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1 Introduction

Superconformal field theories (SCFTs) are an ideal laboratory for the study of quantum
field theory. The space of superconformal field theories is much more constrained than that
of non-conformal, non-supersymmetric QFTs, so much so that one might even envision
a complete classification. While plausible classification schemes have been proposed for
SCFTs with maximal supersymmetry, the case of half-maximal supersymmetry is still wide
open. In this paper we focus on four-dimensional N = 2 SCFTs, an extremely rich subject
with deep connections to mathematics and string theory.

Apart from rank-one SCFTs and Lagrangian gauge theories, which have been com-
pletely classified in [1–5], there exists a bewildering and constantly growing list of top-down
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constructions of 4d N = 2 SCFTs that do not (yet?) admit a conventional Lagrangian
description. Two broad classes involve compactifications of six-dimensional SCFTs [6–14]
and geometric engineering on Calabi-Yau singularities in string theory [15–21].

In the spirit of the bootstrap, one would like to formulate a classification program of
4d N = 2 SCFTs based only on general principles, such as unitarity and superconformal
invariance. In this paper we make some modest progress in this direction. We leverage two
classes of constraints:

a. VOAs and Higgs branch geometry. It was shown in [22] that there exists a map from
(unitary) four-dimensional N = 2 SCFTs to a restricted subset of (non-unitary) two-
dimensional vertex operator algebras (VOAs). This map identifies the Schur index of
the N = 2 theory with the vacuum character χ0 of the VOA, up to an overall factor,

χ0(q) = q−
c2d
24 ZSchur(q) = q−

c2d
24

(
1 +

∑
n∈N/2

anq
n

)
, an ∈ Z . (1.1)

Here c2d is the 2d central charge, related to the 4d Weyl anomaly coefficient c4d by
c2d = −12c4d. The vacuum character must have integral Fourier expansion (since
it counts operators in the theory), as well as unit leading coefficient (signifying the
presence of a unique vacuum). Crucially, the VOAs associated to 4d SCFTs are
believed to be of a special type, known as “quasi-lisse,” which ensures that their vac-
uum characters satisfy a monic modular differential equations (MDE).1 The modular
properties of the vacuum character allow one to control its high temperature limit,
from which one can extract the other Weyl anomaly coefficient a4d. These facts will
provide the starting point for our analysis. By looking for integral solutions to monic
MDEs of fixed order, we can identify Schur indices and central charges of putative
N = 2 SCFTs.

The Schur sector of an N = 2 SCFT comprises the Higgs branch chiral ring. In
particular, the Fourier coefficent a1 counts the number of moment maps of the 4d
theory, i.e. the bottom components of the flavor current supermultiplets. In fact,
according to the central conjecture of [23], the entire Higgs branch (as a complex
sympletic variety) is encoded in the VOA.2

b. Coulomb branch geometry. Conjecturally, every 4d N = 2 theory has a branch of
the moduli space with the property that the low-energy theory at a generic point is
a free N = 2 supersymmetric U(1)r gauge theory with no massless charged states.
This is known as the Coulomb branch (CB). The quantity r is called the rank of
the theory and coincides with the complex dimensionality of the CB. The CB is

1A monic MDE is an MDE with unit leading coefficient and holomorphic coefficient functions. See
section 2.1 for explicit examples.

2However, in this work we will only discuss putative vacuum characters and MDEs, which are often
insufficient to reconstruct the full VOA.
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singular,3 and its (complex codimension-one) singular loci encode many properties of
the theory. A related fact is that a globally-defined Lagrangian description of the low-
energy U(1)r theory is only possible by allowing electro-magnetically dual changes of
basis. This gives rise to non-trivial monodromies (lending the CB a Special Kähler
structure [26–28]), which constrain the properties of CB operators.

The CB monodromies, which take value in the discrete electro-magnetic duality group
Sp(2r,Z), can be used to restrict the scaling dimensions of CB operators to a very
small set of rational values, which depends solely on the rank of the theory [29, 30].
Furthermore, the stratification of the CB singular locus [31–33] allows us to determine
Weyl anomalies as well as flavor symmetry data in terms of the scaling dimension of
CB observables.

The structure of the CB geometry thus constrains some of the same SCFT data —
Weyl anomalies and flavor central charges — as are captured by the VOA. The CB
and VOA constraints are largely independent, making their compatibility a highly
non-trivial requirement.

A fundamental open question is how these two seemingly very different sets of observables
are related. Intricate examples of mutual compatibility will be encountered throughout
this work. But even more than just compatibility should be true: conjecturally, the VOA
and Coulomb branch geometry separately provide complete characterizations of the 4d
SCFT,4 in the sense that no two distinct SCFTs map to the same VOA or to the same
CB geometry. It should then in principle be possible to fully reconstruct the CB geometry
from the VOA, and vice versa. A tantalizing hint in this direction is the experimental
observation of [34]: in several cases, one can precisely relate the Schur index with a certain
wall-crossing invariant computed from the massive BPS spectrum on the Coulomb branch.

The current work has a more limited scope. We devise a procedure to identify candidate
N = 2 SCFTs by generating mutually compatible pairs of VOA and Coulomb data. Our
procedure becomes fully algorithmic once we specify, on the VOA side, the order d of the
modular differential equation obeyed by the Schur index (more precisely, by the vacuum
character (1.1)), and, on the CB side, the rank r of the theory, i.e. the complex dimension
of the CB.

3Purely on the basis of N = 2 superconformal analysis, the CB can admit both metric and complex
structure singularities. While the former arise when BPS states charged under the U(1)r become massless,
the latter signal the fact that the CB chiral ring is not freely generated [24, 25]. Throughout this manuscript
we will restrict to N = 2 theories with freely generated CB chiral ring and thus only consider metric
singularities.

