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Abstract

Monodisperse suspensions of Brownian colloidal spheres crystallize at high densities, and ordering under shear has been observed at densities
below the crystallization threshold. We perform large-scale simulations of a model suspension containing over 105 particles to quantitatively
study the ordering under shear and to investigate its link to the rheological properties of the suspension. We find that at high rates, for
Pe . 1, the shear flow induces an ordering transition that significantly decreases the measured viscosity. This ordering is analyzed in terms
of the development of layering and planar order, and we determine that particles are packed into hexagonal crystal layers (with numerous
defects) that slide past each other. By computing local ψ6 and ψ4 order parameters, we determine that the defects correspond to chains of par-
ticles in a squarelike lattice. We compute the individual particle contributions to the stress tensor and discover that the largest contributors to
the shear stress are primarily located in these lower density, defect regions. The defect structure enables the formation of compressed chains
of particles to resist the shear, but these chains are transient and short-lived. The inclusion of a contact friction force allows the stress-bearing
structures to grow into a system-spanning network, thereby disrupting the order and drastically increasing the suspension viscosity.
© 2022 The Society of Rheology. https://doi.org/10.1122/8.0000453

I. INTRODUCTION

Suspensions are ubiquitous in nature and play an impor-
tant role in a wide variety of environmental and technical
processes. Examples include concrete, pharmaceuticals,
blood, and more. Dilute suspensions typically exhibit liquid-
like behavior, but when the volume fraction of suspended
particles is high, complex rheological properties arise [1–4].
Understanding and controlling this behavior is of academic
interest and crucial for many industrial applications.

Colloidal suspensions are known to order under shear,
giving rise to shear thinning properties [5–12]. Dense hard
sphere suspensions will also order at rest due to thermal
motion, given enough time, forming face-centered cubic
(fcc) or hexagonal close-packed (hcp) lattices [13–15]. The
dynamics of this crystallization process are complex, depend-
ing strongly on the volume fraction of particles, particle size
distribution, boundary conditions, and the applied shear rate
[12,15–18].

In addition, at high densities, many suspensions exhibit
shear thickening properties [1,4,19–21]. This is generally
associated with cluster formation and contact forces between
particles. At higher shear rates, more frequent contact
between particles gives rise to large microscopic forces and a
high macroscopic viscosity. This rise in viscosity is called

continuous shear thickening (CST) or discontinuous shear
thickening (DST), depending on how rapidly the viscosity
rises with shear rate. There is substantial evidence that fric-
tional forces, due to particle roughness, play a key role in
the shear thickening phenomenon, with DST being attrib-
uted to a sharp rise in the number of frictional contacts
[1,2,4,22–24].

Using a model monodisperse suspension of hard
spheres, we investigated the ordering transition for a system
in the liquid-crystal coexistence region of the equilibrium
phase diagram. We analyzed the types of ordered states that
arise under shear, as well as how the ordered domains
nucleate and grow. By computing the distribution of stresses
within the suspension, we discovered that the largest contri-
butions to the shear stress come from the defects in the
ordered state. The defect structure enables the formation of
compressed chains resisting the flow. While these chains
are short-lived in the frictionless system, the addition of
contact friction between particles disrupts the order and
allows the stress-carrying structures to grow into a system-
spanning network.

This paper is organized as follows. First, we give a
detailed introduction to the model and describe the simula-
tion and analysis performed in Sec. II. Next, we discuss the
ordering transition the sheared suspension undergoes and its
effect on viscosity in Sec. III A. In Sec. III B, we quantita-
tively analyze the ordering and discuss how it develops over
time, as the suspension is sheared. The formation of defects
and analysis of their structure are explained in Sec. III C.
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The microstructure analysis is then related to the mechanics
by analyzing the local particle stresses in Sec. III D. Finally,
we comment on the role of friction in the disruption of order-
ing and redistribution of stresses in Sec. III E.

II. METHODS

A. Simulation details

We performed discrete element method (DEM) simula-
tions of a suspension of monodisperse, spherical particles, as
shown in Fig. 1. The suspension contained 108 000 particles
in a periodic simulation box with the particle volume fraction
ranging from f ¼ 54% to 58%, with most of the analysis
presented being focused on the f ¼ 54% case. This is a
range of f where we observe substantial ordering and which
spans CST and DST regimes as observed in simulations with
friction [25,26], while below the static jamming volume frac-
tion, the suspensions can shear jam at high shear rates when
f ≳ 56% [25,26]. The solvent was treated implicitly, with a
viscosity of η0 ¼ 1 in reduced units of

ffiffiffiffiffiffi
mε

p
=d. The particle

mass m and diameter d, as well as the simulation energy
scale ε, were also set to 1. Note that the particles have finite
mass because we are solving Newton’s equations of motion,
which include inertia. However, we have ensured we are in
the overdamped limit by running simulations with suspension
viscosity increased up to η0 ¼ 10 and finding that its value
does not affect our results.

