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Classification Logit Two-Sample Testing by Neural
Networks for Differentiating Near

Manifold Densities
Xiuyuan Cheng and Alexander Cloninger

Abstract— The recent success of generative adversarial net-
works and variational learning suggests that training a clas-
sification network may work well in addressing the classical
two-sample problem, which asks to differentiate two densities
given finite samples from each one. Network-based methods
have the computational advantage that the algorithm scales to
large datasets. This paper considers using the classification logit
function, which is provided by a trained classification neural
network and evaluated on the testing set split of the two datasets,
to compute a two-sample statistic. To analyze the approximation
and estimation error of the logit function to differentiate near-
manifold densities, we introduce a new result of near-manifold
integral approximation by neural networks. We then show that
the logit function provably differentiates two sub-exponential
densities given that the network is sufficiently parametrized, and
for on or near manifold densities, the needed network complexity
is reduced to only scale with the intrinsic dimensionality. In exper-
iments, the network logit test demonstrates better performance
than previous network-based tests using classification accuracy,
and also compares favorably to certain kernel maximum mean
discrepancy tests on synthetic datasets and hand-written digit
datasets.

Index Terms— Neural network two-sample test, neural network
approximation theory, maximum mean discrepancy, manifold
data analysis.

I. INTRODUCTION

THE powerful expressiveness of neural networks and the
recent progress in neural network optimization suggest

the natural idea of using a network for the comparison of two
unknown distributions p and q from finitely observed data sam-
ples, a problem known as two-sample testing in statistics [1].
As a central problem in statistics, two-sample testing is widely
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encountered in general data analysis of biomedical data,
audio and imaging data, etc. [2]–[6], and particularly, in the
machine learning application of training and evaluating gen-
erative models [7]–[16]. Many existing two-sample tests for
multivariate data are based on certain estimators of a distance
or divergence between p and q. Important examples include
Maximum Mean Discrepancy (MMD), especially kernel-based
MMD [17], [18] and distance of Reproducing Kernel Hilbert
Space (RKHS) Mean Embedding [3], [4], and divergence
based methods which may involve non-parametric estimation
of density difference or density ratio [19]–[22]. While these
methods have been intensively studied and theoretically well-
understood, their application is often restricted to data with
small dimensionality and/or small sample size due to model
and computational limitations. More background information
on two-sample tests can be found in Section I-B.

The idea of training a classifier to solve two-sample prob-
lem dates back to earlier statistical works, and was recently
revisited in the machine learning literature [5]. Notably, the
training of discriminator in generative adversarial networks
(GAN) [9]–[11] is also to solve a two-sample problem: in
the training of GAN, in each iteration a discriminator net-
work (D-net) is trained to distinguish the density q produced
by a generative network from the data density p which is
only accessible via observed samples, that is, a two-sample
problem. (Strictly speaking, the task of D-net is a goodness-
of-fit problem as the model density q is analytically given
[14]–[16]. The scenario of two-sample is also important since
batch sampling is commonly used in training GAN and other
generative networks.) The success of GAN and adversarial
training in many applications suggests that training a neural
network potentially provides a powerful tool to solve the two-
sample problem, for various applications in machine learning
and data analysis.

The current paper proposes classification logit two-sample
test, a general method for two-sample problems based on train-
ing a classification neural network. The proposed test statistic
is the log ratio of the class probabilities averaged over samples,
which can be computed once a classifier network is trained.
The theoretical results cover neural network approximation
and estimation analysis, which we summarize in Section I-A.
In our analysis, an important setting is when high dimensional
data exhibit intrinsically low-dimensional structures, which
is a scenario frequently encountered in generative models as
well as other applications. Take GAN as an example: because
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Fig. 1. Roadmap of analysis, illustrating the different functions f∗, ftar, f̂gl, f̂tr and fcon, (the last three lying in the network function family FΘ). The goal
of analysis is to bound L[ftar] − L[f̂tr] to be less than some Lgap, see (30) and (31), which is proved in Theorem IV.6(1).

a GAN traditionally maps from a low dimensional latent space
to a higher dimensional data space where q is defined, the
resulting model density q is concentrated on or near a low-
dimensional manifold in the ambient space. This means it is
critical that the analysis of the D-net focuses on this manifold
or near manifold setting.

From an approximation theoretic perspective, recent work
has shown that the D-net does not have to scale with the num-
ber of points in order to bound the generalization error [23],
or for constructing GANs [24]. Other important directions
in this line include studying the effects of depth of the net-
work [25], [26], and showing that the space of fixed size net-
works is not closed under Lp norm [27]. While neural network
approximation of functions on low-dimensional manifolds has
been studied [28], [29], and the needed network complexity
is reduced to be intrinsic, these works have not considered
high dimensional data that are lying near low-dimensional
manifolds. Finally, generative networks that explicitly model
the low-dimensional manifold in the latent space have been
studied for data lying on low-dimensional manifolds [30], [31].

A critical aspect of considering neural networks in a sta-
tistical context with finitely many observed samples is that
the family of networks cannot be so large that overfitting
becomes a concern. This means that the family networks
constructed in any approximation theory argument must have
bounded estimation error even as the approximation error goes
to 0. This is violated if we allow for arbitrary growth of
the network architecture without some additional assumption,
and the traditional construction using local polynomial expan-
sions [23]–[25] does not automatically satisfy this requirement.
This motivates the use of a wavelet type argument [28], and
one of the key results in this paper (Theorem III.2) that
establishes an upper bound on the Lipschitz constants of the
constructed networks independent of the architecture of the
network. We review and discuss all these connections in more
detail in Section I-C.

A. Main Results

The main results and contributions of the current paper are
summarized as below:

• We introduce a neural network-based two-sample test
statistic using classification logit function. The algorithm

inherits the scalable computational efficiency of neural
networks. Numerical experiments show that the proposed
test compares favorably to kernel MMD tests and earlier
neural network test based on classification accuracy,
on both synthetic manifold data and hand-written digits
datasets.

• Theoretical guarantee of testing power is proved
(c.f. Theorem IV.6) for sub-exponential densities p and
q in R

D , and the needed network complexity is reduced
to be intrinsic when p and q lie on or near to a low-
dimensional manifold embedded in R

D even when D
is high. The way of proving Theorem IV.6 consists of
a combination of approximation and estimation error
analysis, under an assumption on small optimization
error, which bounds L[f̂tr] − L[f∗] to be sufficiently
small and consequently obtains a strictly positive L[f̂tr].
A roadmap of analysis is provided in Section II-D and
Figure 1.

• We prove a result of near-manifold integral approximation
(c.f. Theorem III.1), namely approximating the integral of
some regular function f with respect to a density p, which
concentrates near a low-dimensional manifoldM, by the
integral of fcon, where fcon is constructed by a neural
network to approximate f on the manifoldM only. A key
step in the analysis is to show that as we make the neural
network approximation error ‖f − fcon‖∞,M approach
zero by enlarging the network complexity, the Lipschitz
constant of fcon in R

D can be made uniformly bounded,
and the bound depends on M and f only. This result
(c.f. Theorem III.2) extends the earlier result in [28], and
can be of independent interest.

The needed theoretical assumptions for proving test power
guarantee are given in Section II-D. The softmax classification
loss corresponds to the Jensen-Shannon divergence (JSD)
between two densities, which belongs to a general class of
f -divergences. Thus our method and techniques may extend
to a broad class of classification networks [11]. Since JSD
is a prototypical case of f -divergence, we focus on softmax
classifier network in this paper. We discuss future directions
in the Section VI.

Notation: We provide a list of default notations in Table I.
In particular, fcon is named as fN in Theorem III.2 and
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TABLE I

LIST OF DEFINITIONS AND NOTATIONS

its proof. Throughout the paper, for integrals we may use the
abbreviated notation

∫
f to represent

∫
f(x)dx. For a set A,

|A| stands for the cardinal number of A. For the asymptotic
notations, big-O O(·): we write f = O(g) if there is C > 0
such that |f | ≤ C|g| in the limit; Tilde ∼: we write f ∼ g for
f , g ≥ 0 if there are C1, C2 > 0 such that C1g ≤ f ≤ C2g in
the limit (note that ∼ also denotes “distributed as” for random
variable, when there is no confusion); We use Õ(·) to stand
for O(·) multiplied by another factor involving a log, to be
defined specifically in the context.

B. Background: Two-Sample Problem and Test Statistic
We introduce certain terminologies from statistical literature

about the two-sample problem. Formally, the two-sample
problem asks to test the null hypothesis H0 : p = q given
datasets

X = {xi}nX
i=1, xi ∼ p i.i.d., Y = {yj}nY

j=1, yj ∼ q i.i.d.,

and X independent from Y . It is also of application interest
to provide indication of where q differs from p. Similarly,
K-sample problem can be considered where K > 2, namely
to differentiate distributions among K data sets. We focus
on the two-sample problem in the paper, and the neural
network classifier method extends to the K > 2 situations.
Throughout the paper, we assume that the distributions have
density functions, and use p and q to stand for both the
distribution and the density function.

Most two-sample testing method is based upon a test
statistic

T̂ = T̂ (X,Y ),

which is computed from the two datasets, and a test thresh-
old τ . The null hypothesis H0 is rejected if T̂ > τ . To control
the false discovery under the null, the threshold τ is usually
set to the smallest value s.t. Pr[T̂ > τ |H0] ≤ α, where
α ∈ (0, 1) is a pre-specified number called the significance
level of the test (typically α = 0.05). Algorithm-wise, τ
is given either by theory (the probabilistic distribution of T̂
under H0) or computed from data. Specifically, permutation
test is a standard procedure to determine τ by a bootstrap
approach [32], [33], and was used in kernel MMD tests [18].
For a given test, the test power is measured by Pr[T̂ > τ |H1],
namely the probability of true discovery when p and q indeed
differ. The test is called asymptotically consistent if the test
power → 1 as the number of samples nX , nY → ∞ and
usually the ratio nX/nY → a nonzero constant.

C. Related Works

1) Classification and Two-Sample Testing: The relations
between two-sample testing, divergence estimation and binary
classification has been pointed out earlier in [19], [34], [35].
[36] studied Fisher LDA classifier used for testing mean shift
of Gaussian distributions. Discriminative approach has also
been used to detect and correct covariant shifts [37], [38].
Training classifier provides an estimator of density ratio, as has
been pointed out in [39] and in the formulation of learning gen-
erative models [40]. While distribution divergence estimation
has been studied and used for two-sample problems [20]–[22],
the use of neural network as a divergence estimator for two-
sample testing was less investigated. In terms of theoretical
guarantee of test power, the analysis in [5] assumes a non-
zero population test statistic when p 	= q but the expression
is not specified, along with other approximations. Theoretical
analysis of neural network two-sample testing power remains
limited.

2) MMD and Kernel MMD Tests: MMD, also known as
Integral Probability Metric (IPM), encloses a wide class of
two-sample statistics such as Kolmogorov-Smirnov statis-
tic, Wasserstein metric, etc. Particularly, kernel-based MMD
[17], [18] has been widely applied due to its non-parametric
form, and recently in training moment matching networks
[7], [8] and evaluating generative models [13]. The population
test statistic of MMD test takes the general form as

D(p, q) = sup
f∈F

∫
f(p− q), (1)

where F is certain restricted family of functions. In kernel
MMD, F is the L2-unit ball in the RKHS. To optimize
kernel choice, [18] considers selecting kernel bandwidth from
data, [6] studies anisotropic kernels. Optimizations of kernel
through convex combination of multiple kernels [41], adapting
reference locations in the Mean Embedding test [4], and neural
network parametrization [42] have been introduced which
maximize estimated testing power. The combination of neural
network feature learning and kernel MMD has been studied
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in [8], where the training is typically more costly than that
of a classifier network. Compared to kernel methods, neural
networks are often algorithmically more scalable, and the
current paper studies the theoretical guarantee of testing power,
and compares performance in practice.

The proposed network logit test in this work is not an
MMD test, because the training objective is an (empirical)
f -divergence rather than an IPM. However, the test statistic
resembles the form of MMD test statistic, which is evalu-
ated at the supremum f in F . We discuss the connection
in Section II-B, and compare with kernel MMD tests in
experiments.

3) Relation to Goodness-of-Fit Test and GAN: The
goodness-of-fit problem differs from the two-sample problem
in that one of the two densities is analytically accessible.
Using the explicit formula of q, methods based on kernel Stein
discrepancy have been developed in [14]–[16] and applied
to generative model evaluation. However, the computation of
the score function ∇ log q may be difficult for certain genera-
tive models, including many generative networks. Meanwhile,
in many generative models including GAN the goodness-of-
fit is evaluated by batch sampling, i.e. the two-sample setting:
Kernel MMD is used in [7], [8]; GAN, Wasserstein GAN [10]
and f -GAN [11] estimate density divergence by a trained
network (the D-net). Since the success of GAN training relies
on the discriminative power of the D-net, the efficiency of
using a neural network for the two-sample test is important
for the training and evaluating of such models.

4) Neural Network Approximation Theory: The expressive-
ness of neural networks and their ability to approximate
functions to error � considers the minimum architecture needed
to approximate a family of functions, independent of whether
an optimization scheme converges to the proposed constructed
network. The number of parameters needed in a network to
bound the point-wise error by � is known to scale as �−D/r

where D is dimension of the space and r is the smoothness of
the target function [25], [43], [44]. It has also been established
that if the function is in a Korobov-2 space (i.e., smooth mixed
derivatives up to order ∂2

x1
. . . ∂2

xD
f ), then the complexity

can be reduced to �−1/2| log(�)|3D/2 [45]. Similarly, when
the data lies on a lower dimensional manifold of dimension
d < D, the complexity of the networks scales as �−d/2

for twice differentiable functions when the network depth is
bounded [23], [28], [46], and regression of Hölder functions on
such manifolds using deep ReLU networks was studied in [29]
which proved estimation convergence rate depending on d.
These methods are mostly applied to regression problems,
and consider data distributions that are absolutely continuous
in R

D or lying on a low-dimensional manifold, but have
not considered the case where data is concentrated near low-
dimensional structures.

II. LOG-RATIO TEST BY NEURAL

NETWORK CLASSIFICATION

A. Classification Logit Test

The proposed test statistic is computed in the following way.
Given two datasets X and Y as in Section I-B, without loss

of generality suppose n = nX + nY is even integer. Same as
in [5], we split the dataset D = {(xi, 0)}nX

i=1 ∪{(yj , 1)}nY

j=1 =
{(zi, li)}ni=1, li ∈ {0, 1}, into two halves, i.e. D = Dtr ∪ Dte,
|Dtr| = |Dte| = n/2, Dte = Xte ∪ Yte and similarly for the
training set. The method consists of two phases of training
and testing:

• Training. A binary classification neural network is trained
on Dtr using softmax loss (equivalent to applying logistic
regression to the output of last layer before the loss layer),
which gives estimated class probabilities as

Pr[l = 0|x] =
euθ(x)

euθ(x) + evθ(x)
,

Pr[l = 1|x] =
evθ(x)

euθ(x) + evθ(x)
,

where uθ(x) and vθ(x) are activations in the last hidden
layer of the network, θ denoting the network parametriza-
tion. We define

fθ := uθ−vθ, (2)

which is the logit. The mathematical formulation of
network training is detailed in Section II-C.

• Testing. After fθ is parametrized by a trained neural
network, the test statistic is computed as

T̂ =
1
|Xte|

∑
x∈Xte

fθ(x) − 1
|Yte|

∑
y∈Yte

fθ(y), (3)

which can be equivalently written as T̂ =∫
fθ(x)(p̂te(x) − q̂te(x))dx where p̂te and q̂te stand

for the empirical measure of Xte and Yte respectively.
1) Determination of τ : Once the logit function fθ is
evaluated on each testing sample, the test threshold τ can
be computed by a bootstrap method [32], [33]: randomly
permute the |Dte| many labels li on the test set, and
recompute the test statistics for mperm times, typically
a few hundreds. Then τ is set to be the (1-α)-quantile of
the empirical distribution so as to control the type-I error
to be at most α. Note that this permutation test does not
require retraining the network upon each permutation nor
re-evaluation of the neural network on testing samples.

The above classifier logit test can be used with other
classifiers than neural networks, e.g., logistic regression, which
is equivalent to restricting fθ to be a linear mapping or the
network to have only one linear layer. A main advantage of
neural network is the enlarged expressiveness of the class of
functions fθ that can be represented or approximated.

2) Computational Complexity: Given n data samples, eval-
uating the network output on each sample takes a fixed
amount of flops, and thus computing the test statistic takes
O(n) operations. The permutation test to determine τ adds
negligible cost since fθ has been evaluated at each test sample,
and permuting the class labels only reorders these computed
values. The training phase is certainly more expensive, though
theoretically the overall complexity is O(n) assuming that
training is terminated after a fixed number of epochs. Note
that the computation can be conducted by batch sampling so
the algorithm scales to large sample size and also to multiple
sample problems.
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B. Witness Function

Given the logit function f , the empirical test statistic is
written as T̂ =

∫
f(p̂−q̂), the subscripts being omitted without

causing confusion, and the population test statistic is

T [f ] :=
∫
f(p− q), (4)

which is of the same form as the MMD discrepancy (1)
evaluated at the sup-achieved f . In the literature of kernel
MMD [18], such f is named the witness function, as it
provides an indication of where q differs from p. The indicator
of differential regions can be of more application interest
than the hypothesis test itself. The witness function for kernel
MMD is expressed via the reproducing kernel.

In our setting, the density differential indicator is provided
by the logit function fθ of the trained classifier network.
We follow the MMD literature and call fθ the (empirical)
witness function of the proposed logit test. We will see in
Section II-C that f∗ := log p

q gives the unconstraint optimizer
of the population training objective. We call f∗ the population
witness function of the logit test.

The witness function plays an important role in the ability
of the test to distinguish two densities. When p 	= q, once
a witness function f with T [f ] > 0 is obtained (from the
training set), the two-sample test (on the test set) using T̂ will
be asymptotically consistent as a direct result of Central Limit
Theorem (CLT). The difference in test power thus depends on
the quality of f , e.g., how large is the bias T [f ] compared to
the variance of T̂ . Consequently, the efficiency of the network
classification test lies in how well the neural network can
express a good witness function and how it can be identified
via the optimization, which is the central question of our
analysis. Apart from theory, we also experimentally compare
the witness function of different tests in Section V.