4This statement concerning the Coulomb branch requires some clarification. Since the early papers
on the subject, it has been known that for rank-1 theories where the Coulomb branch stratification data
is trivial, the scale-invariant limit of the Coulomb branch is not enough to fully specify the SCFT [27].
However, it is still possible to enrich this geometric data with other purely Coulomb branch quantities, e.g.
the deformation pattern [2], to provide (up to discrete gauging) a complete characterization. At higher
ranks, the stratification of singular loci becomes considerably more rich and, to the authors’ knowledge, no
inequivalent SCFTs share the same stratification data, i.e. assignments of low-energy theories on sub-loci
of all complex codimensions.
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Figure 1. A schematic depiction of our algorithm. As described in the main text, we begin by
fixing the rank r and dimension d of the MDE, and then inputting the first few terms of the Fourier
expansion of a candidate vacuum character χ0. Various methods (given above the arrows) are then
used to extract increasingly refined sets of 4d data from these inputs. At each step we impose
constraints (given below the arrows) on the new data, which if failed truncate the algorithm. The
output of the algorithm is the data that pass all of our constraints.

Concretely, the algorithm takes as input r, d, and the first few terms in the Fourier
expansion of a candidate vacuum character (the precise number of terms is determined
by d, as will be reviewed in section 2.1). With this input, we begin by using the MDE to
verify that these first terms can be “completed” to a fully integral solution χ0(q). Assuming
integrality is satisfied, the MDE is then used to extract the possible central charges (a4d, c4d)
as well as the dimension of the flavor symmetry of the corresponding 4d N = 2 theory.
This is discussed in section 2.2. This data must satisfy, among other things, the Hoffman-
Maldacena bounds. Assuming that it does, the Shapere-Tachikawa formula can be used
to extract the Coulomb branch scaling dimensions ∆ui . The flavor symmetry g can also
be restricted to a finite set of possiblities. The data ∆ui and g must satisfy a number of
stringent Coulomb branch consistency conditions, which we detail in section 2.3. As we
will see, satisfying these conditions is roughly equivalent to constructing a consistent CB
geometry. Assuming that this is possible, the stratification of the CB geometry can then
be used to obtain more refined quantities such as the flavor levels kgi , which are subject to
various unitarity constraints discussed in section 2.4. Finally, a more subtle constraint is
discussed in section 2.5. In the end, the algorithm outputs the sets of data which satisfy
all of these constraints. A pictorial summary of this procedure is given in figure 1.

Since imposing each of these steps by hand is rather laborious, the entire process is
automated on a computer. Automation also allows for the following strategy. Instead of
inputting a single vacuum character χ0(q) and checking for a consistent 4d interpretation,
we can now scan over large numbers of tentative vacuum characters (again fixing the rank
r and the dimension d of the MDE). Since the input for the algorithm is not actually the
vacuum character itself but rather just the first few terms of its Fourier expansion, this
amounts to a scan over tuples of integers. As long as the integers scanned over take values
in a sufficiently large range, we can be fairly confident that our algorithm will discover all
4d N = 2 theories with fixed (r, d).

As a proof of concept, we implement such a scan in what is arguably the simplest non-
trivial case: namely rank-two theories whose Schur indices satisfy a fourth-order untwisted
MDE. As will be reviewed below, such MDEs — as well as their solutions — are specified
by three terms in the Fourier expansion of χ0(q). We must then scan over these three
parameters, and for each triplet apply our algorithm to check if the proposed vacuum
character admits a 4d interpretation. Remarkably, of the order O(1011) candidate triplets
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that we examine, only 15 pass the full set of moduli space and unitarity constraints imposed
in our algorithm. The data of these 15 cases is summarized in table 3 and figure 3. An even
more careful analysis (using tools which are difficult to automate on a computer) allows us
to rule out nine of the 15 theories,5 leaving only six candidates. Comparing to the lists in
e.g. [35], all six candidates can be seen to correspond to known physical N = 2 theory.

The fact that our scan does not produce any new candidate theories is perhaps surpris-
ing, as we did not anticipate our current knowledge of N = 2 SCFTs to be so exhaustive.
However this is likely an artifact of the restriction to low order and low rank. The exten-
sion to higher orders and higher ranks is conceptually straightforward, but quickly becomes
computationally intensive, and so we have not attempted to pursue it here. With appropri-
ate computer implementation, we hope that these difficulties can be eventually overcome.
We will comment on the feasibility of scaling up to these richer setups in the concluding
section.

Organization. The organization of this paper is as follows. We begin in section 2 by
introducing our general algorithm, which involves starting with a monic MDE of fixed order,
searching for solutions that are integral, and imposing various four-dimensional Coulomb
branch and unitarity constraints to determine whether the solutions can correspond to
legitimate 4d Schur indices. A visual summary of this algorithm is given in figure 1. In
section 3 we illustrate the algorithm with a simple example — namely, we use our techniques
to rediscover the rank-two D2(SU(5)) theory of [36]. Then in section 4 we use the algorithm
to do a computerized search for rank-two N = 2 theories with flavor symmetry having up to
three simple factors, three U(1) factors and with corresponding VOA satisfying a fourth-
order untwisted MDE. We rediscover six known 4d N = 2 theories, and identify nine
candidate novel theories. By using more refined Coulomb and Higgs branch constraints,
we are able to rigorously rule out seven of the candidates, and to argue that the remaining
two are also unlikely to be physical. Finally, in section 5 we conclude with a discussion of
future directions.

We also include a number of appendices. Appendix A gives a review of some rel-
evant superconformal representation theory, and derives some constraints which will be
used in our analysis. In appendix B, we rederive the list of allowed pairs of CB scaling
dimensions for rank-two theories, with results differing slightly from those in the literature.
Appendices C and D review facts about rank-one IR-free theories and extended Coulomb
branches, both of which will be relevant for our scan. We also include appendix E, which
gives a tangential but interesting discussion of one of the VOAs identified in our scan.

