to measure the plastic responses during
shear reversal include shear steps with small deviations
from the uniform strain field. However, the deviation effect
is the same for both the ultrastable states and the original
shear-jammed states. Thus, such an effect would not affect
any claim based on the comparison between them.

APPENDIX C: CONTACT FORCE
MEASUREMENTS USING PHOTOELASTICITY

We introduce the implementation of the nonlinear fitting
algorithm we use to measure the contact forces and then
report our estimation of the uncertainties of the measure-
ment. We use a Matlab implementation adapted from
photo-elastic grain solver [37] with several modifications
that improve the quality of the solution for the large forces,
including (i) a neural network trained to give initial
guesses, (ii) the use of reaction forces and/or forces at
an earlier strain step to refit particles with a large error at
current step, and (iii) manually supplied initial guesses
determined using an interactive graphic interface for rare
cases. We enforce force and torque balance constraints on
individual particles except for rare cases and use the
deviation between action and reaction forces at the contacts
to estimate uncertainties of the measurements. In rare cases
when some particles are bearing extremely large forces, we
do not enforce force and torque balance. Instead, we let the
algorithm minimize the intensity differences and the
residual net force and torque together. Such a method
typically leads to smaller intensity differences between the
reconstructed photoelastic images and the raw experimental
images, and the residual net force and torque are usually
negligible. The stress-optic coefficient of the particles is

FIG. 9. Comparison between the experimental images taken
through a polariscope (top row) and the reconstructed images
based on contact force solutions (bottom row) for three example
packings. The visual match between the photoelastic patterns is
an evidence of finding the global minimum of the error function
[37,38,74]. The pressure of the packing from left to right is 6.8,
42.4, and 53.8 N/m.

F, =157, defined as in Ref. [37] and measured using a
technique detailed in Chap. 3.3.2 in Ref. [74]. The feasible
contact positions are detected for each disk before fitting. If
the distance between the centers of two particles is less than
1.03 times the sum of their radii, we register a feasible
contact and find the fitted contact force carried by it for
both of the two contacting disks. If for both disks the
magnitude of the contact force is less than 0.005 N, we drop
this contact and fit the disks again using only the remaining
contacts. Such a process is repeated until all the remaining
contacts are bearing forces whose magnitudes are larger
than 0.005 N.

We show that our fitting algorithm finds the global
minimum of the error function [36-38] by showing
examples of experimental images and reconstructed images
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z ¢ . T
oo &
Z12 5999 L Eap °, © o,
7 K 2002f o® o° o, o %
k r k 8O oot e
g 1 & o 0805 iy S8 %, |
2 0 0. 1 15
£08 Qf Force sensor read, fieaa (N)
L . Force
- Qjﬁ sensor 10° T T
<06 L K] 2
5 £, (c)
] £° =107 F %%?"C 3
g 3 — = 2
04 @ / ¢ N g O &lp &
5 / \ & a2l o o 0 0R o Q)
@ gép ( ) | 10 o s @O‘Zo Qg?gd% °
02t & ./ T3k ° o B opn © 8%
S TITTTT 3 B o
E had o 0% e
ole 107 y .
0 0.5 1 1.5 0 0.5 1 1.5
Force sensor read, frea (N) Force sensor read, freu (N)

FIG. 10. (a) Solved contact force magnitude from the fitting
algorithm compared to the read from a commercial force sensor
in a diametric loading test on a single disk. (b) and (c) plot
the absolute error and the relative error of the solved forces,
respectively.
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in Fig. 9. We show the number of the photoelastic fringes
and their overall shapes are very well reproduced even for
packings with large pressure. We then compare quantita-
tively the forces solved by the fitting algorithm and the
force measured from a commercial force sensor for a
particle under diametric loading (Fig. 10). In such a test,
the absolute error is below 0.05 N, and the relative error is
less than 10% for forces larger than approximately 0.1 N.

APPENDIX D: INTENSITY GRADIENT METHOD
TO ESTIMATE PRESSURE FOR STATES
FORMED DURING RELAXATION

The pressure data shown in Fig. 2 are not calculated from
contact forces but estimated using an empirical method
called the intensity gradient method. Such a method is first
introduced in Ref. [45], and more information can be found in
recent reviews such as Refs. [37,38]. It is a good particle-
scale indicator for pressure only when the tangential forces
are small compared to normal forces [46]. In our experi-
ments, we find that contacts bearing tangential forces
comparable to normal forces are rare, suggesting the appli-
cability of this method for the system-averaged pressure.