All simulations were performed with LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator)
[27]. While generally known for molecular dynamics simula-
tions, the LAMMPS code has specialized modules that allow
for the modeling of hard sphere suspensions of Brownian
particles. For this application, LAMMPS utilizes a simple
physics-based DEM model that ignores the detailed flow
behavior of the suspension solvent in exchange for computa-
tional efficiency. Hydrodynamic interactions between spheres
are largely controlled by lubrication forces, as discussed in

Sec. II B. Shear flow was imposed along the x direction
(with gradient along z) based on the Lees–Edwards boundary
condition, with an additional Stokesian drag force that causes
particles to follow the imposed shear profile over time. The
robustness of this approach improves with increasing volume
fraction of spheres as a less detailed knowledge of flow
of the background fluid is needed. Indeed, it has been
found that at volume fractions of approximately 40% and
higher, the flows produced are reasonably consistent with
fully detailed simulations [28]. This is due to the fact that,
at higher volume fractions, the surfaces of the solid inclu-
sions are close enough such that the lubrication forces dom-
inate over the long-range hydrodynamics of the background
fluid [29].

In addition to the lubrication forces, a short-ranged Yukawa
potential was used to give the particles an exponentially
decaying steric repulsion following UYukawa ¼ (A=κ)e"κh.
Here, h is the separation between particle surfaces, while
A ¼ 1000 ε=d and κ ¼ 100 d"1 are set so that the energy is
10 ε at contact and falls below kBT at a surface separation of
h ¼ 0:02 d. Thermal fluctuations were introduced using a
random Brownian force to maintain a finite temperature such
that kBT ¼ ε. This sets the time scale in the simulations as
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md2=kBT

p
. We tested the model parameters for a

slightly more dilute suspension (f ¼ 45%) and found results
in excellent agreement with the earlier work of Foss and
Brady where they performed simulations of hard spheres with
hydrodynamic interactions [5].

All shear simulations were run from a disordered initial
state. This state was prepared by first placing the particles on
a cubic lattice and then running a high temperature DEM
simulation without any shear. Once the crystal had melted,
the system was cooled to kBT ¼ 1 ε, and the pair correlation
was checked to ensure the configuration was amorphous. For
all rates considered, a copy of this initial state was sheared
until the system reached steady state, as evidenced by steady
viscosity, pressure, and energy. To ensure that we remained
in the viscous regime rather than inertial (see [30] for more
on this transition), we performed additional simulations with
η0 ¼ 10 and found that the suspension relative viscosity was
unchanged.

B. Lubrication forces

Hydrodynamic lubrication forces arise due to the confine-
ment of a solvent between moving particles [31]. The interac-
tions due to the relative motion of the spheres have been
described by Ball and Melrose [29], who computed forces
(~F) and torques (~τ) acting on spherical particles as

~Fsq ¼ asq~vn, (1)

~Fsh ¼ ash~vt, (2)

~τsh ¼~r # ~Fsh, (3)

~τ pu ¼ apu~ωt, (4)

FIG. 1. Perspective view of the sheared simulation cell containing 108 000
spheres, all interacting via the hydrodynamic lubrication force. The flow is
along the x direction, with the velocity gradient along the z direction.
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where the forces and torques denoted by sq, sh, and pu are
due to squeezing, shearing, and pumping, respectively, of the
fluid between the spheres (see Fig. 2 for a visual depiction of
these modes). The velocity of the spheres relative to each
other is split into normal and tangential components as ~vn
and ~vt, where the normal is defined as the direction along the
center-centerline between the spheres. ~ωt is the angular
velocity difference in directions tangent to the normal direc-
tion. The coefficients for Eqs. (1)–(4), as computed by Ball
and Melrose [29], are

asq ¼ 3πη0r
1
2h

þ 9
20

log
1
h

" #$ %
, (5)

ash ¼ πη0r log
1
h

" #$ %
, (6)

apu ¼ πη0r
3 3
20

log
1
h

" #$ %
, (7)

where r is the radius of the spheres, h is the surface-surface
separation between spheres, and η0 is the viscosity of the
solvent.

As one can see from the coefficients, these forces are sin-
gular at contact (h ¼ 0), and this singularity is typically
handled in simulations by setting an inner cutoff hin. This
sets a finite minimum separation such that the lubrication
forces use hin in lieu of h when h , hin. We tested the depen-
dence of the stress response on this threshold and found that
for values of hin . 10"4 d, the hydrodynamic stresses were
underestimated at high rates. The exact threshold is, of
course, dependent on the presence of other particle interac-
tions, and a different cutoff can be appropriate if there are
other forces, such as electrostatic repulsion, between parti-
cles. For all data presented, we used hin ¼ 10"4 d.

C. Microstructural analysis

Several analytic tools were used to quantitatively study
the ordering of particles in the suspension. We computed the

density profiles ρ(z) and found evidence of particle layering.
Steinhardt’s bond orientational order parameters were used to
characterize the 3D ordering [32], but no 3D crystal structure
was found (see the supplementary material [33]). Due to the
nature of the order, we focus on 2D correlation functions and
order parameters that are computed in layers of particles.