2 General strategy

In this section we describe the algorithm used to identify sets of protected data (i.e. Schur
and Coulomb) that satisfy a variety of CB and unitarity constraints. An explicit example
will be given in section 3, and the results of a computer implementation will be given in
section 4.

5More precisely, seven candidates will be rigorously ruled out, while two will be shown to be implausible.
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2.1 Modularity and integrality constraints

Our program begins in two dimensions and relies crucially on the fact that the Schur
index [37–39] of any 4d N = 2 superconformal field theory can be interpreted [22] as the
vacuum character of a 2d VOA. As mentioned in the introduction, for a generic VOA there
is no reason to expect that the vacuum character should have simple modular properties.
We will take as a given the central conjecture of [23], which equates the Higgs branch of
the 4d N = 2 theory with the associated variety of the corresponding VOA. A corollary of
this conjecture is that any VOA with a 4d avatar is “quasi-lisse”,6 and as such its vacuum
character must satisfy a monic modular differential equation (MDE) [40].7

Depending on whether we require modular invariance under the full modular group or
just an index two subgroup [23, 46, 47], an MDE is called respectively untwisted or twisted.
The space of possible MDEs is labelled by a finite set of real parameters, the number of
which depends only on the degree of the differential equation and whether it is untwisted
or twisted. In this work we will focus mainly on untwisted MDEs, of which we will give
some examples below.8

An important property of any vacuum character is that it must have unit leading
coefficient, and that the remaining Fourier coefficients must be integral. Not every choice
of MDE, i.e. of the real parameters which determine it, is compatible with such integrality.
A first step in our classification program is to identify the MDEs which do give rise to a
sensible vacuum character. In the context of 2d CFT, this idea goes back to the classic work
of Mathur, Mukhi, and Sen [48–50], see e.g. [46, 47, 51–64] for recent developments. As
scanning over the set of real numbers parameterizing the MDE would clearly be impossible,
our first step is to map the problem to a scan over integers. This can be done as follows:

1. We fix the order and the type of the MDE, i.e. untwisted or twisted. This choice
determines the number n of real parameters that must be specified to define the
MDE.

2. Instead of specifying the n real parameters directly, we specify an equal number of
integral Fourier coefficients of a putative vacuum character χ0, and then fix the pa-
rameters of the MDE by demanding that the given vacuum character is a solution
up to the appropriate order in q. As will be elaborated on below, certain parame-
ters of χ0 have immediate physical interpretation and thus are subject to additional
constraints. For example, the leading exponent of χ0 is related to the central charge
c4d of the 4d N = 2 SCFT, while the O(q) Fourier coefficient gives the number of
moment map operators, i.e. the dimension of the flavor symmetry. The higher-order

6We remind the reader that quasi-lisse VOAs [40] are those whose associated varieties are symplectic,
or more generally symplectic singularities [41–43] with a finite number of symplectic leaves.

7Explicit closed form expressions for Schur indices in terms of quasi-modular forms were recently obtained
in [44, 45] for a large class of SCFTs.

8The twisted case is required if one allows for Schur operators with half-integer chiral dimension, and
as such is the most general case. The untwisted case is a specialization of the twisted one (allowing for
Schur operators of only integer dimension), and thus at a given order the untwisted case involves a smaller
number of real parameters than the twisted one.
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Fourier coefficients do not have such straightforward physical interpretations, but
they must be consistent with the fact that they count operators of the 4d theory, and
in particular they must organize into representations of the flavor symmetry. This is
discussed in detail in appendix A.

3. Since each coefficient of χ0 fixes one real parameter of the MDE, step 2 fixes the MDE
completely. We now take the MDE constructed above as an input and “complete”
χ0 by assuming that it is a solution to all orders in q. If all Fourier coefficients (at
least up to some reasonable cutoff which will depend on the order of the MDE) are
integral, we will take χ0 to be a candidate vacuum character and proceed. If the
Fourier coefficients are not integral, then χ0 is discarded.

Let us now briefly discuss the lowest-order monic untwisted MDEs, which will be the
focus of the rest of this work. Denoting the order of the MDE by d, the most general MDE
is given by

d = 2 :
[
D(2) + µ1E4

]
χ = 0 ,

d = 3 :
[
D(3) + µ1E4D

(1) + µ2E6
]
χ = 0 ,

d = 4 :
[
D(4) + µ1E4D

(2) + µ2E6D
(1) + µ3E

2
4

]
χ = 0 , (2.1)

where Ei are the holomorphic Eisenstein series, and the D(k) are the k-th order modular
covariant derivatives acting on weight-zero modular forms,

D(k) :=
k∏
s=1

D2s−2 , Dw := 1
2πi

d

dτ
− w

12E2(τ) . (2.2)

Clearly the equations (2.1) depend respectively on one, two, and three real parameters,
denoted by µi.

