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Abstract

Computational models are increasingly being used in K-12 science classrooms to engage students in developing and testing
explanations of phenomena. However, research has only begun to consider whether integrating computational models into
science instruction could be particularly beneficial to students from diverse backgrounds, including a fast-growing population
of English learners (ELs) in the U.S. context. As this research begins to take shape, we argue for moving beyond the traditional
discourse focused on “accommodating” ELs, which de-emphasizes the assets these students bring, and shifting our attention
to the distinct affordances that computational models offer for harnessing ELs’ rich meaning-making potential. In this article,
we conceptualize the affordances of computational models for ELs in science instruction. Specifically, we highlight evolving
theories in the field of language education that undergird the shift from accommodations to affordances with ELs in the sci-
ence classroom. We then propose affordances of computational models for ELs in relation to three framework components:
modalities, registers, and interactions. Finally, we report on an initial inquiry into these affordances using student interview
data from a linguistically diverse elementary science classroom. Ultimately, we argue that an affordances perspective could
inform research and the design of learning environments that contribute to broadening participation in science learning and

refuting deficit-based views of students traditionally underserved in STEM subjects.
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Computational models, or representations of phenomena
that can be simulated by a computer (Weintrop et al., 2016),
have assumed an increasingly prominent role in K-12 science
instruction. This prominence can be attributed to both the
rapidly changing nature of STEM disciplines (e.g., Foster,
2006) and science education reform movements that seek
to authentically reflect disciplinary work (e.g., National
Research Council, 2012). In the U.S. context, for example, the
Next Generation Science Standards (NGSS) identify “using
mathematics and computational thinking” and “develop-
ing and using models” as two key science and engineering
practices. To support K-12 students’ participation in these
practices, researchers have designed innovative curricula
and interventions that integrate computational models into
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science instruction (e.g., Basu et al., 2016; Campbell & Oh,
2015; Haas et al., 2020; Lee et al., 2020; Sengupta et al.,
2013; Yoon et al., 2018). However, relatively less is known
about whether computational models could create more
equitable and inclusive science learning environments for
students from diverse backgrounds (National Academies of
Sciences, Engineering, and Medicine [NASEM], 2018, 2021).

At the same time that science classrooms are becoming
more computational in nature, they are also becoming more
linguistically diverse. In the U.S. context, students classified
as English learners (ELs) comprise more than 10% of the
student population (National Center for Education Statistics,
2021) and are expected to meet grade-level science standards
through a language they are still developing. Traditionally,
the discourse around ELs in science instruction has empha-
sized accommodations as a way to compensate for these
students’ developing English and facilitate their inclusion
in the classroom. However, this perspective fails to recog-
nize the rich repertoire of meaning-making resources—both
linguistic and multimodal—that ELs bring to science class-
rooms and that can support their engagement in rigorous
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disciplinary practices (Canagarajah, 2018; Grapin, 2019).
Thus, rather than view the increasing prevalence of com-
putational models as yet another challenge for ELs to over-
come, we propose foregrounding the distinct affordances
these models offer for harnessing ELs’ meaning-making
potential. To realize this shift from accommodations to affor-
dances with ELs, the fields of science and STEM education
could benefit from engaging more substantively with theo-
retical insights from the field of language education related
to what it means to know and use a language.

In this article, we conceptualize the affordances of com-
putational models for ELs to communicate and construct
their science understanding. We begin by providing contex-
tual background on computational models in science instruc-
tion with ELs. Next, we describe our conceptual foundation.
Specifically, we highlight the evolution from structural to
ecological theories in the field of language education that
undergirds the shift from accommodations (rooted in struc-
tural theories) to affordances (rooted in ecological theories)
with ELs. Based on this affordances perspective, we pro-
pose affordances of computational models for ELs in sci-
ence instruction in relation to three framework components
(Lee et al., 2019): modalities, registers, and interactions.
Finally, we report on an initial inquiry into these affordances
using student interview data from a linguistically diverse
elementary science classroom. Ultimately, we argue that,
as computational models occupy an increasing presence in
K-12 science instruction, an affordances perspective could
inform research and the design of learning environments
that contribute to broadening participation in science learn-
ing and refuting deficit-based views of students traditionally
underserved in STEM subjects (NASEM, 2018).

While acknowledging that a variety of learning goals are
possible when integrating computational models into sci-
ence instruction (Bortz et al., 2020), including students’
understanding of computational thinking concepts (e.g.,
Grover, 2017) and the nature and purpose of models (e.g.,
Schwarz et al., 2009), in this article, we use the term “sci-
ence understanding” to refer to students’ conceptual under-
standing of science ideas relevant to explaining phenomena
in the natural world. Additionally, we use the term “compu-
tational models” in reference to both the models themselves
and the practice of developing, revising, and/or using them
(i.e., computational modeling).

Computational Models Integrated
into Science Instruction with English
Learners

Whereas computer-based simulations have a long history

in science education (e.g., Quellmalz et al., 2012), compu-
tational models are a more recent arrival. This is, in part,
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due to the advent of blocks-based visual programming
environments (e.g., Scratch, StarLogo Nova) that alleviate
the demands of text-based programming syntax and, in so
doing, render computational modeling more accessible to
novices, including elementary students. Blocks-based pro-
gramming environments allow users to write computer pro-
grams by snapping together blocks that provide visual cues
(e.g., color, shape) regarding their functions (Weintrop &
Wilensky, 2015). Blocks-based programming environments
such as StarLogo Nova are agent-based, meaning students
write computer programs for agents in a system (e.g., inter-
actions between organisms in an ecosystem) and then run
their programs to observe aggregate system-level behav-
ior (e.g., how the composition of the ecosystem changes
over time). By making visible these agent-aggregate rela-
tions in systems, agent-based programming environments
are powerful tools for developing and testing mechanistic
explanations of phenomena (Hsiao et al., 2019). Because
blocks-based, agent-based programming environments
are accessible to a wide range of students and powerful
for explaining phenomena, these environments have been
described as “low threshold, high ceiling” (Weintrop &
Wilensky, 2015) for engaging K-12 students in computa-
tional modeling.