C. Identification of fθ by Neural Network Training

Mathematically, the training of classification neural network
optimizes the following objective∑
x∈Xtr

logD(x) +
∑
y∈Ytr

log(1−D(y)), D(x) :=
ef(x)

1 + ef(x)
,

(5)

called the (negative) empirical training loss.1 After normaliz-
ing by number of samples, where we assume same of samples
in X and Y , and then |Xtr| = |Ytr|, for simplicity throughout
the paper, the optimization of the empirical loss (up to a
additive constant) can be written as

max
f∈FΘ

Ln,tr[f ]

=
1
2

(
1
|Xtr|

∑
x∈Xtr

logD(x)

+
1
|Ytr|

∑
y∈Ytr

log(1 −D(y)) + 2 log 2

⎞
⎠

1“Loss” usually refers to minimization, in this paper we use L and Ln

to denote the population and empirical negative softmax loss which is to
maximize by the optimization.

=
1
2

(∫
p̂tr(x) logD(x)dx

+
∫
q̂tr(x) log(1−D(x)) + 2 log 2

)
, (6)

where FΘ denotes the class of functions that can be expressed
as the difference of the outputs in the last hidden layer of the
classification network, and p̂tr and q̂tr stand for the empirical
measure of Xtr and Ytr respectively.

This training objective is the same as that of the the D-net
in the standard GAN [9]. As number of samples n→∞, the
corresponding population training loss can be expressed as

L[f ] =
1
2

(∫
p log

2ef

1 + ef
+
∫
q log

2
1 + ef

)
, (7)

and a direct verification shows that the maximizer is (see e.g.
[9] where it is proved in terms of D = ef

1+ef )

f∗ = argmax
f

L[f ] = log
p

q
,

L[f∗] =
1
2

(∫
p log

2p
p+ q

+
∫
q log

2q
p+ q

)
= JSD(p, q)

(8)

which characterizes the solution of (7) when the function
class is arbitrarily large or large enough to contains f∗, JSD
referring to the Jensen-Shannon divergence.

Note that the fθ identified in practice, which we call f̂tr ∈
FΘ (“tr” for “trained”), differs from f∗ for three reasons:

• (Approximation error) The neural network function class
FΘ is of finite complexity and may not contain f∗.

• (Estimation error) Only finite training samples are used,
which makes Ln,tr 	= L.

• (Optimization error) The optimization of Ln,tr[f ] may
attain a local rather than global optimum. We call the
global optimum f̂gl (“gl” for “global”).

The goal of analysis is thus to prove that the logit test
(3) using f̂tr obtained from training on the training set can
distinguish different p and q with efficiency.

D. Assumptions and Roadmap of Analysis

We illustrate the differences among f̂tr, f̂gl, and f∗ in
the diagram in Figure 1, which also gives the roadmap of
our analysis towards proving the test consistency guarantee
(Theorem IV.6). To prove test consistency, we make the fol-
lowing assumptions: the first one is to handle the optimization
error.

Assumption 1 (Optimization Error): The neural network
training of optimizing maxf∈FΘ Ln,tr[f ] outputs f̂tr which
achieves a training loss that is ΔC-close to the global opti-
mum, ΔC small enough, namely,

Ln,tr[f̂gl]−ΔC ≤ Ln,tr[f̂tr] ≤ Ln,tr[f̂gl].

If the training algorithm is stochastic, then the above holds
with high probability.

Some recent neural network optimization literature supports
this assumption [47], [48]. In certain settings different than
ours, it is proved that ΔC can be made small, especially
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when training with large samples and using over-parametrized
networks [49]–[53]. Our experiments in Section II-E show that
ΔC can be relatively small in practice. In the current paper
we do not further analyze the optimization error, and more
discussion can be found in Section VI.

The second assumption assumes a function ftar that carries
a sufficiently large L[ftar], and will serve as the target function
to be approximated by the constructed neural network function
fcon ∈ FΘ.

Assumption 2 (Smooth Surrogate ftar): Suppose p 	= q in
Pexp are given, then there exists a compactly-supported smooth
function ftar on R

D such that L[ftar] := C > 0.
An example of f∗ and ftar is shown in Figure 4. When

f∗ itself is sufficiently regular, one can set ftar to be f∗.
Otherwise, one constructs ftar as a smooth surrogate such
that L[ftar] > L[f∗] − ε, and then C = L[ftar] > JSD − ε
which is positive with small enough ε. Formally, Assumption 2
only requires C to be strictly positive, even not close to JSD,
which suffices to prove Theorem IV.6. Evidently, in case of
JSD being small, one would like C to be ε-close to JSD to
guarantee the strict positivity of C. We further discuss the
motivation and construction of ftar in Section IV, where we
explain the non-uniqueness of ftar and the possible trade-off
in the choice.

At last, we assume that the network function class has
bounded Lipschitz constant in R

D uniformly as the network
approximation error ε approaches zero. The motivation and
validity of the assumption is provided in Section IV-C.1.

Assumption 3 (Lipschitz Regularization of Neural Network
Function): To achieve decreasing approximation threshold
ε, the network function family Θ = Θ(ε) being used has
increasing complexity, and regularization of FΘ can be applied
such that for all ε,

sup
f∈FΘ

Lip
RD (f) ≤ LΘ.

Under the three assumptions, the building blocks of the
analysis are as follows. We use ε to stand for a generic small
number which may differ in different places. Starting from
L[f∗] = JSD > 0, JSD standing for JSD(p, q),

1. Use ftar as the surrogate of f∗ by Assumption 2, which
gives that L[ftar] > JSD − ε. (As explained after
Assumption 2, this ε may not need to be small as long as
L[ftar] > 0. In this roadmap, we consider the case where
L[ftar] is ε-close to JSD for simplicity.)

2. A small |L[fcon] − L[ftar]| when network complexity is
sufficiently large. This relies on the network approx-
imation analysis, and we bound the needed network
complexity to scale with the intrinsic dimension d when p
and q lie on or near to low-dimensional manifolds. Then
L[fcon] > JSD− 2ε.

3. A small |L[fcon] − Ln,tr[fcon]| by concentration bound.
Note that we will need to deal with the deviation of
Ln,tr[f̂tr] later, so we bound supf∈FΘ

|L[f ] − Ln,tr[f ]|
based on a bound of the covering number of the network
function family FΘ. In particular, for on-or-near manifold
densities the convergence rate of the estimation error is

improved to only involving the intrinsic dimensionality d.
This step gives Ln,tr[fcon] > JSD− 3ε.

4. The optimization gives that Ln,tr[f̂gl] ≥ Ln,tr[fcon].

Together with Assumption 1, we have that Ln,tr[f̂tr] >
JSD−ΔC − 3ε.

5. By the bound in Step 3., |L[f̂tr]−Ln,tr[f̂tr]| is small. Then
L[f̂tr] > JSD−ΔC − 4ε.

The above steps derive a non-zero lower bound of L[f̂tr],

which then leads to a non-zero population test statistic T [f̂tr].
The testing consistency is then proved by the asymptotic
normality of the empirical statistic T̂ (3) (on testing set, rather
than training set) by CLT. Throughout the steps, an important
new analysis is for the near-manifold densities, which we
detail in Section III in a more general form. The steps towards
proving the test consistency are carried out in Section IV.

E. Examples of 1D Datasets

Before going to the theoretical analysis of the test con-
sistency, we provide an illustrative example of 1D datasets.
We conduct experiments on two sets of 1D data, in R, and in
R

2 but lying near to a 1D curve, respectively. The experiments
are set to verify the Assumption 1 and to observe the influence
of the intrinsic dimensionality of data. More experiments of
two-sample testing are reported in Section V.

1) Datasets, Model Training and Evaluation: The densities
are Gaussian mixtures and have analytical formulas. Plots of
the datasets are given in Figure 2 (left). Specifically,

• Example 1.
Distribution of p is 1

5 (N (−2, σ2
p) + N (−1, σ2

p) +
N (0, σ2

p)+N (1, σ2
p)+N (2, σ2

p)), where σp = 0.8; Distri-
bution of q is (1−δ)N (0, 1)+ δ

2N (−3, σ2
q )+

δ
2N (4, σ2

q ),
where σq = 0.5, δ = 0.1.

• Example 2. The data vector (x, y) is defined by

x =
t

2
, y = Sigmoid(2t)+s, Sigmoid(z) =

1

1 + exp(−z)
,

where the random variables t ∼ p or q as in Example 1,
and s ∼ N (0, σ2

s) independently from t, σs = 0.05. The
finite σs adds a small Gaussian noise to the y-coordinate
such that the 2D data lie near to a 1D manifold, given
by the curve when σs = 0.

For both examples, the network has one hidden layer of H
neurons, H = 4, 8, · · · , 512, and ReLU activation function.
The training is by stochastic optimization and 40 replicas are
conducted. For a given witness function f , either analytic or
parametrized by a trained neural network, we compute the
value of L[f ] by a numerical integration on the 1D or 2D
domain.

2) Results: The values of L[f̂tr], averaged over replicas, are
plotted against H for increasing number of training samples
n = |Xtr|+ |Ytr| = 250, 500, · · · , 4000, as shown in Figure 2
(right). The mean and standard deviation of L[ftr] over replicas
are shown in Table II. As shown in the plot and the table, the
network training achieves L[f̂tr] more stably as n increases,
and the curves indicate reliable pattern except for small values
of n (n =250) and the first few small values of H (H ≤ 32).
The experimental results show that
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Fig. 2. (Left) Datasets X ∼ p and Y ∼ q of the two examples in Section II-E. In the plots of Example 1, the dashed lines show the histograms of samples
in X and Y respectively, and the solid curves show the density functions p and q. In the plots of Example 2., samples in X and Y are shown as scatter plots
in R

2 color by the densities p and q respectively. (Right) The values of L[f̂tr] (averaged over 40 replicas of experiments) plotted against log2(H), where H
is the width of the hidden layer in the classification neural network, a proxy for the complexity of FΘ . The dashed line shows L[f∗] = JSD(p, q), which is
the unconstraint maximizer of L as in (7).

• As the network complexity increases, the curve of L[f̂tr]
goes up and approach the unconstrained maximum L[f∗].
For larger n the difference L[f∗] − L[f̂tr] is smaller,
indicating that increasing training size n reduces the
influence of finite-sample. Since L[f̂gl] lies between L[f∗]
and L[f̂tr], this means that the stochastic optimization
achieves a loss which is ΔC-close to that of f̂gl, sup-
porting Assumption 1, and one may furtherly expect ΔC
to be small at least when H is large.

• The trend of the increase of L[f̂tr] as the network com-
plexity increases behaves similarly for Example 1 and
Example 2, which indicates that it is the the intrinsic
geometry of the datasets that affects the efficiency of the
network to produce a witness function with differential
power.

The second observation that for on or near-manifold
datasets, only the intrinsic geometric complexity influences
the performance of neural network methods has been reported
in experimental literature [54], [55] and approximation lit-
erature [23], [28], [29]. This motivates our theoretical work
to reduce the needed network complexity to only scale with
the intrinsic complexity of the densities p and q. Our result
provides an explanation from the viewpoint of approximation
and estimation error analysis.

III. APPROXIMATION OF NEAR-MANIFOLD INTEGRALS

This section establishes a result that, for a near-manifold
density p (described by exponential decay of p away from the
manifold M), the uniform approximation of a R

D-Lipschitz

function in L∞(M) implies approximation in L1(RD, p) up to
an error proportional to the scale of the exponential tail. This
serves to resolve Step 2 in Section II-D, where, since only
on-manifold approximation suffices, the network complexity
scales with the intrinsic manifold dimensionality and the target
function restricted to M. The approximation in L1(RD, p)
implied by that in L∞(M) is also used in the estimation error
analysis in Steps 3-5 in Section IV.

We call this result (Theorem III.1) the near-manifold integral
approximation result. It is given in a slightly more general
form than that of L[f ] as in (7), and we think the theorem can
be of independent interest. An important result which is used
in proving Theorem III.1 is Theorem III.2, which constructs
the neural network approximation of the on-manifold function.
All proofs are in Section VII.

A. The Integral Approximation Result

LetM⊂ R
D be a compact smooth manifold of dimension

d. We define Pσ to be the class of densities in R
D which

decay exponentially fast away from the manifold M, that is,
for some small 0 < σ < 1, and absolute constant c1 > 0,

Pσ={p density on R
D s.t. PrX∼p[d(X,M) > t] ≤ c1e− t

σ },
(9)

where d(x,M) := infy∈M ‖x−y‖2 for any x ∈ R
D. We treat

c1 as fixed throughout the analysis and σ as the parameter
indicating the size of the exponential tail.
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Fig. 3. A diagram showing a d-dimensional manifold M embedded in the ambient space R
D (only part of M is shown), an atlas {(Ui, φi)}K

i=1 which
gives a δ-cover of M, and the extended partition of unity function η̃i defined on the neighborhood Ni of Ui in R

D .

The aim of the analysis is to approximately compute the
integral

I[f ] :=
∫

RD

p(x)T (f(x))dx, (10)

by replacing f with a neural network function fθ, where T
is a 1D Lipschitz function so as to make the result more
general, and p ∈ Pσ which concentrates near the manifold.
Due to the exponential decay of the density p, we expect the
integral I[f ] to be dominated by the contribution of the integral
on the manifold. Indeed, restricting f to be on the manifold
allows us to approximate f |M by a neural network whose
model complexity as approximation error → 0 only depends
on f |M and the intrinsic manifold geometry. The bound of
|I[f ]− I[fθ]|, which involves integral in the ambient space, is
then obtained by considering the corresponding on-manifold
integrals of f and fθ respectively, which gives the following
Theorem.

The on-manifold function approximation by neural network
is built upon the result in [28], which starts from an atlas
on M, and will be set up in Section III-B. The subscript in
the notation ‘Lip’ denotes the domain on which the Lipschitz
continuity is considered.

Theorem III.1: Suppose that f : R
D → R is Lipschitz on

R
D, f |M is C2 on the manifold, T : R → R is Lipschitz-

1, and p ∈ Pσ with σ < 1
2 . Consider I[f ] as in (10), then

for any ε < 1, there is a neural network architecture Θ with
Of,M(ε−d/2)+N0 many trainable parameters, and a function
fcon ∈ FΘ such that

|I[fcon]−I[f ]| ≤ (1+2C1(M)c1σ)ε+C3(f,M)c1σ, (11)

where

C3(f,M) :=2C1(M)‖T ◦f‖L∞(M)+C2(M)(LM,f +Lip
RD (f)),

(12)

C1(M), C2(M) are as in (19) and only depending on the
manifold-atlas, the meaning of Of,M(·), N0 and LM,f is the
same as in Theorem III.2 (noting that f in Theorem III.2 is
f |M here). In particular, none of the three changes with ε,
and N0 is also independent of f but involves manifold-atlas
and D.

Remark III.1: f in Theorem III.2 is f |M here, and fN in
Theorem III.2 is fcon here. The existence of fcon is provided
by Theorem III.2 with the stated properties therein.

The proof of Theorem III.1 combines the integral com-
parison for Lipschitz functions on R

D in Proposition III.5,
and the on-manifold function approximation in Theorem III.2.
In Theorem III.2, it is proved that Lip

RD (fcon) ≤ LM,f

using the wavelet construction of fcon. In Section IV, we
will introduce a Lipschitz regularization of the network family
(Assumption 3), and further bound the ∞-norm of T ◦ f on
M in (12) in the two-sample testing context.

B. Manifold Atlas and On-Manifold Function Approximation

We first establish some notations for the manifold and
atlas cover. The manifold M can be covered with an atlas
{(Ui, φi)}Ki=1, where Ui = B(xi, δ) ∩M is an open set on
M, 0 < δ < 1, the choice of which to be specified below.
The orthogonal projection φi : Ui → R

d is the map that
takes Ui to the tangent plane Txi(M). We also define the
map ψi : φi(Ui)→ Ui, which is the inverse of φi due to the
one-to-one correspondence between Ui and φi(Ui). Let dM
denote the manifold geodesic distance. In the construction,
the Euclidean ball radius δ is chosen to be small enough such
that B(x, 2δ) ∩ M is isomorphic to a ball in R

d and there
exist positive αi and βi s.t. ∀x, x′ ∈ Ui,
αi‖φi(x)− φi(x′)‖2 ≤ dM(x, x′) ≤ βi‖φi(x)− φi(x′)‖2,

(13)

and for all i,

αi ≥ αM ≥ 1
2
, 1 ≤ βi ≤ βM ≤ 2. (14)

To see why this is possible: for any point x ∈ M, there is
a δx > 0 and constants 1

2 < αx ≤ 1 ≤ βx < 2 such that
whenever δ′ < δx, the relation (13) with constants βx, αx
holds on the neighborhood Ux := B(x, δ′) ∩M, and at the
same time B(x, 2δ′) ∩ M is isomorphic to a ball in R

d.
This is because that the manifold is locally near Euclidean,
which means that βx, αx can be made close to 1 if δ′ → 0+.
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The existence of δx and βx, αx is due to manifold smoothness
and the finiteness of the local curvature near x. The infx∈M δx
exists and is positive due to compactness and smoothness of
M. Setting that (and the minimum with 1) as δ for all x
leads to a finite cover of M which is {Ui}Ki=1 with constants
αi, βi on each Ui, and then the global αM, βM exist. Note
that while the atlas and particularly the radius δ depend on the
embedding of M in the ambient space R

D, the atlas remains
valid if D increases to D′, M is isometrically embedded into
R
D′

, and the reach of the manifold is maintained [56], e.g.,
when R

D is isometrically embedded in R
D′

. Thus we view
any quantity which only depends on the δ-atlas as intrinsic to
the manifold geometry.

Given the covering atlas, there exists a partition of unity
{ηi}Ki=1 on M such that supp(ηi) ⊂ Ui, ηi ∈ C∞(M),
and

∑K
i=1 ηi(x) = 1 for all x ∈ M. Under this setting, the

following theorem constructs network function fcon (named as
fN ) with the approximating property. The subscript N stands
for the number of network parameters.

Theorem III.2: Notations being as above, suppose f ∈
C2(M), then for any ε < 1, there exists a four layer feed-
forward network with rectified linear unit activations and
N = Of,M(ε−d/2) + N0 parameters, such that the network
function fN : R

D → R satisfies that

‖f − fN‖L∞(M) ≤ ε,
where the constant in Of,M(·) only depends on f and
manifold-atlas, specifically, it is (d + K)δd(KCf,η)d/2, K
being the number of coverings in the δ-atlas, the constant
Cf,η depending on d and up to 2nd manifold-derivatives
of f and the partition of unity functions of the δ-atlas.
N0 = C(KdD + D

δ log D
δ ), C being an absolute constant,

and N0 does not depend on f nor change with ε.
Furthermore, the constructed network function fN is glob-

ally Lipschitz and LipRD(fN ) ≤ LM,f , which is a constant
depending on f and the manifold-atlas, but independent of ε
and N .