Every solution of an untwisted MDE admits a Fourier expansion in integer powers of
q := e2πiτ . In particular, the vacuum character will admit an expansion

χ0(q) = q−
c2d
24

(
1 +

∑
n>0

anq
n
)

= q−
c2d
24 (1 + a1q + a2q

2 + a3q
3 + . . . ) , (2.3)

with c2d the 2d central charge. As we have already mentioned, we will not take the full
vacuum character as an input, but rather only the first few terms in its Fourier expansion.
We then assume that these first few terms provide a solution to one of the MDEs in (2.1).
Since the d = 2, 3, 4 MDEs are specified by respectively 1, 2, 3 free parameters, only this
number of terms in the expansion of χ0(q) are needed to fix the MDE uniquely. In other
words, the input data will be taken to be

d = 2 : {c2d} ,
d = 3 : {c2d, a1} ,
d = 4 : {c2d, a1, a2} . (2.4)

– 7 –



J
H
E
P
0
3
(
2
0
2
2
)
2
1
0

Solving the MDE order-by-order in q, we may then fix the parameters µi in terms of this
input data as

d = 2 : µ1 = − 1
576c2d(c2d + 4) ,

d = 3 : µ1 = c2d(21c2
2d + 240 c2d + 704)− a1(3c2

2d − 48 c2d + 320)
576(a1 − 31c2d) ,

µ2 = −c
2
2d(5c2

2d + 66 c2d + 144) + a1 c2d(c2
2d − 30 c2d + 144)

6912(a1 − 31c2d) , (2.5)

and similarly for d = 4.
Having fixed the MDE completely in terms of the data (2.4), we now solve the MDE

order-by-order to obtain the vacuum character to arbitrarily high order in q. Assuming
that it remains integral at all orders (in practice, up to some reasonably high cut-off) we
now ask whether there can exist a 4d N = 2 SCFT with that vacuum character as its
Schur index.

2.2 Central charges

Assume that we have found an MDE compatible with integrality. This gives us a candidate
Schur index for a candidate 4dN = 2 SCFT. In addition to the vacuum character, an order-
d MDE will generically have (d− 1) non-vacuum solutions, each with an associated chiral
dimension hi. These dimensions are obtained as follows. Assume that the solutions to the
MDE take the form

χi(q) = qsi
∑
n

a(i)
n q

n , (2.6)

for i = 0, . . . , d − 1. The leading exponent of the vacuum character χ0(q) is s0 = − c2d
24 ,

while the leading exponents of the remaining characters are si := hi − c2d
24 . These leading

exponents are given by the roots of the “indicial equation”, i.e. the order O(qs) portion of
the MDE,

d = 2 : s2 − s

6 + µ1 = 0 ,

d = 3 : s3 − 1
2s

2 +
(
µ1 + 1

18

)
s+ µ2 = 0 ,

d = 4 : s4 − s3 +
(
µ1 + 11

36

)
s2 −

( 1
36 + µ1

6 − µ2

)
s+ µ3 = 0 . (2.7)

Hence the chiral dimensions can be identified by computing the indicial roots.
With the chiral dimensions in hand, it is now possible to restrict the central charges

of the putative 4d N = 2 theory to a discrete set of possibilities. Indeed, the following
standard formulae can be used [22, 23, 65],9

c4d = −c2d
12 , a4d = 1

48(24h∗ − 5c2d) . (2.8)

9To be precise, in the twisted case the h∗ appearing in (2.8) is one of the chiral dimensions of the
S-tranformed VOA — see e.g. [23]. Here we are focussing on the untwisted case.
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When c4d > a4d, the h∗ appearing above is required to be the minimal chiral dimension
h∗ = min{hi} [66]. When c4d < a4d this need no longer be the case, and it is in fact
unclear if h∗ ∈ {hi} at all. But it is still seems reasonable to expect that h∗ takes values
in {hi} mod 1. The argument here relies on the study of the high-temperature behavior
of the index [66, 67]. For Lagrangian N = 2 theories, it can be shown that there always
exists a contribution to the high-temperature behavior of the Schur index with exponent
proportional to c4d − a4d. Since the Schur index (or really the vacuum character) forms
a vector-valued modular function together with the other solutions to the MDE, its S
transform is a linear combination of these other solutions, and thus every exponent of the
high-temperature index is of the form hi− c2d

24 +m for some hi ∈ {hi} and m ∈ N. Together
these imply that h∗ = hi +m, and hence for Lagrangian theories we indeed have h∗ ∈ {hi}
mod 1. All known examples suggest that this result holds for non-Lagrangian theories as
well, and we will assume it to be true here.

We are then left with a discrete but potentially infinite set of possibilities for (a4d, c4d).
This set is made finite by imposing the Hofman-Maldacena bounds [68],

1
2 ≤

a4d
c4d
≤ 5

4 . (2.9)

Indeed, in the case that c4d < a4d, this will restrict the quantity m ∈ N to a finite number
of possible values (since a4d increases linearly with m while c4d is independent).

2.3 Coulomb geometry constraints

We now have a finite list of possible (a4d, c4d) for the candidate 4d N = 2 theory. We
next consider constraints imposed by consistency of the Coulomb branch (CB). Let’s start
by reviewing some basic facts about CBs of N = 2 SCFTs. If the CB is spanned by r

complex coordinates u = {ui}, i = 1, . . . , r, then the N = 2 theory is said to be a rank-r
SCFT. Henceforth we will assume that the CB chiral ring of the 4d N = 2 theory is freely-
generated, in which case it is possible to choose the coordinates of the CB to have globally
defined scaling dimensions ∆ui for i = 1, . . . , r. There exist constraints on the possible
values of these scaling dimension. For example, at rank one it turns out that there are only
seven allowed values [29, 30],

∆ ∈
{

6, 4, 3, 2, 3
2 ,

4
3 ,

6
5

}
. (2.10)

At rank two, there are again a finite number of possibilities for ∆u1 and ∆u2 . In fact,
now there are constraints not only on the individual scaling dimensions, but also on the
allowed pairs. In total, there are 79 allowed pairs, the full list of which is provided in
table 5 of appendix B (note that the results here follow the revised analysis given in [69],
differing slightly from those in [30]). This analysis can be extended, with enough effort
and dedication, to any desired rank, though the number of allowed r-tuples increases
considerably.

