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ABSTRACT

The Cropland Data Layer (CDL) is currently the only sub-

field level high resolution crop-specific land cover data prod-

uct over the entire conterminous United States (CONUS). It

has been widely used in agricultural industry, business de-

cision support, research, and education worldwide. However,

CDL data has its limitations. It is an end-of-season land cover

map which is not available within growing season. More-

over, CDLs in early years have many misclassified pixels (rel-

atively low accuracy) due to cloud cover and lack of satel-

lite images. This paper will present the studies of using ma-

chine learning technique to address these issues in CDL data.

Specifically, we will present the design and implementation

of a machine learning model for agro-geoinformation discov-

ery from CDL. Several application scenarios of the proposed

model, including prediction of crop cover, crop acreage esti-

mation, in-season crop mapping, and refinement of the early-

year CDL data, are demonstrated and discussed.

Index Terms— Machine learning, Cropland Data Layer,

Agro-geoinformatics, Crop type classification

1. INTRODUCTION

Agro-geoinformatics is a new interdisciplinary that enabled

geoinformatics in the study of advanced science and tech-

nology in agriculture [1]. As one of the state-of-the-art

technologies in agro-geoinformatics, machine learning is

efficient and effective to automatically discover intricate pat-

terns and structures in agro-geoinformation data. A variety

of machine learning-based approach has been developed and

applied to agricultural applications and researches, such as

land use and land cover (LULC) mapping [2], crop type clas-

sification [3], crop yield prediction [4], drought monitoring

[5], agricultural sustainability [6], climate change assessment

[7]. The accurate and reliable geospatial data is the key for

the success of applying machine learning algorithms and
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methods in these applications. Among various open access

geospatial data sources, the Cropland Data Layer (CDL) of

the U.S. Department of Agriculture (USDA) National Agri-

cultural Statistics Service (NASS) has been widely used as

reference data set in agricultural and environmental research

as well as geosciences and remote sensing studies. The CDL

is a raster, geo-referenced, crop-specific, 30-meter spatial

resolution land cover data layer created annually for the con-

tinental United States (CONUS) using moderate resolution

satellite imagery and extensive agricultural ground truth. It

contains over 140 land cover classes with around 95% ac-

curacy for major crop types [8]. Although CDL provides

detailed land use information for the entire CONUS, there

are two limitations that could affect many follow-on research

and applications. First, in-season CDL data are not available

for applications and research since the current year CDL is

usually released to the public in early next year. Second,

the accuracies of the early-year CDL products are relatively

lower than recent years’ due to cloud cover or lack of the

original Landsat images. This paper presents several appli-

cation scenarios of using the machine learning approach and

historic CDL data for agro-geoinformation discovery.

The rest of the paper is organized as follows. Section 2

describes the data and study areas of this study. Section 3 in-

troduces the design of the proposed machine learning model.

Section 4 demonstrates several application scenarios of the

method, including prediction of crop cover, crop acreage esti-

mation, in-season crop mapping, and refinement of historical

crop cover map. Section 5 gives the conclusion and future

research recommendation.

2. DATA AND STUDY AREAS

This paper utilizes available high confidence pixels of the

historic CDL data for machine learning model training.

The full archive of CDL data are hosted on CropScape

(https://nassgeodata.gmu.edu/CropScape),

which is a geospatial web application for visualization, dis-
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semination, and analytics of on-demand CDL data [9]. The

NASS CDL National Confidence Layers are used for se-

lecting high confidence pixels. This data layer spatially

represents the predicted confidence that is associated with

that output pixel, based upon the rules that were used to

classify it. Each layer provides the spatial representation of

distribution and magnitude of error or confidence of the clas-

sification of CDL. The high confidence pixels are selected

by thresholding the confidence layers with a high confidence

threshold (e.g., 90% confidence). The Confidence Layers are

available at USDA NASS website (https://www.nass.

usda.gov/Research_and_Science/Cropland/

Release/index.php). This study mainly focuses on the

U.S. Corn Belt region. The region of interest may vary for

the different study scenarios as shown in Section 4.

3. METHODOLOGY

To automatically recognize the crop sequence information

from the CDL time series, we developed a machine learning

workflow. First, we processed and retrieved the CDL data us-

ing the AgKit4EE toolkit through Google Earth Engine [10].

The data set are converted into a stack of CDL time series

for the study area, which could be a county, an Agricultural

Statistics District (ASD), or any study area. All pixels of the

CDL time series are arranged into a 2-D array of samples.

Each row of the data set array represents a pixel consisting of

a sequence of crop type values of different years.

A machine learning model based on artificial neural net-

work (ANN), which has been extensively used for remote

sensing image interpretation [11, 12], was then developed to

recognize the crop sequence pattern from the prepared CDL

time series. Figure 1 illustrates the architecture of the crop

sequence model. The proposed ANN has a multilayer percep-

tron (MLP) structure including one input layer, three hidden

layers, and one output layer. The input layer has a group of

input nodes corresponding to the crop type of each year in

the historical CDL time series for individual pixels. The out-

put layer uses SoftMax to estimate the probability of each

crop type. Based on the probability distribution, the crop

type of the target pixel will be assigned. Then we use the

machine-learned crop sequence model to derive additional

agro-geoinformation which could be used for solving prob-

lems in the present CDL data.