The proof is by constructing a sub-network function f̄N,i
on a neighborhood Ni ⊂ R

D around each Ui ⊂ M to
approximate fηi respectively, and then taking a sum over i
using the partition of unity property. Specifically, for each Ui,
the neighborhood Ni is defined as

Ni := φi(Ui)×BD−d
δ , BD−d

δ := {x ∈ R
D−d, ‖x‖2 < δ},

(15)
thus φi(Ni) = φi(Ui), where we also denote φi as the
orthogonal projection from R

D to the tangent space Txi(M).
The relation (13)(14) gives the following lemma,

Lemma III.3: For any x ∈ Ui, ‖x−φi(x)‖ < δ
√

1− 1
β2

i
≤

√
3

2 δ.
The sub-network function f̄N,i(x), x = (u, v) in local

coordinates, is constructed by first approximating fηi(ψi(u)),
viewed as a function on R

d, by some f̂N,i(u), u ∈ R
d, and

then extending constantly into Ni for a distance < δ by a tent-
like function gi(v) on R

D−d which is 1 when ‖v‖ <
√

3
2 δ

and 0 when ‖v‖ ≥ 1. Lemma III.3 guarantees that f̄N,i
restricted to x ∈ Ui equals f̂N,i(u) because gi(v) = 1 on Ui.

Thus fN by taking a sum
∑K

i=1 f̄N,i is uniformly approxi-
mating f on the manifold. The Lipschitz constant of fN is
proved by considering that of f̂N,i and gi respectively which
bounds each Lip

RD (f̄N,i). The statement regarding the global
Lipschitz continuity of fN is a byproduct of the construction
in [28], but was not explicitly stated therein. For completeness,
we provide a proof of the Theorem in Section VII.

C. Comparison of on and Near-Manifold Integrals

As we would like to analyze the integral of near manifold
density in the ambient space, we extend the partition of unity
function ηi to the neighborhood Ni defined as in (15) as

η̃i(x) = ηi(ψi ◦ φi(x)) · hi(x − φi(x)), (16)

where hi(x) is continuous on R
D−d, vanishes outside BD−d

δ ,
0 ≤ hi ≤ 1 and

hi(x) = 1 if ‖x‖ ≤ δ
√

1− 1
β2
i

, Lip(hi) <
2β2

i

δ
. (17)

This can be constructed, e.g., by hi(x) = g(‖x‖/δ) where
g(r) = 1 on [0,

√
1− 1

β2
i
], 0 outside r > 1, and linearly

interpolating in between. This construction guarantees the
following properties of the extended function η̃i’s:

Lemma III.4: For i = 1, · · · ,K , η̃i as a function in R
D

vanishes outside Ni, equals ηi on Ui, is Lipschitz continuous
on R

D, and, for all i,

Lip
RD (η̃i) = LipNi

(η̃i) ≤ LM,

where LM is an absolute constant depending on the
manifold-atlas.

We then establish a key result used in the proof of
Theorem III.1, which compares the ambient space integral to
a “projected” integral on the manifold.

Proposition III.5 (Integral Comparison): Notations of
manifold-atlas and partition of unity functions as above.
Suppose g : R

D → R is Lipschitz continuous on R
D, p ∈ Pσ

with σ < 1
2 , and define

p̃(x) =
K∑
i=1

ηi(x)p̃i(x),

where p̃i is an atlas dependent “projection” of the density p
to Ui, the explicit formula to be given below, then∣∣∣∣

∫
RD

g(x)p(x)dx −
∫
M
g(x)p̃(x)dM(x)

∣∣∣∣
≤ (‖g‖L∞(M)C1(M) + Lip

RD (g)C2(M)
)
c1σ, (18)

where c1 as in the definition of Pσ (9),

C1(M) = 3KLM, C2(M) = K(2LM + 1 + βM), (19)

LM as in Lemma III.4, and βM as in (14). C1(M) and
C2(M) are absolute constants determined by the manifold
and atlas.

In particular, taking g = 1, the proposition gives that∣∣∣∣
∫
M
p̃(x)dM(x) − 1

∣∣∣∣ ≤ C1(M)c1σ, (20)
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Fig. 4. (Plots) Left plot shows 1D densities p and q. The middle plot shows the log density ratio f∗ and two examples f1 and f2 of the
smooth and compactly-supported surrogate function ftar, which are of different regularity. (Table) The first column shows the values of L[f ]
for f∗ and two surrogates ftar respectively. L[f∗] = JSD(p, q). The second column shows the values of T [f ].

which means that the constructed p̃ is close to being integral
1 on M up to an error proportional to σ.

The proof of the main Theorem III.1 then follows by
combining Proposition III.5 and Theorem III.2.

IV. CONSISTENCY OF NETWORK LOGIT TEST

In this section, we fulfill the steps listed in Section II-D
to prove the theoretical guarantee of the network logit
two-sample testing. The manifold setting of densities reduces
the dimensionality from D to d in both the approximation
error (Step 2) and the estimation error analysis (Steps 3-5).
All proofs are in Section VII.

A. Settings of Data Densities and Step 1. ftar

We consider the following three settings of densities
p and q,

• (General setting) Densities in R
D with sub-exponential

tail. This includes compactly supported densities, which
are mostly encountered in practice.

• (On-manifold setting) Densities constrained on a smooth
compact manifold M⊂ R

D .
• (Near-manifold setting) Densities which are exponentially

decay away from the manifoldM, as defined in (9) with
some positive c1 and small σ.

The analysis is under the same framework, where bifurca-
tions take place in the integral approximation and bounding of
the estimation error. We consider the class of sub-exponential
densities in R

D as

Pexp = {p density on R
D s.t. PrX∼p[‖X‖ > t] ≤ Ce−t/c}

(21)

for some C, c > 0. One can always rescale the space to make p
and q supported on a diameter-O(1) domain, when compactly
supported, or c = 1, when exponentially decay, even when the
dimensionD is large. This corresponds to normalizing the data
vectors to be of O(1) norm in practice. By this normalizing
argument, we assume supp(p + q) has diameter-O(1) when
compactly supported and generally exponentially decay with
c = 1 in below.

We start from Step 1. in Section II-D, and provide moti-
vation, construction and examples of ftar which is assumed
in Assumption 2. A sub-exponential density p may vanish at
certain points in R

D or have discontinuity, e.g., when supp(p)

is compact. This makes f∗ = log p
q possibly diverge at a

point, e.g., when supp(p) and supp(q) partially do not overlap.
Observe that unless p = q, one can always restrict to the
interior of supp( p+q2 ) and consider a bounded version of f∗,
e.g., f = min{max{f∗,M},−M} for M > 0, such that L[f ]
as in (7) is close to JSD(p, q) and > 0. Furthermore, L[f ] can
be written as

L[f ] =
1
2

(∫
RD

pTp ◦ f +
∫

RD

qTq ◦ f
)
,

Tp(ξ) = log
2eξ

1 + eξ
, Tq(ξ) = log

2
1 + eξ

, (22)

where T = Tp and Tq all satisfy that

T : R→ R is Lipschitz and Lip(T ) <1, and T (0) = 0.
(23)

As a result, approximating the bounded function f under
L1(p) and L1(q) will approximate the integral L[f ]. Thus we
can choose the approximator of f to be smooth, and, by the
sub-exponential decay of p and q, to be compactly supported.
According to these procedures, one can construct a ftar to be
a smooth surrogate of f∗ as in Assumption 2, satisfying that
L[ftar] is sufficiently close to L[f∗] = JSD(p, q)> 0 and thus is
also strictly positive. We thus call L[ftar] as C > 0 throughout
the paper. In particular, if (p + q) are compactly supported,
then supp(ftar) can be made within that domain. For general
sub-exponential densities, the diameter of supp(ftar) can be
made proportional to the scale parameter c in Pexp. By the
normalizing argument above, the diameter of supp(ftar) is
O(1). Since the above constructive procedures are standard,
Assumption 2 is mild under our setting.

A example of f∗ and ftar is shown in Figure 4, where p
is N (0, 1) and q is a Gaussian mixture in 1D. The f∗ in this
case is non-vanishing in R, and has a peak around x = 5. The
two examples of ftar gives L[f ] significantly large compared
to L[f∗], as shown in the table. This example also shows that
there are more than one choice of ftar to fulfill Assumption 2.
Generally, one may trade-off between the regularity of ftar and
making C arbitrarily close to L[f∗]. We further discuss this
in Remark IV.1.

B. Step 2. Neural Network Approximation

The neural network approximation theory provides fcon

which uniformly approximates ftar on a compact domain Ω.
We consider the three settings of densities respectively.
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1) General Setting: When p and q are general sub-
exponential densities on R

D, we make use of the compact-
supportedness of ftar as in Assumption 2, and set it as the
target function to approximate.

Proposition IV.1: Suppose that p 	= q, JSD(p, q) > 0, and
p, q are in Pexp with c = 1. Under Assumption 2, there exists
a smooth and compactly supported ftar with L[ftar] = C > 0,
and diameter of supp(ftar) < C′. Then for any ε < 1, there
is a neural network architecture Θ with Oftar ,C′(ε−D/r log 1

ε )
many trainable parameters, and fcon ∈ FΘ such that

L[fcon] ≥ C − ε > 0,

where the constant in Oftar ,C′(·) depends on up to the r-th
derivative of ftar, the diameter C′, r and D, r ≥ 1. When p and
q are compactly supported, C′ is the diameter of supp(p+ q).

As previously commented beneath Assumption 2, C′ is
an O(1) constant even when dimensionality D can be large,
thus the network complexity remains O(ε−D/r). The proof
of Proposition IV.1 is by a direct application of the standard
network approximation theory, e.g. that in [25], where the sub-
exponential tail of the distribution does not affect because the
constructed network function can be made supported on the
same domain of supp(ftar). More recent approximation result
which improves the approximation rate, such as [57], will
improve the complexity needed accordingly. We comment in
Remark IV.1 about the choice of ftar in Assumption 2 and
the r used in Proposition IV.1, These trade-offs can be made
precise in specific settings of the densities, and we leave the
choices abstract here.

Remark IV.1 (Trade-Off in the Choice of ftar and Reg-
ularity Level r): There are two trade-offs in applying
Proposition IV.1. First, generically (e.g., the two densities are
absolutely continuous) one can make the constant C arbitrarily
close to JSD(p, q), and as a result the regularity of ftar may
worse, and then the needed network complexity will increase.
Second, the regularity level r can be chosen to be large given
that ftar ∈ C∞

c (Ω), but the constant in the network complexity
bound will grow with higher order r. We illustrate the first
trade-off in Figure 4: in this example, q is significantly large
on a region where p almost vanish, resulting in the log density
ratio f∗ having a peak in that region. Such a singularity may
create a difficulty for network to approximate f∗. Replacing
f∗ by a regularized surrogate ftar such as f1, one can produce a
significantly large L[ftar] = C > 0 which allows Theorem IV.6
to apply, and at the same time have more efficient (theoretical)
network approximation and possibly more efficient estimation
in practice. By choosing ftar of better regularity, such as f2,
the gap between C and JSD(p, q) is larger and C is smaller,
but the network approximation and estimation may be even
better. In addition, using f1 or f2 as witness function may not
necessarily sacrifice testing power because more regular f can
reduce the variance of the test statistic (though reducing the
bias T [f ] at the same time) and both bias and variance affect
the test power, as suggested by the CLT result in Theorem IV.6.

2) On-Manifold Setting: When p and q are degenerate and
constrained to a compact smooth manifold M in R

D, the
integral L[f ] is carried out on the manifold only. Replacing the

Euclidean metric with the Riemannian geometry on M, and
the integral in R

D with integration on M with Riemannian
volume element, the choice of a smooth ftar with L[ftar] =
C > 0 as in Assumption 2 extends. This gives the on-
manifold-version of Proposition IV.1, where the classical net-
work approximation is replaced with Theorem III.2, which
guarantees the existence of fcon such that

‖fcon − f∗‖L∞(M) ≤ ε,
where the needed network complexity of O(ε−d/2), namely
reducing the exponent factor from D to the intrinsic dimen-
sionality d. The proof of Proposition IV.1 directly extends by
replacing integration on Ω with that on M and the rest is the
same.

3) Near-Manifold Setting: When the densities decays sub-
exponentially away from the manifold, since M is compact,
the densities belong to be sub-exponential family as in the
general setting. While Proposition IV.1 still applies, the needed
network complexity is not intrinsic. We apply the analysis in
Section III to improve this.

Proposition IV.2: Suppose that p 	= q, JSD(p, q) > 0, and
p, q ∈ Pσ as defined in (9) with σ < 1

2 . Under Assumption 2,
there exists a smooth and compactly supported ftar with
L[ftar] = C > 0, and there is one point x0 ∈ M such that
ftar(x0) = 0. Then for any ε < 1, there is a neural network
architecture Θ with Oftar ,M(ε−d/2) + N0 many trainable
parameters, and fcon ∈ FΘ such that

L[fcon] ≥ C −
(
ε · (1 + 2 c1σC1(M))

+ σ · c1 (C4(M)Lip
RD(ftar) + C2(M)LM,ftar)

)
, (24)

where
C4(M) := 2C1(M)diam(M) + C2(M),

and C1, C2 as in (19), the constants C1, C2, C4 only depend
on the manifold-atlas. The meaning of Oftar ,M(·), N0, LM,ftar

is the same as in Theorem III.1 taking f = ftar.

Remark IV.2: About the condition that ftar vanishes at one
point on M: Since p 	= q, and by construction ftar is the
smooth surrogate of f∗ = log p

q , then ftar vanishes at least at
one point in R

D. When both p and q are concentrating near
the manifoldM, it generically holds that ftar vanishes at least
at one point on the manifold. Thus the condition is mild and
does not pose a constraint.

The proposition bounds C − L[fcon] to be O(ε) + O(σ),
where the integral of L[ftar] is approximated by constructing
on-manifold approximation of the target function ftar only,
and the network complexity is reduced to be intrinsic. By (24),
L[fcon] is close to C when ε and σ are sufficiently small.

C. Concentration of Ln and Steps 3-5

Steps 3 and 5 are based on the concentration of Ln[fθ]
close to L[fθ] when fθ = fcon or trained on the training set.
We omit subscript “tr” in Ln, which emphasizes that Ln is the
empirical loss on the training samples. We will upper bound,
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under proper Lipschitz regularization of network function class
FΘ, that

sup
f∈FΘ

|Ln[f ]− L[f ]| ≤ ?w.h.p. for sufficiently large n, (25)

where w.h.p. stands for “with high probability” and will be
made precise. For the three settings of densities, we prove
that the bound in (25) is Õ(n− 1

2+D ) for Pexp densities in R
D,

Õ(n− 1
2+d ) for on-manifold densities, and Õ(n− 1

2+d ) + O(σ)
for near-manifold densities in Pσ, Õ meaning that the constant
may involve logn (Proposition IV.5). We first introduce the
needed Lipschitz regularization of network functions, which
leads to a bound of the covering number of FΘ that is used
in the concentration analysis.

1) Lipschitz Regularization of Network Functions: When
neural network is using ReLU or other continuous nonlinear
activations, the network function is typically differentiable or
piece-wise differentiable on R

D, and is globally Lipschitz
because all the weights are finite. However, Lip

RD (fθ) for
a member fθ ∈ FΘ may potentially be large. In the net-
work approximation analysis, Theorem III.2 shows that as
the approximation error ε gets small the constructed network
function fcon to approximate f is globally Lipschitz with
Lip

RD (fcon) ≤ LM,f , a constant only depending on manifold-
atlas and f |M. This means that when the target function is
smooth, constraining on bounded Lipschitz constant of fθ
does not prevent the network approximation of f to high
accuracy. This approximation result however does not mean
that the trained network function f̂n,tr has certain bounded
Lipschitz constant automatically. f̂n,tr with poor Lipschitz
regularity may incure larger variance of the statistic with
finite samples. Applying regularization to the network function
balances between bias and variance, and is commonly used in
practice.

We thus consider network function families with Lipschitz
regularization as assumed in Assumption 3. The uni-
versal Lipschitz constant bound LΘ can be viewed as
a network hyperparameter, and we call the restricted
family FΘ,reg.

2) Covering Number of Regularized FΘ: The Lipschitz
regularization enables bounding of the covering number of
function space by the covering number of the domain when
compact. For a compact set K ⊂ R

D, define its covering
number as

N (K, r) := inf{Card(S), K ⊂ ∪
s∈S

B̄r(x)}, r > 0.

where “Card” stands for cardinal number, B̄r(x) is the
Euclidean closed ball {y, ‖y − x‖ ≤ r}, and the require-
ment of S is equivalent to that S is an r-net of K . The
general covering number is denoted as N (X, r, ‖ · ‖), where
X is the set to be covered, and r is the radius of the
closed ‖ · ‖-ball.

Lemma IV.3: Let K be a compact set in R
D with covering

number N (K, r), r > 0. Consider the function class

F := {f : R
D → R, Lip

RD (f) ≤ L, ‖f‖L∞(K) ≤ B},

where L > 0, B > 0. Then for any subset F ′ of F
(including F ′ = F ), and any 0 < r < B

L , there is a finite
set F ⊂ F ′ which forms an (4Lr)-net of F ′, i.e., F ′ ⊂
∪
f∈F

B̄(f, 4Lr, ‖f‖L∞(K)) and

Card(F ) ≤
(

2B
Lr

)N (K,r)

. (26)

The lemma proves an upper bound for the covering number
of the whole class F , which will contain regularized network
function class as a subset. When applying to analyzing the
general and on-or-near manifold densities, the K will be a
ball in R

D and the compact manifold respectively, the covering
number N (K) then differs in a factor of r−D v.s. that of r−d.

3) Concentration of Ln Sup Over Network Function Fam-
ily: The concentration of Ln[f ] for a single Lipschitz f is
a direct result of Bernstein’s inequality for sub-exponential
random variables. Specifically, the following lemma, proved
in Appendix A, verifies that the random variables T ◦ f(xi)
are sub-exponential due to that the density of xi is in Pexp.