Over the last decade, researchers have ramped up their
efforts to investigate empirically the benefits of integrating
computational models into science instruction. This surge
in research interest is evidenced by two special issues of the
Journal of Science Education and Technology—one focus-
ing on science modeling with technology (Campbell & Oh,
2015) and another focusing on computational thinking from
a disciplinary perspective (Lee et al., 2020). Studies in these
two special issues provide evidence that, across contexts and
grade levels, computational models afford opportunities
for students to engage in authentic versions of the science
modeling practice (e.g., Xiang & Passmore, 2015), explore
dynamic systems that exhibit emergent behavior (Brady
et al., 2015), and deepen their conceptual understanding
(e.g., Aksit & Wiebe, 2020). As one example, in their recent
intervention study that integrated computational modeling
into physical science instruction with middle-school stu-
dents, Aksit and Wiebe (2020) found that the “dynamic
nature of computational models let students both observe
and interact with the target phenomenon in real time” (p.
65) and, as a result, develop their understanding of complex
force and motion concepts. Moreover, studies have demon-
strated that computational models can be particularly pow-
erful tools when introduced in concert with complementary
forms of representation (e.g., drawings, physical objects)
and when facilitated by well-designed teacher and curricular
supports (e.g., Wilkerson-Jerde et al., 2015).

While the benefits of computational models in science
instruction have been documented, research has only begun
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to address considerations for diverse student groups, such as
ELs (Jacob et al., 2018; NASEM, 2021; Pierson et al., 2020,
2021; Vogel et al., 2019). As one illustration of this point,
Aksit and Wiebe (2020) reported that, while their interven-
tion resulted in conceptual learning gains for student partici-
pants, on average, ELs “might not have benefited from the
learning activities as much as other students whose native
language was English” (p. 79). This finding coheres with a
broader trend indicating “only nascent research... on com-
puting learning for English language learners” (NASEM,
2021, p. 114) and suggests the need for further conceptual
and empirical work aimed at fostering more equitable learn-
ing opportunities for ELs in science instruction that inte-
grates computational models. This work must begin with
a theoretically grounded understanding of what it means to
know and use a language, which is a question we take up in
the next section.

Conceptual Foundation

In this section, we lay the foundation for conceptualizing
the affordances of computational models for ELs in sci-
ence instruction. We begin by describing evolving theories
of what it means to know and use a language in the field
of language education. Next, we describe how these evolv-
ing theories undergird the shift from accommodations to
affordances with ELs in the science classroom. Finally, we
propose affordances of computational models for ELs in
relation to three framework components.

Knowing and Using a Language

The field of language education attempts to answer the ques-
tion, “What does it mean to know and use a language?”
Traditionally, answers to this question have been informed
by structural theories (see Larsen-Freeman, 2007 for a his-
torical review and critique). Structural theories conceive
of language in terms of its formal elements, specifically its
lexical (i.e., vocabulary) and syntactic (i.e., grammar) struc-
tures. According to structural theories, language exists as an
abstract store of knowledge in the minds of its users inde-
pendent of its contexts of use. Thus, developing language
competence is a matter of increasing the inventory of lexical
and syntactic structures that an individual has internalized,
for example, acquiring more specialized vocabulary (e.g.,
“photosynthesis”) and more complex grammatical forms
(e.g., compound sentences with multiple embedded clauses).
Because structural theories view context as the backdrop
for displaying one’s individual competence rather than a
veritable source of meaning potential (Canagarajah, 2018),
these theories have traditionally paid minimal attention

to nonlinguistic aspects of communication (e.g., gesture).
Instead, structural theories focus on language as an abstract
entity residing in the individual learner (Larsen-Freeman,
2007).

More recently, the structuralism that dominated theo-
retical understandings of language for decades has given
way to more socially oriented theories (Zuengler & Miller,
2006). As one branch of the sociocultural tradition, ecologi-
cal theories turn attention to the relation between learners
and their environment (van Lier, 2003, 2004). According
to ecological theories, what makes a language user compe-
tent is not the set of language structures they have internal-
ized but how they marshal communicative resources made
available in their environment to create situated meanings.
These meanings are situated because they emerge from
and depend on the environment to do their semiotic work
(Moschkovich, 2002). For example, whereas structural
theories view lexical terms as preordained with readymade
meanings (i.e., “yellow” as referring to a color in the visible
spectrum), ecological theories attend to the meanings that
language users assemble in context in response to affor-
dances in their environment (e.g., yellow, when uttered by
a customer pointing to a shirt in a department store, could
express to the clerk which shirt the customer intends to pur-
chase). As this example makes evident, ecological theories
conceive of nonlinguistic aspects of communication (e.g.,
gesture) not as “paralinguistic resources that help when lan-
guage is not adequate for the purpose” (Canagarajah, 2018,
p- 39) but as legitimate meaning-making resources that are
indispensable to engagement in goal-directed activity. In
this way, ecological theories “step out of the individualism
that treats each speaker/writer as the locus of competence
and focus on the whole activity to address how diverse par-
ticipants and semiotic resources work as an assemblage to
shape meanings” (Sharma & Canagarajah, 2020, p. 5).

In sum, structural and ecological theories differ in how
they conceive of context and multimodality, thus resulting in
divergent conceptions of the locus of language competence.
With regard to context, structural theories posit language
as a decontextualized set of structures, whereas ecological
theories posit language as inseparable from its contexts of
use. With regard to multimodality, structural theories focus
narrowly on language, whereas ecological theories focus on
how language is entangled with meaning potential in the
environment. These differential conceptions of context and
multimodality shift the locus of language competence from
the individual learner (i.e., what the individual can do with
language in the abstract) to the individual-in-environment
(i.e., what the individual can do with language and nonlin-
guistic meaning-making resources in a particular context).

Whether one adopts structural or ecological theories as a
conceptual foundation has significant implications for their
perspective on how to include ELs in science instruction that
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integrates computational models. As Valdés et al. (2014)
have cautioned, when answers to the question of “What does
it mean to know and use a language?” are tacitly assumed
rather than explicitly articulated, efforts to promote inclu-
sion of ELs in disciplinary learning risk being incoherent,
at best, and further marginalizing this vulnerable student
population, at worst. We argue that explicitly articulating
a conceptual foundation is particularly crucial in a nascent
area of inquiry, such as computational modeling with ELs
in science instruction.

