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Abstract

Photometric pipelines struggle to estimate both the flux and flux uncertainty for stars in the presence of structured
backgrounds such as filaments or clouds. However, it is exactly stars in these complex regions that are critical to
understanding star formation and the structure of the interstellar medium. We develop a method, similar to
Gaussian process regression, which we term local pixel-wise infilling (LPI). Using a local covariance estimate, we
predict the background behind each star and the uncertainty of that prediction in order to improve estimates of flux
and flux uncertainty. We show the validity of our model on synthetic data and real dust fields. We further
demonstrate that the method is stable even in the crowded field limit. While we focus on optical-IR photometry,
this method is not restricted to those wavelengths. We apply this technique to the 34 billion detections in the
second data release of the Dark Energy Camera Plane Survey. In addition to removing many >3¢ outliers and
improving uncertainty estimates by a factor of ~2-3 on nebulous fields, we also show that our method is well
behaved on uncrowded fields. The entirely post-processing nature of our implementation of LPI photometry allows
it to easily improve the flux and flux uncertainty estimates of past as well as future surveys.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Photometry (1234); Sky surveys (1464);
Catalogs (205); Gaussian Processes regression (1930)

Supporting material: animation

1. Introduction

Upcoming projects such as the Legacy Survey of Space and
Time at the Vera C. Rubin Observatory (Jones et al. 2020) and
observations from the Nancy Grace Roman Space Telescope
(Akeson et al. 2019) will deliver measurements of stellar flux
(brightness) for billions of stars, including those near the
Galactic plane. Measurement of stellar flux in the Galactic
plane is complicated by crowding (which makes it difficult to
partition flux between nearby overlapping sources), and the
presence of structured backgrounds® (the flux of which should
not be attributed to point sources).

The difficulties of crowding and structured backgrounds near
the Galactic plane were explicitly noted in the Sloan Extension
for Galactic Underpinnings and Evolution (Newberg & Sloan
Digital Sky Survey Collaboration 2003), the Sloan Digital Sky
Survey (SDSS) release at low galactic latitudes (Finkbeiner
et al. 2004), and the Dark Energy Camera Plane Survey
(DECaPS) (Schlafly et al. 2018). Some of these projects created
modified photometric pipelines to better handle crowded fields
and source deblending, but did not address structured back-
grounds. Other works addressing photometry on structured
backgrounds focus solely on methods for source identification
(Molinari et al. 2011) or use polynomial fits of varying degrees
to model the true background, both of which complicate
estimating the uncertainty on the reported stellar flux
(Traficante et al. 2015). A general technique able to handle
both biases and uncertainties resulting from structured

3 We refer to filaments of gas and dust as background regardless of whether

those features are physically in front of or behind the star.
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backgrounds could not only improve future measurements in
the galactic plane (Rubin and Roman), but also create value-
added catalogs using images from any of the large-scale
photometric surveys that target the Galactic plane such as
SDSS, DECaPS, Wide-field Infrared Survey Explorer (WISE)
(Schlafly et al. 2019), the Two Micron All Sky Survey
(Skrutskie et al. 2006), Pan-STARRS1 (Magnier et al. 2020),
Galactic Legacy Infrared Mid-Plane Survey Extraordinaire
(GLIMPSE) (Benjamin et al. 2003), VISTA Variables in the
Via Lactea (VVV) (Minniti et al. 2010), and the UKIRT
Infrared Deep Sky Survey (UKIDSS) (Lawrence et al. 2007).

Instead of using classic background models that are smooth
on a spatial averaging scale that is (and must be) larger than the
point-spread function (PSF), we can instead perform an
interpolation of the background behind the star. Using that local
background model, we can separate the true flux of the star from
background flux. In the machine-learning literature, reconstruct-
ing an unknown portion of an image is often called a conditional
infilling or inpainting problem and many approaches exist, often
using some version of generative adversarial networks (Pathak
et al. 2016; Ulyanov et al. 2018; Van Veen et al. 2018; Wu et al.
2018). In addition to deriving corrections to the flux as a result of
the true background, it is important to quantify the overall
uncertainty in the reported flux. Without reliable uncertainty
estimates, any downstream statistical inference, which is the
main application of these astronomical catalogs, is polluted with
overly tight constraints. This is a limitation for approaches based
on neural networks because it is difficult to obtain reliable
uncertainty estimates on their predictions.

We improve the estimates of stellar flux and error bars on
structured fields by solving the infilling problem behind the star
and obtaining an uncertainty on that infill. To do this, we
perform a regression for the unknown pixels given the values
of neighboring pixels that are known. The local pixel-wise
infilling (LPI) used here is similar to Gaussian process
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Figure 1. A scheme illustrating the steps used in this work to improve flux and flux uncertainty estimates for sources on structured backgrounds. Orange text
represents data products from a previous photometric solution for the image of interest. Green text represents data products generated as part of this work.

regression (GPR), often called Gaussian process interpolation
or Kriging. In GPR, the value of a function (the true
background) is predicted at unobserved points conditioned on
nearby observed points using a covariance function (called a
kernel). Note that GPR assumes weak stationarity—that the
kernel depends only on the (possibly angle-dependent)
separation between points. Exact stationarity is often violated,
but holds approximately in real applications. GPR is a form of
nonparametric regression since each unobserved point is
predicted without a prior specification on the functional form
(linear, quadratic, etc.) of the interpolated image. However,
GPR almost always uses a parametric kernel function. The
benefit of parametric kernels is that the covariance can be
sampled at any arbitrary separation. The downside is that an
optimization over kernel parameters is required and one must
consider whether the parametric kernel is a good model of the
true covariance of the data.

In astronomy, GPR has already found numerous applications,
including foreground removal (Mertens et al. 2018; Ghosh et al.
2020; Kern & Liu 2021; Soares et al. 2021), foreground
modeling by point-source interpolation (Pinter et al. 2018),
interpolating galactic-scale fields (Platen et al. 2011; Yu et al.
2017; Leike & EnBlin 2019; Williams et al. 2022), cleaning/
interpolating missing data (Czekala et al. 2015; Baghi et al.
2016; Ndiritu et al. 2021; Zhang & Brandt 2021), predicting
photometric redshifts (Way et al. 2009; Almosallam et al. 2016),
light-curve analysis (Evans et al. 2015; Littlefair et al. 2017;
McAllister et al. 2017; Angus et al. 2018), radial velocity
analysis (Haywood et al. 2014; Barclay et al. 2015; Rajpaul
et al. 2015), removing instrumental systematics (Gibson et al.
2012; Junklewitz et al. 2016), interpolating atmospheric
turbulence to improve astrometry (Fortino et al. 2021; Léget
et al. 2021), modeling PSF variations (Gentile et al. 2013), or
predicting object properties (Bu et al. 2020; Fielder et al. 2021).

The work of Fortino et al. (2021) notably improves
astrometry (measurements of the position of stars) on images
from the Dark Energy Camera (DECam), which is the same
camera used for validating our photometric model in Section 5.
The extraction of clean foreground models by interpolating to
remove point sources or bad pixels shown in Pinter et al.
(2018) and Zhang & Brandt (2021) serve as a proof of concept
for this work. We further derive the correction to and
uncertainties on the fluxes of those point sources as a result
of the background model. Because we need to sample the
covariance only on a grid (fixed by the pixelization of the
camera) and need only a small number of points for the local
background, we are able to use more flexible nonparametric
models for the LPI covariance in contrast to the astronomical
applications of GPR above.

2. Background Model

Ideally, we would like to be able to estimate the background
underneath a star from a detailed analysis of the nearby

background. We find that we can successfully estimate the
background and its uncertainty using an infilling technique,
which will be the focus of Section 2.3. This technique
dramatically improves flux and flux uncertainty estimates for
stars in images of fields with significant nebulosity
(Section 5.2). In the intervening sections, we provide detailed
descriptions, simulations, and validations of this technique, but
the eager reader may wish to skip to Section 5. Figure 1
broadly outlines the steps used in our technique.

2.1. Likelihood

Photometric pipelines process astronomical images in order to
model the location and flux (brightness) of the stars in the image.
Focusing on surveys at low galactic latitudes where stars far
outnumber galaxies, we set aside modeling galaxies for now. In
addition to stars which are effectively point sources, these
images often contain diffuse components such as emission from
interstellar gas or reflection off of interstellar dust
(Magakian 2003). For example, the bright Hao Balmer line of
hydrogen and various emission lines for oxygen in different
ionization states fall in the optical wavelength range (Lide 2004).
Dense interstellar dust can also block background starlight,
causing a decrease in detector counts over an extended region
(Di Francesco et al. 2002). These diffuse components and
background sky counts are often combined into a single
background term b, which when added to the sum of N, point
sources yields the true image I. The contribution of a point
source to the image is modeled as the flux of the star (a scalar)
times a PSF, which is the spatial distribution of photons arriving
at the focal plane from a point source. The PSF deviates from a
single point because of atmospheric turbulence, telescope optics,
and sensor imperfections. Thus, the true image (/) is

N,

star

1, y) =b,y) + > fi X px — X1,y —y) + €(x, y),

i1
(D

where b is the background, f; is the flux of star i, p(x — x;,
y —y;) is the PSF centered at position (x;, y;) in the image, and
€(x, y) is the measurement noise of each pixel. Then, the
residual between the model and the true image is r = [ — 1,
where we have dropped the explicit (x,y) dependence from here

4
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The noise in observed detector counts is from a mix of
Poisson (photon events, shot noise) and Gaussian (read noise)
processes. However, in optical surveys, we are generally in the

* In the code released with this paper, we use the opposite convention for the

residuals, r =1 — I.