Generally, all of the results that are presented as functions
of z, such as the density profiles ρ(z) in Fig. 4, are computed
by averaging the plotted property over all particles in a slice
of the system along the gradient direction. With the density
profile as reference, we use a slice width of 2d when averag-
ing the correlation functions and order parameters (i.e., the
average is over all particles i such that Δz ¼ jzi " zj % d).
Particles in the same layer are identified by a threshold sepa-
ration of Δz % 0:4d, which corresponds to the width of the
density peaks in Fig. 4. To clarify this, let us consider the
case of the correlation function computed as

g(rxy, z) ¼
LxLy

2πrrbinN2
z

X

i

X

j=i

H rbin
2

" jrxy " rijxyj
& '

: (8)

Here, the Heaviside step function H is used to count particles
j within a certain distance rxy of particle i, with discrete bin
size rbin ¼ 0:05. The quantity is averaged over all Nz parti-
cles within the slice of width 2d for better statistics, and the
calculation is confined to ij pairs within the same layer.

A similar procedure is followed with the order parameters
ψ6 and ψ4. The individual particle values are computed, fol-
lowing [34], as

ψa
6 ¼

1
Nn

XNn

b¼1

e6iθab

(((((

(((((

2

, (9)

ψa
4 ¼

1
Nn

XNn

b¼1

e4iθab

(((((

(((((

2

: (10)

The sum is limited to the Nn nearest neighbors of particle a
in the same layer, and θab measures the angle of the bond
between a and b. To obtain ψ6(z), the individual particle ψa

6
values are averaged for all particles in a slice of width 2d
centered at z.

In addition to analysis of the microstructure, we calculate
the stress in the suspension to connect the ordering to the
mechanics. The stress is calculated from the particle contri-
butions to the stress tensor, following [35], as

σαβ ¼ " 1
V

X

i

X

j=i

1
2
Fij
αr

ij
β

" #
" mviαv

i
β

" #

, (11)

where i and j denote particles, α and β denote Cartesian
directions, V is the system volume, Fij is the force between
two particles, rij is the distance between two particles, and v
is the particle velocity. The suspension viscosity is computed
from the shear stress σxz and shear rate _γ as η ¼ σxz= _γ. In

FIG. 2. Schematic representation of the different modes of relative motion
between spheres in a background solvent [29]. Each of these modes has a
contribution to the lubrication forces and/or torques between the two
spheres. The motion of the top sphere drags the solvent and exerts a force/
torque on the bottom sphere.
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Sec. III D, we discuss how the total stress can be divided
into particle stresses to give local information.

D. Friction

When including frictional forces, we follow the contact
model of Mari et al. [25,26]. The steric repulsion between
particles is modeled as a Hookean force, with a normal force
of FN ¼ kh. Unlike the Yukawa-like potential used previ-
ously, this allows for particle contact (which is the criterion
for activating frictional forces). However, to maintain a hard
contact, we use a high spring constant of k ¼ 104 _γ

ffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
.

With these parameters, we observe particle overlap , 6%,
comparable to the criteria used in other recent simulations
[24]. The dependence on shear rate arises from the fact that a
higher spring constant is needed to limit overlap at higher
shear rates, due to collisions happening more frequently and
at greater velocities. Alternatively, one could use a fixed,
high value of k, corresponding to what is required for the
highest shear rate, at all rates. However, this requires a
smaller time step to adequately resolve the collisions, and the
variable spring constant approach was found to reduce com-
putational cost while producing results that matched the
results from the constant k approach [24].

The frictional forces act tangentially to the particle contact
and also follow a simple Hookean model. Any tangential dis-
placement of particles after making contact, Δrt, is acted
upon by a restoring frictional force Ft ¼ kΔrt, with the con-
straint that Ft % FN (Coulomb’s friction law with a friction
coefficient of 1). The contact/friction model we use is rela-
tively simple compared to some newer studies [36,37].
However, all these models exhibit qualitatively similar
behavior, and the simpler model also compares favorably
with experiments [38]. In this study, we focus mainly on the
differences between simulations with/without friction, rather
than the quantitative details related to the exact frictional
model chosen.

III. RESULTS

All results are presented in reduced units, meaning dis-
tance is in units of particle diameter d, mass in units of parti-
cle mass m, and energy in units of ε ¼ kBT . The solvent is
treated as a Newtonian fluid with viscosity η0 ¼ 1 in reduced
units of

ffiffiffiffiffiffi
mε

p
=d, and all results on viscosity refer to the rela-

tive viscosity of the suspension compared to the solvent.
Shear flow is applied in the x direction, with gradient along
z, and the results on 2D correlations or order parameters are
in the flow-vorticity (xy) plane.