4. MODEL APPLICATIONS

4.1. Pre-season Crop Mapping

The pre-season crop mapping aims to predict the spatial dis-

tribution of crop cover before the beginning of a growing sea-

son. The proposed machine learning model can be used to

predict the crop cover map from the historical CDL time se-

ries. Our study has shown that the prediction result of the

Fig. 1: Structure of the MLP-based crop sequence model.

U.S. Corn Belt is expected to reach 88% agreement with the

future CDL [13]. Figure 2 illustrates an example of machine-

learned prediction of 2018 crop cover. The probability map

represents the spatial distribution of the highest probability

from the SoftMax function. The crop cover map is similar

with CDL data where each pixel is categorized as one of land

cover categories. The 2018 CDL data are used as reference

data to evaluate the prediction result. The predicted map of

12 land cover classes achieved the overall accuracy (OA) of

90% with Kappa value of 0.86.

(a) Probability of

prediction

(b) Predicted crop

cover

(c) Reference data

(2018 CDL)

Fig. 2: Prediction of 2018 crop cover. The bright pixels in the

probability map indicate high confidence pixels. The yellow

and green pixels indicate corn and soybeans.

4.2. Crop Acreage Prediction

Crop acreage is one of the most critical information in agri-

cultural decision making. With the predicted crop cover map

derived from the crop sequence model, we can also esti-

mate the future crop acreage. To assess the performance of

the crop acreage prediction, we compared ASD-level crop

acreage prediction with the official statistics by USDA NASS

Iowa Field Office. Table 1 summarizes the total acreage of

each crop type for Iowa. This result suggests the machine-
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(a) Landsat-8 images (path: 029, row: 030) at specific day of year (DOY)

from May 2017 to July 2017.

(b) Comparison of trusted pixels, in-season crop cover map (produced by

July 2017), and 2017 CDL (released in February 2018).

(c) Classification performance at DOY within the

growing season.

Fig. 3: Crop type classification using Landsat-8 images and machine-learned trusted pixels as training samples.

learned crop acreage predictions of corn is very close to the

CDL data. The machine-learned crop acreage estimates of

soybeans, on the other hand, is a little bit lower but still close

to the CDL data. The crop acreage of both machine-learned

result and CDL are less than the official statistics.

Table 1: Crop acreage estimates for Iowa, USA.

Year Prediction

(acre)

CDL

(acre)

Field Office

(acre)

Corn 2016 13,607,650 13,628,727 13,900,000

2017 13,420,096 13,216,879 13,300,000

2018 13,704,565 13,537,935 13,200,000

Soybeans 2016 8,971,998 9,232,107 9,500,000

2017 9,401,789 9,785,308 10,000,000

2018 9,535,296 9,959,717 9,996,000

4.3. In-season Crop Mapping

One important issue that needs to be addressed for the pre-

season mapping is that the prediction result only relies on

prior knowledge from historical data, which could be prob-

lematic while mapping for the year with disasters or large

market volatility or major policy changes. Since remote sens-

ing data contain abundant spectral signature information of

different crop growth stages, remote sensing images acquired

at the early growing season can be combined with trusted his-

torical crop rotation patterns to improve the mapping result.

Based on this idea, we assume the trusted pixels automati-

cally learned from the historical CDL time series, whose crop

types have been identified with high confidence by the crop

sequence model, can be used as pseudo ground truth data

to label training samples on the remote sensing data for in-

season crop mapping. Figure 3 shows some preliminary re-

sults of crop type classification with multi-temporal Landsat-

8 images and trusted pixels as training samples using common

supervised classifiers including classification and regression

tree (CART), maximum entropy, random forest, and support

vector machine (SVM). The result indicates that the in-season

crop cover map of corn and soybeans can reach over 90%

agreement with the official CDL data by the end of July.

4.4. Refinement of CDL

Another application scenario of the proposed crop sequence

model is the refinement of historical CDL. The quality of the

early-year CDL data was not as good as recent years. In early

years, there are many misclassified pixels in the CDL prod-

ucts because of cloud cover and lack of satellite images. To

address this issue, we used the proposed machine learning

model to refine and correct misclassified pixels in the his-

torical CDLs. Our study showed that the proposed machine

learning model can automatically correct most of misclassi-

fied pixels in an original CDL map [14]. Figure 4 illustrates

the comparison of the original CDL data with the refined CDL

data. It can be found that the misclassified pixels, especially

the cloud pixels, had been corrected with the crop sequence

information learned from the historical CDL time series.

5. CONCLUSIONS

This study presented a low-cost and effective machine learn-

ing approach for agro-geoinformation discovery from the

CDL data and demonstrated several application scenarios.

More experiments and validation will be conducted in the
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(a) Original CDL (b) Refined CDL

Fig. 4: Comparison of original CDL and refined CDL.

future. Meanwhile, we will improve the current machine

learning model and explore other applications. For exam-

ple, the proposed method can be potentially used to identify

more crop types and scale up to the entire CONUS. The

machine learning-based crop sequence model also has great

potential to be integrated with other artificial intelligence (AI)

technique to discover spatial and temporal trend of cropping

across the U.S. from CDL.
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