The mean intensity gradient of the packing, denoted as
g, here, is defined as

1O g

e =
pixel,i pixel (i.j) 4 2

N N
in disk i

P i=1
n Ii,j+1 _Ii.j—l 2+ Ii+1,j+1 _Ii—l.j—l 2
2 242
n <1i+1,j—1 _Ii—l,j+1>2]’
2V2

where /; ; is the rescaled intensity in the (i, j) pixel of the
polarized image, which ranges from 0 to 1. Ny ; is the

number of pixels in the ith disk. The prefactor 10* is
introduced in order to adjust the g, value to be at a similar
order of p.

We calibrate the relation between the system-averaged
pressure p and g, using a set of original states where the
values of p are calculated using the contact forces solved by
the nonlinear fitting algorithm. The relations between p and
g, for these states are plotted using black circles in Fig. 11.
We fit these data using

(D1)

p = ag, + bgs, (D2)
which gives a=8.0£0.6 N/m and »=0.114+0.02 N/m.
We solve the contact forces for all states formed in two
example cyclic shearing experiments and plot their p and g,
in Fig. 11 as well, showing that these states follow the same
p(g,) relation as the original states. Thus, the pressure data
shown in Fig. 2 are calculated using Eq. (D2).

60 T T T
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40+

B
—z 301
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20
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FIG. 11. The pressure p calculated from contact forces solved
using the nonlinear fitting algorithm plotted as a function of g,.
The black circles are original states, and the colored data points
are states formed during cyclic shearing for two different
experiments. The black curve plots Eq. (D2).

APPENDIX E: STRESS RELAXATION OF A
SHEAR-JAMMED STATE WITHOUT
OSCILLATORY SHEAR

We argue in Sec. II that the shear rate used in this work is
in the quasistatic regime. Here, we clarify the precise
meaning of this claim, which rests on making a distinction
between timescales associated with granular dynamics and
with material or contact aging. When we measure stress as
a function of time right after stopping the initial shear that
generates an initial shear-jammed state, we find that the rate
of stress relaxation is very small and that there is no change
in the contact network structure, indicating that the small
stress change is principally due to the relaxation of the
polymer material of the disks or the aging of frictional
contacts. On the timescale relevant for the rearrangement of
the contact network, the relaxation is negligible; the contact
network is already in force and torque balance when the
shear is stopped.

In the example experiment shown in Fig. 12, a shear-
jammed state is formed by applying y; = 0.126 initial shear
to an unjammed state. Right after stopping the initial shear,
we measure the pressure every 24 s, indicated by the blue
circles in Fig. 12(a). No additional shear is applied to the
system until time 2376 s. The pressure decays about
1.3 N/m during this time. The snapshots of the force
networks at times 0 and 2376 s are shown in Figs. 12(b) and
12(c), respectively. The two images look the same, sug-
gesting the force network is already in a force and torque
balance at time O s, which indicates that the shear rate used
from the jammed state at time O s is in the quasistatic
regime. The slight difference between the two images can
be better seen in Supplemental Video 3 [30]. The ultrastable
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FIG. 12. (a) The pressure evolution of an original shear-jammed
state formed at time O s by an initial shear strain y; = 0.126. From
0 to 2376 s, there is no deformation applied to the system, and the
pressure is measured per 24 s (blue circles). Starting from 2376 s,
we start cycle shear and record pressure after complete shear
cycles (purple triangles). (b) and (c) are snapshots of the system at
time 0 s and time 2376 s. See Supplemental Video 3 [30] for a
video of this relaxation process with an enlarged window.

states relax at a similarly slow rate when the boundary
frame is held fixed.

Figure 12(a) shows the pressure after complete shear
cycles when we turn on the oscillatory shear with strain
amplitude 6y = 0.95% after 2376 s. The relaxation caused
by oscillatory shear (applied at the same rate as the initial
quasistatic shear) is much more significant than the
relaxation of stress without any applied deformation. In
addition, this quasistatic oscillatory shear changes the
contact network structure, indicating that there is a strong

separation between the material aging and granular dynam-
ics timescales. Such a qualitative difference is easily seen
when comparing Supplemental Video 3 to Supplemental
Video 1 or 2 [30]. Thus, it is reasonable to classify the
applied shear as quasistatic for the purposes of analyzing
the granular dynamics.