A. Shear-induced ordering

We investigate the steady shear response of the model sus-
pension of monodisperse colloidal spheres just described at
volume fraction f ¼ 54%. At this density, monodisperse
hard sphere suspensions are in the liquid/crystal coexistence
region of the phase diagram [13,15]. However, our initial
configuration is obtained by quenching the suspension to a
metastable glassy state that does not exhibit any crystalliza-
tion. We subject replicas of this configuration to steady shear

at seven different shear rates (ranging from 10"2 τ"1 to
10 τ"1). The Peclet number Pe, defined as the ratio of motion
due to shear compared to motion due to Brownian forces, is
Pe ¼ 6πη0r3 _γ=(kBT) ¼ (3=4)π _γ for the parameters chosen in
our simulations.

As the simulation time is too short for crystallization to
occur in the stationary suspension, the low Pe flow exhibits a
microstructure and viscosity that are independent of the
elapsed time (and applied strain). The shear stress, and thus
the apparent viscosity, fluctuate due to the Brownian motion
of the suspended particles, but the steady state is reached
almost immediately. As shear rate is increased, we observe
shear thinning behavior and the viscosity drops significantly
as seen in Fig. 3(a). In addition, for Pe . 1, there is a sub-
stantial difference in the initial viscosity and the steady state
viscosity.

For _γ ¼ 1 τ"1 and _γ ¼ 10 τ"1, the viscosity at the start of
shear is about η=η0 ¼ 45, but as the applied strain increases,
the viscosity drops toward a final steady state value of
η=η0 ≃ 10 [Fig. 3(b)]. System snapshots are displayed in
Fig. 3(c) to show that this drop in η=η0 is coupled to micro-
structural changes in the suspension. The pictured differences
in local density are coupled to the formation of an ordered
phase: the applied shear, at Pe . 1, promotes a switch from
the metastable glassy state to an ordered state. Signs of a
similar transition have been seen in a previous study even
with smaller applied strains [39]. Surprisingly, the velocity
profile remains linear, despite the apparent banding in the
local volume fraction.

B. Analysis of ordering

We note that the ordering observed here is different from
the equilibrium crystallization of similar suspensions at rest.
As the system is sheared, the particles assemble into a
layered configuration, with layers in the flow-vorticity (xy)
plane spaced along the gradient direction (z). In Fig. 4, we
show a plot of the local density ρ(z). The density profile is
flat at early times (low strains) but develops an oscillatory
pattern at large γ. This shows the formation of particle layers,
corresponding to the peaks in density, with center-to-center
distance between the layers of≃ 0:9 d. The shear flow
imposes the requirement that these layers slide past each
other, which disrupts the typical fcc or hcp crystal structure
in the equilibrium crystals [13,15]. Thus, the ordered state we
observe consists of domains of stacked, 2D crystals coexist-
ing with domains of lower density. This is similar to what is
seen in earlier experiments and simulations with oscillatory
shear when going to high amplitudes [6,9,40,41]. To better
characterize this microstructure, we focus our quantitative
analysis on the structure within these layers and compute 2D
correlation functions and order parameters.

We first calculate a 2D version of the pair correlation
function g(rxy) in the flow-vorticity plane. This is computed
within the previously described layers of particles, at various
z positions along the gradient direction, using the xy distance
between those particles. For the purposes of this calculation,
particles i and j are considered to be in the same layer if
jzi " zjj , 0:45 d, which is half the peak-peak distance in the
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oscillatory density profile seen in Fig. 4. The results of this
calculation are shown in Fig. 5, with plots of g(rxy) for
various values of γ and _γ.

In Fig. 5(a), we show the liquidlike ordering observed at
lower rates (which is independent of γ for the strains consid-
ered). There is a clear first neighbor peak, but the correlations

rapidly decay beyond that. This also matches what we obtain
from our initial state corresponding to a glassy, amorphous
state. Note also that all the curves for different z values lie on
top of each other—the lack of ordering is consistent for all
the layers along the gradient direction.

Next, we consider the scenario at a higher rate
( _γ ¼ 1 τ"1). Here, the system transitions to a much lower vis-
cosity state when sheared, accompanied by an increased lay-
ering of particles and the formation of domains with different
local densities. In Fig. 5(b), we see that this substantially
changes the 2D ordering of the particles. In particular, parti-
cle positions within layers are more strongly correlated and
remain correlated over much larger distances. Moreover, the
curves are no longer z-independent: the local structure varies
across the system. At the highest shear rate of _γ ¼ 10 τ"1,
the peaks of g(rxy) remain in similar positions and heights,
but the variation with z increases further [see Fig. 5(c)].

To better understand the changes in the local ordering, both
in space and over time, we compute the 2D order parameter
ψ6 in the flow-vorticity plane. Figure 6 shows a snapshot
of particles in the dense region of the sheared suspension at
_γ ¼ 10 τ"1 arranged in a hexagonal lattice, so the ψ6 order
parameter (which quantifies the degree of hexagonal order and
goes to 1 in a perfect hexagonal lattice) is a natural choice to
measure the local order [34]. Like for the 2D pair correlations,
we compute this parameter in the xy plane for particles within
a layer. ψ i

6 is computed following Eq. (9).