Lemma IV.4: Suppose that T : R → R, Lip(T ) ≤ 1, f :
R
D → R, Lip

RD (f) ≤ L, xi ∼ p, i = 1, · · · , n, i.i.d., and
p is sub-exponential on R

D, i.e. p ∈ Pexp with c = 1, then
ξi := T (f(xi)) are i.i.d 1D sub-exponential random variables,
and specifically,

Pr[|ξi − Eξi| > t] ≤ C′e−c
′ t

L , ∀t > 0, (27)

where C′ and c′ are absolute positive constants.
Bernstein’s inequality for sub-exponential random variables

(Corollary 2.8.3 in [58]) then gives that

Pr

[∣∣∣∣∣ 1n
n∑
i=1

T (f(xi))− Ex∼pT (f(x))

∣∣∣∣∣ ≥ t
]

≤ 2 exp
{
−c′0n

t2

L2

}
, ∀0 < t < c′1L, (28)

where c′0, c′1 are absolute positive constant. We will control
the sup over network function family by a covering argument.
Define the regularized neural network function class for archi-
tecture Θ as

FΘ,reg(Ω) = {f ∈ FΘ, Lip
RD (f) ≤ L, ∃x0 ∈ Ω, f(x0) = 0},

(29)

where the dependence on Ω is only via the assumption on
the location of a vanishing point of f . Under Assumption 3,
L equals the universal constant LΘ, the subscript Θ is omitted
here for simplicity.

Proposition IV.5: Let BR denote the ball in R
D centering

at origin, R ≥ 1. For the three density settings, suppose that
(1) General. p, q ∈ Pexp with c = 1. When p and q are

compactly supported, supp(p+ q) ⊂ BR.
(2) On-manifold. Case (1) plus that supp(p+ q) ⊂M ⊂ BR

in R
D.

(3) Near-manifold.M as in (2), case (1) plus that p, q ∈ Pσ
as defined in (9) with σ < 1

2 .
Suppose that the network function family, denoted as FΘ,reg

for all cases, is FΘ,reg(BR) for case (1), and FΘ,reg(M)
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for cases (2) (3). Then, when n is sufficiently large, with
probability → 1 as n→∞,

sup
f∈FΘ,reg

|Ln[f ]− L[f ]|

≤

⎧⎪⎨
⎪⎩
C̃ · L logn(logn/n)1/(2+D), case (1)

C̃(M) · L(logn/n)1/(2+d), case (2)

C̃(M) · L(σ + (logn/n)1/(2+d)), case (3)

where C̃(·) refers to a positive constant that may depend
on ·, without (·) an absolute constant, and the notation
stands for different constants in different cases. In case (1),
if p, q are compactly supported, the bound can improve
to C̃(R) · L(logn/n)1/(2+D) removing a logn factor. The
→ 1 probability is exponentially high except for the non-
compactly supported case in (1).

In case (1), though the densities may have sub-exponential
tail, it is generic to assume that exists x0 ∈ BR such that
p(x0) = q(x0). Since log p

q vanishes at least at one point
inside BR, we consider network functions that also have this
property. The condition that R ≥ 1 is only for convenience,
and does not pose any constraint to our setting. Note that the
estimation error in cases (2) improves from the generic case
(1) by reducing the D to the intrinsic dimensionality d, and in
the near-manifold case, the bound adds another term of O(σ),
similar to the result of the approximation error. The analysis
of case (3) again uses the integral comparison technique in
Section III.

As a remark, if p, q have compact support Ω which has a
smaller volume than BDR , then the covering number N (Ω, r)
can be made < N (BDR , r), the latter leading to the − 1

2+D
rate in case (1). This is the fundamental reason that the rate
can be improved to − 1

2+d for on or near manifold densities in
cases (2) and (3). Our proof technique bounds the estimation
error by the covering complexity of the “essential” support
of the densities, allowing certain sub-exponential tail, which
can be viewed as capturing the essential complexity of the
densities. The manifold setting is a special case that is natural
in applications.

D. Testing Power and Consistency of Network-Logit Test

We have now finished the 5 steps in Section II-D, which
allows to establish that (Theorem IV.6(1))

L[f̂tr] > L[ftar]− Lgap > 0, (30)

where Lgap < L[ftar] = C, and

Lgap = ΔC +O(ε) +O(σ) + Õ(n−1/(2+d′)
tr ), (31)

d′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D, when p, q are general sub-exponential

densities in R
D,

d, when p, q are on or near a d-dimensional

manifold M.

Recall that ftar is a smooth surrogate of f∗ = log p
q , and

C can approach L[f∗] =JSD(p, q) if f∗ itself is regular.
In (31), ε is the network approximation error, σ is the sub-
exponential decay scale of near-manifold densities (and does

not appear for general or on-manifold density settings), ΔC is
the optimization error (Assumption 1), and the last term which
decays with ntr is the estimation error.

When Lgap < C, (30) guarantees that L[f̂tr] > 0. With
an elementary lemma showing that T [f ] ≥ 4L[f ], which is
Lemma VII.8 (the tightness of the relaxation is explained in the
remark below and in Lemma VII.9), it gives that T [f̂tr] > 0.
This sets a strictly positive expectation of the test statistic T̂ .
The testing consistency then follows by standard CLT, after
proving a bounded variance of the test statistic.

We are ready to prove the main theorem of this section:
Theorem IV.6: Notations being as above, under

Assumptions 1, 2, 3, and the generic settings in
Proposition IV.5. Let f̂tr be the trained network function from
ntr many samples of X and Y , and Tn be the test statistic
evaluated on the testing set where |Xte| = |Yte| = n. If ΔC,
ε, σ are sufficiently small and ntr sufficiently large such that
Lgap in (31) is less than C, then

(1) When p 	= q, ETn = T [f̂tr] > 0, and specifically ETn >
4(C − Lgap).

(2) When p = q,
√
nTn → N (0, σ2

H0
) in distribution. When

p 	= q,
√
n(Tn−ETn)→ N (0, σ2

H1
) in distribution. σH0

and σH1 are all bounded by LΘ multiplied by an absolute
constant.

Furthermore, the needed network complexity is bounded by
• O(ε−D/r) for r-regular ftar, when p, q are general sub-

exponential densities in R
D,

• O(ε−d/2) for C2 ftar|M, when p, q are on or near a
d-dimensional compact smooth manifold M.

Remark IV.3: The constants in all the big O’s in (31) may
depend on the network Lipchitz upper bound LΘ, the function
ftar, the diameter of the domain where the densities lie on
(in case of exponential decay, the scale c in Pexp), and the
manifold-atlas if the densities are on-or-near manifold.

The above theorem directly gives the asymptotic test con-
sistency in the next corollary:

Corollary IV.7: Suppose Theorem IV.6 holds and notations
are as therein, and when p 	= q, T := ETn > 4(L[ftar] −
Lgap) > 0. Let 0 < α < 1 be the two-sample test level, typi-
cally α = 0.05, and the test threshold be τn = σH0√

n
Ψ−1(α),

where Ψ(x) :=
∫∞
x

1√
2π
e−y

2/2dy. Then, when p = q, as
n = nte → ∞, Pr[Tn > τn] → α; When p 	= q, as n → ∞,
Pr[Tn > τn]→ 1.

To go beyond the asymptotic consistency as n→∞ proved
in the corollary, one may derive finite-sample testing power
lower bound using a control of speed of convergence in CLT,
e.g., the Berry-Esseen theorem, together with the moment
bound of the random variable f(xi) by the universal Lipschitz
constant bound LΘ similarly as in the proof of Theorem IV.6.
Specifically, the standard Berry-Esseen bound implies that for
large but finite n, a test power of 1 − � − O(n−1/2) can be
guaranteed when

√
nT is greater than Ψ−1(�) + O(1) up

to multiplying an O(1) constant. This shows that the test
power approaches 1 as long as the value of T (which is
lower-bounded by 4(L[ftar]−Lgap) by our analysis) exceeds a
threshold at the order of n−1/2. Further details omitted here.
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Fig. 5. (Plots) Top-left: Two densities p and q in Eg.3, δ = 0.08. Right three columns: The test statistic T̂ on |Xte| = |Yte| = 100 samples i.e. under H1

(red cross) and the histogram of T̂ under 1000 permutation tests i.e. H0 (blue curve). The population witness function (black curve) and the empirical one
evaluated on test data (red cross for Xte, blue crosses for Yte) of the three methods are shown in the bottom row. (Table) The mean, standard deviation (“std”)
and median of the test power computed over nrep = 20 replicas. The randomness of test power estimation is explained in Appendix C.

V. EXPERIMENTS

This section conducts numerical experiments of the pro-
posed two-sample test and compares with alternatives, on
synthetic 1D and manifold densities and evaluating hand-
written digits generating models. Codes are available at the
public repository https://github.com/xycheng/net_logit_test.

A. Synthetic 1D Normal Density Departure

The following three examples all have xi ∼ N (0, 1) and

• Eg.1. Mean shift, yi ∼ N (δ, 1);
• Eg.2. Dilation of variance, yi ∼ N (0, (1 + δ)2);
• Eg.3. Mixture with bump at tail, yj ∼ (1− δ)N (0, 1) +
δN (3, 1

16 ).
We examine the tests: (1) net-acc, (2) net-logit, (3) gmmd

(setting kernel bandwidth σ to be median distance), (4) gmmd-
ad (selecting σ adaptively using the training set), and
(5) gmmd+ (using all training and testing samples, median σ),
(6) gmmd++ (using all data and post-selecting σ over a
range). Tests (1)-(4) only use the test set when measuring the
power, while (5)-(6) access both the training and test sets.
More details about experimental set-ups are in Appendix C.
The test powers of all the methods are plotted in Figure 6 for
the three examples. For Eg.1 and Eg.2, gmmd+, gmmd++
are performing consistently better than the other four which
only access the test data set, particularly in Eg.1. In Eg.3,
net-logit gives stronger power than gmmd+, gmmd++ when
nall > 200, where net-acc remains inferior to the two. Among
the four methods (1)-(4), the performances on Eg.1 are com-
parable, and net-logit gives better power on Eg.2 and Eg. 3.
This is especially the case of Eg. 3, where net-logit shows
the most significant advantage. The test powers, empirical and
population witness functions of tests (1)(2)(3) on E.g. 3 are
shown in Figure 5, and more details in Appendix C-F.

B. Comparison of Test-Power by Witness Function

Generally, there is no best test methods to use for all data
sets, and the test power depends on both method and data.

Here we study Eg. 3. in more detail, comparing the witness
functions of the network-based and kernel-based methods, so
as to explain the empirical advantage of net-logit in this case.

The analysis and experiments in Section II-E show that,
with large samples and sufficiently large neural network, the
trained witness function f̂tr approaches the population witness
function f∗ in terms of the population divergenceL[f ]. Similar
theories hold for kernel MMD tests. Thus comparing test
power based on population witness functions sheds light on
the behavior of the tests.

1) Witness Function: The population witness functions for
gmmd is wσ(x) :=

∫
gσ(x − y)(p(y) − q(y))dy, gσ(z) :=

e−|z|2/(2σ2), and its empirical counterpart is by replacing p
and q with the empirical densities of Xte and Yte respectively.
Recall that the population and empirical witness function for
net-logit test are f∗(x) = log p(x)

q(x) and fθ respectively. For
net-acc, when |Xte| = |Yte|, it is equivalent to using the
sign (taking value of ±1) of fθ instead of fθ in computing
the test statistic in (3), as shown in (A.1). Thus we call
Sign(fθ(x)) the empirical witness function for the net-acc
test, and Sign(f∗(x)) the population one. The population and
empirical witness functions (in one test run) are plotted in
Figure 5. Comparing to gmmd, the witness function of net-
logit, i.e., the log density ratio, weighs larger at the differential
region which is at the tail of the density p. Taking the sign of
fθ as done in net-acc test introduces discontinuity of at the
decision boundary neat x = 2, which leads to comparatively
larger variance of T̂ . This intuitively explains why the net-logit
test performs better.

2) Quantitative Comparison: To further explain the testing
power difference, we give a quantitative comparison. Let
w be the population witness function of the three methods
respectively, and define

Mean := Ex∼p,Y∼q(w(X)− w(Y )),

Std :=
√

Varx∼p(w(X)) + VarY∼q(w(Y )).

The larger the Mean, and the smaller the Std, the more
powerful the test is going to be. To remove the scaling
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Fig. 6. Three examples of 1D data in Section V-A. Test power of: gmmd (blue), gmmd-ad (green), net-acc (pink), net-logit (red), error bar standing for
the standard deviation of the estimated power over 20 replicas, and gmmd+ (blue dash), gmmd++ (green dash). nall = |X| + |Y | including half-half
training-testing split.

Fig. 7. (Table) The values of Mean, Std, and their ratio of the three tests
in Figure 5. (Right plot) The population witness functions of the three tests,
normalized to have Std = 1.

equivalence (a test statistic multiplied by a positive constant
gives the same test power), we will use the ratio of Mean
and Std as an indicator of test power. A similar approach has
been taken to study kernel MMD [6], [59]. Using the explicit
formula of p and q in Eg. 3, the values of Mean and Std
can be analytically computed, shown in the table in Figure 7,
where net-logit gives the largest ratio. The normalized witness
functions are plotted in Figure 7, where net-logit witness
function gives the largest weights to the differential region
of p and q in this example.

C. Synthetic 2D Manifold Density

The example consists of p and q which lie on the sphere
S2, a 2-dimensional manifold embedded in R

3. A realization
of samples X and Y is shown in the left of Figure 8, and
the formula of densities are given in Appendix D. Figure 8
plots the test power of the 5 methods over increasing density
departure δ and sample size. It can been seen that net-logit
gives the fastest growth of power as δ increases and the
strongest average power for all nall, but the variation can be
large if the power is not close to 1. The gmmd-ad improves
the power of gmmd, but does not do as well as net-acc,

which again performs inferior to net-logit. net-logit performs
better than gmmd++ (post-selecting σ, green dash) and the
advantage is more evident when nall > 200. This indicates
that larger sample size can be particularly in favor of network-
based tests, which rely on the search in the network parameter
space optimized on a separated training set.

D. Generated vs Authentic MNIST Data

As a real-world data example, we study the task of distin-
guishing “faked” MNIST samples produced by a pre-trained
generative network from authentic ones. The MNIST dataset
consists of gray-scale hand-written digits of size 28×28 falling
into 10 classes, which is relatively simple and thus is viewed
to lie near to low-dimensional manifolds in the ambient space
of R

784. More details about the generative and classification
networks in Appendix E. We compare (1) net-acc (2) net-logit
(3) gmmd (4) gmmd-ad on two samples X and Y , half of
D = X ∪Y used for training. X consists of authentic MNIST
samples, and Y of a mixture of authentic and faked ones,
i.e. p = pdata and q = (1 − δ)pdata + δpmodel, δ ∈ [0, 1]. The
test power for increasing δ and sample size nall = |D| up to
500 is shown in Figure 10, where net-logit gives the strongest
power throughout all cases, and the two network-based tests
significantly outperforms the other two when nall ≥ 300. The
adaptive choice of kernel bandwidth also improves the power
over the median-distance choice. The standard deviation of
the net-acc and net-logit power is less than that of gmmd-ad
power when nall = 300 and δ ≥ 0.4, when the former two
give near to 1 power. We also observe that the training of
the CNN classifier in this experiment is more stable than that
of the previous fully-connected network on low-dimensional
synthetic data, as revealed in the training error evolution plots,
c.f. Figure 12 Figure 15. With another pre-trained model
which generates faked images that are closer to authentic ones,
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Fig. 8. Test power of the different tests on data on sphere in R
3 in Section V-C. Markers same as in Figure 6.

Fig. 9. Two-sample problem of differentiating p, the density of authentic MNIST digits, and q which contains a δ = 0.4 fraction of digits “faked” by
a generative model. |X| = |Y | = 500. The gmmd-ad and net-logit tests use half as training set, and test on the other |Dte| = 500 samples. Left and
middle: the most likely fake digits identified by the empirical witness functions of the two tests, red box indicates authentic digits incorrectly identified.
Right: The test statistic T̂ (H1) and the histogram of its value under 1000 permutation tests (H0).

Fig. 10. Test power of gmmd (blue) gmmd-ad (green) net-acc (pink) net-logit (red) on differentiating authentic vs synthesized MNIST digits produced by
a generative model, where sample X has all authentic ones, and δ stands for the fraction of synthesized ones in Y , nall = |X| + |Y | including half-half
training-testing split.

net-logit again shows the best discriminative power, net-acc
gives comparable performance starting nall = 300, while
gmmd and gmmd-ad gives trivial power up to nall = 500,
c.f. Figure 14.

Setting nall = 1000, δ = 0.4, the results of gmmd-ad and
net-logit in one test run is shown in Figure 9. Based on the
nall = 500 plot in Figure 10, both tests shall have non-trivial
power, and that of net-logit shall be close to 1. In this test, both
methods correctly rejectsH0, yet the net-logit statistic deviates
from the distribution of T̂ |H0 more significantly, indicating
stronger power (shown in the histogram plots). To compare the
detecting ability of the empirical witness function ŵ of gmmd-
ad and net-logit, for each method, we sort the 250 samples in
Yte (among which 100 are faked ones) in ascending order of the
value of ŵ and select the first 100 samples. These are samples
which the model views as most likely to be faked ones. The
success rate of identifying faked samples is about 60 by gmmd-
ad ŵ, and about 90 by net-logit ŵ. The first 48 most likely
faked digits identified with both witness functions are plotted

in Figure 9, where gmmd-ad ŵ incorrectly includes 5 authentic
samples, and none by net-logit ŵ.

VI. DISCUSSION

The neural network approximation analysis is under the
framework of wavelet construction which are realized by a
shallow network. It can be worthwhile to go beyond the
framework of [28] and consider deeper network architecture,
as well as more than feed-forward network architectures,
e.g., residual networks. Method-wise, for the objective of
logistic (softmax) loss, as has been pointed out in [39], the
training of the classifier can be interpreted as minimizing
a Bregman divergence between the estimated logit fθ and
the true log density ratio f∗ = log(p/q). If one views the
trained fθ as an estimator of f∗, the approximation fθ ≈ f∗

suggests that T [fθ] ≈ T [f∗] =
∫
(p − q) log p

q = KL(p||q) +
KL(q||p) = SKL(p, q) which is the symmetric KL divergence
(SKL). As a result, the proposed statistic T̂ can be viewed
as estimating SKL(p, q). The analysis in the current paper
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does not directly gives estimation guarantee of SKL(p, q),
however, the approximation analysis constructs neural network
approximator of f∗ and our approximation theory may be
used in future analysis of estimating SKL. Meanwhile, one
can try to extend to other training objectives than softmax
loss, such as f -divergences [11], [22] and testing power
estimators [13], [41], [42].