We now fix the rank of the putative theory to some particular r. The CB scaling
dimensions are known to be related to the central charges via the Shapere-Tachikawa
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formula [70],10

r∑
i=1

∆ui = 2(2a4d − c4d) + r

2 . (2.11)

Returning to our algorithm, we may now use the finite list of allowed (a4d, c4d) obtained
from the MDE to compute a finite list of candidate sums of CB scaling dimensions. Recall
that the CB dimensions themselves take values in a finite list, cf. appendix B, which means
that their sums do as well. For example, in the case of rank-two the sums ∆u1 + ∆u2 are
constrained to take one of only 68 distinct values. If the value computed via the Shapere-
Tachikawa formula is not on the list of allowed rank-r sums, then that particular pair
(a4d, c4d) can be discarded. If every one of the finite number of possible pairs (a4d, c4d)
is discarded, then there is no 4d theory corresponding to the input data. If on the other
hand at least one pair (a4d, c4d) gives rise to a sum on the list, we proceed.

Our next step is to read off all possible ∆ui adding up to the desired sum. For low
enough rank there is usually a unique choice, though in some cases there are multiple
possibilities. As examples, at rank two one might have

∆u1 + ∆u2 = 78
11 ⇒ (∆u1 ,∆u2) =

(12
11 , 6

)
,

∆u1 + ∆u2 = 18 ⇒ (∆u1 ,∆u2) ∈ {(6, 12), (8, 10)} , (2.12)

as the reader may confirm by consulting appendix B. We thus have identified a relatively
small (or empty) list of potential {∆ui} for each possible (a4d, c4d).

Next we will need more detailed knowledge of the geometric structure of the Coulomb
branch. The Coulomb branch can have singular loci {Ia} falling into two broad classes [71]:

• Unknotted: locus defined by ui = 0 ,

• Knotted: locus defined by P (u) = 0, with P an irreducible homogeneous polyonomial
in u.

We may associate to each singular locus Ia a value ∆sing
a which is the degree of homogeneity

of the polynomial specifying the stratum, e.g. for unknotted strata ∆sing ≡ ∆ui . Each
singular locus can host a rank-one theory, either conformal or IR-free. The full set of
conformal rank-one theories is known [2–5], and since we will make heavy use of them we
include the relevant data in table 1. On the other hand, the full set of IR-free rank-one
theories is infinite, but each such theory takes the form of U(1) or SU(2) gauge theory
coupled to sufficient numbers of hypermultiplets in arbitrary representations. In practice,
when we implement this algorithm on a computer it is necessary to restrict to a finite
subset of these IR-free theories. The particular subset which we choose is discussed in
appendix C. We believe this to be a well-motivated representative sample of the full space
of IR-free theories.

10There are known exceptions to this formula in the case of theories obtained by discrete gauging of
“more fundamental” theories. We will assume that exceptions can only arise in this way.
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Name 12 c4d ∆u hECB R T (R) b g kg

T (1)
E8,1 62 6 0 1 0 10 e8 12

T (1)
E7,1 38 4 0 1 0 9 e7 8

T (1)
E6,1/[T

(1)
E6,1]Z2 26 3 0 1 0 8 e6/f4 6

T (1)
D4,1/[T

(1)
D4,1]Z2/[T

(1)
D4,1]Z3 14 2 0 1 0 6 so(8)/so(7)/g2 4

T (1)
A2,1/[T

(1)
A2,1]Z2/[T

(1)
A2,1]Z3 8 3

2 0 1 0 4 su(3)/su(3)/su(2) 3

T (1)
A1,1/[T

(1)
A1,1]Z2 6 4

3 0 1 0 3 su(2)/su(2) 8
3

T (1)
∅,1

22
5

6
5 0 1 0 2 ∅ ?

S(1)
E6,2 49 6 5 10 1 7 sp(10) 7

S(1)
D4,2 29 4 3 (6,1) 1 6 sp(6)×su(2) (5,8)

S(1)
A2,2/[S

(1)
A2,2]Z2 19 3 2 40 1 5 sp(4)×u(1)/sp(4) (4, ?)

S(1)
∅,2 9 2 1 2 1 3 su(2) 3

S(1)
D4,3 42 6 4 4⊕ 4̄ 2 6 su(4) 14

S(1)
A1,3 24 4 3 2+ ⊕ 2− 2 5 su(2)×u(1) (10, ?)

S(1)
∅,3 15 3 1 1+ ⊕ 1− 0 4 u(1) ?

S(1)
A2,4 38 6 3 3⊕ 3̄ 2 11

2 su(3) 14

S(1)
∅,4 21 4 1 1+ ⊕ 1− 0 9

2 u(1) ?

Table 1. The list of rank-one SCFTs which can describe the low-energy physics on codimension-
one singular loci of the Coulomb branch. Additional information can be found in [72]. Theories in
green are N = 3, while the theory in blue is N = 4.

The singular loci are further constrained by the following three results [29, 32, 35]:

Proposition 1 If a theory of rank r > 1 is irreducible, i.e. not the product of lower rank
theories, then there must be at least one knotted stratum.

Proposition 2 An unknotted stratum ui = 0 is allowed only if the r−1 scaling dimensions
(∆u1 , . . . ,∆ui−1 ,∆ui+1 , . . . ,∆ur ) give an allowed (r − 1)-tuple of rank-(r − 1) Coulomb
branch dimensions.

Proposition 3 (UV-IR Flavor constraint) For a theory with flavor symmetry g =
u(1)n⊕i gi with gi simple, each gi must be realized on at least one codimension-one stratum.

These results prove highly constraining. To see this, let us begin by considering the
flavor symmetry of our putative N = 2 theory. Recall that the Fourier coefficient a1 of χ0
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counts the number of moment map operators, and thus fixes the dimension of the flavor
algebra of our putative theory. This quantity will either be one of the inputs used to define
the MDE (for d = 4) or will be an output obtained by solving the MDE at order q (for
d = 2, 3); cf. (2.4).