[1] H. M. Jaeger, S.R. Nagel, and R. P. Behringer, Granular
Solids, Liquids, and Gases, Rev. Mod. Phys. 68, 1259
(1996).

[2] P. G. de Gennes, Granular Matter: A Tentative View, Rev.
Mod. Phys. 71, S374 (1999).

[3] A.J. Liu and S.R. Nagel, Jamming Is Not Just Cool Any
More, Nature (London) 396, 21 (1998).

[4] C.S. O’Hern, L.E. Silbert, A.J. Liu, and S.R. Nagel,
Jamming at Zero Temperature and Zero Applied Stress: The
Epitome of Disorder, Phys. Rev. E 68, 011306 (2003).

[5] T.S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer,
Jamming Transition in Granular Systems, Phys. Rev. Lett.
98, 058001 (2007).

[6] A.J. Liu and S. R. Nagel, The Jamming Transition and the
Marginally Jammed Solid, Annu. Rev. Condens. Matter
Phys. 1, 347 (2010).

[7]1 D. Bi, J. Zhang, B. Chakraborty, and R.P. Behringer,
Jamming by Shear, Nature (London) 480, 355 (2011).

[8] R. P. Behringer and B. Chakraborty, The Physics of Jam-
ming for Granular Materials: A Review, Rep. Prog. Phys.
82, 012601 (2019).

[9] S. Dagois-Bohy, B.P. Tighe, J. Simon, S. Henkes, and
M. van Hecke, Soft-Sphere Packings at Finite Pressure
but Unstable to Shear, Phys. Rev. Lett. 109, 095703
(2012).

[10] T. Bertrand, R. P. Behringer, B. Chakraborty, C. S. O’Hern,
and M. D. Shattuck, Protocol Dependence of the Jamming
Transition, Phys. Rev. E 93, 012901 (2016).

[11] M. Baity-Jesi, C.P. Goodrich, A.J. Liu, S.R. Nagel, and
J. P. Sethna, Emergent SO(3) Symmetry of the Frictionless
Shear Jamming Transition, J. Stat. Phys. 167, 735 (2017).

[12] Y. Zhao, J. Barés, H. Zheng, J.E.S. Socolar, and R.P.
Behringer, Shear-Jammed, Fragile, and Steady States in
Homogeneously Strained Granular Materials, Phys. Rev.
Lett. 123, 158001 (2019).

[13] N. Kumar and S. Luding, Memory of Jamming—Multiscale
Models for Soft and Granular Matter, Granular Matter 18,
58 (2016).

[14] P. Urbani and F. Zamponi, Shear Yielding and Shear
Jamming of Dense Hard Sphere Glasses, Phys. Rev. Lett.
118, 038001 (2017).

[15] Y. Jin, P. Urbani, F. Zamponi, and H. Yoshino, A Stability-
Reversibility Map Unifies Elasticity, Plasticity, Yielding,
and Jamming in Hard Sphere Glasses, Sci. Adv. 4, aat6387
(2018).

[16] M. Otsuki and H. Hayakawa, Shear Jamming, Discontinuous
Shear Thickening, and Fragile States in Dry Granular
Materials under Oscillatory Shear, Phys. Rev. E 101,
032905 (2020).

[17] Y.Jin and H. Yoshino, A Jamming Plane of Sphere Packings,
Proc. Natl. Acad. Sci. U.S.A. 118, 2021794118 (2021).

031021-12


https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.71.S374
https://doi.org/10.1103/RevModPhys.71.S374
https://doi.org/10.1038/23819
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1038/nature10667
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1103/PhysRevLett.109.095703
https://doi.org/10.1103/PhysRevLett.109.095703
https://doi.org/10.1103/PhysRevE.93.012901
https://doi.org/10.1007/s10955-016-1703-9
https://doi.org/10.1103/PhysRevLett.123.158001
https://doi.org/10.1103/PhysRevLett.123.158001
https://doi.org/10.1007/s10035-016-0624-2
https://doi.org/10.1007/s10035-016-0624-2
https://doi.org/10.1103/PhysRevLett.118.038001
https://doi.org/10.1103/PhysRevLett.118.038001
https://doi.org/10.1126/sciadv.aat6387
https://doi.org/10.1126/sciadv.aat6387
https://doi.org/10.1103/PhysRevE.101.032905
https://doi.org/10.1103/PhysRevE.101.032905
https://doi.org/10.1073/pnas.2021794118

ULTRASTABLE SHEAR-JAMMED GRANULAR MATERIAL

PHYS. REV. X 12, 031021 (2022)

[18] F. Xiong, P. Wang, A. H. Clark, T. Bertrand, N. T. Ouellette,
M. D. Shattuck, and C.S. O’Hern, Comparison of Shear
and Compression Jammed Packings of Frictional Disks,
Granular Matter 21, 109 (2019).