For the two-sample problem, the analysis in this paper cov-
ers approximation and estimation error, and more understand-
ing of network optimization is needed so as to better study
network classification two-sample test methods. Empirically,
we have not systematically explored the influence of different
network architectures on optimization. Theoretically, a future
direction is to extend our work to optimization guarantees,
currently contained within Assumption 1. Among recent
results on controlling optimization error of neural networks is
the analysis of the neural tangent kernel [52], [53], [60], which
also implies control of generalization error [61] and approx-
imation error [62]. For two-sample testing, NTK analysis of
training dynamics has been recently considered for a trained
kernel MMD [63]. However, most NTK analysis in literature
particularly applies to L2 cost functions and linear output
networks, and certain assumptions of the NTK break down
when these are no longer the case [64]. As the current paper
focuses on the logistic (cross-entropy) loss, the connection
between NTK, as well as other neural network optimization
analysis, can be further explored in future work.

VII. PROOFS

A. Proofs in Section III

1) Proofs in Section III-B:
Proof of Lemma III.3: For any x ∈ Ui = B(xi, δ) ∩M,

we have that (note that φi(xi) = xi)

‖x− xi‖ ≤ dM(x, xi) ≤ βi‖φi(x)− xi‖,
where the first inequality is by that geodesic distance is always
larger than the Euclidean distance, and the second inequality
is by (13). This gives that

‖φi(x)− xi‖ ≥ 1
βi
‖x− xi‖. (32)

Meanwhile, as φi is an orthogonal projection, we have that
‖x − xi‖2 = ‖φi(x) − xi‖2 + ‖x − φi(x)‖2, and then with
(32) it gives that

‖x− φi(x)‖ ≤ ‖x− xi‖
√

1− 1/β2
i < δ

√
1− 1/β2

i ,

which is further bounded by
√

3
2 δ by βi ≤ 2 as in (14).

Proof of Theorem III.2: The construction of fN was orig-
inally posed in [28], but added here for completeness. The
bound on the Lipschitz constant uses additional new analysis.

Under the setup of manifold atlas {(Ui, φi)}Ki=1, the net-
work function is

fN(x) =
K∑
i=1

f̄N,i(x), x ∈ R
D, (33)

where each f̄N,i is constructed near Ui in the following way.
For each i, we work with the local coordinates x = (u, v),

u := φi(x) ∈ R
d, and v ∈ R

D−d, and we use the bar to denote
that the function is defined in R

D . We utilize a wavelet-type
construction through combinations of Relu activation units in
order to create a multiscale approximation scheme.

This begins with the construction of a trapezoid based
scaling function

t(x) := Relu(x + 3)− Relu(x+ 1)
− Relu(x− 1) + Relu(x− 3) (34)

ϕk,b(u) := cdRelu

⎛
⎝ d∑
j=1

t(2
k
d (uj − bj))− 2(d− 1)

⎞
⎠ ,

k = 0, 1, 2, · · · , b ∈ 2−
k
d Zd, (35)

where cd is a constant that normalizes the scaling function to
be unit norm. Similarly, one can construct a wavelet function

ψk,b(u) := 2
k
2
(
ϕk,b(u)− 2−1ϕk−1,b(u)

)
. (36)

The wavelet terms are summed to give a local approximation,

f̂i(u) :=
∑
(k,b)

ck,bψk,b(u), k = 0, 1, 2, · · · , b ∈ 2−
k
d Zd.

(37)

The finite-term summation f̂N,i will be a truncation k ≤ kmax
of f̂i, and the network function

f̄N,i(x) := Relu(Relu(f̂i(u)) + F0gδ(v) − F0)

− Relu(Relu(−f̂i(u)) + F0gδ(v) − F0),
F0 := ‖f‖L∞(M) + 1, (38)

where gδ : R
D → R will be constructed such that, C1 and

C2 being absolute constants,

(1) gδ is continuous on R
D, supp(gδ) ⊂ BDδ , 0 ≤ gδ(v) ≤ 1

and gδ(v) = 1 if ‖v‖ ≤
√

3
2 δ.

(2) gδ is piece-wise differentiable on R
D, and ‖∇gδ‖ ≤ C1

δ
when differentiable.

(3) gδ(v) can be represented by a network with
≤C2D

logD+log 1/δ
δ many parameters.

Note that while v = x − φi(x) lies in (Txi(M))⊥ which is
(D − d)-dimensional space, in practice our network gδ takes
the coordinates of v in R

D (to avoid D-by-D dense connection
in the change of coordinate layer), thus gδ is constructed to
be a mapping from R

D to R with the properties (1)-(3).
Lemma VII.1: Given 0 < δ ≤ 1, a function gδ : R

D → R

that satisfies (1)(2)(3) can be constructed.
The approximation construction proceeds by setting the

coefficients ck,b = 〈fηi, ψ̃k,b〉 in (37), where ηi is the partition
of unity function on Ui, the function fηi is viewed as a
function on R

d (due to one-to-one correspondence between
Ui and φi(Ui)) which is supported on φi(Ui), and the inner
product is taking on R

d. The function ψ̃k,b is the dual of basis
ψk,b, which is compactly supported on R

d.
The following two technical lemmas provide two properties

(P1) and (P2) concerning the convergence of the infinite
summation in (37). First observe that while b is on an infinite
grid in R

d as in (37), since the functions ϕk,b(u) are compactly
supported, only finitely many b are involved in the summation
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for each k. Specifically, the 2−
k
d spacing of bj in each of the

d direction matches the wavelet basis spacial rescaling 2
k
d in

(35), which gives the following lemma.
Lemma VII.2 (P1): In (37), at each u ∈ R

d, for each k,
at most 12d many b’s are involved in the summation.

Another important property is the decaying of the wavelet
coefficients ck,b as k increases due to the C2 regularity of the
function fηi on R

d.
Lemma VII.3 (P2): For any b and k = 0, 1, 2, · · · , |ck,b| ≤

Cd,f,ηi2
−( 2k

d + k
2 ), the constant depending on the 2nd derivative

of fηi as a function on R
d and the dimension d.

For any � < 1, let f̂N,i(u) be the k ≤ kmax truncation of
(37), and kmax large enough such that∑

k>kmax

12d · Cd,f,ηi2
−( 2k

d + k
2 )4 cd2k/2 < �, (39)

which is possible due to the summability of 2−2k/d.
By Lemmas VII.2 and VII.3, this proves that

|f̂N,i(u)− fηi(u)| < �,

∀u ∈ R
d in the local coordinate on Txi(M). (40)

We now claim that, with the definition (38),

|f̄N,i(x) − fηi(x)| < �, ∀x ∈M even not in Ui, (41)

and to verify this, consider three cases respectively,
(i) x = (u, v) ∈ Ui. By Property (1) of gδ and Lemma III.3,

gδ(v) = 1. Then (38) becomes

f̄N,i(x) = Relu(Relu(f̂N,i(u)))− Relu(Relu(−f̂N,i(u)))

= f̂N,i(u),

and then (41) follows by (40).
(ii) x /∈ Ui, but φi(x) ∈ φi(Ui). This only happens if ‖x−

φi(x)‖ > δ. (Otherwise, since ‖φi(x) − xi‖ < δ, then ‖x −
xi‖ < 2δ. This means that x ∈ BD2δ(xi), while BD2δ(xi) ∩M
is isomorphic to ball in R

d by construction, c.f. beginning of
Section III-B, thus φi(x) ∈ φi(Ui) only when x ∈ Ui, drawing
a contradiction.) Thus in the local coordinates x = (u, v),
u = φi(x), ‖v‖ > δ, and then by Property (1) of gδ, gδ(v) = 0.
Note that while fηi(x) = 0, fηi(u) may not be zero due
to that u = φi(x) ∈ φi(Ui). However, |fηi(u)| ≤ |f(u)| ≤
‖f‖L∞(M), and then (40) gives that |f̂N,i(u)| < �+|fηi(u)| <
1 + ‖f‖L∞(M) = F0. Inserting into (38) gives that

f̄N,i(x) = Relu(Relu(f̂N,i(u))− F0)

− Relu(Relu(−f̂N,i(u))− F0) = 0,
thus (41) holds.

(iii) x /∈ Ui, and φi(x) /∈ φi(Ui). Again fηi(x) = 0.
Since fηi(u) vanishes outside φi(Ui), fηi(u) = 0. By (40),
|f̂N,i(u)| < �. Note that gδ(v) may not be zero, but remains
between 0 and 1. Note that Relu(f̂N,i(u)) = (f̂N,i(u))+ ∈
[0, ε), and then

f̄N,i(x)+ := Relu((f̂N,i(u))+ + F0gδ(v)− F0)

≤ (f̂N,i(u))+ < �. (42)

Similarly,

f̄N,i(x)− := Relu((f̂N,i(u))− + F0gδ(v)− F0)

≤ (f̂N,i(u))− < �. (43)

For each u, only one of (f̂N,i(u))± is non zero, and when
(f̂N,i(u))+ = 0 then so is f̄N,i(x)+, same for minus. Thus
f̄N,i(x) = f̄N,i(x)+ − f̄N,i(x)− satisfies that |f̄N,i(x)| < �,
which proves (41).

Given (41), back to (33), and by that
∑K
i=1 ηi = 1 on M,

for any x ∈M,

|fN (x)− f(x)| ≤
K∑
i=1

|f̄N,i(x) − fηi(x)| < �K.

Setting � := ε
K to begin with, which determines kmax in (39),

finishes the approximation part of the Theorem, and to verify
the claimed number of neural network parameters, we use big
O to denote multiplying an absolute constant here:

• The first layer which conducts change of coordinate of
x ∈ R

D to local coordinates around Ui, for each i, takes
O(dD) parameters. Because u ∈ R

d is determined by
the projection φi, which is a D-to-d linear transform,
of xc := (x−xi), and v = xc−φi(xc) can be computed
in another layer which has O(dD) weights.

• On the branch sub-network for each i, the layer which
produces f̄N,i takes the input of f̂N,i(u) and gδ(v) and
uses O(1) weights. In f̂N,i(u), the number of basis
#{(k, b)} =

∑kmax

k=0 (2δ)d2k = O(δd2kmax), because the
diameter of φi(Ui) ≤ 2δ due to Ui ⊂ Bδ(xi)D , thus
a grid of b on (−δ, δ)d suffices. kmax is set in (39)
which satisfies 2kmax ≤ ( ε

KC′
d,f,ηi

)−d/2, where C′
d,f,ηi

is a constant depending on fηi, d and atlas. Let C′ :=
maxKi=1 C

′
d,f,ηi

, and then 2kmax ≤ ε−d/2(KC′)d/2.
We use this kmax for all atlas i subnet, thus #{(k, b)} ≤
O(δdε−d/2(KC′)d/2). The bottom layer which con-
structs ϕk,b(u) takes O(d#{(k, b)}) many weights, and
can be shared across i. The upper layer which linearly
combines ψk,b from ϕk,b’s to form f̂N,i involves i-atlas
specific coefficients ck,b, and uses O(#{(k, b)}) many

weights. In gδ(v), the 2 layer network uses O(Dδ log D
δ )

parameters by Property (3) of gδ, and are shared
across all i.

Summing over the K atlas sub-networks, the total number
of parameters is, omitting absolute constant,

KdD + (d+K)δdε−d/2(KC′)d/2 +
D

δ
log

D

δ
= Cf,Mε−d/2 +N0,

Cf,M := (d+K)δd(KC′)d/2, N0 := KdD +
D

δ
log

D

δ
.

We now prove the Lipschitz constant part of the Theorem.
For fixed i, we first bound Lip

RD (f̄N,i). Working with local
coordinates x = (u, v), for any x, x′ ∈ R

D,

|f̄N,i(x) − f̄N,i(x′)|
≤ |f̄N,i(x)+ − f̄N,i(x′)+|+ |f̄N,i(x)− − f̄N,i(x′)−|
≤ 2(|f̂N,i(u)− f̂N,i(u′)|+ F0|gδ(v) − gδ(v′)|). (44)

To bound Lip
Rd(f̂N,i), recall that

f̂N,i(u) =
kmax∑
k=0

∑
b

ck,bψk,b(u),
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and in (36), (35), by that t is piece-wise differentiable on R,
the function ϕk,b is piece-wise differentiable on R

d, and then
so is ψk,b. We have that

‖∇ϕk,b(u)‖ ≤ |cd|‖2k/d1d‖ = |cd|(d · 22k/d)1/2

=: c′d · 2k/d, ∀k = 0, 1, 2, · · · , (45)

where c′d is a constant depending on d. Then,

‖∇ψk,b(u)‖ ≤ 2
k
2
(‖∇ϕk,b(u)‖+ 2−1‖∇ϕk−1,b(u)‖)

≤ 2
k
2 c′d(2

k
d + 2−12

k−1
d ) ≤ 3

2
c′d2

k
2 2

k
d , (46)

and then, for any u, u′ ∈ R
d,

|f̂N,i(u) − f̂N,i(u′)|

=

∣∣∣∣∣∣
kmax∑
k=0

⎛
⎝∑
b∈Bu

ck,bψk,b(u)−
∑
b∈Bu′

ck,bψk,b(u′)

⎞
⎠
∣∣∣∣∣∣

(Bu denoting the set of b’s involved in the summation)

≤
kmax∑
k=0

∑
b∈Bu∪Bu′

|ck,b||ψk,b(u)− ψk,b(u′)|

≤
kmax∑
k=0

(2 · 12d)Cd,f,ηi2
−( 2k

d + k
2 ) · 3

2
c′d2

k
2 2

k
d ‖u− u′‖ (47)

=: ‖u− u′‖Cf,M
kmax∑
k=0

2−
k
d

≤ ‖u− u′‖Cf,M(1− 2−1/d)−1 =: ‖u− u′‖C′
f,M,

where Cf,M is a constant depending on function f and
manifold-atlas, including d and ηi, and so is C′

f,M.
In the derivation above, the inequality (47) follows by (P1)
Lemma VII.2, (P2) Lemma VII.3, Eqn. (46), and the piece-
wise continuous differentiability of ψk,b in R

d. This proves
that Lip

Rd(f̂N,i) ≤ C′
f,M.

Meanwhile, Property (2) of gδ gives that Lip
RD−d(gδ) ≤

C1
δ , C1 being absolute constant. Then (44) continues as below,
x = (u, v) being orthogonal decomposition,

(44) ≤ 2(C′
f,M‖u− u′‖+ F0

C1

δ
‖v − v′‖)

≤ 2(C′
f,M + F0

C1

δ
)
√

2‖x− x′‖ =: C′′
f,M‖x− x′‖,

and this proves that Lip
RD (f̄N,i) ≤ C′′

f,M. By (33),

Lip
RD (fN ) ≤ KC′′

f,M =: LM,f

which is a constant depending on f and manifold-atlas
only.

Proof of Lemma VII.1: Given 0 < δ ≤ 1 fixed, we prove
the construction of g = gδ : R

m → R for any dimension m,
and take m = D. Let g be in the form of

g(v) := tδ

⎛
⎝ m∑
j=1

y(vj)

⎞
⎠ , where for x ∈ R,

tδ(x) := 1− Relu

(
x− 0.8δ2

0.2δ2

)
+ Relu

(
x− δ2
0.2δ2

)
, (48)

Fig. 11. The construction of gδ : R
D → R. (Left) tδ as in (48). (Right)

y(x) by 2(L + 1) Relu’s as in (49) (50), only the x > 0 part is shown and
y(x) = y(−x).

and y : R → R will be an approximation of y(x) ≈ x2 for
|x| ≤ 1. tδ(x) = 1 when x < 0.8δ2, 0 when x > δ2, and
linearly interpolating in between, see Figure 11. To construct
y, define r := 1

20δ, 0 < r ≤ 1
20 , define a sequence of points

x0 :=
r√
m
, xl := ρxl−1, ρ = 1 + 2r > 1,

l = 1, · · · , L, L is the smallest integer s.t. xL = x0ρ
L > 1.

and let y(x) be a piece-linear function, y(−x) = y(x), and
y(x) = x2

0 when |x| ≤ x0, y(xl) = x2
l , l = 1, · · · , L, and

y(x) = x2
L for x > xL, see Figure 11. Such y(x) can be

represented by 2(L+ 1) many Relu functions, specifically,

y(x) := y+(x) + y+(−x)− x2
0, (49)

al := xl−1 + xl, l = 1, · · · , L, al+1 > al,

y+(x) = x2
0 + a1Relu(x − x0) + (a2 − a1)Relu(x− x1)+

· · ·+ (aL − aL−1)Relu(x− xL−1)− aLRelu(x− xL).
(50)

Since y(xl) = x2
l for all 0 ≤ l ≤ L, and by convexity of x2,

we have that

(p1) y(x) ≥ x2 whenever |x| ≤ xL, and y(x) = x2
L > 1

when |x| > xL.

We also claim that

(p2) 0 ≤ y(x) ≤ x2
0 + (1 + r)x2 := Y (x), for all x.

(p3) y is piece-wise linear on R, when x 	= xl, y′(x) exists,
and y′ = 0 if |x| < x0 or |x| > xL, |y′(x)| < 2.1|x| if
x0 < |x| < xL.

To verify (p2) and (p3): By symmetry of y, only consider
when x ≥ 0. When x ≤ x0, y(x) = x2

0 ≤ Y (x). For
x ∈ [xl−1, xl], on the left end point y(xl−1) = x2

l−1 ≤
(1 + r)x2

l−1 < Y (xl−1), and y′(x) = al on the interval, also
xl = (1 + 2r)xl−1, then

(Y − y)′(x) = 2(1 + r)x − al = 2(1 + r)x − (xl−1 + xl)
= 2(1 + r)(x − xl−1) ≥ 0, xl−1 ≤ x ≤ xl,

Thus Y ≥ y on [xl−1, xl]. When |x| > xL, Y (x) ≥ (1 +
r)x2 ≥ x2

L = y(x). Thus (p2) holds.
The differentiability of y is by construction, and when

xl−1 < x < xl, l = 1, · · · , L, y′(x) = al = xl−1 + xl =
xl−12(1 + r) < x2(1 + r) ≤ 2.1 x, by that r ≤ 0.05. Thus
(p3) holds.
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We are ready to prove the properties (1)-(3) of g defined as
in (48):

(1) y : R → R is continuous on R, and so is tδ, then g is
continuous on R

m. tδ takes value between 0 and 1, and so is
g. For any ‖v‖Rm ≥ δ,

∑m
j=1 v

2
j ≥ δ2, by (p1) we have that∑m

j=1 y(vj) ≥ δ2. (If all |vj | ≤ xL, y(vj) ≥ v2
j , then the sum

≥ ∑
j v

2
j ≥ δ2. If any one |vj | > xL, y(vj) > 1 ≥ δ2, then

so is the sum.) Then by that tδ(x) = 0 if x ≥ δ2, g(v) = 0.
This proves that g vanishes outside Bmδ .