Clearly a1 alone does not determine the flavor symmetry. Indeed, there can be many
Lie algebras with a given dimension a1. For example, if a1 = 248, then we can have the
following decompositions

{248}, {24, 224}, {80, 168}, {3, 21, 224}, . . . (2.13)

which would be interpretable as the following Lie algebras,

e8, su(5)⊕ su(15), su(9)⊕ su(13), su(2)⊕ sp(6)⊕ su(15), . . . (2.14)

If we allow for arbitrary numbers of u(1) factors, then clearly we should consider all integer
partitions of a1. In practice we will set an upper bound on the number of u(1) factors.

Given a choice of flavor symmetry, we may now attempt to reconstruct parts of the
CB geometry. To begin, Proposition 3 tells us that each simple flavor factor must be
realized on a codimension-one locus of the CB. Hence if we take the flavor symmetry to
be e.g. e8, then we must identify a rank-one theory which supports that flavor symmetry.
Consulting table 1, we see that the only possibility is T (1)

E8,1. On the other hand, if we
take the flavor symmetry to be su(2) ⊕ sp(6) ⊕ su(15), then su(15) must be realized by a
[I15, su(15)] stratum, whereas su(2) can be realized in three possible ways via T (1)

A1,1,S
(1)
0,2 ,

and [I2, su(2)], and sp(6) in two possible ways via [I6, su(6)]Z2 and [I∗2 , sp(6)]. In total then,
we see that the {248} decomposition is realizable on the Coulomb branch in only a single
way, whereas the {3, 21, 224} decomposition is realizable in six ways. The total number
of Coulomb branch geometries that can capture a given a1 is given by summing over the
different integer partitions of a1, weighted by the number of different ways of realizing a
given decomposition on the CB strata.

Note that simple flavor factors cannot enhance their ranks on any strata, except per-
haps for the appearance of additional u(1) factors [32]. This means, for example, that
if we had a theory with e7 flavor symmetry, we would require a T (1)

E7,1 stratum to satisfy
Proposition 3, as opposed to a T (1)

E8,1 stratum, even though the latter technically contains
e7 ⊂ e8 flavor symmetry. On the other hand, rank-preserving enhancements are technically
allowed. For simplicity we will assume that such enhancements do not take place.

With these data about the strata, together with the lists of possible {∆ui} identified
before, we are now ready to proceed to the next step. Let us denote the set of all Coulomb
branch strata as I = {Ia}, and the set of strata carrying the UV simple flavor factor gi by
Igi ⊂ I. We may now make use of the following formulas relating the data of the theory
at the origin to the data of the theories living on each stratum (in the absence of flavor
symmetry enhancements) [32, 35]:

hECB = 12c4d − 2r −
∑
Ia∈I

ba ∆sing
a ,

kgi =
∑
Ia∈Igi

∆sing
a

∆a
[ka − T i(Ra)] + T i(R) , (2.15)

– 12 –



J
H
E
P
0
3
(
2
0
2
2
)
2
1
0

where hECB is the dimension of the extended Coulomb branch and ∆sing
a was defined above

Proposition 1.11 The quantity T i(R) is somewhat more subtle, and will be described
in appendix D. Finally, the quantities ba, ∆a, and T i(Ra) depend only on the rank-one
theories living on Ia, and are collected in table 1.

For each choice of decomposition of a1, and each choice of strata realizing this de-
composition, we can now compute hECB and kgi . Note that hECB must be a non-negative
integer. If we compute hECB and find hECB /∈ N, we declare that case ruled out. Otherwise,
we take the values of kgi and proceed to the next step.

Before moving on, let us summarize what we have done so far. We began by inputting
the first few Fourier coefficients of the vacuum character and using them to determine a
finite list of possible (a4d, c4d) for the tentative 4d theory. For each element of this list, we
then used the Shapere-Tachikawa formula to obtain ∑r

i=1 ∆ui , from which we obtained a
finite number of possible r-tuples (∆u1 , . . . ,∆ur ). At the same time, the quantity a1 was
used to obtain a finite number of possible flavor symmetries g = u(1)n⊕i gi, each of which
could be realized on the CB strata in a finite number of ways. We may then consider all
possible combinations of r-tuples (∆u1 , . . . ,∆ur ) and CB stratifications and compute hECB
and kgi for each. Our goal is now to impose enough constraints to whittle this large number
of candidate cases down to a small number of physical cases. Some first constraints are
provided by Propositions 1, 2, and 3, as well as by requiring that hECB ∈ N. The rest of
this section will describe additional constraints.

2.4 Unitarity constraints

Four-dimensional unitarity can be used to obtain stringent constraints on the data obtained
thus far. As we now review, these constraints include lower bounds on kg, as well as upper
and lower bounds on c2d [23, 73]. Beginning with the former, unitarity demands that

kg ≥ k̃g , (2.16)

where k̃g is a fixed value associated to each g. The values of k̃g are collected in table 2. If
we have g = u(1)n⊕i gi, these bounds must be satisfied for each simple factor gi.