From Accommodations to Affordances with English
Learners

Consistent with structural theories, the inclusion of ELs in
science classrooms has traditionally been addressed from
an accommodations perspective (e.g., Echevarria et al.,
2011). Accommodations are changes to disciplinary tasks
that make the tasks more accessible (Thurlow & Kopriva,
2015), including visual accommodations (e.g., pictures to
support comprehension of a reading passage) and linguistic
accommodations (e.g., sentence frames to support writing
of an explanation). Such accommodations were commonly
recommended in early research focused on ELs in science
classrooms (see Fathman & Crowther, 2006 for a review).
The premise of accommodations is that since ELs have not
yet internalized the language structures considered prereq-
uisite to participating in science learning (e.g., technical
science terms and complex grammatical structures), these
students require accommodations to repair their perceived
deficiencies. While accommodations can, in some instances,
be useful for facilitating ELs’ access to science instruction,
accommodations, by their very nature, emphasize the dis-
tance between ELs’ abilities and the demands of science
tasks. In other words, accommodations emphasize what ELs
cannot do but fail to recognize the rich repertoire of mean-
ing-making resources they bring to science classrooms. In
this way, an accommodations perspective can inadvertently
position ELs as disciplinary outsiders who require remedia-
tion to be considered legitimate participants in their class-
room communities.

With the shift from structural to ecological theories of
language, we propose the need to shift from an accommoda-
tions to an affordances perspective on ELs in science class-
rooms. In contrast to accommodations, affordances empha-
size the match (rather than the distance) between learners
and their environment. Specifically, affordances are “what
[the environment] offers the animal” (Gibson, 1979, p. 127).
For a squirrel, an affordance of a tree is shelter; for a group
of picnickers, it is shade on a hot day. Thus, affordances are
best understood as “relations of possibility that yield further
opportunities for engagement and participation” (van Lier,
2004, p. 81). In the department store example above, the
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interactional context between the customer and clerk, com-
bined with the presence of the yellow shirt in that context,
provided affordances for the customer to indicate the item
they intended to purchase simply by pointing and saying “yel-
low.” Importantly, from an affordances perspective, the cus-
tomer’s lack of elaboration would not be seen as a deficiency
in their language competence but a product of the situated
communicative activity in which they were taking part.

In science classrooms, ELs also act on affordances made
available in their environment through engagement in goal-
directed disciplinary activity (Walqui & Bunch, 2019).
These affordances can be physical, as in a measurement
scale that allows an EL to express an observation indexi-
cally by pointing at the scale (Moschkovich, 2015), or
symbolic, as in a dialogue with peers or a teacher to grap-
ple with an idea (Kibler et al., 2020). In science instruction
that integrates computational models, affordances are made
available not only by the physical and symbolic environment
surrounding the learner but also the computational environ-
ment that facilitates the model’s creation. This computation-
ally enriched science learning environment affords a “rich
semiotic budget of resources” (van Lier, 2004, p. 81) for
ELs to perceive and act upon as they make meaning of sci-
ence. Unlike accommodations, which are typically add-ons
or afterthoughts to science learning, affordances emerge in
the context of authentic engagement in science disciplinary
practices (e.g., modeling).

Overall, a shift from an accommodations to an affor-
dances perspective reorients our focus from remediat-
ing what ELs lack in terms of the structural elements
of language (i.e., locus of competence as individual) to
designing learning environments that harness ELs’ rich
meaning-making potential (i.e., locus of competence as
individual-in-environment). From an affordances perspec-
tive, ELs bring a wealth of meaning-making resources to
their science learning that is optimized by semiotically rich
learning environments and, as we will argue, computation-
ally enriched science learning environments. By position-
ing the meaning-making potential of ELs as matched to
(rather than distant from) science learning environments,
an affordances perspective could “flip the script” on deficit-
based views of ELs and create more equitable opportunities
for these students to participate—and be seen as participat-
ing—meaningfully in science learning.

Affordances of Computational Models for English
Learners in Science Instruction

We propose affordances of computational models for ELs
in science instruction in relation to three components: (a)
modalities, (b) registers, and (c) interactions. These three
components build on our existing framework for language
use in the science classroom (Lee et al., 2019), which was
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featured prominently in a recent consensus report on ELs
in STEM subjects (NASEM, 2018). Whereas the existing
framework describes affordances made available in the sci-
ence classroom in relation to each component (summarized
briefly below), we extend the framework by conjecturing
how these affordances are likely to be enhanced by compu-
tational models. Consistent with a sociocultural perspective
that views communication and sense-making not as sepa-
rate but as intertwined (Howe, 1996; Vygotsky, 1986), we
highlight the potential affordances of computational models
for both communicating science understanding (i.e., com-
munication) and constructing science understanding (i.e.,
sense-making). Although some affordances could apply
to computational models broadly, we focus specifically on
computational models that employ blocks-based program-
ming given the increasing prevalence of these programming
environments in science classrooms (e.g., Lee et al., 2020).

Modalities

Modalities refer to sets of semiotic resources for making
meaning (Bezemer & Kress, 2008), including visual, lin-
guistic, and actional modalities. Whereas science instruc-
tion (and schooling generally) has traditionally privileged
linguistic modalities, especially written language (see Kress,
2000 for a critique), visual (e.g., drawing) and actional (e.g.,
gesture) modalities offer distinct affordances for all students,
including ELs, to engage in science disciplinary practices
(Grapin, 2019; Jewitt et al., 2001; Kress et al., 2014).

We conjectured that computational models would
enhance these affordances by introducing another powerful
modality for ELs to communicate and construct their sci-
ence understanding—the blocks-based visual code modality.
This modality provides a rich budget of semiotic resources
(e.g., arrangement of code blocks, color trait of agents), with
each resource offering distinct meaning-making potentials
(e.g., color to distinguish between agents with different rules
of behavior). The decisions students make in configuring
and combining these resources provide a window into their
thinking. For example, by configuring code blocks in hier-
archical relations (e.g., a block is executed only if the con-
dition specified by its superordinate block is met), students
are able to represent conditional relationships and causal
chains of events underlying phenomena. When students run
their code and make sense of the outcome, they engage with
additional semiotic resources, including dynamic visuali-
zation, data boxes, and graphs, which students interpret in
relation to their agent-level code to uncover the (often sur-
prising) agent-aggregate relations in the system being mod-
eled (Wilensky & Reisman, 2006). Beyond the modalities
within the computational model itself, the presence of the
model in an interactional context (e.g., multiple participants

interacting around the same model) is likely to increase the
salience of other modalities, such as gaze and gesture, to
facilitate joint attention (discussed further as part of “Inter-
actions” below).

Registers

Registers refer to ways of using language in different con-
texts. Registers exist on a continuum from more everyday
(i.e., the language used in daily life) to more specialized
(i.e., the language used among members of a particular
community to carry out their collective work). Whereas
science instruction has traditionally privileged the special-
ized science register, especially technical science terms (e.g.,
August et al., 2016), the use of multiple registers in combi-
nation offers distinct affordances for ELs to make meaning
of science (Brown & Ryoo, 2008; Grapin et al., 2019; Ryoo,
2015; Warren et al., 2001).