For any ‖v‖Rm ≤
√

3
2 δ, we have

∑m
j=1 v

2
j ≤ 0.75δ2, then

(p2) gives that
m∑
j=1

y(vj) ≤
∑
j

(x2
0 + (1 + r)v2

j )

= x2
0m+ (1 + r)‖v‖2 = r2 + (1 + r)‖v‖2

≤ (0.05δ)2 + 1.05 · 0.75δ2

< 0.8δ2, (by that r = 0.05δ ≤ 0.05)

and then, by that tδ(x) = 1 when x < 0.8δ2, g(v) = 1.
(2) y(vj) applies to each coordinate vj and y is piece-

wise linear on R, and tδ is also piece-wise linear on R,
thus g is piece-wise linear on R

m and thus piece-wise dif-
ferentiable. By chain rule, ∂vjg(v) = t′δ(

∑
j y(vj))y

′(vj)
and t′δ is non-zero only if

∑
j y(vj) ∈ (0.8δ2, δ2), in which

case |t′δ(
∑

j y(vj))| = 1
0.2δ2 and |y′(vj)| ≤ 2.1|vj| by (p3).

(Because y(vj) ≥ 0 and
∑

j y(vj) ≤ δ2, each y(vj) ≤ δ2 ≤ 1,
thus |vj | < xL, and |y′(x)| ≤ 2.1|x| as long as |x| < xL).
Also note that as proved in (1), one needs ‖v‖ < δ to make∑

j y(vj) < δ2. This means that ∇g(v), when existing, is
non-zero only when ‖v‖ < δ and

∑
j y(vj) ∈ (0.8δ2, δ2), and

then
|∂vjg(v)| ≤

1
0.2δ2

2.1|vj |, j = 1, · · · ,m,
which gives that

‖∇g(v)‖2 ≤ (
10.5
δ2

)2‖v‖2 ≤ (
10.5
δ2

)2δ2 =
(10.5)2

δ2
.

This proves (2) with C1 = 10.5.
(3) Representing g as a two-layer neural network, the top

layer tδ has 2 neurons and each takes m inputs, thus it has
O(m) weights, here we use big O to denote multiplying an
absolute constant and same below. The bottom layer branches
for the m coordinates, each branch is a sub-network y(vj)
with one hidden layer of width 2(L + 1) and a scalar input
vj , and thus it has O(L) weights, and all the m branches
has O(mL) weights. Thus the total number of parameters is
O(m(1+L)). By definition, x0(1+2r)L−1 ≤ 1, thus, by that
log(1 + 2r) > r (0 < r ≤ 0.05),

L ≤ 1 +
log
√
m+ log 1

r

r
= 1 +

1
2 logm+ log 20

δ

0.05δ
,

this proves that total number of network parameters≤ Cm(2+
1
2 logm+log 20

δ

0.05δ ) for an absolute constant C, which is (3) with
C2 being an absolute constant.

Proof of Lemma VII.2: Note that supp(t(x)) ⊂ [−3, 3].
Because of this, for a fixed k, supp(φk,0) ⊂ 2−k/d[−3, 3]d and
supp(ψk,0) ⊂ 2−(k−1)/d[−3, 3]d ⊂ 2−k/d[−6, 6]d. Recall that
the grid of shifts satisfies b ∈ 2−k/dZd. Because the support

and the shifts scale identically with k, we only need count the
overlap for k = 0. For a given uj for j = 1, . . . , d, there are
at most 12 bj values where uj is contained inside the support.
This is true for each j, meaning there are 12d wavelets ψ0,b

such that ψ0,b(u) 	= 0.
Proof of Lemma VII.3: For ease of notation, let g = fηi.

First, note that the coefficients satisfy

ck,b = 〈ψ̃k,b, g〉
= 2k/2

∫
ψ̃(2k/d(x− b))g(x)dx

= 2k/2
∫

supp(ψ̃)

ψ̃(y)g(2−k/dy + b)dy.

By the assumption that g is twice differentiable, we can take
a Taylor expansion of g around b and arrive at∫

supp(ψ̃)

ψ̃(y)g(2−k/dy + b)dy

=
∫

supp(ψ̃)

ψ̃(y)
(
g(b) + 2−k/d〈y,∇g(b)〉

+
1
2
‖∇2g(b)‖(2−k/d‖y‖2)2 +O(‖y‖3)

)
dy.

By construction of ψk,b, a simple calculation shows that ψk,b
has two vanishing moments (see [28] Proposition C.1 for a full
calculation). Because the dual wavelet ψ̃k,b can be expressed
in terms of a convolution with ψk,0 (see [65]), ψ̃k,b inherits
two vanishing moments as well. This means

|〈ψ̃k,b, g〉| ≤ C2−k/22−2k/d‖∇2g(b)‖
∫

supp(ψ̃)

ψ̃(y)‖y‖2 dy.

The only thing left to show is that
∫

supp(ψ̃) ψ̃(y)‖y‖2
dy < ∞. This can be shown as follows: Because ψ is
compactly supported, it trivially satisfies

|ψ(x)| ≤ Cα
(1 + ‖x‖d)1+α ,

for any α > 0. Since ψk,b is constructed to satisfy the
necessary properties to be a wavelet frame (i.e., the decay
assumptions of Theorem 3.25 in [65]), ψ̃(y) is also a wavelet
frame and satisfies

|ψ̃(x)| ≤ Cα′

(1 + ‖x‖d)1+α′ ,

for any α′ < α. Because the choice of α was arbitrary,
we can choose α′ large enough that

∫
supp(ψ̃) ψ̃(y)‖y‖2dy <∞.

Combining results, this gives

|〈ψ̃k,b, fηi〉| ≤ Cd,f,ηi2
−( 2k

d + k
2 ).

B. Other Proofs in Section III

Proof of Theorem III.1: Since f is Lipschitz on R
D, T is

Lip-1 on R, the composed function T ◦ f is Lipschitz on R
D,

and
Lip

RD (T ◦ f) ≤ Lip
RD (f).
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By that I[f ] =
∫

RD p · T ◦ f , applying Proposition III.5 gives
that

I[f ] =
∫
M
T ◦ f(x) p̃(x)dM(x) + r1,

and

|r1| ≤
(‖T ◦ f‖L∞(M)C1 + Lip

RD (f)C2

)
c1σ, (51)

where C1 := 3KLM, C2 := K(2LM + 1 + βM) as in
Proposition III.5.

Let fcon be given by Theorem III.2 to uniformly approxi-
mate f onM up to ε, Lip

RD (fcon) ≤ LM,f . Repeat the above
argument on fcon in place of f , we have that

I[fcon] =
∫
M
T ◦ fcon(x) p̃(x)dM(x) + r2,

where since ‖fcon − f‖L∞(M) ≤ ε and Lip(T )≤ 1,
‖T ◦ fcon‖L∞(M) ≤ ‖T ◦ f‖L∞(M) + ε, then

|r2| ≤
(
(‖T ◦ f‖L∞(M) + ε)C1 + LM,fC2

)
c1σ. (52)

Comparing the integrals on the manifold,∣∣∣∣
∫
M
T ◦ f(x) p̃(x)dM(x)−

∫
M
T ◦ fcon(x) p̃(x)dM(x)

∣∣∣∣
≤
∫
M
|T ◦ f(x) − T ◦ fcon(x)|p̃(x)dM(x)

≤
∫
M
|f(x) − fcon(x)|p̃(x)dM(x) (by that T is Lip-1)

≤ ε
∫
M
p̃(x)dM(x) (by uniform approximation on M)

≤ ε(1 + 3KLMc1σ). (by (20)) (53)

Collecting (51), (52), (53), |I[f ] − I[fcon]| is bounded by
the sum of the three, which is

(1 + C1c1σ)ε+
{
C1(ε+ 2‖T ◦ f‖L∞(M))

+ C2(LM,f + Lip
RD (f))

}
c1σ,

as stated in the Theorem.
Proof of Lemma III.4: For a fixed i, by the definition

(16), and that (i) ηi vanishes outside Ui, and φ(Ni) =
φ(Ui), and (ii) hi vanishes outside BD−d

δ , we have that
supp(η̃i) ⊂ Ni. To see that η̃i|Ui = ηi, it suffices to show
that hi(x−φi(x)) = 1 on Ui, which follows by the definition
of hi and Lemma III.3.

Finally, we prove the Lipschitz continuity of η̃i on R
D. First,

η̃i is continuous on R
D . This is because η̃i has the factorized

definition as in (16), and that ηi(ψi(u)) as a function on R
d is

smooth, plus that hi(v) as a function on R
D−d is continuous,

thus the product function η̃i is continuous on R
D. Next we

prove the Lipschitz constant. By the global continuity and
that supp(η̃i) ⊂ Ni, Lip

RD (η̃i) = LipNi
(η̃i). For the latter,

consider x, x′ ∈ Ni, and let y := ψi ◦ φi(x) ∈ Ui,
η̃i(x) = ηi(y)hi(x − φi(x)),

similarly for x′, y′. Since ηi is smooth on M and compactly
supported on Ui, we assume that

|ηi(y1)− ηi(y2)| ≤ cidM(y1, y2), ∀y1, y2 ∈ Ui,

i.e., ci = Lip(ηi) w.r.t. manifold geometry, and ci is deter-
mined once the manifold-atlas is fixed. Then

|η̃i(x)− η̃i(x′)| ≤ |ηi(y)− ηi(y′)||hi(x− φi(x))|
+ |ηi(y′)||hi(x− φi(x)) − hi(x′ − φi(x′))|

≤ cidM(y, y′) + |hi(x− φi(x)) − hi(x′ − φi(x′))|
(by that ηi and hi are bounded by 1 )

≤ ciβi‖φi(y)− φi(y′)‖2
+

2β2
i

δ
‖(x− φi(x))− (x′ − φi(x′))‖ (by (13),(17))

≤ ciβi‖x− x′‖+
2β2

i

δ
‖x− x′‖,

where the last row is by that φi(y) = φi(x), similarly for y′,
and φi is orthogonal projection. This proves that Lip(η̃i) ≤
ciβi + 2β2

i

δ which can be upper bounded by 2ci + 8
δ by (14).

Taking maximum over i gives that supi Lip(η̃i) ≤ LM,
which is an absolute content determined by the manifold and
atlas.

Proof of Proposition III.5: We need two technical lem-
mas, the proofs are elementary and in Appendix A.

Lemma VII.4: For any p ∈ Pσ defined as in (9), if σ < 1
2 ,

then ∫
RD

d(x,M)p(x)dx,
∫

RD

d(x,M)2p(x)dx < c1σ.

The requirement of σ < 1/2 is only used to simply the bound
to be c1σ, and the integral of d(x,M)2 actually gives a abound
of 2c1σ2.

Lemma VII.5: If g : R
D → R is globally Lipschitz

continuous, then

|g(x)| ≤ ‖g‖L∞(M) + Lip(g) · d(x,M), ∀x ∈ R
D,

where ‖g‖L∞(M) is finite due to that g is continuous and M
is compact.

For each i = 1, · · · ,K , let Hi := φi(Ui) = φi(Ni), Hi ⊂
Txi(M). We will show that∫

RD

p(x)g(x)dx ≈
∫

RD

p(x)g(x)
K∑
i=1

η̃i(x) (error 1)

=
K∑
i=1

∫
Ni

g(x)η̃i(x)p(x)dx (supp(η̃i) ⊂ Ni, Lemma III.4)

≈
∑
i

∫
Ni

g(ψi ◦ φi(x))η̃i(x)p(x)dx (error 2), (54)

and then, on each Ni = Hi × BD−d
δ , we change to local

coordinate x = (u, v), u = φi(x) ∈ Hi, v = x − φi(x) ∈
BD−d
δ , and use (16) namely

η̃i(x) = ηi(ψi(u))hi(v)

to integrate w.r.t v first, which continues (54) as

=
∑
i

∫
Hi

(g · ηi)(ψi(u))

(∫
BD−d

δ

hi(v)p(u, v)dv

)
du

=:
∑
i

∫
Ui

g(z)ηi(z)p̃i(z)dM(z) (definition of p̃i)

=
∫
M
g(z)

(∑
i

ηi(z)p̃i(z)

)
dM(z) =

∫
M
g(z)p̃(z)dM(z),
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where dM(z) stands for the Reimannian volume measure
onM. To prove the proposition, it suffices to bound (error 1)
and (error 2) and show that the sum ≤ the right hand
side of (18).

Bound of (error 1):∣∣∣∣∣
∫

RD

p(x)g(x)dx −
∫

RD

p(x)g(x)
K∑
i=1

η̃i(x)

∣∣∣∣∣
≤
∫

RD

p(x)

∣∣∣∣∣g(x)(1 −
K∑
i=1

η̃i(x))

∣∣∣∣∣ dx
=:

∫
RD

p(x)|g(x)ξ(x)|dx, (55)

where ξ := (1 −∑K
i=1 η̃i), ξ|M = 0, and ξ is Lipschitz on

R
D with

Lip(ξ) ≤
K∑
i=1

Lip(η̃i) ≤ KLM

by Lemma III.4. By Lemma VII.5, ∀x ∈ R
D,

|g(x)ξ(x)| ≤ (‖g‖L∞(M) + Lip(g) · d(x,M))

· (0 + Lip(ξ) · d(x,M))

= Lip(ξ)(‖g‖L∞(M) · d(x,M) + Lip(g) · d(x,M)2),

and then (55) continues as

(55) ≤
∫

RD

p(x)Lip(ξ)
(‖g‖L∞(M) · d(x,M)

+Lip(g) · d(x,M)2
)
dx

= Lip(ξ)
(
‖g‖L∞(M)

∫
RD

p(x)d(x,M)

+Lip(g)
∫

RD

p(x)d(x,M)2
)

< Lip(ξ)
(‖g‖L∞(M)c1σ + Lip(g)c1σ

)
,

where the last line is by Lemma VII.4. This proves that

(error 1) < KLM(‖g‖L∞(M) + Lip(g))c1σ. (56)

Bound of (error 2):∣∣∣∣∣
K∑
i=1

∫
Ni

(g(x)− g(ψi ◦ φi(x)))η̃i(x)p(x)dx
∣∣∣∣∣

≤
K∑
i=1

∫
Ni

|g(x)− g(ψi ◦ φi(x))|η̃i(x)p(x)dx. (57)

Define ξi(x) := g(x) − g(ψi ◦ φi(x)) for x ∈ Ni, and we
derive bound for |ξi(x)|η̃i(x) on Ni. For any x ∈ Ni, exists
x∗M ∈M such that ‖x− x∗M‖ = d(x,M), but the point x∗M
may not lie in Ui. Consider the two cases respectively:

(i) If x∗M ∈ Ui, then ξi(x∗M) = 0, and then

|ξi(x)| = |ξi(x)− ξi(x∗M)|
≤ LipNi

(ξi)‖x− x∗M‖ = LipNi
(ξi)d(x,M). (58)

For each i, one can verify that g(ψi ◦ φi(x)) has Lipschitz
constant Lip(g)βi on Ni: For any x, x′ ∈ Ni, let y = ψi ◦
φi(x), y′ = ψi ◦ φi(x′), y, y′ ∈ Ui, then

|g(ψi ◦ φi(x)) − g(ψi ◦ φi(x′))|
= |g(y)− g(y′)| ≤ Lip(g)‖y − y′‖
≤ Lip(g)dM(y, y′) (geodesic larger than Euclidean)

≤ Lip(g)βi‖φi(y)− φi(y′)‖ (by (13))

= Lip(g)βi‖φi(x)− φi(x′)‖ ≤ Lip(g)βi‖x− x′‖.

As a result, we have that

LipNi
(ξi) ≤ Lip(g)(1 + βi). (59)

Back to (58), by that |η̃i(x)| ≤ 1, and (14), we then have that

|ξi · η̃i(x) | ≤ Lip(g)(1 + βM) · d(x,M). (60)

(ii) If x∗M /∈ Ui, then x∗M must be outside Ni. (Otherwise,
suppose x∗ := x∗M is in Ni, ‖x∗−φi(x∗)‖ ≤ δ and φi(x∗) ∈
φi(Ui). By construction in the beginning of Section III-B,
BD2δ(xi) ∩ M is isomorphic to Euclidean ball, thus there is
one-to-one correspondence between points in BD2δ(xi) ∩ M
and their projected image under φi. Since ψi(φi(x∗)) ∈ Ui, x∗
cannot be ψi(φi(x∗)), thus xi cannot ∈ BD2δ(xi). This draws a
contradiction, because ‖φi(x∗)−xi‖ < δ, then ‖x∗−xi‖ < 2δ
by triangle inequality.) Then the line from x to x∗M intersects
with the boundary of Ni at a point x′, and

‖x− x′‖ ≤ ‖x− x∗M‖ = d(x,M).

Then by that η̃i(x′) = 0,

|η̃i(x)| = |η̃i(x) − η̃i(x′)|
≤ Lip(η̃i)‖x−x′‖ ≤ Lip(η̃i)d(x,M).

Meanwhile, Lemma VII.5 gives that

|ξi(x)| ≤ |g(x)|+ |g(ψi ◦ φi(x))|
≤ 2‖g‖L∞(M) + Lip(g)d(x,M).

Together, and by the bound of Lip(η̃i) in Lemma III.4,

|ξi(x)η̃i(x)| ≤
(
2‖g‖L∞(M) + Lip(g)d(x,M)

)
LMd(x,M).