THE ASTROPHYSICAL JOURNAL, 933:155 (19pp), 2022 July 10

large count limit and thus approximate the observed noise in
each pixel as Gaussian. Then, we find the model parameters
that minimize the negative log-likelihood, given some estimate
of the per-pixel covariance matrix C,

—2nL(f, %, §. b) = In(det@xC)) + r7C . (3)

To solve this problem in full generality, one has to optimize
the likelihood with respect to I\Ztar, a process known as
transdimensional inference (Brewer et al. 2013; Portillo et al.
2017; Feder et al. 2020; Liu et al. 2021). Such an approach can
be made Bayesian by including a prior on Niar and the other
parameters. In practice, a heuristic deblending code that finds
peaks in the image, assigns sources to those locations, and
estimates a parametric PSF model is often used. Then, the
optimization is performed only over f, X;, and y. with the other
model parameters held fixed (Stetson 1987; Bertin &
Arnouts 1996; Schlafly et al. 2018). We consider the latter
approach. In what follows, we will also ignore uncertainties
and corrections resulting from estimation of the stellar position
(%; and y)) such as those outlined in Portillo et al. (2020) and
any errors resulting from PSF mismodeling, focusing instead
on the previously unaddressed uncertainties and corrections to
f; in the presence of mismodeled backgrounds.

It is tempting to assume that r is mean zero (as assumed in
Equation (3)) with ¢ diagonal (as is often done), which would be
nearly true in the limit of perfect modeling and noisy data. Then,
the diagonal of C is simply the variance of each pixel
(proportional to model counts assuming Poisson noise), and
matrix inversion can be computed with little computational
expense as element-wise division. However, the b used in
photometric pipelines is often not an accurate model of the
background b and in this work we will consider how to deal with
a non-diagonal C resulting from mismodeled backgrounds.

2.2. Literature Background Models

Popular photometric  pipelines such as DAOPHOT
(Stetson 1987), SExtractor (Bertin & Arnouts 1996), the
Tractor (Lang et al. 2016), and crowdsource (Schlafly et al.
2018) use background models that are smooth over large
(relative to the PSF) spatial scales. Prior works have explored
different methods to obtain a robust and/or unbiased estimation
of a constant background value for a subset of an image. Most
of these methods operate on the histogram of pixel values in the
subimage and estimate the mean, median, or mode, often with
iterative outlier removal (“o-clipping”) (Da Costa 1992). The
final background model applied at the pixel scale is then a
smooth interpolation of individual subimage estimations. These
approaches necessarily have an averaging scale (often 32-128
pixels) set by the size of the subimages considered (Bertin &
Arnouts 1996). So b can be a good model of background
components that vary on a spatial scale larger than the
averaging scale. However, high resolution imaging, from the
Hubble Space Telescope, for example, indicates structures in
the interstellar medium (ISM) at scales all the way down to
<1”, which would not be well captured by b.

In this case, the incorArect assumption that r is mean zero can
bias the flux estimates f; for stars in the region. For example, if

> In what follows, we will suppress a factor of 2 and normalization constants

when writing likelihoods since they do not depend on model parameters and
thus do not affect the optimization.
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the observed background is above the model (b — by > 0),
then the fl will overestimate the stellar flux so that r is closer to
mean zero (Figure 2). The assumption that r has a diagonal C
ignores nonzero (and as we will show in Section 4 often large)
off-diagonal contributions to the flux uncertainty, which are a
result of the spatially correlated residuals from the mismodeled
background.

2.3. Local Pixel-wise Infilling

Since we cannot see behind the star, we describe the
distribution of possible backgrounds by the set of images that
are shifted horizontally/vertically by a number of pixels. We
can view this as data augmentation of our single corrupted
sample, where we have assumed local translation invariance of
the statistics of the ISM (stationarity). This translation
invariance should hold if the samples are local enough. We
have not assumed rotational invariance (isotropy) because of
the presence of highly directional filaments in the ISM (see
Appendix D). Then, we perform a regression for the unknown
pixels given the values of neighboring pixels that are known.
Together, we term this approach LPL

This regression can be viewed as GPR with a nonparametric
anisotropic kernel, so long as the covariance matrix we estimate
is actually stationary. While our covariance matrix is
approximately stationary (see Appendix D), we do not
constrain it to be. We also do not require the covariance obey
a functional form such that the covariance matrix is positive
definite for all sample points, a common constraint in GPR.
More simply, this regression can be viewed as a linear least-
squares regression using the known pixel (k) values as the
regressors to predict the unknown pixel (k,) values in the high-
dimensional pixel space (see notational correspondence in
Appendix C). The local shifted samples are then the training
data from which the parameters connecting the k- and k,-pixels
are estimated. Note that this model is not linear in the 2D
spatial dimensions of the image. Even though we do not
enforce stationarity, we find it convenient to use the language
of GPR throughout.

We first estimate a local covariance matrix (sz X sz) for a
subimage (N, X N, pixels) of the residuals centered on each
star. We focus on applying LPI to the residuals because we
want to predict nonzero mean deviations between the model
and true background, assuming the star was not present in the
image (Equation (3)). It is useful to decompose the N,% pixels of
the subimage into three classes: good, which we believe to be
uncontaminated samples of the local background, hidden,
which are obscured by the star of interest and should be
interpolated, and ignored, which are contaminated either by
other stars, cosmic-rays, pixel defects, etc. The ignored pixels
should be excluded from background estimation and need not
be interpolated. See Sections 4 and 5 for detailed examples of
how pixels are partitioned between these classes.

The goal of LPI is to predict the value of missing data in a
vector (i.e., the hidden pixels) given the data present (i.e., the
good pixels) and a model for the covariance of the data vector.
Consider a data vector X, of length equal to the number of
pixels in a subimage around a star Nf,, and the corresponding
mean vector y and covariance matrix C. We denote the indices
in X that are good k and those that are hidden k,. Then, X (k,|k),
the mean of the missing values predicted conditionally using
the known values, is given by Equation (4) and the covariance
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Figure 2. Top left panel: schematic showing overestimation of flux for a star (yellow dashed) given a flat background model (yellow solid) in the presence of a
structured background (green solid). Top right panel: the residuals after subtraction, which illustrate that f°_ accounts for the deviation of the residuals from zero and
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accounts for the deviation of the predicted background (green dashed) from zero. Bottom left panel: an example star imposed on a structured background in a r-

band image from DECaPS2 (Section 5). Bottom right panel: residuals after photometric fit of image at left using crowdsource. The fit drives the residual in a
neighborhood around the highlighted source to be mean zero, relative to an incorrect background model, causing the center to be significantly oversubtracted.

of the prediction is given by Equation (5) (Rasmussen 2003),
X (kilk) = Xi = Ce xCii (X — ] + piy.. 4)

Here, Cy, x denotes the C sub-block of rows with k,-indices
and columns with k-indices. The means of the pixels with k-
indices and k,-indices are denoted by 1 and i, , respectively.

cov(Xy, — Xi) = Crx, — CrxCik Cex, 3)

In GPR, C is often specified by a choice of parametric kernel
(either chosen or with parameters learned from data). However,
in LPI we learn C directly from the data without any
parameterization, as described next.

2.4. Covariance Construction

We learn C (an Ng X Nj matrix) for a subimage of N, X N,
pixels (which we can view as a vector X of le x 1 numbers).

To obtain samples of X, we shift our N, X N,, image up to
NPl and Nysample pixels horizontally and vertically from the
stellar center. Assuming that all of the N, X N, subimages
derived from a local region are drawn from the same
distribution, we can use these samples to estimate C by
¢ = VTV/(N -1 - ;LX,LL)T( where the rows of V are each a

sample of Nf, pixels, N is the total number of samples, and M)T( is
obtained by averaging over rows (samples). For sufficiently
small spatial scales, the statistics of the dust/gas should be
uniform and this stationarity assumption thus valid.

In practice, constructing V and computing V' per star is too
computationally expensive. For the application in Section 5, the
reordering of the calculation we describe below is four orders
of magnitude faster than a direct matrix multiplication per star
for fields with the median number of stars (see Appendix A).
Given that all of our samples are related simply by pixel shifts
of the same image, we can perform the averaging over samples
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as a spatial average using a computationally inexpensive
boxcar mean. Consider an analogous problem in 1D, with
samples V;; =X, ;_1), where X is 1 indexed.