We conjectured that computational models would
enhance these affordances by adding another register—the
specialized programming register. Blocks-based program-
ming environments have their own ways of using language
that borrow terms and phrases from other registers (e.g.,
“collide” as an everyday term) but give those terms/phrases
specialized meanings that provide the tools to model com-
plex systems (e.g., “on collision with” as a way of specify-
ing an interaction of agents). For example, to describe the
interdependent relationships among organisms in an eco-
system, students may draw from the everyday register (e.g.,
“shark eats fish”) and the specialized science register (e.g.,
“predator eats prey”) but also the specialized programming
register from the code underlying their computational model
(e.g., “shark, on collision with fish, delete collidee”). Given
that complex systems are notoriously difficult to describe in
language (e.g., Chi, 2005), this specialized programming
register could provide affordances for ELs to communicate
and construct their science understanding while they are
still developing the specialized science register frequently
expected in science classrooms.

Interactions

Interactions refer to the settings and participants involved
in communication, including one-to-one interactions (e.g.,
one student talking/writing to a partner) and one-to-many
interactions (e.g., one student talking/writing to an audi-
ence not immediately present). Whereas science instruction
often prizes explicit language use associated with one-to-
many interactions (e.g., avoiding deictic expressions, such as
“this one here”; Avenia-Tapper & Isacoff, 2016), one-to-one
interactions offer distinct affordances for ELs by providing a
shared frame of reference and opportunities to clarify, elabo-
rate, and negotiate meaning in real time (e.g., one participant
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asking another, “What do you mean?”’; Bailey & Heritage,
2014; Grapin, 2020; Ruiz-Primo, 2011).

We conjectured that computational models would
enhance these affordances by adding another type of
interaction—one-to-one-to-model interaction. This triadic
communication (van Lier, 2004) involving two human par-
ticipants interacting around one computational model could
allow ELs to leverage resources in the immediate context
to communicate their science understanding (e.g., deictic
gestures and expressions to indicate agents in their models).
However, beyond being objects of joint attention, compu-
tational models could themselves become veritable partici-
pants in interaction (Pierson et al., 2020). Computational
models are executable, that is, they “run semi-independently
of their human authors” (Brady et al., 2015, p. 278). There-
fore, students could run their models and receive real-time
feedback (in the form of data produced by the model) that
helps them construct their science understanding and the
language to communicate that understanding in real time.
Even when students do not actually run their computational
models, the models could serve as artifacts for participants
to collectively think with (Papert, 1980).

Overlap and Synergy of Affordances

Although the affordances related to each component of our
framework have been presented separately for conceptual
clarity, they are best understood as overlapping and synergis-
tic. For example, the specialized programming register (i.e.,
the natural language appearing on the code blocks and simu-
lation interface) is embedded within the blocks-based code
modality. Likewise, the physical context of a one-to-one-to-
model interaction makes salient the use of certain modali-
ties (e.g., gesturing at the model to facilitate joint attention
with another human participant). Given these overlaps, we
conjectured that the affordances related to the three compo-
nents would work synergistically. For example, to explain a
phenomenon, a student might run their model with a human
participant (interactions) and then use the data and visuali-
zation produced by the model (modalities), in combination
with specialized programming language (register), to
construct their science understanding and communicate their
explanation.

Initial Inquiry

We conducted an initial inquiry into the affordances of com-
putational models for ELs in an elementary science class-
room. Given the early stages of this work and the limited
research literature on computational models with ELs in sci-
ence instruction (e.g., NASEM, 2018, 2021), the analyses
reported here focused on exploring the theoretical cogency
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and practical plausibility (Berland et al., 2020) of our argu-
ment that computational models offer distinct affordances
for ELs to communicate and construct their science under-
standing. This initial inquiry into “what is possible” (Berland
et al., 2020, p. 278) is meant to lay the groundwork for fur-
ther conceptual refinement and empirical inquiry in future
research efforts.

Curriculum

The data come from a larger design-based research pro-
ject focused on developing and implementing a yearlong
fifth-grade NGSS-aligned curriculum that integrates com-
putational models into science instruction (nyusail.org).
During the 2019-2020 school year, five teachers imple-
mented the curriculum in their urban science classrooms.
In the teacher’s classroom with the largest number of ELs,
eight students formally classified as ELs agreed to partici-
pate in artifact-based interviews (i.e., the focus of the analy-
ses reported here). All eight were at an intermediate level
of English proficiency (Level 3 of 6), as determined by an
English proficiency assessment administered annually by
the school (as per federal and state law). Five participants
identified as male and three as female, and all were Spanish
speakers.

In each of the four instructional units that comprise the
yearlong curriculum, students developed a computational
model using StarLogo Nova in order to explain a science
phenomenon. We focused on the first instructional unit in
which students were explaining the phenomenon of what
happens to garbage in their local community while devel-
oping their understanding of physical and life science ideas
in the NGSS for fifth grade (e.g., conservation of weight,
decomposition). Prior to developing their computational
models, students created physical landfill bottles of open and
closed systems (Fig. 1) and observed changes in the proper-
ties and weight of food materials over time. Upon observing
that the weight of the closed system did not change, even as
the food materials appeared to vanish, students developed
computational models to explain how microbes decompose
food materials from a solid to a gas while conserving weight
in the closed system. Decomposition and its relation to con-
servation of weight are challenging science topics for young
students (Cetin, 2007; Ero-Tolliver et al., 2013; Smith &
Anderson, 1986).

Artifact-Based Interviews

At the end of the instructional unit, students participated in
artifact-based interviews (Brennan & Resnick, 2012), which
are commonly used to elicit what science ideas students have
learned in studies that integrate computational models into
science instruction (e.g., Aksit & Wiebe, 2020). Given the
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Fig. 1 Physical landfill bottle
systems (open and closed)

nascent nature of our conjectures, the interview context, as
compared to the classroom context, provided a more man-
ageable system to focus our initial inquiry (i.e., two human
participants interacting around one computational model).
Future studies could build on this initial inquiry to inves-
tigate the affordances of computational models for ELs in
the more complex system of classroom activity (see “Future
Research Directions” section).