(61)
Combining the two cases, we simply bound |ξi(x)|η̃i(x) on

Ni by the sum of (60) and (61), and then (57) continues as

(error 2) ≤
K∑
i=1

∫
Ni

{
Lip(g)(1 + βM) · d(x,M)

+
(
2‖g‖L∞(M) + Lip(g)d(x,M)

)
LMd(x,M)

}
p(x)dx

< Kc1σ
{

Lip(g)(1 + βM) + LM(2‖g‖L∞(M) + Lip(g))
}

(62)

where Lemma VII.4 is used.
Finally, combining the two bounds of (error 1) and (error 2)

(56) and (62) proves the claim.
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C. Proofs in Section IV

1) Approximation Error Analysis of L[f ]:
Proof of Proposition IV.1: We first consider when

Ω :=supp(p+ q) is compact. Then supp(ftar) is inside Ω and
let C′ be the diameter of Ω. Result in [25] guarantees the
existence of fcon such that

‖ftar − fcon‖L∞(Ω) ≤ ε (63)

with the needed neural network complexity stated in the
proposition. Then, by (22),

|L[ftar]− L[fcon]| ≤ 1
2

( ∫
p|Tp ◦ ftar − Tp ◦ fcon|

+
∫
q|Tq ◦ ftar − Tq ◦ fcon|

)
≤ 1

2

(∫
p|ftar − fcon|+

∫
q|ftar − fcon|

)
(by (23))

≤ ε1
2
(
∫

Ω

p+
∫

Ω

q) = ε, (by supp(p+ q) ⊂ Ω and (63))

which proves the claim.
When the two densities are merely sub-exponential, by a

re-centering of the origin we assume that supp(ftar) lies inside
Ω := (−C′

2 ,
C′
2 )D, and all derivatives of f = ftar vanishes at

∂Ω. The constructive proof in [25] utilizes a partition of unity
of the box Ω by evenly divided sub-boxes, and approximate f
by a Taylor expansion on each sub-box. As a result, the fcon

which fulfills (63) also vanishes outside Ω. This is because
the only sub-boxes whose support are not in Ω are those that
are centered on the boundary of Ω, and then the coefficients in
Taylor expansion vanish, thus those sub-boxes can be removed
from the formula of fcon. Note that since T (0) = 0 (23),
whenever f vanishes, so does T ◦ f , thus supp(Tp ◦ ftar),
supp(Tp ◦ fcon) ⊂ Ω. Thus we have

|
∫
pTp ◦ ftar −

∫
pTp ◦ fcon|

≤
∫

Ω

p|Tp ◦ ftar − Tp ◦ fcon|

≤
∫

Ω

p|ftar − fcon| ≤ ε
∫

Ω

p ≤ ε,

and similarly for the integral w.r.t. q. Putting together, it gives
that |L[ftar]− L[fθ]| ≤ ε.

Proof of Proposition IV.2: Under Assumption 2, ftar is
smooth and compactly supported in R

D and then globally
Lipschitz. Since M is compact smooth manifold, ftar|M is
smooth on the manifold. Since T = Tp and Tq are Lipschitz-1,
Theorem III.1 applies to f = ftar and guarantees the existence
of a fcon in the network function family with the claimed
complexity to bound |L[ftar] − L[fcon]|. (Strictly speaking,
Theorem III.1 only applies to bound |I[ftar] − I[fcon]| where
I[f ] =

∫
pTp ◦ f , or

∫
qTq ◦ f , and L[f ] equals the average

of the two. Nevertheless, the proof of Theorem III.1 uses the
integral comparison lemma Proposition III.5 and the uniform
approximation of ftar on the manifold, which directly extends
to prove the same result for I[f ] = L[f ].)

To prove the proposition, it suffices to bound the quantities

‖T ◦ ftar‖L∞(M), T = Tp, Tq.

Let f = ftar, since f(x0) = 0 for x0 ∈ M, and then
T ◦ f(x0) = 0, and ∀x ∈M,

‖T (f(x))‖ ≤ Lip
RD(f)‖x− x0‖ ≤ Lip

RD (f)diam(M).

Thus

‖T ◦ ftar‖L∞(M) ≤ Lip
RD (ftar)diam(M), T = Tp, Tq.

Combining with (11) and (12) leads to (24).
2) Estimation Error Analysis of Ln[f ]:

Proof of Lemma IV.3: For fixed 0 < r < B
L , let X :=

{xi}Ni=1 be a r-net of K such that N = N (K, r). Let t :=
4Lr > 0, and F := {fj}Mj=1 be a maximal t-separated set in
F ′, meaning that for any j 	= j′, ‖fj−fj′‖L∞(K) > t, and no
more member in F ′ can be added to preserve this property.
Such F always exists because it can be generated by adding
points from an arbitrary point while preserving the t-separation
property. By construction, F is a t-net of F ′. We will show
that M ≤ (26).

Partition the 1D interval [−B,B] into N1 many disjoint
sub-intervals, each of length ≤ 2Lr, and N1 can be made
< B

Lr + 1 ≤ 2B
Lr . For any j 	= j′, there must be one xi ∈

X such that fj(xi) and fj′(xi) lie in distinct subintervals.
(Otherwise, |fj(xi) − fj′(xi)| ≤ 2Lr, and by that both fj
and fj′ are L-Lipschitz, |fj(x) − fj′(x)| < 4Lr for any x ∈
Br(xi). Since ∪Ni=1Br(xi) cover K , this means that ‖fj −
fj′‖L∞(K) ≤ 4Lr = t, contradicting with that fj and fj′ are
t-separated.) Then each function fj corresponds to a string of
interval indices (I1, · · · , IN ), where Ii ∈ {1, · · · , N1}, and
these strings are distinct for the M many fj’s. There are at
most NN

1 distinct strings, which means that M ≤ NN
1 .

Proof of Proposition IV.5: Recall that (|Xtr| =
|Ytr| = n)

Ln[f ] =
1
2

(
1
n

n∑
i=1

Tp ◦ f(xi) +
1
n

n∑
i=1

Tq ◦ f(yi)

)
,

L[f ] = ELn[f ],

where xi ∼ p i.i.d., yi ∼ q i.i.d., and xi’s and yi’s are
independent, and Tp, Tq as in (23). We prove the three cases
respectively, where for case (1), we prove the compactly
supported case first, and the exponential-tail case as (1’).

(1) For any f ∈ FΘ,reg(BR), there is x0 ∈ BR, f(x0) = 0.
Then ∀x ∈ BR(0), |f(x)| ≤ Lip(f)‖x − x0‖ ≤ 2LR, i.e.,
‖f‖L∞(BR(0)) ≤ 2LR. Thus FΘ,reg(BR) is contained in the
function space of

F := {f, Lip
RD (f) ≤ L, ‖f‖L∞(BR(0)) ≤ 2LR},

equipped with ‖ · ‖L∞(BR(0)).

By Lemma IV.3, for any r < 1 < 2R, t := 4Lr, there exists
a finite set F in FΘ,reg(BR) which form an t-net that covers
FΘ,reg(BR) under the metric of ‖ · ‖L∞(BR(0)), where

Card(F ) ≤ (
4R
r

)N (BR(0),r).

The covering number of a Euclidean ball can be bounded
by N (BR(0), r) ≤ (

2R
r + 1

)D
<

(
3R
r

)D
, see e.g.
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Section 4.2 of [58], using r < 1. Thus,

Card(F ) ≤ exp
{

(3R)Dr−D log
4R
r

}
.

Given r < min{c′1/4, 1}, for each f ∈ F , Lip
RD (f) ≤ L,

then Lemma IV.4 and (28) apply to give concentration of the
independent sums over xi’s and yi’s respectively. By a union
bound,

Pr[∃f ∈ F, |Ln[f ]−L[f ]| ≥ t] ≤ Card(F )·4 e−c′0n t2

L2 , (64)

where t
L = 4r is chosen to < c′1 to begin with. The r.h.s of

(64) is upper bounded by

exp
{

log 4 + (3R)Dr−D log
4R
r
− c′0n(4r)2

}
,

for 0 < r < min{c′1/4, 1},
which is further upper bounded by

exp
{
−2

3
n

D
D+2 (logn)

2
2+D + log 4

}
, (65)

if γ := max{3R, 1

4
√
c′0
}, r = γ( logn

n )
1

2+D , and (logn)
1

2+D >

4/3. Note that as n → ∞, r → 0, thus the constraint of
r < min{c′1/4, 1} is satisfied for sufficiently large n.

We consider the good event where |Ln[f ]−L[f ]| < t for all
f ∈ F . Since F is a t-net that covers FΘ,reg(BR) with unions
of closed ‖ · ‖L∞(BR)-balls around points in F , for any f ∈
FΘ,reg(BR), there is an f0 ∈ F such that ‖f−f0‖L∞(BR) ≤ t.
Since supp(p+ q) ⊂ BR, this implies that |L[f ]− L[f0]| ≤ t
and |Ln[f ]− Ln[f0]| ≤ t, then

sup
f∈FΘ,reg(BR)

|Ln[f ]− L[f ]| ≤ 3t.

This proves that with sufficiently large n, with probability
≥1− (65),

sup
f∈FΘ,reg(BR)

|Ln[f ]− L[f ]|

≤ 3 · 4Lmax{3R, 1
4
√
c′0
}
(

logn
n

) 1
2+D

.

(1’) The proof extends that in (1) by a truncation argument
for the exponential tail of the densities. We rename the R in
the statement as R0 in below.

The following lemma gives the decay of the integra-
tion with the tail of sub-exponential densities for any
f ∈ FΘ,reg(BR0(0)), proved in Appendix A.

Lemma VII.6: Suppose p is in Pexp with c = 1, function
f : R

D → R has Lip
RD (f) ≤ L and vanishes at some point

x0, ‖x0‖ < R0, then, C as in the definition of Pexp,∫
‖x‖>R

|f |p < L(R0 + 1 +R)Ce−R, ∀R > R0.

We introduce a sequence of domains Ωn := BRn(0) in R
D,

where Rn = α logn, α > 0 is a constant to be determined.
For n samples of xi’s and yi’s, since p, q are in Pexp with
c = 1,

Pr[∃i, ‖xi‖ > R or ∃i′, ‖yi′‖ > R] < 2nCe−R, ∀R > 0.

We call

(good event 1)n = {‖yi′‖, ‖xi‖ ≤ Rn, ∀i, i′}.
For any large enough n such that Rn > max{R0, 1}, the

functional space FΘ,reg(BR0(0)) lies inside

Fn := {f, Lip
RD (f) ≤ L, ‖f‖L∞(BRn) ≤ 2LRn}

equipped with ‖ · ‖L∞(BRn ).

Similarly as in (1), for any r < 1 thus < 2Rn, t := 4Lr,
FΘ,reg(BR0(0)) has a subset Fn which is an t-net that covers
FΘ,reg(BR0(0)) under ‖ · ‖L∞(BRn ), and

Card(Fn) ≤ exp
{

(3Rn)Dr−D log
4Rn
r

}
.

We choose

r = γn(
log n
n

)
1

2+D ,

γn = 3Rn (∼ logn >
1

4
√
c′0

for large n),

then if (logn)
1

2+D > 4/3,

(good event 2)n := {∀f ∈ Fn, |Ln[f ]− L[f ]| < t}
fails with probability ≤ (65).

Restricting to (good event 1)n and (good event 2)n. For
any f ∈ FΘ,reg(BR0(0)), exists f0 ∈ Fn such that
‖f − f0‖L∞(BRn ) ≤ t, then |Ln[f ]−Ln[f0]| ≤ t. Meanwhile,
since both f and f0 are in FΘ,reg(BR0(0)), Lemma VII.6
applies to both (since Rn > R0), then

|L[f ]− L[f0]| ≤ 1
2

( ∫
p|Tp ◦ f − Tp ◦ f0|

+
∫
q|Tq ◦ f − Tq ◦ f0|

)
≤ 1

2

(∫
p|f − f0|+

∫
q|f − f0|

)
(by (23))

≤ 1
2

(
t

∫
BRn

(p+ q) +
∫

RD\BRn

(p+ q)(|f |+ |f0|)
)

≤ t+ 2CL(R0 + 1 +Rn)e−Rn ,

which means that

sup
f∈FΘ,reg(BR0)

|Ln[f ]− L[f ]|

≤ 3 t+ 2CL(R0 + 1 +Rn)e−Rn

= 3 · 4L · 3Rn
(

logn
n

) 1
2+D

+ 2CL(R0 + 1 +Rn)e−Rn

< C̃L · α logn · ((log n/n)
1

2+D + n−α), (66)

(setting Rn = α logn > R0)

where C̃ is an absolute constant. This happens with probability
≥ 1− pfail, and

pfail ≤ Pr[ fail of (good event 1)n]
+ Pr[ fail of (good event 2)n ]

≤ 2nCe−Rn + (65) = (2C)n−α+1 + (65).
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To make pfail → 0, one can set α = 1 + � for some � > 0,
then in (66) the n−α term is dominated by the term of
(logn/n)

1
2+D � O(n−1/3).

Putting together, we have that when n is sufficiently
large, specifically, (log n)

1
2+D > 4/3 and Rn = (1 +

�) logn > max{1, R0, 1/(12
√
c′0)}, then with probability

≥ 1 − (2C)n−ε − (65), the bound (66) holds, which, for
large n, is

∼ L logn(log n/n)
1

2+D ,

omitting the absolute constant in front.
(2) SinceM⊂ BR, similarly as in (1), enlarge the network

function space to be

F := {f, Lip
RD (f) ≤ L, ‖f‖L∞(M) ≤ 2LR}

equipped with ‖ · ‖L∞(M).

When applying Lemma IV.3, the t-net F can be chosen such
that

Card(F ) ≤ exp
{
c(M)r−d log

4R
r

}
,

because the covering number of the manifold N (M, r) ≤
c(M)
rd , where c(M) involves the intrinsic volume of M

integrated over its Riemannian volume element, and it scales
with the diameter of M. The rest of the proof is similar,
which gives that, with sufficiently large n, with probability
≥ 1− exp

{
− 2

3n
d

d+2 (logn)
2

2+d + log 4
}

,

sup
f∈FΘ,reg(M)

|Ln[f ]− L[f ]|

≤ 3 · 4Lmax

{
c(M)1/d,

1
4
√
c′0

}(
logn
n

) 1
2+d

.

(3) We consider the same enlarged F as in (3) equipped
with ‖ · ‖L∞(M), which can be covered by the same t-net
F as there. The large deviation of |Ln[f ] − L[f ]| for any
f ∈ F is the same, because though the densities p, q are
no longer supported on the manifold they still belong to the
Pexp class, and so is the union bound. The difference is in
the control of |Ln[f ] − Ln[f0]| and |L[f ] − L[f0]| where f
is an arbitrary member in FΘ,reg(M) and f0 ∈ F such that
‖f − f0‖L∞(M) ≤ t.

For |L[f ] − L[f0]|, we can use the integral comparison
Proposition III.5 and the uniform approximation of f by
f0 on the manifold. Specifically, similarly as in the proof of
Proposition IV.2, we have that

|L[f ]− L[f0]| ≤ 2
(
2LRC1(M) + LC2(M)

)
c1σ

+
(
1 + C1(M)c1σ

)
t, (67)

where C1(M), C2(M) are manifold-atlas-dependent only
constants defined in (19).

For the empirical Ln, we need the concentration of the
independent sum of the random variables d(xi,M) (and
similarly d(yi,M)), which is the following lemma proved in
Appendix A.

Lemma VII.7: Suppose xi, i = 1, · · · , n ∼ p i.i.d., p ∈ Pσ
as defined in (9) with σ < 1

2 and also in Pexp with c = 1.
Then ∀0 < τ < 1,

Pr

[
1
n

n∑
i=1

d(xi,M) > (c1 + τ)σ

]
≤ e−c′′0nτ2

,

where c′′0 is an absolute constant.
To proceed, observe that∣∣∣∣∣ 1n

n∑
i=1

(Tp ◦ f(xi)− Tp ◦ f0(xi))
∣∣∣∣∣

≤ 1
n

n∑
i=1

|f(xi)− f0(xi)| (by (23))

≤ 1
n

n∑
i=1

|f(xi)− f((xi)∗M)|+ |f((xi)∗M)− f0((xi)∗M)|

+ |f0((xi)∗M)− f0(xi)| (for each xi, ∃(xi)∗M ∈ M,

and ‖xi − (xi)∗M‖ = d(xi,M))

≤ 1
n

n∑
i=1

(2Ld(xi,M) + t) (by that ‖f − f0‖L∞(M) ≤ t)

= t+ 2L

(
1
n

n∑
i=1

d(xi,M)

)
.

Similarly for the independent sums with Tq ◦ f(yi), this gives
that

|Ln[f ]− Ln[f0]|

≤ t+ L

(
1
n

n∑
i=1

d(xi,M) +
1
n

n∑
i=1

d(yi,M)

)
. (68)

Putting together (67), (68), Lemma VII.7, and the union
bound over the t-net such that supf∈F |Ln[f ] − L[f ]| < t,
choosing τ = c1, t = 4Lr, r ∼ (logn/n)1/(2+d) as in (3),
we have that, when n is sufficiently large, with probability
≥ 1− exp

{
− 2

3n
d

d+2 (logn)
2

2+d + log 4
}
− exp{−c′′0c21n},

sup
f∈FΘ,reg(M)

|Ln[f ]− L[f ]| ≤ C̃(M) · L(σ + (logn/n)
1

2+d ),

where C̃(M) is a constant that depends on manifold-atlas
only.

3) Testing Power Analysis on the Testing Set:
Proof of Theorem IV.6: To prove (1): The bounding of

Lgap is by triangle inequality as detailed in Section II-D and
collecting the following bounds:

• ΔC is the optimization error as in Assumption 1.
• The O(ε) term is the network approximation error of
L[ftar], which is proved by Proposition IV.1 for general
and on-manifold densities p and q.
For near-manifold densities, the bound of approximation
error byO(ε)+O(σ) is proved by Proposition IV.2, where
σ is the sub-exponential decay scale as defined in (9).

• The Õ(n−1/(2+d′)
tr ) term is the estimation error proved

by Proposition IV.5.
The needed neural network complexity is as stated in

the theorem, and the constant dependence in big-O is as in
Remark IV.3.
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Note that under the setting of Proposition IV.5, which only
imposes the extra assumption that network functions need to
vanish at least at one point in a bounded domain beyond
Assumption 3, the approximation results hold. Particularly, in
Proposition IV.2, the Lip(fcon) can be bounded by LΘ which
is a universal constant, and all other constants depends on
manifold-atlas, the target function ftar.

To prove (2): Because Tn is the sum of two independent
sums of a fixed Lipschitz function f̂tr averaged on xi’s and yi’s
respectively, CLT applies to give the asymptotically normality,
and it suffices to bound the variance to prove the claim.
Let f = f̂tr, under Assumption 3, Lip

RD (f) ≤ LΘ. Note
that Var(

√
nTn) = Varx∼p(f(x)) + Vary∼q(f(y)). Since in

all three settings in Proposition IV.5, p and q are in Pexp

with c = 1, then similar to Lemma IV.4, we know that
(f(xi) − Ex∼pf(x)) is 1D sub-exponential random variables
satisfying (27) where L = LΘ. This proves that Var(f(xi))
≤ c′′L2

Θ, where c′′ is an absolute constant. Same argument
applies to f(yi), and thus Var(

√
nTn) ≤ L2

Θ multiplied by an
absolute constant.