Cj= —Z ViaVij — ;Q(EN: Vk)(f: ij)

N—1 k=1

1

= IZXH(I—I)XH(;—])

1 N
- F(Z Xk+(i1))(z Xk+(jl)) (6)
k=1 =1

The elements of V'V are simply the elements of a boxcar
mean of width N on the product of X with itself shifted by
(i — j). This can be quickly computed for the entire image, and
then referenced at the location of each star. Since we consider
2D image data, we implement Equation (6) with an additional
spatial index.

2.5. Preliminary Infilling

The local covariance estimate must be computed over good
pixels, excluding hidden and ignored pixels. Unfortunately the
naive approach of Considen'ng the masked, shifted boxcar means
fails because summing over only masked pixels in Equatlon (6)
does not correspond to V™V, and the resulting matrix is no longer
guaranteed to be posmve semidefinite (Baghi et al. 2016).
Instead, we must make a reasonable guess to infill the masked
pixels. As long as the masking fraction is low, the covariance
matrix estimate is not strongly sensitive to the infill.

Our infilling procedure uses a boxcar mean of the good
pixels to predict masked pixels using a variety of filter widths
(both hidden and ignored pixels must be infilled in this initial
step). The initial width is 19 pixels, and all pixels with a mean
value determined by 104 good pixels are infilled. The filter
width is increased by a factor of 1.4 in successive infilling steps
until all of the masked pixels are infilled. In heavily crowded/
masked regions, it is useful to have a cutoff at a finite number
of infilling steps (10), and infill the remaining pixels with the
median image value. These numerical choices were qualita-
tively chosen for performance on the application in Section 5.

These infilled pixels should also have per-pixel uncertainties
consistent with the rest of the image, so we replace each
masked pixel by a Poisson draw. However, we must account
for the counts already subtracted out in the smooth background
model and detector gain, which pools g photoelectron counts
per digital unit.’

g X (b + 7) ~ Poisson(g x (b + F)) 7

2.6. Deriving Corrections

One of the benefits of the LPI background model is the ease
of deriving improved flux estimates. The maximum likelihood
estimate for the flux correction to a star can be found by setting
the first derivative of the log-likelihood In £(f?) over the
k.-pixels with respect to the bias offset f° equal to zero.

5 The background plus residuals should never be negative as such negativity
would indicate that the model image included sources with negative flux or
nonpositive portions of the PSF. Unfortunately, both of these situations can
occur in crowdsource outputs on difficult fields, so we take
|background + residuals| in order to report a value that the user can decide
to use based on quality flags.
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Similarly, the variance of the new flux estimate f — fb s
obtained as the negative inverse of the second derivative of the
log-likelihood with respect to the flux estimate,

Lo (fPp+r—X)C P p+r—X),  ®

Té_l T(’:’71XI
b= _;?Téfl; + ppT(t,l;* frl;s - pred’ ©))
Al
0 =@ Ly = (pT ¢ p) (10)

We have suppressed the per-star PSF (p) position evaluation
and i subscripts for clarity, highlighting the f® dependence.
Because C learned in Section 2.4 was only estimated on pixels
representative of uncontaminated background, we must adjust
the per-pixel variance (diagonal) of C to account for (Poisson)
noise from modeled counts before computing Equations (9)
and (10) (see Section 5.1).

We interpret the first term, which we denote rgs, as
accounting for the fact that the initial photometric pipeline
might not be able to achieve its target of zero residuals through
modeling point sources. This often leads to overestimation of
the flux from stars to soak up counts from bright structured
backgrounds. In the worst case, photometric pipelines can add
a large number of nonexistent sources to the model in order to
account for the background flux. This suppresses evidence of
background mismodeling in the residuals and is a failure mode
beyond the scope of this work.

The second term, which we denote — pbre 4> measures the
expected deviation from zero residuals with respect to a flat
background model as a result of the interpolated structured
background. A pictorial scheme illustrating the role of these
terms is depicted in Figure 2. We packaged all of the above
steps required to compute LPI corrections to photometry into a
code, CLOUDCOVERR.IL, which we release with this work (see
Section 7).

An alternative approach to the one pursued here would be to
incorporate the predicted background and non-diagonal
covariance matrix into Equation (3) as an improved b and C.
In this way, the improved background model and uncertainties
are incorporated into the original photometric solution. One
difficulty with this approach is that we currently require an
initial photometric solution in order to have access to residuals.
Another complication is that the implementation will depend
on whether the photometric pipeline solves for the flux of each
source independently, or as a joint optimization problem. For
these reasons, we present a pure afterburner as a proof of
concept, which is conveniently compatible with any prior
photometric solution.

3. Gaussian Approximation Validity

In the ISM, there are isolated dust clouds, filaments of gas,
and shock fronts all of which are highly non-Gaussian features.
This is in contrast to cosmic microwave background cosmol-
ogy where the structures of interest are well described by
Gaussian random fields and small deviations from Gaussianity
are of interest. As a result of this strong heterogeneity, the non-
Gaussian structure of the ISM cannot even be described as
some functional transform of a Gaussian random field, such as
by a log-normal random field. In order to draw the
correspondence to Gaussian process methods and evaluate
the validity of using LPI in the context of these non-Gaussian
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fields, one can view the non-Gaussian field as being
represented as a Gaussian mixture model (GMM)—a sum of
many different Gaussian components.

Naively, one might expect LPI to be valid only when the
local pixels are drawn from a single component of the Gaussian
mixture model and the local image is thus locally Gaussian. We
will show in the context of a toy problem that LPI works well
in a larger class of cases where we only require that the
conditional distribution for the k,-pixels given the known k-
pixels is Gaussian. Then, we will demonstrate that the LPI
works well in practice on a real, filamentary dust image.

3.1. Toy Problem

Consider an image consisting of two pixels, pixel A and pixel
B. Suppose the image is drawn from a population with a 50%
chance of being drawn from My = [—1, 1], o = [e, €]) or
N = [1, —1], 0 = [e, €]). The distribution of the pixels in
this subimage is clearly non-Gaussian, composed of two
separated Gaussian components (Figure 3). Further, the Gaussian
approximation to this distribution is quite poor, placing maximal
probability on the infinitesimally rare image [0, 0].

However, when one pixel value is known (say pixel B
without any loss of generality), the LPI prediction provides a
good approximation of the distribution of the unknown pixel.
Pictorially, the predicted conditional distribution on pixel A
given the known value of pixel B is simply a renormalized
horizontal line cut through Figure 3 at that value of pixel B.
Numerically, we follow Equations (4) and (5) to obtain
Np=-1/A0 + €*»,0= \/56), a close approximation to
N = —1, 0 = ¢€) for pixel A when pixel B = 1, though with
inflated variance.

The success of this model problem lends confidence to LPI
being able to correctly interpolate non-Gaussian local subfields
that may contain filaments. Two adjacent pixels transverse to
the long filament direction will be highly anticorrelated on the
positive or negative slope off of the peak of the filament. This
will lead to two Gaussian components similar to those in
Figure 3. When considering the slope changing along the
transverse direction, more pairs of Gaussian components closer
or farther from the origin will be added to the population.
However, a GMM of components along the diagonal are all
clearly still resolvable by LPI. It is only when there are
components of the GMM that are not distinguished by the good
conditioning pixels that LPI can be a poor approximation.

3.2. Interpolating in a Nebula

To demonstrate that the assumptions of LPI are compatible
in practice with astronomical fields containing structured
backgrounds, we mask and interpolate a real image from the
WISE 12 pm dust map (Meisner & Finkbeiner 2014)
corresponding to a portion of the Pipe Nebula (between
Barnard 67 and 78) (Figure 4). We preprocess the initial image
by first clamping outliers to be equal to the highest and lowest
0.01% percentile and then reducing the resolution from 6” to
45" pixel '.” The covariance matrix for a N, =49 pixel
subimage was estimated from samples on a larger local region
(using a boxcar width of NSMPle — N;ample = 129 pixels),
shown in the left panel of Figure 4.

7 The WISE 12 um dust map was smoothed during production to 15" so this

is only a 3x reduction in resolution. We downsample to 45” pixel ' only to put
the features of interest at a pixel scale that is computationally inexpensive.
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Figure 3. Top panel: probability distribution for the population in the toy 2D
problem. The two Gaussian subpopulations are colored red and green. The
Gaussian approximation to the distribution is shown in blue, and poorly
describes the total population. A line cut along the gray dashed line yields the
bottom panel. Bottom panel: the conditional probability distribution for pixel A
given pixel B has a value of 1.0. While the true distribution (green) is more
sharply peaked, the Gaussian process regression prediction (blue dashed)
describes the conditional distribution well.