The artifact-based interviews focused on eliciting stu-
dents’ understanding of the phenomenon they had mod-
eled, specifically how microbes decompose food materi-
als from a solid to a gas and how this process conserves
weight in a closed system. Either the first or third author
met individually with each student interview participant.
Before each interview, the interviewer uploaded the stu-
dent’s computational model to a laptop computer. Each
student participant was asked to sit next to the computer

such that they could interact with their model in a way that
was clearly visible to the interviewer, thus setting up a
one-to-one-to-model interaction among the student, inter-
viewer, and computational model. This “ecological hud-
dle” (Canagarajah, 2021, p. 9), or configuration of bodies
and objects with a shared focus of attention, is pictured
from the interviewer’s vantage point on the right side of
Fig. 2.

At the beginning of the interviews, students were asked
broadly to describe their computational model (“What does
this model show?””). Contingent on students’ responses, the
interviewer drew from a menu of questions aimed at further
eliciting students’ science ideas (see Haas et al., 2020 for
more details). The interviews lasted, on average, 12 min, and
the complete corpus comprised approximately 100 minutes
of video/audio data. Interviews were transcribed using multi-
modal conventions (Flewitt et al., 2017) to capture students’

~ Show Traits

D) forever ~| ) O G Banana (solid) ||
(= Turn a little  ~ | 99! delete agent ™{(collidee) \
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Fig.2 Ricardo’s computational model (code blocks)
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gestures as well as their on-screen interactions with their
computational models.

The transcripts were analyzed in two phases. In the first
phase, we looked across the transcripts to identify instances
in which students leveraged affordances related to each
component of our framework (modalities, registers, inter-
actions). This phase began with the first and third author
co-viewing the videos and co-reading the transcripts for
two student interviews to develop the initial coding scheme
(Powell et al., 2003). The unit of analysis was an utterance;
however, given the nested nature of interactional discourse
(i.e., utterances nested within turns of talk), this unit was
expanded, as needed, to capture sequential interactions
among participants (e.g., student produces an utterance,
interviewer requests clarification, student responds with
another utterance; Furtak et al., 2017). Consistent with our
conjecture that the three components would work synergis-
tically, utterances were frequently assigned multiple codes
(e.g., after running the model [interaction with model], a
student says, “These two right here [actional modality] col-
lide together [specialized programming register].”). This
deductive coding, based on our framework, was followed
by a round of inductive analysis to identify more nuanced
distinctions within each component (e.g., within modalities,
“agent color” and “deictic gestures”). The first and third
authors coded the remaining transcripts independently and
then met to resolve discrepancies, refine the scheme, and
come to consensus through discussion.

In the second phase, and consistent with a theory of
affordances as emergent and situated in relations between
learners and their environment (Walqui & Bunch, 2019), we
looked within each interview at how affordances emerged
in moment-to-moment interaction and were acted upon
in ways useful to each student. Following guidance from
multimodal interaction analysis (Norris, 2004), we focused
specifically on excerpts exhibiting high modal density in
each interview, defined as excerpts in which students lever-
aged multiple affordances related to our framework toward
performing a higher-level action (in our case, construct-
ing an explanation of the phenomenon they were mode-
ling). Within these excerpts of high modal intensity, we
analyzed how students deployed different modalities (e.g.,
visual, linguistic, actional) and shifted between registers
(e.g., everyday, specialized programming, specialized sci-
ence) in response to interactions with their computational
models and the interviewer. In keeping with our conceptual
foundation that considers “all resources working together as
an assemblage in shaping meaning”(Canagarajah, 2018, p.
31), the three components of our framework were analyzed
collectively in this phase (rather than in a multipass serial
process).
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Excerpts from Two Student Interviews

We present excerpts from two student interviews to illustrate
patterns that emerged from our initial inquiry. By focusing
on these two interviews, we are able to illustrate, with suffi-
cient depth and turn-by-turn detail, the practical plausibility
of the affordances we have proposed. While both interviews
speak to affordances related to all three components of our
framework (modalities, registers, interactions), each inter-
view foregrounds particular affordances. The first interview
highlights how ELs drew flexibly from multiple modalities
and registers within and around their computational models
to communicate their science understanding. The second
interview highlights how interactions with their computa-
tional models and a human participant (i.e., the interviewer)
invited ELs to construct their science understanding and the
language to communicate that understanding in real time.
While our primary interest in presenting the excerpts is to
illustrate the framework’s practical plausibility (rather than
bolster claims about typicality or generalizability that should
be the focus of future empirical inquiry), at the end of each
excerpt, we comment on its representativeness in the context
of the interview data.

Ricardo: Focus on Modalities and Registers

Figure 2 shows the code blocks that Ricardo assembled
in the blocks-based visual code modality to communicate
his understanding of how microbes decompose a banana
from a solid to a gas. Ricardo included multiple agents
in his model, including “banana (solid),” “banana (gas),”
and “microbes.” By programming the bulk of his code in
the microbes’ tab (pictured in Fig. 2), Ricardo established
microbes as the central agent responsible for decomposing
the banana. Within this tab, Ricardo programmed an inter-
action in which each microbe agent, upon colliding with a
solid banana agent (in other words, feeding on it), deleted the
solid banana agent and created a gaseous banana agent. By
embedding the “delete” and “create” blocks inside of the “on
collision” block, Ricardo represented his idea that the inter-
action between microbes and solid banana is what causes
the solid banana to vanish and a gaseous banana to be pro-
duced. While some of Ricardo’s classmates developed simi-
lar representations of decomposition, others programmed
their code such that microbes deleted the solid banana with-
out creating a gas, resulting in a decrease in weight of the
closed landfill bottle system. Thus, Ricardo’s representation
in the blocks-based visual code modality operationalized a
sophisticated understanding of decomposition that became
the basis for his explanation in the interview.
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Fig.3 Ricardo’s computational model (simulation interface)

At the beginning of the interview, Ricardo scrolled to
the simulation interface (Fig. 3) and described his model
as follows:

Ricardo: When they [the microbes] touched the banana
solid, it turned into gas. The banana. We put to the
banana solid that it couldn’t move, and it would only
be a blob that’s . . . that’s yellow. And the microbes
would be the orange one. Every time they touched the .
.. (points to solid banana), there would . . . it would . .
. it would multiply the banana gas that would be white.
And any time they touched it, the white would gain,
and this would lose (points to solid banana data box).