FIG. 3. (a) The relative viscosity of the suspensions plotted as a function of the Peclet number displays shear thinning behavior. There is an additional fairly
sharp drop in the viscosity for Pe . 1. The open symbols indicate the degree of order, which is defined as the fraction of particles with ψ6 . 0:6 (discussed
further in Sec. III B). For all points, data are averaged over a strain of γ ¼ 5 in steady state, and the standard deviation is smaller than the symbol size. (b)
Plotting viscosity vs applied strains for two of these higher shear rates (with Pe . 1) shows that there is a substantial drop in the viscosity at large γ. To help
characterize this drop, we select three points (indicated by the labels c1, c2, and c3) along the shear curve for _γ ¼ 10 τ"1 for further consideration. (c)
Snapshots for the selected points, colored by the local volume fraction f(r), computed over a small volume around each particle, show that the drop in viscosity
is coupled to a change in the microstructure of the suspended particles.

FIG. 4. The density ρ of particles in slices of the system along the gradient
(z) direction at _γ ¼ 10 τ"1 is plotted for various values of applied shear. The
oscillations show that there is a shear-induced layering of the particles in the
gradient direction. At low γ, the distribution is uniform and flat, but at high
γ, there are many peaks corresponding to the positions of clearly distinguish-
able layers of particles.
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The particle order parameter ψ i
6 can be averaged over the

layer to obtain ψ6(z). This is the quantity we plot in Fig. 6
for _γ ¼ 10 τ"1 and different values of γ. By doing so, we see
that the order parameter is uniformly 0 in the disordered state
at early times. As the strain accumulates, parts of the system
begin to exhibit a sharp increase in ψ6, indicating the nucle-
ation and growth of ordered domains. The position of these
ordered domains matches the higher local density regions
seen in the snapshots of Fig. 3, suggesting the ordering
allows for more efficient packing of the particles. Also, as

we saw for the density in those snapshots, ψ6 is highly het-
erogeneous when the structure first begins to change (and the
viscosity begins to drop), but it becomes more uniform in the
final steady state. The high amount of hexagonal order we
observe in the steady state is in strong agreement with previ-
ous measurements made via scattering experiments [6,9,41],
which reveal the same type of order in colloidal silica sus-
pensions. A threshold of ψ6 . 0:6 was used to determine the
fraction of ordered particles in Fig. 3(a), and it is clear that
this is much higher for Pe . 1. Interestingly, as the shear
rate is increased beyond that, there seems to be a small
decrease in the fraction of particles exhibiting order, consis-
tent with the disruption of order at high enough rates as seen
by Ackerson [6].

C. Formation of defects

In steady state, with increased ordering and decreased vis-
cosity, the relatively low average value of ψ6 obscures the
fact that the vast majority of particles have ψ6 ≃ 1. In Fig. 7,
we show a snapshot for _γ ¼ 1 τ"1 where each particle is
colored by its ψ6 value. Here, it is clear that there are two
populations: the majority of particles exhibit nearly perfect
hexagonal order (ψ6 ≃ 1), while there still exists a non-

FIG. 6. Top: Visualization of simulation snapshot of a layer of particles
shows clear hexagonal packing in the flow-vorticity plane at _γ ¼ 10 τ"1 and
γ ¼ 150. Bottom: This is reflected in the average ψ6 order parameter in
layers along z, demonstrating the development of hexagonal crystal structure
with shear. At low applied strain γ, the system remains disordered. As γ
increases, ordering starts to develop in parts of the system, and eventually a
steady state with fairly high ψ6 throughout the system is reached.

FIG. 7. A snapshot of the flow-vorticity plane from simulations at
_γ ¼ 1 τ"1. The applied strain is γ ¼ 150, corresponding to the steady state,
and particles are colored by their ψ6 order parameter. We see predominantly
hexagonal crystal order, and note that common defects in the hexagonal
lattice (circled) correspond to chainlike structures of square lattice.

FIG. 5. Pair correlation g(rxy) in 2D layers computed in the xy (flow-vorticity) plane. At low shear rates such as (a) _γ ¼ 0:1 τ"1, g(rxy) is independent of
position within the system and shows a liquidlike order. Once steady state is reached for (b) _γ ¼ 1 τ"1 and (c) _γ ¼ 10 τ"1, there is a clear dependence of the
structure on position in the suspension. Additionally, there are larger peaks in g(rxy) indicating a more crystal-like ordering.
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negligible minority that form domains of low ψ6. This
second population has a tendency to form chainlike structures
where the hexagonal lattice is disrupted, and the particles
seem to arrange in a more squarelike lattice.

Evidence for chain structures, combined with hexagonal
structures, has been seen before in the Stokesian dynamics
simulations of Xu et al. [42]. However, given their limited
system size (<200 particles), it was unfeasible to monitor
the formation of these large-scale defects. Interestingly,
similar defects have also been seen experimentally in parti-
cles assembled on a curved surface [43]. In that case, line
defects, or “pleats,” formed as a way to handle the
curvature-induced geometric frustration of the hexagonal
packing. It is possible that we are observing a similar phe-
nomenon but with stresses due to shear flow instead of cur-
vature. If the squarelike clusters are as common as this
snapshot suggests, it should be possible to identify them
with a different order parameter, ψ4.