The true N, x N, subimage is shown in the “Truth” subpanel
and features a core with filamentary connections toward dense
regions at the top right and right of the subimage. In the masked
image, the central mask with radius ~13 pixels defines the
k.-pixels (hidden). The known true values of the good k-pixels
are shown. The pixels far away from the interpolation region are
ignored since they should have little impact on the interpolation
and add to the computational expense. Videos animating Figure 4
as the sizes of the ignored region (https://faun.rc.fas.harvard.
edu/saydjari/CloudCovErr/rseries_test.mp4) and hidden region
(https:/ /faun.rc.fas.harvard.edu/saydjari/CloudCovErr/thr_test.
mp4) are changed demonstrate that the interpolation is robust to
these choices.
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Mean Prediction

Figure 4. Left panel: image of dust emission from WISE 12 ;zm dust map containing a portion of the Pipe Nebula. The image scale shows all data used to train the LPI
covariance, which is highly heterogeneous. Square marked by four white corners indicates subimage used in other panels. Top right panel: “Truth” shows the central
N, = 49 pixel square cutout of the WISE image. In “Mask,” the central gray pixels are those predicted (hidden) and the outer black pixels not used (ignored) during
the prediction. In “Mean Prediction,” the hidden pixels are replaced with the mean LPI predictions and all other pixels display the true values. Bottom right panel: each
image replaces the hidden pixels with a different random draw from the distribution of LPI predictions. All other pixels display the true values. Videos animating this
plot as the size of the ignored region (https://faun.rc.fas.harvard.edu/saydjari/CloudCovErr/rseries_test.mp4) and hidden region (https://faun.rc.fas.harvard.edu/
saydjari/CloudCovErr/thr_test.mp4) is changed demonstrate that these interpolations are robust, even for a narrow ring of good pixels. The animation includes the
videos from both links. The first 17 s of the animation varies the size of the ignored region while the remaining 40 s varies the size of the hidden region.

(An animation of this figure is available.)

The mean prediction of the LPI is shown replacing the
values of the k,-pixels in the true image. Comparing this mean
prediction to the “Truth,” we see that near the core, the
interpolation correctly predicts a higher density, and on average
predicts an overdensity extending toward the dense region at
the right of the image. For the diagonal filament, the mean
predicted density appears to have a much lower intensity
between the two cores than the true image. However, the mean
does not contain all the information provided by the LPI, and
we must also consider the covariance.

One way to visualize the covariance of the LPI is to sample
the distribution of interpolated images. Samples are easily

\/Ey—l—}?,é*, where y ~ MO, 1), X[ is the

predicted mean, and \/E is the symmetric square root, which
we obtain via singular value decomposition. Three different
draws are shown in the bottom row of Figure 4. While none of
these draws exactly reproduces the true image, the interpolated
pixels have noise statistics which match the true image and
some of the draws do have filaments connecting the central
core to both overdense regions (i.e., Draw 2).

Thus, the LPI is consistent with the “Truth,” even though
the LPI is not centered on the “Truth.” However, the masking
scale here was specifically chosen to be much larger than the
scale of the smallest resolved dust structures in the image.
This mask thus represents a large information loss—a worst-
case scenario for the infilling problem. The recovery of both a
reasonable mean and substructure similar (but not identical) to
the “Truth” in this limit is a testament to the capabilities
of LPL

obtained as

4. Synthetic Validation

In order to show that our LPI bias offsets and error bars
provide a substantial improvement over current photometric
pipelines, we run our post-processing code on outputs from
crowdsource, a crowded-field photometric pipeline that was
used to create catalogs from DECam and WISE (Schlafly et al.
2018, 2019). Throughout the rest of this work, we compare our
flux and flux uncertainty estimates to the flux and flux
uncertainty estimates from crowdsource, which we use as
the conventional benchmark. First we consider synthetic fields
here, and then astrophysical images from the Dark Energy
Camera Plane Survey (DECaPS2) survey in Section 5.

4.1. Treatment of Emission and Extinction

The first synthetic field we generate consists of two
filaments, each having a Gaussian profile with an FWHM of
6.7 pixels (see Figure 5). One filament is positive and one
negative relative to the background. These parallel filaments
are separated spatially by 118 pixels and the background and
Poisson noise are consistent with fields from DECaPS2.% Stars,
all of the same flux (~18th g-band magnitude), are then
injected on a regular grid with centers at integer pixel values.
Each row in the grid is shifted by 1 pixel in the direction
transverse to the filament in order to sample stars with different
displacements relative to the filament. We then run crowd-
source on the synthetic image. We fix the PSF model to
match the model used to inject sources and use less aggressive

8 For this reason, we quote flux in analog-to-digital units (ADUs) throughout
synthetic tests.


https://faun.rc.fas.harvard.edu/saydjari/CloudCovErr/rseries_test.mp4
https://faun.rc.fas.harvard.edu/saydjari/CloudCovErr/thr_test.mp4
https://faun.rc.fas.harvard.edu/saydjari/CloudCovErr/thr_test.mp4
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Figure 5. The columns show a stellar position near a positive filament (left), in
between the filaments (middle), and near a negative filament (right) in the
residuals of a synthetic image (red positive, blue negative). Top row: the true
background before source injection is shown. Second row: the mask of hidden
and ignored pixels is shown, as in Figure 4. Third row: the hidden pixels are
replaced with the mean LPI prediction. Bottom row: the hidden pixels are
replaced with a draw from the LPI distribution.

deblending than defaults to prevent breaking the filament into
nonphysical point sources.’

We post-process the crowdsource outputs using the code
base developed in this work, CLOUDCOVERR.JL, with N,, = 33
and N5*mPle — NySample = 129. The top panel of Figure 5 shows
the residual image for the true background given the
crowdsource background model. Each column shows a
subimage centered on a star near the positive filament, negative
filament, or between filaments. The k,-pixel mask is obtained
by a threshold on the PSF model used for source injection and
masks a radius of ~10 pixels. Pixels beyond a radius of 16
were ignored (see second row of Figure 5). For the third and
fourth rows, the k,-pixels around each star are replaced by the
mean prediction or by draws from the predicted distribution.

While the mean predictions reconstruct the filament position
within the k,-pixels correctly, the exact height of the filament

® We set a higher threshold for detection (100) and set the nodeblend and

sharp mask bits. See Schlafly et al. (2018) for a detailed description of these
parameters.

Saydjari & Finkbeiner

Sample 2D Residual Field

. ‘ § 7
15 . e Conventional Z-Score
R + LPI Z-Score
10 ) 2
.
g T g A 2
g “: ,‘:"’":A.}':ﬁ‘;“‘: A"';“..wf;’:'."ﬁ"‘w .":«".:‘Ae'? :
N _s5 A
-10
—15 .
1000
: ° o
750 o res
G " —fb
500 £ pred
o) &
a 230 ) Lo N - o
< 0 {adppuridtt % TRt NPT
x L e . ; .
= =250 das %
[ c €
-500 S
—750 28
—-1000 <
e Diagonal Error
150 "4 a4 Full Cov Error
—_ WA
S 140 > )
x 130 A ;.
=} o A“A
2 Ny
120 -,y a4 o A'A“A A A",
110 P M\M“'\N

550 575 600 625 650 675 700 725

Coordinate of Star
Figure 6. Top panel: residual field (2D) from synthetic image where the
x-coordinate matches the 1D stellar coordinate used below. Second panel:
Z-scores for injected stars as a function of position using conventional (purple
circle) or LPI photometry (green triangle). The absence of positive and negative
Z-scores correlated with the filament demonstrates that LPI corrects for the
structured background. Third panel: the two debiasing terms, f2 (purple circle)
and —fgred (green triangle), are shown to contribute similarly to correcting for
the filaments. Flux is in ADU. Bottom: the predicted flux uncertainty is shown,
assuming the covariance matrix is diagonal (purple circle) or using the full
covariance matrix (green triangle).

peak is slightly underestimated. We explore the magnitude of
this underestimation in Appendix B. The draw rows show
interpolation that is almost indistinguishable from the back-
ground except for a slightly higher noise level, suggesting a
slight overestimation of the uncertainty. However, that is
expected. The averaging region for estimating the covariance
matrix here is large and includes both filaments, a more
heterogeneous environment than any of the regions
reconstructed.

The second panel of Figure 6 shows that the Z-scores
(observed flux—true flux)/(flux uncertainty) for the crowd-
source solutions (purple circles) can be as large as £15¢ and
are correlated with the filament position. Note that these
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Figure 7. PDF of the conventional Z-scores (blue), LPI Z-scores (green), and a unit normal distribution (red), for reference. Left panel: there is a clear leftward shift in
the conventional PDF, indicative of flux underestimation, which is not present in the LPI PDF. Thus, the major improvement of LPI photometry in the synthetic
crowded field is correcting bias in the background model. Right panel: the major improvement for the real observed field is correcting the reported flux uncertainty (to
be larger). This manifests as the LPI PDF being more peaked and closer to the normal distribution compared to the conventional PDF (which is too broad). In both
cases, the improved match between the green and red curves indicates the improved performance of LPI photometry.

conventional Z-scores use uncertainties assuming the covar-
iance matrix is diagonal, only accounting for the uncorrelated
Poisson noise. In contrast, the Z-scores that include the bias
offset we derive here and use error bars accounting for non-
diagonal covariance (green triangles) are flat across the filament
positions and are consistent with a standard normal distribu-
tion. In the third panel of Figure 6, we can see that the two bias
offsets defined in Equation (9) have approximately equal
contribution in this case.