As for the bounds on c2d, there is a general upper bound

c2d ≤ −
11
5

1 +

√√√√1 + 180
121

∑
i

kgi dimgi
3kgi − h∨i

 . (2.17)

Furthermore, when there is a sub-critical simple factor in the flavor group, then one also

11A theory with a non-trivial extended Coulomb branch (ECB) is one such that a generic point of the
Coulomb branch contains free hypermultiplets. The quantity hECB is the quaternionic dimension of the
ECB, meaning that the Coulomb branch of a theory with ECB of dimension hECB is effectively enlarged to
an r+2hECB complex-dimensional space, which looks locally like a product CB×HhECB with H representing
a free hypermultiplet. One must be careful in distinguishing the case where the CB looks like CB×HhECB

at all points (a free ECB), or only away from singular loci (a coupled ECB)—see appendix D for details.
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g k̃g h∨

su(N) N ≥ 3, N N

so(N) N = 4, . . . , 8 4
so(N) N ≥ 8 N − 4 N − 2
sp(2N) N ≥ 3 N + 2 N + 1

g2
10
3 4

f4 5 9
e6 6 12
e7 8 18
e8 12 30

Table 2. Values of k̃g and h∨ appearing in the unitarity constraints. Algebras not appearing in
this table do not have any bounds on kg.

has the lower bound12

c2d ≥ cSug , cSug =
∑
i

kgi dimgi
kgi − 2h∨i

. (2.18)

For convenience the dual Coxeter numbers h∨i of gi are tabulated in table 2.
In addition to the bounds on kgi and c2d, unitarity also requires the following more

subtle constraints [73]:

1. If the flavor symmetry has critical factors, there can be no sub-critical factors.

2. If the flavor symmetry has no critical factors, there can be at most one sub-critical
factor.

Imposing all of these constraints will reduce the number of candidate cases drastically, as
will be seen explicitly when we turn to our computerized scan.

2.5 Characteristic dimension constraints

There is one final constraint which we impose. To introduce it, we begin by writing

(∆u1 , . . . ,∆ur ) = λ(d1, . . . , dr) (2.19)

where λ ∈ Q and di are the unique integers with gcd(d1, . . . , dr) = 1 satisfying the above.
We then introduce a quantity κ known as the “characteristic dimension”, defined in [33]
to be:

κ := 1
{λ−1}

, (2.20)

where for any x ∈ R, {x} is the unique real number equal to x mod 1 such that 0 < {x} ≤ 1.
In terms of this quantity we have the following result,

12Recall that a critical factor is one such that kg = 2h∨, while a sub-critical factor is one such that
kg < 2h∨.
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Proposition 4 The characteristic dimension can only take one of eight rational values
κ ∈ {1, 6/5, 4/3, 3/2, 2, 3, 4, 6}, and if κ 6= 1, 2 then there can be no IR-free theories living
on any Coulomb branch strata.

This proposition can be argued for as follows. First, when κ 6= 1, 2 the CB geometry is
such that at a generic point the U(1)r symmetry is only broken to a Zn subgroup, with

n =


6 if κ = 6

5 , 6 ,
4 if κ = 4

3 , 4 ,
3 if κ = 3

2 , 3 .
(2.21)

This puts severe restriction on the allowed BPS spectra, which in particular constrains the
full CB geometry to be isotrivial and diagonal. Isotriviality means that the total space of
the CB is locally a product A×C2 with A a Jacobian variety, while diagonality means that
A factorizes into a product of r genus-one varieties A = Eτ ×· · ·×Eτ at the same coupling.
Thus for a given value of the rank r and κ 6= 1, 2, the total structure of the Coulomb
branch can be one of only a handful possibilities — see section 4.2 for more detail.

It is a non-trivial result that isotriviality implies that all of the monodromies around
singular loci have to be of finite order [33]. Since the hallmark of IR-free theories is
monodromy of infinite order (i.e. of parabolic-type), isotriviality also implies that no IR-
free theory can live on any CB strata. This gives the desired statement.

In practice, this constraint is implemented in our algorithm as follows. If the steps
outlined in the previous subsections produce a candidate theory with a set of {∆ui} for
which κ 6= 1, 2, and the only compatible Coulomb branch stratification includes IR-free
theories, we may discard that case.

3 An example: rediscovering D2(SU(5))

We now illustrate the algorithm outlined above by means of a simple rank-two example.
As we shall see, even in this simple example the analysis is lengthy, and one is well-advised
to implement the algorithm via a computer.

When restricting to rank two, the CB analysis outlined in section 2.3 simplifies signifi-
cantly. For example, Proposition 2 reduces to the statement that an unknotted stratum on
u1 = 0 can appear only if ∆u2 takes values in (2.10), and vice versa. A further simplifying
feature is that at rank-two, knotted singularities are specified by a single type of irreducible
homogeneous polynomial, taking the generic form

P (u1, u2) = up1 + αuq2 , (3.1)

where α is a free parameter and p, q are chosen such that the left-hand side is homogeneous
under a C∗-action, i.e. p/q := ∆u2/∆u1 such that (p, q) = 1. Knotted singularities have
∆sing = p∆u1 .

Let us consider the following input data,

(c2d, a1, a2) = (−24, 24, 300) ⇒ χ0(q) = q + 24q2 + 300q3 +O(q4) , (3.2)
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and assume that the vacuum character solves an order-4 untwisted MDE. We now ask if
there exists any rank-two unitary N = 2 SCFT compatible with this data. First, we solve
the corresponding MDE order-by-order and check if the corresponding vacuum character
has integer Fourier expansion and unit leading coefficient. Indeed, one finds the closed
form solution

χ0(q) =
(
η(q2)
η(q)

)24

= q (1 + 24q + 300q2 + 2624q3 + 18126q4 + 105504q5 + . . . ) (3.3)

which is integral to all orders in q.13 We next note that the indicial equation (2.7) can
be used to obtain the chiral dimensions {hi} =

{
0, −1

2 , −1, −3
2

}
. These may be used to

compute the 4d central charges via (2.8). We start with the choice h∗ = −3
2 , giving

(a4d, c4d) =
(7

4 , 2
)
. (3.4)

Since c4d > a4d, this is only legitimate if h∗ is the minimal chiral dimension, which is
indeed the case. These values also satisfy the Hoffman-Maldacena bounds. If we choose
other values for h∗ we will get other candidates for (a4d, c4d), and all of them must be
checked. For the moment let us simply focus on (3.4).