[19] R. Mari, R. Seto, J.F. Morris, and M. M. Denn, Shear
Thickening, Frictionless and Frictional Rheologies in Non-
Brownian Suspensions, J. Rheol. 58, 1693 (2014).

[20] M. Wyart and M. E. Cates, Discontinuous Shear Thickening
without Inertia in Dense Non-Brownian Suspensions, Phys.
Rev. Lett. 112, 098302 (2014).

[21] E. Brown and H. M. Jaeger, Shear Thickening in Concen-
trated Suspensions: Phenomenology, Mechanisms and Re-
lations to Jamming, Rep. Prog. Phys. 77, 046602 (2014).

[22] E. Han, M. Wyart, 1. R. Peters, and H. M. Jaeger, Shear
Fronts in Shear-Thickening Suspensions, Phys. Rev. Fluids
3, 073301 (2018).

[23] E. Blanco, D.J. M. Hodgson, M. Hermes, R. Besseling,
G. L. Hunter, P. M. Chaikin, M. E. Cates, I. Van Damme,
and W. C. K. Poon, Conching Chocolate Is a Prototypical
Transition from Frictionally Jammed Solid to Flowable
Suspension with Maximal Solid Content, Proc. Natl. Acad.
Sci. U.S.A. 116, 10303 (2019).

[24] J.F. Morris, Shear Thickening of Concentrated Suspen-
sions: Recent Developments and Relation to Other Phe-
nomena, Annu. Rev. Fluid Mech. 52, 121 (2020).

[25] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin,
Jamming, Force Chains, and Fragile Matter, Phys. Rev. Lett.
81, 1841 (1998).

[26] R. Seto, A. Singh, B. Chakraborty, M. M. Denn, and J. F.
Morris, Shear Jamming and Fragility in Dense Suspensions,
Granular Matter 21, 82 (2019).

[27] S. Sarkar, D. Bi, J. Zhang, R.P. Behringer, and B.
Chakraborty, Origin of Rigidity in Dry Granular Solids,
Phys. Rev. Lett. 111, 068301 (2013).

[28] S. Sarkar, D. Bi, J. Zhang, J. Ren, R.P. Behringer, and
B. Chakraborty, Shear-Induced Rigidity of Frictional
Particles: Analysis of Emergent Order in Stress Space,
Phys. Rev. E 93, 042901 (2016).

[29] D. Wang, J. Ren, J. A. Dijksman, H. Zheng, and R.P.
Behringer, Microscopic Origins of Shear Jamming for 2D
Frictional Grains, Phys. Rev. Lett. 120, 208004 (2018).

[30] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.12.031021 for videos
showing (i) the strobed states under cyclic shear in two
cases where an ultrastable state is formed, (ii) the strobed
states under cyclic shear in a case of relaxation to an
unjammed state, (iii) the stress relaxation over time for a
shear-jammed state when the shear is suddenly stopped, and
(iv) the evolution of force network during an initial shear.

[31] J.R. Royer and P. M. Chaikin, Precisely Cyclic Sand: Self-
Organization of Periodically Sheared Frictional Grains,
Proc. Natl. Acad. Sci. U.S.A. 112, 49 (2015).

[32] M. Otsuki and H. Hayakawa, Shear Modulus and Reversible
Particle Trajectories of Frictional Granular Materials
under Oscillatory Shear, Eur. Phys. J. E 44, 70 (2021).

[33] N. C. Keim and P. E. Arratia, Mechanical and Microscopic
Properties of the Reversible Plastic Regime in a 2D Jammed
Material, Phys. Rev. Lett. 112, 028302 (2014).

[34] K. L. Galloway, E. G. Teich, X. G. Ma, C. Kammer, I.R.
Graham, N. C. Keim, C. Reina, D. J. Jerolmack, A. G. Yodh,

and P. E. Arratia, Relationships between Structure, Memory
and Flow in Sheared Disordered Materials, Nat. Phys. 18,
565 (2022).