One method of quantifying the normality of the Z-score
distribution is evaluating the cumulative distribution function
(CDF). However, when only a small fraction of the stars in the
population is affected, a large local improvement such as the
one shown in Figure 6 can appear as only a slight improvement
in the CDF. In fact, one of the most common ways of fixing
error bars in astronomy is to modify the error bars until the
CDF matches a normal distribution. The modifications include
adding an uncertainty floor, adding a fractional uncertainty
(generally ascribed to absolute calibration errors), or simply
rescaling the error bars by a scalar (Fitzpatrick & Massa 2009).
While these modifications improve the distribution of the entire
population, they ignore the detailed local environment of each
star, in contrast to LPI photometry. Further, all of those
previous distributional approaches will increase the uncertainty
estimates for emission or reflection (positive filament) more
than for extinction (negative filament).

In the fourth panel of Figure 6, we plot the predicted flux
uncertainty assuming the covariance matrix is diagonal (purple
circles) and using the full covariance matrix (including off-
diagonal contributions, green triangles). For the diagonal error
bars, there is a small peak for the positive filament and a small
dip for the negative filament, which follows the independent
Poisson pixel measurement noise. Thus, no method of rescaling
the diagonal error bars can symmetrically treat both the positive
and negative filament.

In contrast, the error bars derived from the full covariance
matrix peak over both the positive and negative filaments.
Away from the filaments on flat sky, the full error bars
approach the diagonal approximation, agreeing with the
intuition that away from coherent structure, the uncertainty is
dominated by the independent per-pixel measurement noise.
For stars on flat sky in between the filament, the covariance
matrix estimate is trained on the local region containing both

filaments. The predicted uncertainty then displays large off-
diagonal contributions. This is of course a limitation of the
local covariance model; it can be influenced by local structure,
even if that structure is not affecting the star of interest. This
limitation drives us to make the number of samples (the size of
the boxcar windows) as small as possible while maintaining
numerical stability for matrix inversion.

4.2. Toward the Crowded Field Limit

To probe behavior of LPI photometry in the crowded field
limit, we inject stars, all of the same flux (~18th g-band
magnitude), onto a flat sky background consistent with fields
from DECaPS2. We inject 25,000 sources at random integer
positions (excluding a buffer around the edge) into a single
2 x 4k pixel CCD image. This source density is 10x larger
than that required to have isolated PSF footprints (given the
59 x 59 pixel footprint used by crowdsource for stars of
this magnitude). We use only one magnitude of star (and with a
large signal-to-noise ratio (S/N)) to maximize the probability
of close sources being deblended.

Because there is a minimum separation below which two
sources cannot be deblended, there is a population of detections
that model two close stars as a single star with approximately
twice the flux. The larger residuals at the source location
resulting from this mismodeling are masked from the LPI
covariance matrix estimation, and no large perturbation of the
(good) k-pixels will indicate that a second star is acting as a
background to the other. In other words, LPI works only on
structured local backgrounds which are not entirely masked by
the star. Thus both conventional and LPI Z-score for such
sources are large and positive. To cleanly remove merged
detections, we exclude stars with separation less than 4/3
FWHM in the tests that follow (~6 pixels).

We display the PDF for sufficiently isolated detections in
Figure 7. The PDF for the LPI Z-scores is centered at ~0, while
the conventional Z-scores are left shifted. This reflects one of
the main biases in crowdsource; incompletely deblending
sources from the sky background leads to flux underestimation
(the left shift), especially in crowded fields.'® The PDFs having
the same width agrees with the intuition that there is little off-

1014 contrast, other algorithms such as DAOPHOT were found to be biased high
by this confusion noise (Ferrarese et al. 2000).
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diagonal contribution to the flux uncertainties in this synthetic
case. Thus, in this case, the main benefit of the LPI Z-scores is
to provide a better background estimation, correcting the
centering of the PDF.

To make a comparison with a real image, we use a crowded
field g-band image from DECaPS2 (see Section 5) with
~73,000 detected sources (Figure 7, right panel). We inject
10% more synthetic sources using the same PSF model
obtained by crowdsource for the original image, sampled
from the flux distribution of sources in the original image,
excluding sources below a minimum separation of 4/3 FWHM.
In this case, both the conventional and LPI PDFs are well
centered at ~0, but the conventional PDF has much larger tails.
Thus, the main benefit of the LPI Z-scores on this real field is
providing better uncertainty estimates. Compared to the
synthetic field, the real field contains more stars (73,000 >
25,000), but only a small fraction of them are 18th magnitude
or brighter (387) and we expect the leakage of flux from bright
sources to more significantly affect the sky estimation.
Therefore, both in the limit of poor sky estimation or correlated
residuals from mismodeling, the LPI Z-scores improve the
overall PDF in the case of crowded fields.

5. Validation on a Large Survey

We now turn to bias offsets and error bars computed on
astronomical images from the Dark Energy Camera (DECam)
as part of the release of the DECaPS2 (Saydjari et al. 2022).
Briefly, DECaPS2 imaged |b| < 10°, 5° > ¢ > —120° in grizY
filters, finding 34 billion detections (3.3 billion objects). We
use DECaPS2 to demonstrate that underestimated error bars
correlated with structure are present in most modern surveys of
fields with structured backgrounds, our method is robust to the
details of real data, and our method is scalable enough to run on
all 34 billion detections from one of the largest photometric
catalogs to date."’

5.1. CCD Level Processing

Within CLOUDCOVERR.JL, we also provide the specific
processing choices made to run the DECam images that
constitute DECaPS2. For each CCD in an exposure, we use the
InstCal products from the DECam community pipeline (CP),
which include the image, weight map, and data-quality mask.
Since this is an afterburner code, we also take as inputs the
crowdsource outputs for these images: the position and flux
of sources, the background, and background-sources model
images, and the position-dependent PSF model.

To create the initial mask for pixels that need infilling (see
procedure in Section 2.5), we use the flux of each source and a
static PSF model by evaluating the PSF at the center of the
CCD. Then, pixels around the stellar position are masked if the
fluxxPSF > thr, where thr is a chosen threshold. This
threshold was chosen to mask residuals in the core of bright
stars resulting from mismodeling. For crowdsource models
of DECaPS2 images, we found thr =20 ADU acceptable for
all bands and fixed this parameter for all exposures.

"1 DECaPS2 with 3.32 B sources is comparable in size to Pan-STARRSI1 with
2.9 B sources (Magnier et al. 2020), though DECaPS2 has fewer epochs and
thus fewer detections. The second data release of the NOAO source catalog
(NSC) (Nidever et al. 2021), which used SEXTRACTOR to uniformly reprocess
public data including all of DECaPS1 and DECaPS2, contains 3.9 B. The
Zwicky Transient Facility (Data Release 8) reports ~1.5 B objects (Masci
et al. 2019; T. Price 2022, private communication).
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In addition, any pixel with a nonzero data-quality bit from
the CP (cosmic-rays, bleed trails, satellite trails, etc.) were
masked. Finally, we masked pixels with residuals larger than
outthr =20,000 ADU that were previously unmasked.
These generally resulted from distorted PSFs near the edge of
CCDs that were not captured in the per-star masking (see
Appendix A). In the full DECaPS2 run, less than 1% of the
images had to use the infill fallback of the image median for
some subset of the pixels. After infilling, we add Poisson noise
to each pixel in the mask as in Equation (7), where the gain
used is that estimated from crowdsource as the median of
the weight mapx image.'?

To handle modeled sources near or beyond the edge, the
image is padded using reflective boundary conditions. Then the
image is multiplied with a shifted version of itself, averaged
with a boxcar mean (N3P = N$2™Ple — 129), and stored as in
Equation (6). For each source in the image, the covariance
matrix for an N, =33 subimage is then constructed out of
elements of those image products. The pixels in that subimage
are then classified as good (k-pixels), hidden (k,-pixels), or
ignored based on the PSF for a source at that location and the
flux. All pixels in the PSF above thr (same value as during
infill) are selected as hidden. If the star has flux <10,000 ADU,
it is masked as if the flux were 10,000 ADU in order to ensure
that the background behind every star is predicted.

Pixels masked by data-quality flags or outside a radius of 16
pixels that are not already hidden are ignored, and all
remaining pixels are selected as good. By making the choice of
N, = 33, we implicitly impose a cutoff on the brightest star we
can model well. For stars so bright that the whole N, subimage
is hidden, for example, there are no good pixels to use for the
conditional prediction. However, the absolute uncertainty on
flux calibration is usually the dominant term in the error budget
for bright stars. So if the number of good pixels is too small, we
compromise. The mask of all pixels beyond radius 16 is
removed and the row of pixels around the outer edge of the
subimage are forced to be good so there is at least a 1-pixel
deep boundary for conditioning. This fallback changes the
value of our quality flag dnt from 0 to 2.'* A table of dnt bit
values is available in Section 7.

The PSF models from crowdsource can occasionally
contain negative ]pixels, though usually only for non-photo-
metric exposures.'* To handle these cases gracefully, the min/
max ratio of the PSF is computed and if the PSF is negative, bit
3 of dnt is set. To quantify the negative portion of the PSF,
bits 4 and 5 are set if the ratio is < —1 x 10> and —1 x 10},
respectively. In all cases, the absolute value of the PSF is used
by CLOUDCOVERR.JL.