Proof of Corollary IV.7: When p = q, the claim is equiv-
alent to the asymptotic normality of

√
nTn/σH0 . When p 	= q,

we show that for any small � > 0, there exists nε s.t. when
n > nε then Pr[Tn > τn] ≥ 1 − 2�. For fixed � < 1,
define t := Ψ−1(�) which is a positive constant. There exists
n1 s.t. when n > n1, then

√
nT > σH1t+σH0Ψ−1(α), which

implies that

Pr[Tn > τn] ≥ Pr
[√

n(Tn−T )
σH1

> −t
]

:= bn.

By the asymptotic normality of
√
n(Tn−T )/σH1 , the

sequence bn as n → ∞ converges to 1− Ψ(t) = 1 − �. This
means that, there is another n2 such that bn > 1−2� whenever
n > n2. Taking nε as max{n1, n2} proves the claim.

Lemma VII.8: For any f so that the integrals are defined,
T [f ] ≥ 4L[f ].

The relaxation in Lemma VII.8 may not be sharp, partic-
ularly, when p and q nearly non-overlap on their supports,
T [f∗] = 2SKL(p, q) diverges to infinity, while L[f∗] remains
bounded (by 2 log 2). When f is close to zero, which as
discussed above is the more relevant scenario for two-sample
test, the following lemma quantifies the tightness of the
relaxation. Proofs of both lemmas are in Appendix A.

Lemma VII.9: For any f s.t. f2 is integrable w.r.t p and q,

0 ≤ 1
2
T [f ]− 2L[f ] ≤

∫
(p+ q)

f2

2
.

APPENDIX A
PROOFS OF TECHNICAL LEMMAS

Proof of Lemma IV.4: ξi = g(xi), where g := T ◦ f ,
Lip

RD (g) ≤ L.

|g(xi)− Ex∼pg(x)| ≤
∫

RD

|g(xi)− g(x)|p(x)dx

≤ L
∫
‖xi − x‖p(x)dx ≤ L(‖xi‖+ Ex∼p‖x‖)

and by (21), Ex∼p‖x‖ =
∫∞
0

Prx∼p[‖x‖ > t]dt < C which
is an absolute constant. This means that the random variable

(ξi − Eξi)/L in absolute value is upper bounded by ‖xi‖ +
C, where y := ‖xi‖ as a 1D random variable satisfies that
Pr[|y| > t] < Ce−t, thus (ξi − Eξi)/L satisfies the sub-
exponential tail claimed in the lemma with some other absolute
constants C′ and c′.

Proof of Lemma VII.4: Let X ∼ p, then d(X,M) is a
non-negative random variable, and∫

RD

d(x,M)p(x)dx =
∫

RD

(∫ d(x,M)

0

dt

)
p(x)dx

=
∫ ∞

0

(∫
RD

1{0<t<d(x,M)}p(x)dx
)
dt

=
∫ ∞

0

Pr[d(X,M) > t]dt ≤
∫ ∞

0

c1e
− t

σ dt = c1σ.

Similarly,∫
RD

d(x,M)2p(x)dx =
∫

RD

(∫ d(x,M)

0

2tdt

)
p(x)dx

=
∫ ∞

0

(∫
RD

1{0<t<d(x,M)}p(x)dx
)

2tdt

=
∫ ∞

0

Pr[d(X,M) > t]2tdt ≤
∫ ∞

0

c1e
− t

σ 2tdt = 2c1σ2.

Proof of Lemma VII.5: By compactness and smoothness
ofM, for any x ∈ R

D, there exists x∗M ∈ M s.t. ‖x∗M−x‖ =
d(x,M). Thus,

|g(x)| ≤ |g(x∗M)|+ |g(x)− g(x∗M)|
≤ sup

x′∈M
|g(x′)|+ Lip(ξ)‖x− x∗M‖

= ‖g‖L∞(M) + Lip(ξ) · d(x,M).

Proof of Lemma VII.6: Let Lip(f)≤ L, f(x0) = 0,
‖x0‖ < R0, then

|f(x)| ≤ |f(x0)|+L‖x−x0‖ ≤ L(R0+‖x‖), ∀x, ‖x‖ > R,

Thus,∫
‖x‖>R

|f(x)|p(x)dx ≤ L
∫
‖x‖>R

(R0 + ‖x‖)p(x)dx

= L

(
(R0 +R)

∫
‖x‖>R

p+
∫
‖x‖>R

(‖x‖ −R)p

)
,

and ∫
‖x‖>R

(‖x‖ −R)p =
∫
‖x‖>R

∫ ‖x‖

R

dtp(x)dx

=
∫ ∞

R

∫
‖x‖>t

p(x)dxdt

=
∫ ∞

R

Pr[‖X‖ > t]dt <
∫ ∞

R

Ce−tdt = Ce−R,

then ∫
‖x‖>R

|f |p < L(R0 +R+ 1)Ce−R.

Proof of Lemma VII.7: By definition of Pσ, d(xi,M)’s
are i.i.d. non-negative sub-exponential random variables, and
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TABLE II

MEAN AND STANDARD DEVIATION (IN BRACKETS) OF L[f̂TR], OVER 40 REPLICAS OF TRAINING

OF THE NEURAL NETWORK, IN THE EXPERIMENT IN SECTION II-E AND FIGURE 2

Ex∼pd(x,M) < c1σ by Lemma VII.4. The claims follows by
the Bernstein’s control of the positive tail for independent sum
of i.i.d. sub-exponential random variables.

Proof of Lemma VII.8: By definition,

2L[f ] =
∫
p log

2
1 + e−f

+
∫
q log

2
1 + ef

= −
∫
p log

1 + e−f

2
−
∫
q log

1 + ef

2

≤ −
∫
p log e−

f
2 −

∫
q log e

f
2

(for any real number ξ,
1 + eξ

2
≥ e ξ

2 )

=
∫
f

2
(p− q) =

1
2
T [f ].

Proof of Lemma VII.9:

1
2
T [f ]− 2L[f ] =

∫
p
f

2
−
∫
q
f

2
−
∫
p log

2ef

1 + ef

−
∫
q log

2
1 + ef

=
∫
p log

1 + ef

2ef/2
+
∫
q log

1 + ef

2ef/2

=
∫

(p+ q) log
e−f/2 + ef/2

2
,

and by that ex+e−x

2 ≤ ex2/2,

1
2
T [f ]− 2L[f ] ≤

∫
(p+ q) log ef

2/2 =
∫
f2

2
(p+ q).

APPENDIX B
OPTIMIZATION EXPERIMENTS IN SECTION II-E

The experiment is merely to optimize the loss Ln,tr using
a dataset, and numerically compute the values of the obtained
L[f̂tr] using the analytical formula of the densities.

The training conducts Adam for 100 · 8000
ntr

epochs to
ensure that same number of samples are processed in the
experiment when ntr changes. The batch size = 100, and
learning rate 1e-3.

The numerical values of the mean and standard deviation
of L[f̂tr] for various H and ntr is shown in Table II, where
the values of the mean are plotted in Figure 2.

APPENDIX C
TWO-SAMPLE TESTS ON 1D DATA IN SECTION V-A

A. The Different Test Methods

We consider two types of alternative two-sample tests,
which are

• (net-acc) The test based on classification accuracy [5].
The equivalent form as an IPM test is explained in C-B.

• (gmmd) Gaussian kernel MMD. The kernel bandwidth σ
in gmmd is set to be the median of the pairwise distances
among all samples [18].

Where the three tests, net-logit (the proposed), net-acc and
gmmd all use the test set for two-sample problem, the first
two network-based methods are trained on the stand-along
training set. One may observe that this comparison to kernel
MMD is not fair: First, kernel MMD with median-distance σ
does not use the training set, thus it would be a more fair
comparison if gmmd can use all the data samples without
training-test splitting. Second, the median setting of σ may
not be optimal and can be improved by existing methods
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Fig. 12. Left: MMD discrepancy on trained set used by gmmd-ad to select kernel bandwidth σ. Middle and right: training of the classification network used
in net-based tests. On the synthetic 1D dataset.

in literature. We thus consider three more variants of the
Gaussian kernel MMD (GMMD) tests

• (gmmd+) GMMD using all samples. gmmd with median-
distance σ which uses all the samples without training-
test splitting.

• (gmmd-ad) GMMD using the test set only, but with
adaptively selected bandwidth σ on the training set. The
selection procedure is explained in C-C.

• (gmmd++) GMMD on the whole data sets with post-
selected σ. The tests are conducted over a range of values
of σ, which are {2−3, 2−2, · · · 23}, and the best test
power is post-selected. Note that this value of kernel
bandwidth choice is not available in an algorithm, and
the results are for theoretical comparison only.

These three tests are included for a more complete compar-
ison between network-based tests and kernel tests. Training
and testing split is half-and-half, and samples in X and Y are
of the same number, in all cases.

B. Equivalent Form of Net-Acc Test

Here we show that the net-acc test studied in [5] is equiv-
alent to using Sign(fθ) instead of fθ in (3) when nX = nY ,
up to multiplying and adding constants. Specifically, by the
definition of test statistic in [5], and recall that |Xte| = |Yte| =
1
2 |Dte|, Sign(z) = 1 if z ≥ 0 and -1 if z < 0,

T̂net-acc =
1
2

(
1
|Xte|

∑
x∈Xte

1{fθ(x)≥0}

+
1
|Yte|

∑
y∈Yte

1{fθ(y)<0}

)

=
1
2

(
1
|Xte|

∑
x∈Xte

1
2
(1 + Sign(fθ(x)))

+
1
|Yte|

∑
y∈Yte

1
2
(1− Sign(fθ(x)))

)

=
1
2

+
1
4

(
1
|Xte|

∑
x∈Xte

Sign(fθ(x))

− 1
|Yte|

∑
y∈Yte

Sign(fθ(x))

)
. (A.1)

C. Adaptive Choice of σ in Gmmd-Ad

In the training phase, the algorithm computes the Gaussian
kernel MMD discrepancy

T̂MMD(X,Y ) =
1
|X |2

∑
x,x′∈X

kσ(x, x′) +
1
|Y |2

∑
y,y′∈Y

kσ(y, y′)

− 2
|X ||Y |

∑
x∈X, y∈Y

kσ(x, y)

on the training set X = Xtr, Y = Ytr, for a range of
values of the kernel bandwidth σ, i.e. σ = {2−3, · · · , 23}.
kσ(x, y) = exp{− |x−y|2

2σ2 } is the isotropic Gaussian kernel.
A plot of MMD discrepancy as a function of varying σ is given
in Figure 12. The σ which maximizes the MMD discrepancy
on the training set is then chosen to compute the test statistic
on the test set. The MMD test statistic also takes the form as
T̂MMD in [8], [18].

Note that the MMD loss may not be the optimal objective to
select σ, and previous works have proposed to use the estimate
of testing power as the optimization objective [13], [41], [42].
We use the MMD loss to select σ for simplicity. This method
is also equivalent to the training process in [8] with only one
trainable parameter which is the kernel bandwidth σ. In exper-
iments, gmmd-ad improves the two-sample test performance
over median choice on the 2D manifold dataset in Section V-C
and the MNIST dataset in Section V-D.

D. Training of Neural Networks

In all the experiments, the classifier network used by net-
acc and net-logit is a two-layer fully-connected neural network
with 32 hidden nodes in each hidden layer, and the bottom
layer has the same dimension as the input data. The training
of the network is conducted via Adam [66]. Specifically,
100 epochs of Adam with learning rate 10−3, and batch
size 100 when the size of training set >100. A typical plot
of evolution of training loss and training error is given in
Figure 12. Training via SGD with momentum 0.9 produces
similar result. The result is qualitatively the same when the
number of hidden units varies from 16 to 1024. We have
not investigated the optimal choice of network architecture
hyperparameters for the two-sample problem.

We use fixed learning rate over a fixed number of epochs,
and it is entirely possible that our training procedure is over
simplified and better usage of stochastic gradient descent
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Fig. 13. Histogram of estimated test power from 400 test runs of gmmd, net-acc and net-logit over 20 replicas of training (no training for gmmd), on the
example in Figure 5.

method as studied in [67]–[71] may lead to improved
performance.

E. Test Power Estimation

The experiments with tests (1)-(4) use nrun = 400 test runs
to estimate the power as the frequency of rejecting H0, and
the whole experiments are repeated for nrep = 20 replicas to
compute mean and standard deviation of the estimated power.
The test with (5) and (6) uses 200 test runs to estimate the
power, since these gmmd methods demonstrate less variation
in estimated power, explained as below.

The way of computing the test power is empirical and
has randomness: for kernel mmd the variation is due to the
finite number of runs (nrun times), and for network based tests
there is extra variation due to the stochastic optimization of
the network. Thus we use experiment replicas to recored the
variations of the test power. The empirical distribution of the
test power of the three methods over training replicas is given
in 13, corresponding to the experiment in Figure 5. The plots
of the two net-based methods indicate large variation of the
power given by each trained network, that is, the “quality” of
the trained net to discriminate the two densities varies. This
instability is due to limited training samples as well as the
randomness in the optimization algorithm.

We observe decreased power variation with larger training
set, and the trained network gives better two-sample test
power. This is consistent with the observation in Section II-E,
and indicates that larger training set benefits the network
training. However, as a price to pay, the testing set will be
smaller given finitely many samples in total.

F. Detailed Experimental Results on Eg. 3

1) Set-Up: In Eg.3, the number δ ∈ [0, 1] controls the
difference between the densities p and q. A plot for p and
q with δ = 0.08 is illustrated in Figure 5. 200 training and
200 testing samples are used, with half of the samples coming
from X and half from Y in both the training and testing sets.

G. Test Power

The table in Figure 5 lists the power for the three methods
(1)(2)(3), where net-logit gives significantly better average
power about 80%, and the power of net-acc and gmmd are
similar, both are about 20%. Table III gives the full table of test
power including that of the methods gmmd+ and gmmd++.

TABLE III

THE MEAN, STANDARD DEVIATION (“STD”) AND MEDIAN OF THE TEST

POWER OF THE VARIOUS METHODS COMPUTED FROM nrun = 400
TEST RUNS OVER nREP = 20 REPLICAS ON EG. 3 IN SECTION V-A.

THE gmmd, Net-Acc, Net-Logit TESTS ARE COMPUTED ON

|XTE| = |YTE| = 100 SAMPLES, WHERE Net-Acc AND Net-Logit
TRAIN A CLASSIFICATION NETWORK ON ANOTHER TRAINING

SET OF SIZE |XTR | = |YTR| = 100. gmmd ONLY USES THE TEST SET

AND SETS THE KERNEL BANDWIDTH σ TO BE THE MEDIAN

DISTANCE. gmmd+ AND gmmd++ ACCESSES BOTH THE
TRAINING AND TEST SETS, WHERE gmmd+ USES THE

MEDIAN DISTANCE AS σ, AND gmmd++ REPORTS THE

BEST POWER OVER VARYING RANGE OF CHOICES OF σ,
AS DESCRIBED IN C-A. THE RESULTS OF gmmd, Net-Acc,

Net-Logit ARE ALSO REPORTED IN FIGURE 5

where gmmd+ achieves a test power of 47% and gmmd++ a
power of 57%, remaining inferior to net-logit, while both with
small variation (std � 2) and thus are more stable than net-
based tests. Results with other values of δ and sample sizes
are reported in Figure 6.

The variation of the power is much larger for the two net-
based tests, as explained in C-E and Figure 13. We note that
such large variation is due to the instability of network training
at small training size, and is likely to be a limitation of the
current net-based methods.

APPENDIX D
TWO-SAMPLE TESTS ON 2D DATA IN SECTION V-C

We introduce the construction of xi ∼ p and yj ∼ q. Let
xi = T (ui), yj = T (vj) where T : R

2 → R
3 is a smooth

mapping from unit square to the spherical surface given by

T (x1, x2) =
1
R

(
x1, x2,

√
R2 − x2

1 − x2
2

)
, R = 1.5,

and ui, vj are i.i.d. copies of random variables u and v in
R

2 distributed as the following: � = 0.05,

u = tu + ηu, v = tv + ηv, ηu, ηv ∼ N (0, �2I2),

tu ∼ uniformly on a quarter circle in [0, 1]× [0, 1], and tv ∼
the distribution of tu rotated around ( 1√

2
, 1√

2
) by angle δ,

where the 4 random variables are all independent. The other
experimental set-ups are the same as in Section V-A.
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Fig. 14. Same plot as Figure 10 with another pre-trained generative model which produces faked images that are closer to the authentic ones.

Fig. 15. Same plot as Figure 12 on MNIST data.

APPENDIX E
TWO-SAMPLE TESTS ON MNIST DATA IN SECTION V-D

The classifier network used in the experiment is a convolu-
tional neural network (CNN) with 2 convolutional layers.

The pre-trained generated model is based on a convolutional
auto-encoder:

c5x5x1x16 - re - ap 2x2 - c5x5x16x32 - re - ap 2x2 -
fc128 - re
- fc10 - re ← code space R

10

- fc128 - re - ct 5x5x128x32 - re
- ct5x5x32x16 (upsample 2x2) - re - ct5x5x16x1 (upsam-
ple 2x2) - Euclidean loss

where “c” stands for convolutional layer, “ct” for transposed
convolutional layers, “re” for Relu activation, and “ap” for
average pooling. The auto-encoder is trained on 50000 MNIST
dataset for 20 epochs using Adam with learning rate decreas-
ing from 10−3 to 10−6 and batch size 100.

The sampling of generative model is conducted by
adding a small isotropic Gaussian noise (“giggering”) to the
10-dimensional codes of authentic MNIST digits computed by
an encoder, and then mapping through the decoder to R

784.
We also prepare another generative model by removing the

bottleneck layer in the above auto-encoder architecture and
retrain the model, which gives smaller reconstruction error
and a higher-dimensional code space of R

128. The generative
model is conducted in the same way by sampling in the code
space using Gaussian noise of smaller variance per coordinate.
This produces faked images that are closer to the authentic
ones in Euclidean distance in R

784, however less explore the
“manifold” of pdata. The test power of the four methods is
shown in Figure 14.

The classification network used in net-logit is the following
CNN

c5x5x1x16 - re - ap 2x2
- c5x5x16x32 - re - ap 2x2
- fc128 - re - fc2 - softmax loss

where dropout is used between the last 2 fully-connected
layers. The classification CNN is trained for 100 epochs using
Adam with learning rate 10−3 and batch size 100. A typical
plot of evolution of training loss and training error is given
in Figure 15.

The procedure of adaptive selection of σ by gmmd-ad is
same as in Section V-A, where the bandwidth search range is
σ = {2−1, · · · , 26}. The test power is evaluated on 400 test
runs and the training is repeated for 20 replicas.
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