ψ4, defined in Eq. (10), selects for fourfold symmetry in
the xy plane, with nearest neighbors at 90& angles to each
other. To suppress small fluctuations in the order parameter
and highlight only larger groups of particles, we now average
the particle order parameters over the nearest neighbor shells.
This coarse-grained order parameter is shown in Fig. 8. Here,
the two snapshots correspond to the exact same configura-
tion, colored by ψ6 (left) and ψ4 (right). By comparing these
two, it becomes clear that the defects in the hexagonal crystal
correspond to elongated domains of enhanced ψ4.

Crucially, these domains do not encompass entire layers
of particles, which makes them difficult to detect via the
quantitative layer analysis we performed earlier. However,
the variations in the ordering are coupled to spatial fluctua-
tions in the density. In the third snapshot of Fig. 8, we show
the same configuration characterized by the local volume
fraction f ¼ NlVp=Vl, where Nl is the number of particles
within five particle diameters, Vp is the volume of a particle,
and Vl ¼ (4=3)π53. The larger regions of low ψ6/high ψ4
coincide with lower local density. Hexagonal order allows
for denser packing of the spherical particles, but due to the
shear flow a fully ordered state is not formed. Instead, we
observe chainlike defects characterized by the ψ4 order
parameter and lower local density. As seen in Fig. 3(a),

ordering is correlated with a substantial decrease in viscosity
at Pe . 1, but further increasing the shear rate decreases
both the number of ordered particles and the viscosity. This
implies that these elongated defects actually help us to
sustain steady, unimpeded flow.

D. Impact on stresses

Recognizing that all these microstructural changes (fluctu-
ations in density, enhanced layering/ordering) are accompa-
nied by a substantial drop in the viscosity of the suspension,
we calculate the particle contributions to the stress tensor to
quantify the link between the order/density and stresses [35].
The virial formulation of the stress tensor is broken up into
particle contributions as

σ i
αβ ¼ "

X

j=i

1
2
Fij
αr

ij
β

$ %
" mviαv

i
β , (12)

where α and β can be x, y, or z to generate the components
of the stress tensor, ~Fij and ~rij are the force and position
vectors between particles i and j, and ~vi ¼~vitotal " _γzx̂ is the
deviation of the particle velocity from the flow profile set by
the shear rate. The total stress tensor is obtained by summing
σ i for all particles as in Eq. (11). The distribution of
particle contributions to the shear stress is plotted in the inset
in Fig. 9(a), and it shows a peak at the system stress of
σxz ≃ 100 kBT=d3 and long tails with a small fraction of par-
ticles contributing stresses that are very large in magnitude.
These large values come from particles that instantaneously
experience a strong force. Due to the computation of these
stresses at a particle level, and a large system size, we
observe these extremes that are averaged out when consider-
ing the macroscopic stress. This raises the question of which
particles are responsible for these large stresses.

Computing the local volume fractions in the neighborhood
of each particle as before, we now analyze their distribution
in Fig. 9(a). The blue curve shows a bimodal distribution,
with the larger peak around f ≃ 0:58 and a smaller peak
at f ≃ 0:49. If we instead restrict our analysis to the high
stress particles, selected by using a stress threshold of σ i

xz
. σ t ¼ 15 000 kBT=d3 corresponding to 1% of the particles,

FIG. 8. Visualizations of a steady state configuration for _γ ¼ 10 τ"1 with particles colored according to their (a) ψ6 and (b) ψ4 order parameter, coarse-grained
over nearest neighbors. We observe that the two are anti-correlated with regions of high ψ6 corresponding to low ψ4, and vice versa. This is linked to the local
density of the particles (c) since the hexagonal order allows for locally denser packing of particles.
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we see a single peak at the lower density. In other words, the
high stress particles are almost exclusively in low density
regions, i.e., the defects. This is represented visually in
Fig. 9(b), where only the high stress particles are rendered.
Notably, the high stress particles are almost all blue, corre-
sponding to lower local volume fraction. In addition, they
tend to form short chains in the compressive direction, which
have been observed in previous simulations [44] and are
highly reminiscent of the force chains in sheared granular
materials [45]. In our simulations, these chains form and
break up rapidly as particles rearrange due to Brownian fluc-
tuations and shear motion. Despite their transience, the pres-
ence of these structures shows a possible link between dense
suspensions and granular systems even in the absence of
friction.