The last step before computing Equations (9) and (10) is
adjusting the per-pixel variance (the diagonal of the local
covariance matrix) to account for the Poisson noise from the
presence of the bright star. The local covariance matrix was
originally estimated only on pixels that were representative of
uncontaminated background and thus only have Poisson noise
on the order of the background sky counts. Thus we add the
background+sources model minus the background model to
the diagonal. Since covariance matrices must be symmetric

12 Random steps use exposure date-time seeds for reproducibility.

13 For heavily saturated stars, neither sky subtraction nor deblending
noticeably change the predicted flux.

14 Before any photometric cuts, these detections comprise less than 0.02% of
the total number of detections for DECaPS2.
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Table 1
CLOUDCOVERR.JL OUTPUT
Variable Description
deflux Flux uncertainty

dcflux_diag Diagonal flux uncertainty

cflux LPI corrected flux

fdb_res Bias offset from residuals

fdb_pred Bias offset from predicted background
cchi2 Good pixel x*

kcond0 Initial number of good pixels

kcond Number of good pixels

kpred Number of hidden pixels

dnt Quality flag on solution

positive semidefinite, we must never add a negative to the
diagonal during this procedure. However, negative PSF models
or sources modeled with negative flux can make this difference
negative in rare cases, so we add the absolute value.

As a final quality-assurance check, we compute the x> for
the good pixels given the local covariance matrix estimate. This
provides a self-consistency check on the quality of the local
covariance matrix estimate. Since the good pixels were used for
conditioning the prediction on the hidden pixels, assuming the
local covariance matrix was a decent model, large \* (relative
to the number of degrees of freedom) act as a red flag."” The
output catalog columns are described in Table 1. The number
of ignored pixels is obtained as lef kcond — kpred.

5.2. Nebulous Region

First we consider a r-band image of a highly structured H II
region (CED 116 near Lambda Centauri) in the survey
footprint (Figure 8). We then create many (2000) new images
by injecting synthetic sources using the PSF model derived
during the crowdsource fit of the image. Each injection
image consists of a number of synthetic sources that
corresponds to 10% of the number of sources originally found
so as to not significantly perturb the image. These sources are
also sampled from the distribution of fluxes in the original
solution to the image, excluding sources with bad flags set or
brighter than 17th magnitude in the g band. The injected
source-center positions are uniformly random, excluding
N, =33 pixels around the edge of the CCD. The injection
images are reprocessed by crowdsource as if they were
standard images so we can compute Z-scores for the
photometric solutions relative to the injected fluxes.

By plotting the residuals (Figure 9, top) and the original
Z-scores (Figure 9, middle), we visualize a clear spatial
correlation between the sign and magnitude of the Z-scores and
the residuals of the crowdsource models. These correlations
between structured backgrounds and biased photometry with
underestimated error bars significantly complicate large-scale
inference from photometry in the Galactic plane, such as for
efforts mapping the interstellar dust distribution (Green et al.
2019). After adding our flux bias offset and using the error bars
that include off-diagonal contributions, we obtain the bottom
panel of Figure 9 where there is no clear correlation of the
Z-scores with the residuals and the excessive population of

15 In Section 3.1, we observed that the Gaussian model need not be a good
representation of the overall population. Thus, we cannot expect these values to
follow a x* distribution exactly. However, values that are orders of magnitude
too high likely indicate numerical instability.
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Figure 8. Color image (RGB = zrg bands) of a larger region where Ha
emission complicates photometry. The square marked by four white corners
indicates the subimage used in Figure 9.

>+430 outliers has been removed. We take this as strong
evidence in support of using our post-processing code with
other/future photometric pipelines.

5.3. Correction Correlations

We also want to confirm that using the LPI bias offset does
not strongly affect regions without structured backgrounds.
Since we have already shown that LPI improves over the
conventional PDF (see Figure 7), we will examine the per-star
percent changes. This allows us to confirm that LPI is not
creating large flux errors in the process of debiasing. To do this
we use injection tests as in Section 5.2, with an additional
requirement that the dnt quality flag is zero.

The first panel of Figure 10 shows the per-star percent
change versus the percent error in a field of typical stellar
density (~14,000 sources) without structured background.'®
The maximum percent change is 20% due to the bias offset. If
the bias introduced by structured backgrounds were the main
source of error, we would expect the per-star corrections to
cluster along the 1:1 line (black dashed). However, the
distribution appears flat and parallel to the x-axis. This agrees
with the intuition that in uncrowded regions, errors from
structured backgrounds are subdominant (to deblending errors
for example).

In the second panel, we compare to a crowded field
(~195,000 sources). The scatter introduced by the bias offset
is larger, up to 50% in the most extreme cases, but the majority
of stars are clustered near the origin. Only a slight positive
trend is observed and might be attributed to the larger residuals
in crowded fields. Finally, in a nebulous field (specifically the g
band shown in the top panel of Figure 9), we see a strong
positive correlation between the correction factors and the
conventional percent differences, as expected. Thus, we correct

16 The classification of a region as having a structured background is
somewhat subjective. In the context of DECaPS, this is automated using a
neural network to flag regions as nebulous or not. (Schlafly et al. 2018).



THE ASTROPHYSICAL JOURNAL, 933:155 (19pp), 2022 July 10

T T T T

| o N B o))
N o o o
o

Residuals (ADU)

|
IS
o

|
o)
o

T T
o N

&
Conventional Z-Score

o
LPI Z-Score

-4

Figure 9. Top panel: residuals from crowdsource model of the central r-
band region of Figure 8. Middle panel: Z-scores for injected sources as a
function of position for the image above. Clear spatial correlation between the
sign and magnitude of the Z-scores and residuals is observed (correlation
between top and middle panels). Bottom panel: after LPI, the large population
of |Z-scores| larger than 3 are removed (the scatter points are whiter) and little
spatial correlation is observed.
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for bias resulting from structured background when present, but
do not introduce bias into the catalog on either flat or crowded
regions.

Another metric to examine is the following ratio:

( s )/a(f—f].
dcflux dcflux

If the numerator is small, then the change in flux from the
bias offsets is small relative to estimated uncertainty. We
compare to the standard deviation of Z-scores to account for the
fact that the distributions of uncorrected flux estimates for the
three cases in Figure 10 have different widths. For the
uncrowded, crowded, and nebulous regions, this metric is
0.23, 0.76, and 0.95, respectively. In the uncrowded field, this
further demonstrates that the bias offsets do not significantly
change the flux estimates relative to the flux uncertainties. And
in the nebulous field, the bias offsets are large, as expected.

(1)

5.4. Full Survey Footprint

Zooming out, we evaluate the performance of the LPI error
bars on the entire survey footprint (2700 deg®, 6.5% of the
sky). In the ideal case, we expect the Z-scores to be normally
distributed when the uncertainties are correctly estimated.
However, biases and failure modes in photometric pipelines
introduce outliers. We measure the interquartile range (IQR),
which is robust to outliers, for both the conventional and LPI
Z-scores and compare this to the ideal value for a Gaussian
distribution of 1.349. Then, we report by what scalar the error
bars must be multiplied to achieve the IQR of a normal
distribution, shown in Figure 11 (NSIDE = 32). To do this, we
use the injection tests (with the same criterion as before) and
only analyze Healpix pixels with >30 stars.

In the conventional case, the rescaling required is over a factor
of 5 toward the Galactic bulge. In contrast, the rescaling for the
LPI error bars is only a factor of 2 toward the Galactic bulge.
Comparing the median rescaling factors, we have 1.17 and 1.02
for the conventional and LPI error bars, respectively. To have a
correct central value for the rescaling (1.0), there must be (and
are) cases where the rescaling is less than 1. So the ideal case for
Figure 11 is on average white with small red and blue
fluctuations, as is seen for the majority of the LPI panel.
Deviations from ideality toward the Galactic bulge likely result
from the large masking fraction in this region of high stellar
density, which impedes estimation of the residual covariance.

While it may be tempting to simply rescale the conventional
estimates and then avoid the computational cost associated with
LPI, a simple rescaling of error bars will never be able to
remove the spatial correlations shown in Figure 9. Just as in the
conventional case, these rescalings indicate a gap between the
model complexity and reality that requires further method
development to close. In the meantime, we leave it to users to
decide whether to rescale the LPI uncertainty estimates.