[35] N.C. Keim and D. Medina, Mechanical Annealing and
Memories in a Disordered Solid, arXiv:2112.07008.

[36] T.S. Majmudar and R.P. Behringer, Contact Force Mea-
surements and Stress-Induced Anisotropy in Granular
Materials, Nature (London) 435, 1079 (2005).

[37] K. E. Daniels, J. E. Kollmer, and J. G. Puckett, Photoelastic
Force Measurements in Granular Materials, Rev. Sci.
Instrum. 88, 051808 (2017).

[38] A. Abed Zadeh, J. Barés, T. A. Brzinski, K. E. Daniels, J.
Dijksman, N. Docquier, H. O. Everitt, J. E. Kollmer, O.
Lantsoght, D. Wang, M. Workamp, Y. Zhao, and H. Zheng,
Enlightening Force Chains: A Review of Photoelasticimetry
in Granular Matter, Granular Matter 21, 83 (2019).

[39] B. Andreotti, Y. Forterre, and O. Pouliquen, Granular
Media: Between Fluid and Solid (Cambridge University
Press, Cambridge, England, 2013).

[40] J. Ren, Nonlinear Dynamics and Network Properties in
Granular Materials under Shear, Ph.D. thesis, Duke
University, 2013.

[41] J. Ren, J. A. Dijksman, and R.P. Behringer, Reynolds
Pressure and Relaxation in a Sheared Granular System,
Phys. Rev. Lett. 110, 018302 (2013).

[42] D. Wang, Response of Granular Materials to Shear:
Origins of Shear Jamming, Particle Dynamics, and
Effects of Particle Properties, Ph.D. thesis, Duke Univer-
sity, 2018.

[43] S. Sarkar and B. Chakraborty, Shear-Induced Rigidity in
Athermal Materials: A Unified Statistical Framework, Phys.
Rev. E 91, 042201 (2015).

[44] T. Peng, A. Balijepalli, S.K. Gupta, and T. LeBrun,
Algorithms for On-Line Monitoring of Micro Spheres in
an Optical Tweezers-Based Assembly Cell, J. Comput.
Inform. Sci. Eng. 7, 330 (2007).

[45] D. Howell, R. P. Behringer, and C. Veje, Stress Fluctuations
in a 2D Granular Couette Experiment: A Continuous
Transition, Phys. Rev. Lett. 82, 5241 (1999).

[46] Y. Zhao, H. Zheng, D. Wang, M. Wang, and R. P. Behringer,
Particle Scale Force Sensor Based on Intensity Gradient
Method in Granular Photoelastic Experiments, New J.
Phys. 21, 023009 (2019).

[47] J. Christoffersen, M. M. Mehrabadi, and S. Nemat-Nasser, A
Micromechanical Description of Granular Material Behav-
ior, J. Appl. Mech. 48, 339 (1981).

[48] F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Bimodal
Character of Stress Transmission in Granular Packings,
Phys. Rev. Lett. 80, 61 (1998).

[49] T. Kawasaki and L. Berthier, Macroscopic Yielding in
Jammed Solids Is Accompanied by a Nonequilibrium
First-Order Transition in Particle Trajectories, Phys.
Rev. E 94, 022615 (2016).

[50] B. Kou, Y. Cao, J. Li, C. Xia, Z. Li, H. Dong, A. Zhang, J.
Zhang, W. Kob, and Y. Wang, Granular Materials Flow
Like Complex Fluids, Nature (London) 551, 360 (2017).

[51] X. Sun, W. Kob, R. Blumenfeld, H. Tong, Y. Wang, and
J. Zhang, Friction-Controlled Entropy-Stability Competi-
tion in Granular Systems, Phys. Rev. Lett. 125, 268005
(2020).