In this excerpt, Ricardo deployed resources from multiple
registers and modalities. First, he paraphrased the special-
ized programming register from his computational model
(“microbe, on collision with Banana [solid]...”) in a more
everyday register (“when [microbes] touched the banana
solid, it turned into gas”). Then, he established the differ-
ent agents—still using the agent names as they appeared in
their respective tabs (e.g., “banana gas” instead of gaseous
banana)—and identified the color trait associated with each
agent (e.g., white for banana gas). While, at first, the colors
appeared superfluous to his explanation, for Ricardo, they
created a shorthand that would allow him to reference these
agents and make connections between the visual simulation
and the data boxes in his model. Ricardo explained that,

when microbes touched the solid banana, “the white would
gain,” in other words, the weight of the gaseous banana
would increase. He also used deictic gestures and expres-
sions to communicate that the weight of the solid banana
would simultaneously decrease (“this would lose” while
pointing at the solid banana data box). Later in the inter-
view, Ricardo would build on this initial explanation by
reformulating it in a way that more closely approximated the
specialized science register: “The weight of the banana gas
will gain weight, but the total weight of the banana would
stay the same.”

Summary of Ricardo’s Excerpt Ricardo drew flexibly from
multiple modalities and registers within and around his
computational model to communicate a sophisticated under-
standing of decomposition and its relation to conservation of
weight. Although the linguistic modality has typically been
considered “the standard precision of meaning” (Lemke,
2002, p. 31), Ricardo’s use of the blocks-based visual code
modality demanded as much, if not greater, precision as the
linguistic modality in representing the process of decompo-
sition. For example, the code modality required Ricardo to
make a commitment (Bezemer & Kress, 2008) to the ratio
of solid banana deleted and gaseous banana created (1:1)
that would conserve weight in the closed system—an aspect
of the science idea that might otherwise have been glossed
over by a linguistic explanation alone (e.g., a student simply
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parroting that microbes decompose the banana and produce
gas). Importantly, the opportunity to use multiple modali-
ties was not a compensatory modification to bridge the dis-
tance between Ricardo and the computational modeling task
(i.e., accommodations perspective) but a result of the match
between the task expected of all students and Ricardo’s
meaning-making potential (i.e., affordances perspective).

Ricardo also benefited from using multiple registers to
communicate his explanation, including everyday, special-
ized programming, and specialized science. While research
has underscored the benefits of multiple registers for com-
municating and constructing science understanding (e.g.,
Ryoo, 2015), Buxton et al. (2019) caution that the eve-
ryday register can “run out of explanatory power for the
desired science meaning-making” as students are expected
to develop increasingly sophisticated explanations of phe-
nomena (p. 979). The consequence is that ELs could be
prevented from demonstrating their thinking while they are
still developing English proficiency. However, Ricardo’s
example shows how the specialized programming register
could mediate between ELs’ everyday ways of describing
phenomena and the more canonical expression of those
ideas. Ricardo was able to piggyback (van Lier, 2003) on
his use of everyday and specialized programming registers
(e.g., “banana gas that would be white would gain”) to pro-
duce a more specialized science register (e.g., “the weight
of the banana gas will gain weight”).

Overall, by leveraging affordances made available in
his environment—both the computational environment of
his model and the physical and symbolic environment sur-
rounding it—Ricardo was able to communicate his science
understanding even as he was still developing the special-
ized science register that is traditionally privileged in sci-
ence classrooms (e.g., “decompose” and “conservation”) but
that may have been difficult for Ricardo due to his emerging
English. In our interviews, five of eight students (including
Ricardo) communicated their explanations by deploying a
range of modalities and registers but without explicitly nam-
ing the process they were modeling (i.e., decomposition). In
contrast, the remaining three students used the specialized
science register (e.g., “decompose” paired with accurate rep-
resentations of decomposition in the code modality) even as
they were still developing their science understanding and
the language to communicate that understanding. This was
the case with Martin, whose interview we turn to next.

Martin: Focus on Interactions

As the previous excerpt from Ricardo illustrates, ELs’
use of multiple modalities and registers was facilitated by
the one-to-one-to-model interaction in which they were
co-participating. For example, due to the shared frame of
reference afforded by his computational model, Ricardo
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was able to use deictic gestures (e.g., pointing at the data
boxes) and everyday expressions (e.g., “this would lose”)
to communicate about changes in the weight of the banana.
Beyond providing affordances for ELs to communicate
science ideas they had already developed, one-to-one-to-
model interactions also afforded ELs the opportunity to
construct their science understanding in real time along
with the language to communicate that understanding.
This affordance emerged from ELs’ interactions with
both their models, which produced data that helped them
revise and refine their science ideas, and the interviewer,
who prompted them to clarify and elaborate on the science
ideas they were developing.

Martin’s initial explanation demonstrated an emerging
understanding of decomposition and the language to com-
municate about this science idea:

Martin: [My model] shows me how, um, the banana
decomposes while the microbes, um, decompose the
banana. And, um, it showed me when . . . when other
fruits were when the, uh, microbes were decompos-
ing it how the gas started keeps around the whole
entire model and the world (moves hands randomly
in different directions).

In this initial explanation, Martin posited two processes:
one in which the banana decomposed on its own (“the
banana decomposes...”) and another in which microbes acted
as a mechanism of decomposition (“... while the microbes,
um, decompose the banana”). He also described the free
movement of the gaseous banana using gesture (moving his
hands randomly in different directions) paired with the eve-
ryday register (“the gas started keeps...””) and the specialized
programming register (“"... around... the World”; in StarLogo,
“World” refers to the area where agents are displayed). How-
ever, Martin did not explicitly connect the production of this
gas with the decomposition of the solid banana.

Because Martin did not mention the weight data in his
initial explanation, the interviewer directed Martin’s atten-
tion to the data boxes in his model:

Interviewer: Did you use the data boxes at all? Can
you scroll up?

Martin: (scrolls up and points to data boxes)
Interviewer: Yeah, the data boxes. Did you use those
at all?

Martin: Yeah, and it started to grow a little (makes
rising movement with hand).

Interviewer: What do you mean?

Martin: It started to, um . . . (points to data boxes)
I think it just stay the same, because the weight just
started to go down because of the microbes decom-
posing it.

Interviewer: What weight started to go down?
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Martin: The banana . . . the banana gas and the total
weight.

Interviewer: Why did it go down?

Martin: Because the . . . the microbes started decom-
posing the banana and the gas started to spread
around, so the gas started to go up, but the total
weight started to go down.

As Martin scrolled to locate the data boxes, he recalled
an observation from his earlier modeling work (‘““it started
to grow a little”), which he accompanied with a rising hand
movement to indicate an increase of some kind. In response
to Martin’s lack of explicitness (“it started to grow a little”),
the interviewer made two requests for clarification (“What
do you mean?” and “What weight?”’). While Martin initially
indicated that both the gaseous banana and total weight
decreased, he subsequently revised his recollection, indi-
cating that the gaseous banana increased (accurate since a
gas was produced) while the total weight decreased (inaccu-
rate since the total weight would be conserved in the closed
system). Although Martin’s recollection was only partially
accurate, his explanation moved a step closer to connecting
microbes’ decomposition of the solid banana with the pro-
duction of gaseous banana (“the microbes started decompos-
ing the banana and the gas started to spread around”).