We can evaluate relative metrics, such as the ratio between
the stated flux uncertainty from LPI and crowdsource, with
higher angular resolution (Figure 12, NSIDE =512)."” The

17 We report an outlier-clipped mean value of the ratio for stars within each
Healpix pixel. The outliers are beyond 10" IQR/1.349 and are computed per
CCD. In addition to requiring dnt = 0, we impose cchi2/kcond >0.7 from
the CLOUDCOVERR.JL flags. We also require no bad flags (which removes
detections on CCD S7), rchi2 <100, and fracflux >0.5 on the
crowdsource outputs.
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Figure 10. The ratio of f* over true flux vs. the fractional error in flux estimation for injected sources using crowdsource. The colored contours represent density
for the 2D histogram, and sources beyond the lowest contour are shown as scatter points. Sources that fall along the 1:1 line (black dashed) are correctly debiased by
LPI, points that fall along the y = 0 line are misestimated by crowdsource and not corrected, and points that fall along the x = 0 line are incorrectly modified by
LPIL Left panel: almost no correlation is observed for typical uncrowded fields and no outliers are introduced by the debiasing. Middle panel: for crowded regions, a
slight correlation is observed and, while there is larger scatter, no outliers are introduced by debiasing. Right panel: for the nebulous region, there is a strong positive
correlation (contours follow the 1:1 line), showing that the LPI analysis improves the flux estimate.

main feature is a large (relative) increase in the LPI error bars
toward the Galactic bulge. This correlation with stellar density
is consistent with intuition developed for the crowded-field test
case (Figure 7). In addition, the peak associated with the Carina
Nebula (b= —0.8°, /= —73°) and filaments associated with
the Vela supernova remnant (b = —2.8°, { = —96°) shows that
the LPI errors are sensitive to structured backgrounds as
intended. More detailed analysis of these and other metrics
over the survey footprint will be part of the DECaPS2 release
(Saydjari et al. 2022).

6. Conclusion

In this work, we have derived a correction to both the
estimated flux and flux uncertainties by using LPI to estimate
the background behind a star. We showed that these corrections
improve photometry on synthetic and real fields with structured
backgrounds. In particular, we applied our method to all 34
billion detections in the DECaPS2 survey, demonstrating
scalability and improvement across the entire survey footprint.
In contrast to the commonly used method of rescaling error
bars to obtain the expected chi-square, we showed that LPI
adjusts uncertainty estimates according to the local background
covariance, and correctly treats both positive and negative
residuals. In the crowded limit, we found both improved
estimation of contamination of the sky background by
unmodeled stellar flux and uncertainty estimates from large
residuals. We showed that LPI reduces to a conventional
uncertainty (diagonal covariance) on fields without structured
backgrounds, allowing for uniform processing of an entire
photometric catalog. In addition, we point out that LPI applies
to a broader class of images beyond Gaussian fields, even
capturing highly non-Gaussian structures such as isolated
filaments and clouds. We demonstrate this both analytically
and numerically on a real dust image. Finally, we release our
code base, which is a pure afterburner to any photometric code
that outputs residual images and a PSF model. Thus,
we suggest that this method can be easily used to create
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value-added photometric catalogs for existing and future
surveys in the Galactic plane.

While we restricted this work to point sources, the same
technique should be extensible to correcting estimates of the
flux from more extended sources, such as galaxies. In that case,
the shape function for the extended source (i.e., the PSF-
convolved Sérsic profile for a galaxy) takes the role of the PSF
in the above discussion. Future directions include demonstrat-
ing that these corrections improve downstream inference, e.g.,
Bayesian fitting of photometry to jointly predict intrinsic stellar
parameters (temperature, age, etc.) and foreground dust
densities as a result of reddening. We expect that the improved
flux uncertainties should expand the set of well-modeled
sources. This is especially important for dust mapping in the
Galactic plane, where there is significant extinction, and the
stars in fields with structured backgrounds are precisely those
most constraining for the dust clouds and filaments of interest.

7. Code and Data Availability

Data products and JUPYTER notebooks required to reproduce
figures within the paper are publicly available on Zenodo at
doi:10.5281/zenodo0.5809521 (11.0 GB). We make the code
base used here publicly available on GitHub CloudCovErr.jl'®
and used v0.9.0 for this work. The data products associated
with the full DECaPS2 run will be described in more detail and
accompany the survey release paper.

A.S. gratefully acknowledges support by a National Science
Foundation Graduate Research Fellowship (DGE-1745303).
D.F. acknowledges support by NSF grant AST-1614941,
“Exploring the Galaxy: 3-Dimensional Structure and Stellar
Streams.” This work was supported by the National Science
Foundation under Cooperative Agreement PHY-2019786 (The
NSF AI Institute for Artificial Intelligence and Fundamental
Interactions). We would like to thank Edward Schlafly and
Lucas Janson for feedback during the development of this

18 https://github.com/andrew-saydjari/CloudCovErr.jl
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Figure 11. Factor by which the estimated flux uncertainty is too small for
conventional (left panel) and LPI photometry (right panel). In the ideal case,
this factor would be 1 (white) everywhere. The multiplicative factor is
computed as IQR/1.34896 for the Z-scores of injected sources, where the
denominator is the IQR for the standard normal distribution. The map is over
the survey footprint of DECaPS2 (34B detections) at NSIDE = 32. LPI
photometry is a clear improvement, though correction toward the Galactic
bulge is imperfect.
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Figure 12. Ratio of uncertainty estimates for LPI relative to conventional
photometry over the full survey footprint of DECaPS2 (34B detections). A
value of 1 indicates LPI and conventional photometry agree on the uncertainty
estimate. Features associated with the Galactic bulge, Carina Nebula
(b= —0.8°, {=—73°), and Vela supernova remnant (b = —2.8°, { = —96°)
stand out.
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Optical Astronomy Observatory), the University of Notting-
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Software: GNU Parallel (Tange 2021), ASTROPY (Astropy
Collaboration et al. 2013), H5PY (Collette 2013), IPYTHON
(Perez & Granger 2007), MATPLOTLIB (Hunter 2007), NUMPY
(van der Walt et al. 2011), SCIPY (Virtanen et al. 2020).

Appendix A
Computational Details

In our LPI photometry implementation (see Section 7), for a
field of average stellar density in DECaPS (~10,000 sources/8
megapixels) the majority of the computational time is split
evenly between element-wise image multiplication (Hadamard
products) and per-star Cholesky decomposition. We choose to
construct the local covariance matrix from elements of the
boxcar mean of the initial image multiplied by a shifted version
of that image (Equation (6)). For 2D, this costs ~4Np2NXNy
FLOPs in contrast to constructing V' via matrix multiplication
per star which is ~2N,: N ;,‘ N, SampleN;.ample. Here N, and N,, are

the size of the original image and NP and NP are the
size of the boxcar window in each direction. )

There can be significant memory requirements to holding
those image products in storage for use in the per-star
covariance matrix construction. The alternative consists of
grabbing the needed elements of the product images for every
star at each shift, and throwing away the product image.
However, this alternative procedure requires highly variable
amounts of memory that is strongly dependent on the number
of stars in the exposure. We believe in the context of large
survey pipelines, stable memory requirements are highly
desirable as they maximize the CPU utilization.
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In order to not store ~2N§1\§N’V Float32s during the
processing of each CCD, ~70 GB for DECam with N, = 33 as
in Section 5, we break each image into tiles and process each
tile and the stars within it separately. Doing so incurs an
overhead cost since we have to include some padding beyond
the furthest stellar position in a given tile. This tiling procedure
allowed us to run the full DECaPS2 survey with 3.6-4.8 GB
per exposure (median 3.7 GB) in 203 k core hours. The jobs
were run on the FASRC Cannon cluster at Harvard University
on an entire compute node with two water-cooled Intel 24-core
Platinum 8268 Cascade Lake CPUs and 192 GB RAM running
64 bit CentOS 7. The runtime versus number of stars for the
DECaPS2 run demonstrates high linearity with respect to the
number of stars per exposure—approximately 15.3 core-ms/
star in addition to a constant per exposure (~62 CCDs) of 3.4
core-h (see Saydjari et al. (2022), for more details).

The major failure mode for the code presented in this work
occurs when numerical effects cause the estimated covariance
matrix to not be positive definite, which must be true
theoretically for any covariance matrix (and prevents Cholesky
factorization). The main sources of instability we find are
unmasked bright pixels which are not well captured by the
crowdsource model. These outliers prevent a positive
definite estimate of the covariance matrix and should be
masked anyway as they do not represent the true background.

In DECaPS2, we reduced outthr to 5000 and reran the
980 CCDs (out of 1.32 million CCDs), which contained stars
without positive definite covariance estimates.'® Most of these
resulted from bright stars not fully masked by our procedure
because CROWDSOURCE modeled them as multiple fainter
sources. Afterward, only nine CCDs in the whole survey
contain stars with nonpositive definite covariance estimates,
and the majority of those result from large pupil ghost artifacts.
In these cases where the source and sky model coming from
crowdsource and the mask from the DECam NOAO
community pipeline are all wrong, we simply leave all
CLOUDCOVERRJL outputs as NaN as a warning to users.
Using Float 64 instead of Float32 (as we have done in all
presented results) does enhance the numerical stability, but at
too large a computational and memory cost.

Looking toward other large survey applications targeting the
Galactic plane, such as Rubin and Roman, we comment that the
code provided in Section 7 is not fully optimized. In several
places, memory is re-allocated (which is inefficient) or the
minimum memory footprint could be reduced by restructuring
the code. Thus, the benchmarks above are not meant to
demonstrate the optimality of the code, merely that estimating a
covariance matrix and Cholesky factorizing it for 34 billion
detections can be done faster than the original photometric
solutions in crowded fields. For instance, the crowdsource
solutions for DECaPS2 required 230k core hours (13.1
kpix sfl). Of course, a GPU-based implementation could see
significant speedups on the limiting steps of element-wise
image  multiplication = and  Cholesky  factorization
(Naumov 2021), but large surveys will have to weigh the
relative cost of GPU/CPU resources to the relative speedups.