031021-13


https://doi.org/10.1007/s10035-019-0964-9
https://doi.org/10.1122/1.4890747
https://doi.org/10.1103/PhysRevLett.112.098302
https://doi.org/10.1103/PhysRevLett.112.098302
https://doi.org/10.1088/0034-4885/77/4/046602
https://doi.org/10.1103/PhysRevFluids.3.073301
https://doi.org/10.1103/PhysRevFluids.3.073301
https://doi.org/10.1073/pnas.1901858116
https://doi.org/10.1073/pnas.1901858116
https://doi.org/10.1146/annurev-fluid-010816-060128
https://doi.org/10.1103/PhysRevLett.81.1841
https://doi.org/10.1103/PhysRevLett.81.1841
https://doi.org/10.1007/s10035-019-0931-5
https://doi.org/10.1103/PhysRevLett.111.068301
https://doi.org/10.1103/PhysRevE.93.042901
https://doi.org/10.1103/PhysRevLett.120.208004
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
http://link.aps.org/supplemental/10.1103/PhysRevX.12.031021
https://doi.org/10.1073/pnas.1413468112
https://doi.org/10.1140/epje/s10189-021-00075-0
https://doi.org/10.1103/PhysRevLett.112.028302
https://doi.org/10.1038/s41567-022-01536-9
https://doi.org/10.1038/s41567-022-01536-9
https://arXiv.org/abs/2112.07008
https://doi.org/10.1038/nature03805
https://doi.org/10.1063/1.4983049
https://doi.org/10.1063/1.4983049
https://doi.org/10.1007/s10035-019-0942-2
https://doi.org/10.1103/PhysRevLett.110.018302
https://doi.org/10.1103/PhysRevE.91.042201
https://doi.org/10.1103/PhysRevE.91.042201
https://doi.org/10.1115/1.2795306
https://doi.org/10.1115/1.2795306
https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1088/1367-2630/ab05e7
https://doi.org/10.1088/1367-2630/ab05e7
https://doi.org/10.1115/1.3157619
https://doi.org/10.1103/PhysRevLett.80.61
https://doi.org/10.1103/PhysRevE.94.022615
https://doi.org/10.1103/PhysRevE.94.022615
https://doi.org/10.1038/nature24062
https://doi.org/10.1103/PhysRevLett.125.268005
https://doi.org/10.1103/PhysRevLett.125.268005

YIQIU ZHAO et al.

PHYS. REV. X 12, 031021 (2022)

[52] P. Leishangthem, A.D.S. Parmar, and S. Sastry, The
Yielding Transition in Amorphous Solids under Oscillatory
Shear Deformation, Nat. Commun. 8, 14653 (2017).

[53] M. Lundberg, K. Krishan, N. Xu, C.S. O’Hern, and M.
Dennin, Reversible Plastic Events in Amorphous Materials,
Phys. Rev. E 77, 041505 (2008).

[54] C. Ness and M. E. Cates, Absorbing-State Transitions in
Granular Materials close to Jamming, Phys. Rev. Lett. 124,
088004 (2020).

[55] D. Fiocco, G. Foffi, and S. Sastry, Oscillatory Athermal
Quasistatic Deformation of a Model Glass, Phys. Rev. E 88,
020301(R) (2013).

[56] N.C. Keim, J. D. Paulsen, Z. Zeravcic, S. Sastry, and S.R.
Nagel, Memory Formation in Matter, Rev. Mod. Phys. 91,
035002 (2019).

[57] F. Arceri, E. I. Corwin, and V. F. Hagh, Marginal Stability in
Memory Training of Jammed Solids, Phys. Rev. E 104,
044907 (2021).

[58] S. Mukherji, N. Kandula, A. K. Sood, and R. Ganapathy,
Strength of Mechanical Memories Is Maximal at the Yield
Point of a Soft Glass, Phys. Rev. Lett. 122, 158001 (2019).

[59] P. Das, A.D. Parmar, and S. Sastry, Annealing Glasses by
Cyclic Shear Deformation, arXiv:1805.12476.

[60] W.-T. Yeh, M. Ozawa, K. Miyazaki, T. Kawasaki, and L.
Berthier, Glass Stability Changes the Nature of Yielding
under Oscillatory Shear, Phys. Rev. Lett. 124, 225502
(2020).

[61] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus,
Random Critical Point Separates Brittle and Ductile Yield-
ing Transitions in Amorphous Materials, Proc. Natl. Acad.
Sci. U.S.A. 115, 6656 (2018).

[62] I.R. Peters, S. Majumdar, and H.M. Jaeger, Direct
Observation of Dynamic Shear Jamming in Dense Suspen-
sions, Nature (London) 532, 214 (2016).

[63] E. Han, N. M. James, and H. M. Jaeger, Stress Controlled
Rheology of Dense Suspensions Using Transient Flows,
Phys. Rev. Lett. 123, 248002 (2019).