At this point, the interviewer invited Martin to run his
computational model:

Interviewer: You wanna run the model right now? See
what happens?

Martin: (runs the model)

Interviewer: Is it running?

Martin: (nods affirmatively)

Interviewer: So, what’s happening to the weight?
Martin: The weight . . . all the weight staying the same,
but the banana gas is going up.

Interviewer: So, why is that happening?

Martin: Because the microbes are decomposing the
banana. And . . . the . .. the gas is getting more larger,
but the weight the banana still there . . . it still hasn’t
disappear, it’s just turning into gas.

Interviewer: What do you mean “the gas is getting

larger”?
Martin: Because when the microbes decompose the
banana, the gas . . . the gas comes outta the banana,

and the weight is still there in the landfill bottle.

When the model “spoke” (i.e., produced data), Martin
observed that, while the weight of the gaseous banana
increased (as he had recalled), the total weight of the
closed system stayed the same (contrary to what he had
recalled). This feedback from the model set the interac-
tion on a new course, prompting Martin to reformulate
his idea. When the interviewer invited Martin to revise

his explanation in light of the data produced by his model
(“So, why is that happening?”), Martin’s subsequent
response conveyed a more fully elaborated explanatory
mechanism, namely, the “[solid banana] turning into gas”
as a way of accounting for the gas getting “more larger”
but the total weight being “still there.” Given that “more
larger” could refer to the physical size and/or the weight
of the gaseous banana, the interviewer pushed Martin
to clarify his intended meaning (“What do you mean
‘the gas is getting larger’?””). Martin’s final explanation
reached toward causality in a way that his explanation at
the beginning of the interview did not, positing a relation-
ship between microbes decomposing the banana from a
solid to a gas (“when the microbes decompose the banana,
the gas comes outta the banana...”) and conservation of
weight in the closed landfill bottle system (... and the
weight is still there”).

Summary of Martin’s Excerpt Based on his initial explana-
tion, Martin was still developing his science ideas and the
language to communicate those ideas. As Martin received
feedback in this one-to-one-to-model interaction from
both his model (in the form of data it produced) and the
interviewer (in the form of requests for clarification and
elaboration), he was able to iteratively revise his ideas and
language to construct an increasingly sophisticated explana-
tion of the phenomenon. As in Martin’s example, four of
eight students interacted directly with their models by run-
ning them (whether at the interviewer’s suggestion or on
their own accord), which produced feedback in the form
of weight data that students subsequently incorporated into
their explanations.

Notably, one-to-one-to-model interactions blended the
affordances of the physical and symbolic environment sur-
rounding the learner with the computational environment of
the model (Brady & Lehrer, 2021; Roth, 1995). It was neither
the feedback from the model nor from the interviewer alone
that created affordances but the dynamic interaction among
the student, the model, and the interviewer. For example,
the interviewer initially guided Martin to the data boxes in
his model. Then, after the model “spoke” and adjudicated
between his competing ideas, Martin needed support from the
interviewer to clarify his ideas and reformulate his explana-
tion. Thus, Martin’s interaction with his model was mediated
by the interviewer as an expert-other (Vygotsky, 1986) who
was closely attuned to Martin’s developing science under-
standing and the way Martin communicated that understand-
ing through his emerging English (Grapin, 2020). In this way,
one-to-one-to-model interactions created their own complex
systems from which students’ science understanding and lan-
guage emerged. Understanding these systems, in their full
complexity, may prove crucial with ELs, whose science learn-
ing and English proficiency are emerging simultaneously.
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Contributions and Future Research Directions

This article represents a first step toward conceptualizing
and empirically investigating the distinct affordances of
computational models for ELs in science instruction. Below,
we discuss contributions of our framework to the literature
as well as future research directions that build on this con-
ceptual foundation and initial inquiry.

Contributions to the Literature

Research that is just beginning to emerge suggests the chal-
lenges of ensuring ELs’ meaningful participation in science
instruction that integrates computational models (e.g., Aksit
& Wiebe, 2020). These challenges may, in part, stem from
a lack of engagement with contemporary theories of what
it means to know and use a language. Thus, at the onset of
this literature, we underscore the significance of articulating
a conceptual foundation that guides research in productive
and equitable directions.

The theories that inform this conceptual foundation
have significant implications for whether ELs are seen as
meaningful participants in science instruction that inte-
grates computational models. Based on structural theories
of language that locate competence strictly in the individual,
both Ricardo and Martin could be seen as deficient, lacking
the language structures considered prerequisite to commu-
nicating their science understanding effectively. However,
based on ecological theories that locate competence in the
individual-in-environment, Ricardo and Martin are reframed
as competent participants who leverage affordances in their
environment to create situated meanings (e.g., Ricardo’s
“white would gain” as conveying an increase in weight of
the gaseous banana). By “flipping the script” on structural
theories of ELs as lacking (which undergird an accommoda-
tions perspective), ecological theories (which undergird an
affordances perspective) offer the possibility not only of rec-
ognizing and harnessing ELs’ rich meaning-making poten-
tial but also reframing these students as legitimate members
of their classroom communities and, by extension, broader
STEM communities.

The affordances we have proposed related to modalities,
registers, and interactions are not entirely new in the literature
on computational models in science instruction. For example,
in relation to modalities, leveraging multiple forms of rep-
resentation, including computational models, can deepen
students’ science understanding (e.g., Wilkerson-Jerde et al.,
2015). In relation to registers, students draw on various kinds
of language as they engage with computational models, even
inventing their own terms as they pursue personally mean-
ingful lines of inquiry (e.g., Pierson et al., 2021; Wilkerson-
Jerde et al., 2015). In relation to interactions, students’
interactions with and around their computational models
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can engage them in the social dimensions of modeling (e.g.,
Brady et al., 2015). However, while these affordances can be
gleaned piecemeal from the literature, they have not formed
a coherent framework. Moreover, even as these studies have
been richly theoretical, frequently grounded in learning
theories, such as constructionism (e.g., Papert, 1980), this
research has not made sufficient connections to contemporary
theories in language education, such as ecological theories,
which are particularly relevant to ELs in science classrooms.
Thus, an important contribution of our framework is an ana-
lytic lens to guide future research efforts focused on integrat-
ing computational models in linguistically diverse science
learning environments (for more specific recommendations,
see “Future Research Directions” section below).