19 Most of these cases were resolved during the reprocessing of DECaPS2
after rerunning the CP on images with saturation thresholds that were set too
low (Saydjari et al. 2022).
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Appendix B
Role of S/N and Aspect Ratio

It is important to understand how the quality of the LPI of
the filament is a function of the S/N of the data, local
environment used to estimate the covariance matrix, and
number of training samples. To do this, we mask and
interpolate 34 equally spaced positions centered along a
synthetic filament with a masking radius of 5 pixels and
N, = 33. We report the average of the row of (11) pixels along
the filament spine, pooling over all 34 reconstructions, as a
fraction of the true filament height (Figure 13).

For what we call a sample aspect ratio (log,) of 0, we learn
the covariance matrix over a symmetric region, using a boxcar
width of 129 pixels in both the x and y directions
(N;amp]eN;‘"’“ple = 2'%) and obtain a reconstruction of >80%
of the true peak value at an S/N ~1.4. Here S/N is simply the
peak height divided by the Poisson uncertainty for the total
(peak and background) counts. As S/N increases, the predicted
peak height converges to the true value, further validating the
application of the LPI method to non-Gaussian structures. In
the low S/N limit (S/N ~ 0.1), the noise dominates the
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reconstruction and there is only a small positive bias due to the
filament, as expected.

Instead of using a symmetric sampling of the x and y
directions, we can consider more samples along the filament
direction (positive sample aspect ratio) or transverse to the
filament direction (negative sample aspect ratio). This amounts
to using a boxcar width of (255, 65) for sample aspect ratio 2,
given the filament along the x direction. The reconstruction
converges more quickly the more samples are along the
filament direction as opposed to the transverse direction. This is
consistent with the intuition that in order to reconstruct
the filament, the conditioning must overcome a large bias
in the model for a flat background when a large fraction of
the training sample is flat (as it is in the transverse direction
relative to the filament). For numerical stability we must
truncate the aspect ratios in the positive direction before there
are < 2N, transverse samples because the image is translation-
ally invariant (other than Poisson noise) along the filament
direction. Increasing the overall number of samples (circle
markers, Figure 13) improves numerical stability, but the main
effect on convergence is the additional samples transverse to
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Figure 13. Convergence of the predicted filament height as a function of S/N. For S/N > 1, a large fraction of the filament height is reconstructed. To the right along
the horizontal axis, the fraction of samples (used for estimating the covariance matrix) along the filament increases. The total number of samples is fixed to either 2'*
(open triangle) or 2'¢ (closed circle) by changing the total area of the boxcar window. The main effect on convergence of increasing sample size is the additional
samples transverse to the filament, causing an apparent shift of 42 along the aspect ratio axis with respect to the triangle markers. The ability of LPI to reconstruct the
peak height thus agrees with the intuition that the more training data resembles the problem, the better the performance.
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the filament (an apparent shift of +2 along the aspect ratio axis
with respect to the triangle markers). In both cases, the ability
of LPI to reconstruct the peak height agrees with the intuition
that the more training data resembles the problem, the better the
performance.

Appendix C
Pixel Space Linear Least-squares Notation

To reformulate our discussion in the language of a linear
least-squares regression in pixel space, we view the good pixels
(k) as the regressors for the value of the hidden pixels (k,), the
dependent variables. Let X and Y be matrices of the regressors
and dependent variables, respectively, where each row
represents a different sample (obtained by pixel shifts over
the local region) out of a total of N samples. In what follows,
we will ignore centering of the data for clarity. Then, the
predicted linear parameters are given as usual,

B=XTX)"'XxTy. (C1)
The prediction of the hidden pixels (¥) given the observed good
pixels for a given stamp (xo) is then

9= B"x = YTX(XTX) xo. (C2)
The covariance of this prediction is just
Bl(y - B0 — B0
= Nl I(YTY— YIX(XTX)"'XTY), (C3)

where the expectation value is estimated over the N samples.
Then the correspondence to the Gaussian process regression
notation used in the main text is clear after identifying xo = X},
¥ = X (k,|k), and partitioning V into k and k, sub-blocks so that

Wwe can see
1 1 T
N -1 N-—1|YT
T T C C
_ 1 [XX X Y]: ek Gk [ (C4)
N-1|lY"X YTy Cix Crox,

Center Pixel Covariance

Mean Covariance
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Appendix D
Approximate Stationarity of LPI Covariance

To show the approximate stationarity of the covariance
matrix estimated in LPI, we consider the reconstruction of a
portion of the WISE 12 pm dust map (Section 3.2). This test
represents an extreme in heterogeneity of the local background
used for estimating the local covariance matrix. In Figure 14
(left panel) we show the covariance of the central pixel with all
other pixels in the 49 x 49 pixel subimage. In Figure 14
(middle panel), we show the mean value of the covariance as a
function of pixel displacement for all pairs of pixels in the
subimage. Note that the central pixel covariance strongly
resembles the mean covariance as a function of displacement,
though there are some small distortions. More quantitatively, in
Figure 14 (right panel) we show the standard deviation of the
covariance between pixel pairs with the same displacement
normalized by the median value of the diagonal (pixel-wise
variance). This demonstrates that the covariance function is
stationary at the ~10% level outside the core, and ~25% level
in the core.

The mean covariance as a function of displacement is highly
anisotropic, agreeing with our intuition that anisotropy is
required to handle filamentary structures. A more rigorous
justification of stationarity could use a covariance matrix based
only on the mean covariance as a function of displacement to
perform the reconstructions as in Figure 4 and determine if
there is any measurable difference in the reconstructions
compared to our LPI procedure. Further, except for low
amplitude structure near the edges of Figure 14 (middle panel),
the covariance function appears to decrease rapidly as a
function of radius. This suggests that the covariance function
might be well approximated by a function such that the
covariance matrix is positive definite when sampled at an
arbitrary points (Bochner’s theorem). Whether or not exact
stationarity can be enforced or a well-behaved kernel function
approximation found while maintaining sufficient flexibility to
describe the diversity of structure in the ISM remains an
exciting question for future work.

In Figure 15 we show a small sample of the diversity in
covariance structure obtained in different regions of the
DECaPS2 survey footprint (all r-band images): a nebulous
region (left column), a dense field in the Galactic bulge (center
column), and a low density field at high Galactic latitude (right

120
L 100
L 80

60

Std. Dev./Median Diagonal

120

100

80

60

40

20

Figure 14. Covariance function for reconstruction of a portion of the WISE 12 ym dust map. Left panel: covariance of the central pixel with all other pixels in the
49 x 49 pixel subimage. Middle panel: mean value of the covariance as a function of pixel displacement for all pairs of pixels in the subimage. Right panel: standard
deviation of the covariance between pixel pairs with the same displacement normalized by the median value of the diagonal (pixel-wise variance). This demonstrates
that the LPI covariance function is stationary at the ~10% level outside the core, and ~25% level in the core.
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Figure 15. Diversity in covariance structure obtained in different regions of the DECaPS2 survey footprint (all -band images): a nebulous region (left column), a
dense field in the Galactic bulge (center column), and a low density field at high Galactic latitude (right column). In the top row, the raw image of the star and
surrounding field are shown. Each image is stretched 50 around its median. In the center row, we display the crowdsource residuals after infilling masked pixels
as described in Section 2.5. The image spatial scale is chosen to include all training data used to estimate the local covariance matrix of the unmodeled background
structure. In the bottom row, we display the mean stationary approximation (as in Figure 14, middle panel) to the covariance of the residuals used in our LPI

procedure.

column). In the top row, the raw image of the star and
surrounding field are shown. Each image is stretched +50
around its median. In the center row, we display the
crowdsource residuals after infilling masked pixels as
described in Section 2.5. The image spatial scale is chosen to
include all training data used to estimate the local covariance
matrix of the unmodeled background structure. In the bottom
row, we display the mean stationary approximation (as in
Figure 14, middle panel) to the covariance of the residuals used
in our LPI procedure.

For the nebulous region, the long-range correlations are
comparable to the pixel-wise noise (magnitude of the central
pixel) and are notably anisotropic. In the Galactic bulge, the
pixel-wise noise is more dominant than long-range correlations.
However, as evidenced by Figure 12, our covariance estimate
in the bulge is imperfect. This is in part because our masking
fraction in regions of high density is so large. Uncertainty due

18

to residuals from mismodeling neighboring stars (which are
currently masked to access the covariance of the background) is
likely important in this limit and incorporating this uncertainty
into the covariance estimate is a route for future work. At high
Galactic latitudes, the uncertainty is dominated by the pixel-
wise uncertainty, as expected and as shown in Figure 6. While
we have focused on the r band, the covariance functions for
other bands are similar. The covariance function for the same
region, but in different bands may differ as a result of varying
S/N, seeing, artifacts from diffraction spikes, or the difference
in backgrounds visible at those wavelengths.
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