At first, it seems somewhat counterintuitive that higher
stresses are associated with lower local density, but this
reveals the tendency of the locally stressed structures to form
in regions of defects. Yet, at a macroscopic level, we see that
the presence of defects is driven by the applied shear rate
[see the fraction of ordered particles decreasing at _γ . 1 τ"1

in Fig. 3(a)]. Does stress cause defects or do defects cause
stress? A possible explanation draws on previous work in 2D
systems. The experiments of Irvine et al., for example,
showed that hexagonally packed particles on curved surfaces
formed chainlike defects as an optimal way to relax the
curvature-induced stresses [43]. Additionally, the simulations
of Schwenke et al. showed that nanoparticles adsorbed to an
interface formed a densely packed ordered phase with defects
where adsorption could continue [46]. Similarly, we observe
growth of chainlike defects as we increase the macroscopic
stress by increasing _γ. These defects may enable the larger
ordered domains to slide past each other with minimal resis-
tance. A similar effect may be taking place in suspensions
under oscillatory shear which undergo a change in crystal ori-
entation when the strain amplitude is increased [40]. While
they also allow for the formation of the compressed force

chains seen in Fig. 9(b), those chains are transient as the con-
tacts are lubricated and frictionless. In this way, the defects
are an efficient response to the deformation-induced stresses,
and their growth allows for a net decrease in the effective vis-
cosity of the suspension.

E. Frictional forces disrupt order

Thus far, all our results have been for entirely frictionless
particles, but we have also investigated how the presence of
friction might affect our findings. We use a frictional model
based on the work of Mari et al. [25,26], where a springlike
force acts against the rotation of particles in contact. A key
parameter of this model is the friction coefficient, which we
set equal to 1 so our simulations are in the regime where
shear thickening has been observed [25,26].

To test the effect of frictional forces on the ordering, we
perform simulations with friction starting from the sheared
ordered states discussed in Secs. III A–III D. In Fig. 10,
we show results from simulations at four shear rates
( _γ ¼ 0:01 τ"1, 0:1 τ"1, 1 τ"1, and 10 τ"1) where the initial
state has been sheared without frictional forces, meaning that
for the high rate cases ( _γ ' 1 τ"1), the system exhibits the
layering and ψ6 ordering discussed previously.

In Fig. 10(a), we plot the shear stress as a function of
applied shear strain. The first half shows the decrease in
stress due to the ordering transition for frictionless spheres.
After the dashed line, frictional forces are activated and there
is a rapid increase in stress to a new plateau. This rise is cor-
related with the disruption of the ordered states. This disrup-
tion is very different from the defect regions discussed
in Sec. III C, which were still found to form layers.
Figure 10(b) shows a snapshot from simulations at
_γ ¼ 10 τ"1, and the layered structure seen in the frictionless
states is not preserved at all.

In terms of the rheology, the addition of frictional forces
dramatically increases the viscosity of the suspension and

FIG. 9. (a) The distribution of local volume fraction f shows a bimodal distribution with a main peak around f ≃ 0:58 and a secondary peak at f ≃ 0:49.
From the order parameter analysis, we know these two peaks correspond to the ordered regions and defects, respectively. A subset of particles that contributed
the most to the shear stress is selected using Eq. (12) and setting a threshold of σ i

xz . σ t ¼ 15 000 kBT=d3, which corresponds to the top 1% of particles, as
shown in the inset. These high stress particles are predominantly situated in regions of lower density, and the local f(r) distribution for these particles exhibits
a peak at f(r) ≃ 0:49. The stars on the x-axis indicate the means of the two distributions, which are the equal to the system volume fraction of f ¼ 0:54 for all
particles and f ≃ 0:5 for the high stress particles. (b) A snapshot, where only the high stress particles are rendered, shows that most of the stress is localized in
low density regions where short chains of particles form in the compressive direction resisting shear. These stressed structures are dynamic, forming and break-
ing as particles rearrange in the defects.
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causes it to steadily shear thicken, with viscosity increasing
by a factor of 2 over a decade increase in shear rate [see
Fig. 10(c)]. With respect to the frictionless case, therefore,
the rise in viscosity is associated with two factors: the extra
stress from frictional forces and the disruption of the low-
viscosity ordering. This behavior is in stark contrast with the
thinning we observed without friction (see Fig. 3) and in
agreement with the results of previous studies, which indicate
that friction is the key to shear thickening [1,4,22–26].

Analysis of the particle contributions to stresses in our
system shows that there is a fundamental change in which
particles contribute to the increased shear stress. Mirroring
the analysis in Sec. III D, we show the particle histogram of
local f in Fig. 11(a). The presence of a single peak indicates
that we no longer have two coexisting states (order/defect) as
in the frictionless simulations. Additionally, the particle con-
tributions to the shear stress are distributed normally, with a
mean of σxz ≃ 2400 kBT=d3, and using the same criteria for
high stress particles, σ i

xz . σ t ¼ 15 000 kBT=d3, now selects

≃ 35% of the particles instead of just 1%. Interestingly, the
histogram for the local volume fraction of these particles
matches that for all particles, indicating that the link between
local volume fraction and local stress is much less obvious
here.

Visualizing the contacts between particles as bonds
[Fig. 11(b)], we find that the high stress particles form a per-
colating network that spans both lower (blue) and higher
(red) f regions. The ability of stresses to accumulate in a
large-scale structure, instead of only in highly localized
regions of defects, explains the substantial increase in the
suspension viscosity. The existence of a percolated stress/
contact network matches previous simulation studies of fric-
tional systems [24–26].