[64] S. Luding, So Much for the Jamming Point, Nat. Phys. 12,
531 (2016).

[65] V. Babu, D. Pan, Y. Jin, B. Chakraborty, and S. Sastry,
Dilatancy, Shear Jamming, and a Generalized Jamming
Phase Diagram of Frictionless Sphere Packings, Soft
Matter 17, 3121 (2021).

[66] P. Das, H.A. Vinutha, and S. Sastry, Unified Phase
Diagram of Reversible—Irreversible, Jamming, and Yielding
Transitions in Cyclically Sheared Soft-Sphere Packings,
Proc. Natl. Acad. Sci. U.S.A. 117, 10203 (2020).

[67] M. Yang, M. Taiebat, P. Mutabaruka, and F. Radjai,
Evolution of Granular Materials under Isochoric Cyclic
Simple Shearing, Phys. Rev. E 103, 032904 (2021).

[68] P. Fardad Amini, D. Huang, and G. Wang, Dynamic
Properties of Toyoura Sand in Reliquefaction Tests,
Géotech. Lett. 11, 239 (2021).

[69] T. Gibaud, N. Dages, P. Lidon, G. Jung, L. C. Ahouré, M.
Sztucki, A. Poulesquen, N. Hengl, F. Pignon, and S.
Manneville, Rheoacoustic Gels: Tuning Mechanical and
Flow Properties of Colloidal Gels with Ultrasonic Vibra-
tions, Phys. Rev. X 10, 011028 (2020).

[70] N. Dages, P. Lidon, G. Jung, F. Pignon, S. Manneville,
and T. Gibaud, Mechanics and Structure of Carbon Black
Gels under High-Power Ultrasound, J. Rheol. 65, 477
(2021).

[71] N.Y. Lin, C. Ness, M.E. Cates, J. Sun, and I. Cohen,
Tunable Shear Thickening in Suspensions, Proc. Natl. Acad.
Sci. U.S.A. 113, 10774 (2016).

[72] C. Ness, R. Mari, and M. E. Cates, Shaken and Stirred:
Random Organization Reduces Viscosity and Dissipation in
Granular Suspensions, Sci. Adv. 4, aar3296 (2018).

[73] P. Sehgal, M. Ramaswamy, I. Cohen, and B. J. Kirby, Using
Acoustic Perturbations to Dynamically Tune Shear Thick-
ening in Colloidal Suspensions, Phys. Rev. Lett. 123,
128001 (2019).

[74] Y. Zhao, An Experimental Study of the Jamming Phase
Diagram for Two-Dimensional Granular Materials, Ph. D.
thesis, Duke University, 2020.

[75] B. N. Norden, On the Compression of a Cylinder in Contact
with a Plane Surface (National Institute of Standards and
Technology, Gaithersburg, MD, 1973).

031021-14


https://doi.org/10.1038/ncomms14653
https://doi.org/10.1103/PhysRevE.77.041505
https://doi.org/10.1103/PhysRevLett.124.088004
https://doi.org/10.1103/PhysRevLett.124.088004
https://doi.org/10.1103/PhysRevE.88.020301
https://doi.org/10.1103/PhysRevE.88.020301
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/PhysRevE.104.044907
https://doi.org/10.1103/PhysRevE.104.044907
https://doi.org/10.1103/PhysRevLett.122.158001
https://arXiv.org/abs/1805.12476
https://doi.org/10.1103/PhysRevLett.124.225502
https://doi.org/10.1103/PhysRevLett.124.225502
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1038/nature17167
https://doi.org/10.1103/PhysRevLett.123.248002
https://doi.org/10.1038/nphys3680
https://doi.org/10.1038/nphys3680
https://doi.org/10.1039/D0SM02186E
https://doi.org/10.1039/D0SM02186E
https://doi.org/10.1073/pnas.1912482117
https://doi.org/10.1103/PhysRevE.103.032904
https://doi.org/10.1680/jgele.20.00099
https://doi.org/10.1680/jgele.20.00099
https://doi.org/10.1103/PhysRevX.10.011028
https://doi.org/10.1122/8.0000187
https://doi.org/10.1122/8.0000187
https://doi.org/10.1073/pnas.1608348113
https://doi.org/10.1073/pnas.1608348113
https://doi.org/10.1126/sciadv.aar3296
https://doi.org/10.1103/PhysRevLett.123.128001
https://doi.org/10.1103/PhysRevLett.123.128001