As our framework continues to evolve, it could inform
the design of learning environments that serve to broaden
participation of ELs in science learning. This design work
calls for a fundamental shift from adding accommodations
to existing instructional designs as a way of addressing ELs’
perceived deficiencies to designing learning experiences
that take as their starting point ELs’ rich meaning-making
potential. Such design work could begin with creating sci-
ence learning environments that provide a rich budget of
modalities for ELs to perceive and act upon as they engage
in purposeful, goal-directed interactions with both human
and technological participants. This design work could also
involve carefully sequencing learning experiences such that
ELs have opportunities to construct their science under-
standing using everyday and specialized programming reg-
isters before they are introduced to or expected to produce
specialized science registers, thus providing the “infrastruc-
ture to grow language” (van Lier, 2003, p. 151) and treat-
ing the specialized science register as “a product of doing
science, not a precursor or prerequisite” (NASEM, 2018, p.
65). In addition to informing designed-in aspects of science
learning environments, an affordances perspective calls for
shifts in how teachers interact dynamically with their ELs,
including how teachers hone their listening skills to hear
the science (Grapin, 2020) in ELs’ use of multiple registers
and modalities (Even when science learning environments
are semiotically rich, ELs may continue to be seen from a
deficit perspective if their teachers hold steadfast to tradi-
tional notions of what “counts” as effective language use and
meaningful participation in science learning.). Given that
this work involves integrating diverse theoretical insights in
a principled manner (e.g., ecological theories of language
with constructionist theories of learning), it will require sub-
stantive and sustained collaboration across multiple fields
(e.g., language education and STEM education).

One important question is whether the affordances we
have conjectured and illustrated are specific to ELs. In
other words, would these affordances apply equally to their
non-EL peers? While this question merits further empirical
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inquiry, we suggest two possible responses. First, the affor-
dances could be particularly beneficial to ELs, even if appli-
cable to all students, given that ELs are still in the process
of developing English proficiency. For example, the affor-
dances of the code modality and specialized programming
register enabled Ricardo to communicate a sophisticated
understanding of decomposition and its relation to conser-
vation of weight, even as he was still developing proficiency
with technical science terms (e.g., “decompose” and “con-
servation”). Second, we consider that, if non-ELs also ben-
efit from these affordances, this would support (rather than
undercut) our central argument that an affordances perspec-
tive has the potential to promote inclusion of ELs in the
science classroom. Specifically, this would mean that the
affordances we have proposed are not just accommodating
ELs based on perceived deficiencies (an approach that could
result in their further marginalization), but rather including
ELs in the science classroom in ways expected of all stu-
dents. In essence, an affordances perspective extends to ELs
what has normatively been assumed of their non-EL peers,
namely, that they bring rich meaning-making resources to
the classroom that are matched to (rather than distant from)
the task of science learning.

Future Research Directions

Building on this conceptual foundation and initial inquiry,
future research should investigate the affordances of compu-
tational models in the context of classroom activity, where
such affordances have the most potential to promote the
inclusion of ELs in science learning. This research could
refine our understanding of the affordances illustrated by our
initial inquiry in the interview context while surfacing new
affordances specific to the classroom context. For example,
while the interview context focused on one-to-one-to-model
interactions involving the student, interviewer, and compu-
tational model, the classroom context could involve one-
to-one-to-model interactions in which peers mediate each
other’s thinking and communication as they work together
on a model. These affordances could also be investigated
in relation to different learning goals targeted in science
instruction that integrates computational models. For exam-
ple, Ricardo’s description of the agent-aggregate relations
in his model showed emerging evidence of “thinking in lev-
els,” a key computational thinking practice (Weintrop et al.,
2016). Finally, this research could examine the affordances
of computational models for ELs beyond blocks-based pro-
gramming environments (e.g., Weintrop & Wilenksy, 2015)
and when used in concert with other forms of representation
(e.g., Wilkerson-Jerde et al., 2015).

Another future direction could involve expand-
ing the scope of our framework. In its current formula-
tion, the framework focuses primarily on ways in which

computational models harness ELs’ meaning-making
potential. However, ELs bring to science classrooms not
only expansive meaning-making resources but also rich
knowledge and experiences from their homes and commu-
nities (Bang et al., 2012; Gonzalez et al., 2005). Tissenbaum
and colleagues (2017) have shown how anchoring compu-
tational tasks in issues relevant to the lives and communi-
ties of marginalized youth (e.g., issues related to disaster
relief and mental health) provides affordances for harness-
ing youth knowledge and experiences and “developing their
computational identities toward being digitally empowered”
(p- 1707). Likewise, in our own research, the microbe com-
putational model (used to illustrate the framework in this
article) is embedded in a broader sequence of instruction
that engages ELs in explaining what happens to garbage pro-
duced by their community and how they can develop a local
solution to the problem of plastic pollution (Lee et al., 2019).
Building on these (and other) instructional designs, future
research could expand the framework to include the affor-
dances of computational models for empowering ELs—a
group traditionally marginalized in schools and in society—
to become agents of social change in their local and global
communities. Indeed, the meaning-making affordances of
computational models (i.e., the how of making meaning)
may fall short of being fully leveraged if these models are
not embedded in instructional tasks that resonate with ELs’
lives, experiences, and visions for the future (i.e., the why
of making meaning).

As science classrooms become both more computational
and more linguistically diverse, there is a need to rethink
perspectives that have traditionally guided research and
design in STEM education with ELs. An accommoda-
tions perspective and an affordances perspective both seek
equity for diverse student groups but differ in their starting
points: Whereas accommodations are premised on the dis-
tance between students’ abilities and the demands of STEM
learning, affordances are premised on the match between
what learners bring to STEM classrooms and what the dis-
ciplines afford them. By reorienting our focus from what
learners lack to the “relations of possibility” (van Lier, 2004,
p. 81) between them and their environment, an affordances
perspective promotes an asset-oriented view of ELs (and
potentially other marginalized groups) as “able to partici-
pate in STEM learning... when they are challenged through
instruction that respects them and what they have to offer”
(NASEM, 2018, p. 22). With computational models being
a relatively new arrival to the science education landscape,
the time is ripe to (re)imagine computationally enriched sci-
ence learning environments from the ground up in ways that
leverage the rich assets that diverse student groups bring to
science classrooms. We hope this article stimulates further
research that seizes this unique and timely opportunity.
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