We find that the inclusion of friction has not only
changed the microstructure of the suspension, it has also
changed how stress is carried within that structure. Instead of
the majority of the stress response arising from small regions
of defects, stress is distributed in a space-spanning structure,

FIG. 10. (a) As the suspension is sheared at _γ ¼ 1 τ"1 and _γ ¼ 10 τ"1, there is a large drop in shear stress due to ordering, and a steady state viscosity of η ≃
10 is reached. Upon adding frictional forces, the stress rises rapidly to a new plateau corresponding to higher viscosity. (b) This new steady state exhibits none
of the layering or hexagonal order found in the frictionless suspensions, as seen in a snapshot of the particles in the flow-vorticity (xy) plane. (c) Viscosity as a
function of Peclet number, with data averaged over a steady state strain of γ ¼ 5 (error bars indicate one standard deviation). In addition to the disruption of
ordering, the inclusion of frictional forces changes the rheological behavior and leads to shear thickening over the range of rates considered.

FIG. 11. (a) The particle histogram of local volume fraction f(r) at _γ ¼ 10 τ"1 shows a single peak in the frictional simulations, highlighting the lack of coex-
isting ordered and defected regions. In addition, the particle stresses (inset) are distributed normally, without long tails. We perform the same analysis and con-
sider particles selected so that σ i

xz . σ t ¼ 15 000 kBT=d3 (the same criteria used for the frictionless case). With friction, ≃ 35% of particles meet the stress
criteria, and those particles are distributed uniformly throughout the system in both high and low f regions. (b) A snapshot of the high stress particles, colored
by the local volume fraction, illustrates that with frictional forces, the stress is distributed throughout the system rather than only in a few small regions of
defects. For this visualization, only the contacts between particles are rendered in order to highlight the formation of a connected and system-spanning network.
The pattern of red/blue coloring shows that there are still interesting structural features, but the high stress network is somehow embedded within, and spanning
across, those features.
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akin to the percolated frictional contact networks that are nec-
essary for DST [47]. The formation of this larger-scale, per-
colating network structure raises some interesting new lines
of inquiry. For one, studying the heterogeneity of the
network, in terms of structure and local stresses, could
provide new insight into the shear thickening behavior and
the stress fluctuations seen in experiments [19,48].
Similarly, the dynamic evolution of the network under
shear is another avenue to explore in future work. A better
understanding of the dynamics would assist in efforts to
tune the thickening, which might be achieved through
the application of vibrational forces as done by Sehgal
et al. [49].

IV. CONCLUSIONS

We performed simulations of a dense colloidal suspension
undergoing shear. The simulation approach included hydro-
dynamic lubrication forces and short-ranged repulsive inter-
actions. The use of LAMMPS allowed us to perform
large-scale simulations with 105 particles in each sample. At
high shear rates, Pe . 1, we find that the shear flow induces
an ordering transition in the suspension that led to a signifi-
cant reduction in the overall viscosity. Shear-induced crystal-
lization has also been seen previously in experiments
[6,9,12] and simulations [8,10,11] of colloidal suspensions,
as well as in polymer solutions [50]. By computing 2D pair
correlations and the ψ6 order parameter, we have determined
that the ordered state consisted of hexagonally packed layers
that slide past each other as the system is sheared in the
steady state. Due to our use of a large system size, we were
able to observe the nucleation and growth of large ordered
domains, which coexist with lower density defect regions.
The defects typically formed chainlike structures along the
flow direction and can be identified by the ψ4 order parame-
ter. Surprisingly, these lower density regions actually contrib-
ute the most to the overall stress response due to the
formation of short, transient chains of particles resisting com-
pression. These “stressed chains” are dynamic, rapidly
forming, and breaking apart under shear but are reminiscent
of the force chains observed in jammed granular systems.
The fact that these are mainly restricted to the defected
regions could explain why the overall shear stress decreases
when the ordered phase forms.

Upon introducing frictional forces between particles after
reaching the ordered state, we observe that the ordering is
rapidly disrupted. Friction changes the rheological properties
of the suspension by drastically increasing viscosity and
causing the suspension to shear thicken instead of shear thin.
Our analysis of the particle contributions to the stress shows
that these phenomena are accompanied by a major redistribu-
tion of the stresses within the microstructure. Instead of
being localized in less dense regions as in the frictionless
case, the particles with large stress contributions form a per-
colating network that spans low and high density regions. It
is possible that the additional constraints on particle motion
due to friction may serve to stabilize and grow the stress-
carrying structures that were formed in the frictionless case
[51], thus, disrupting the order and leading to the observed

network. These results show how the nature of particle
contact, for otherwise identical suspensions, can control the
transition from steady state order to disorder, or thinning to
thickening. Additionally, they shed new light on how the link
between particle interactions and microstructure controls both
the stress distribution and the macroscopic flow properties.
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