We next use the Shapere-Tachikawa formula (2.11) to obtain the sum of the CB di-
mensions, which gives ∆u1 + ∆u2 = 4. We then decompose the sum into allowed pairs of
dimensions, giving

(∆u1 ,∆u2) ∈
{(4

3 ,
8
3

)
,

(3
2 ,

5
2

)
,

(8
5 ,

12
5

)
, (2, 2)

}
, (3.5)

cf. appendix B. We also note that a1 = 24 admits the following decompositions into di-
mensions of simple Lie algebras,

{24} : su(5)
{3, 21} : su(2)⊕ so(7) or su(2)⊕ sp(6)
{10, 14} : so(5)⊕ g2

{8, 8, 8} : su(3)⊕ su(3)⊕ su(3) (3.6)

among others. If we allow for u(1) factors, then we must allow for arbitrary integer parti-
tions of 24, of which there are 1575.

With these decompositions in hand, we now proceed by constructing possible CB
stratifications. Let us begin by assuming flavor symmetry su(5) and scaling dimensions
(∆u1 ,∆u2) =

(
4
3 ,

8
3

)
. From Proposition 3, we know that the full flavor symmetry must

be realized on at least one codimension-one stratum, which according to table 1 can only
be a [I5, su(5)] stratum. We may still allow for unflavored strata T (1)

∅,1 and [I1,∅].14 From
13This can be seen, for example, by relating it to the McKay-Thompson series for Co0 [74].
14The careful reader might notice that [I1,∅] has a U(1) flavor symmetry, and thus might object to use

of the word “unflavored”. However, here we are only interested in flavor factors which act on the CB by
“splitting” the singular locus. Because the U(1) mass deformation does not split the I1 singularity (see
e.g. [2]) the [I1,∅] stratum is effectively unflavored. This is to be contrasted with the cases of S(1)

∅,3 and
S(1)
∅,4, which also have U(1) flavor symmetry, but for which the U(1) splits the singular locus.
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Proposition 2, we know that unknotted strata can only be of the form u2 = 0, since ∆u2 = 8
3

is not on the list of allowed rank-one Coulomb branch dimensions. Thus both knotted and
unknotted strata must have ∆sing

i = 8
3 .

Using (2.15) to compute ksu(5), we find that ksu(5) = 16
3 regardless of whether the

flavored stratum is unknotted or knotted. This value of the level satisfies the unitarity
bound (2.16). It also satisfies the bounds in (2.17) and (2.18), which read −27 . c2d .
−11.6. However, note that the characteristic dimension κ in this case is κ = 4

3 . Thus
by Proposition 4, there can be no IR-free theories living on any Coulomb branch strata.
Since [I5, su(5)] is IR-free, it is not allowed, and so we conclude that there is no consistent
Coulomb branch geometry with su(5) and (∆u1 ,∆u2) =

(
4
3 ,

8
3

)
.

Next consider the choice of flavor symmetry su(5) and (∆u1 ,∆u2) =
(

3
2 ,

5
2

)
. In this

case the unknotted strata can again only be of the form u2 = 0. We see that unknotted
strata have ∆sing

i = 5
2 , while knotted strata have ∆sing

i = 15
2 . Turning again to the levels,

we find that ksu(5) = 5 (resp. 15) if the flavored stratum is unknotted (resp. knotted).
Both of these satisfy the unitarity bound (2.16), but only one satisfies the bounds (2.17)
and (2.18). Indeed, for the case ksu(5) = 5 the bounds read −24 ≤ c2d . −11.7 and are
satisfied (in fact, we see that the lower bound is saturated, signaling that the theory is
Sugawara). So for consistency we must have the flavored stratum be unknotted.

To complete the construction of the Coulomb branch geometry, we must now identify
the relevant unflavored strata. First we note that the characteristic dimension is κ = 1,
so by Proposition 4 IR-free strata are allowed. Since the unknotted u2 = 0 stratum is
already “occupied” by the [I5, su(5)] theory, the unflavored strata must be knotted. The
most general scenario is to assume n1 knotted [I1,∅] strata, and n2 knotted T (1)

∅,1 strata.
Then from (2.15) we compute the dimension of the extended Coulomb branch to be

hECB = 15
2 −

15
2 (n1 + 2n2) . (3.7)

This is required to be a non-negative integer. Furthermore, from Proposition 1 we see that
we must have at least one knotted stratum, and hence n1 + 2n2 ≥ 1. There is a single
non-trivial solution to these equations, namely (n1, n2) = (1, 0) and hECB = 0. The fact
that there exists a solution at all is an extremely non-trivial consistency check. Finally, the
two unitarity bounds mentioned after (2.18) are trivially satisfied since the flavor symmetry
is simple.

In summary, based on the input data (c2d, a1, a2) = (−24, 24, 300), we have used two-
and four-dimensional consistency conditions to gain evidence for the existence of a rank-two
N = 2 theory with (a4d, c4d) =

(7
4 , 2
)
, flavor symmetry su(5)5, Coulomb branch dimensions

(∆u1 ,∆u2) =
(3

2 ,
5
2
)
, and extended Coulomb branch dimension hECB = 0. Furthermore,

the Coulomb branch of the tentative theory is required to have the particular form given
in figure 2. Such a theory would satisfy all consistency conditions of which we are aware.

In fact, precisely such a theory is known — it is the D2(SU(5)) theory of [36]. What
we have seen is that, rather remarkably, the data of this theory is fixed almost entirely in
terms of three parameters (3.2). Of course, we have not yet shown that this is the only
consistent N = 2 theory that can follow from this 2d data. In other words, though it is
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su(5)5

[I1,∅] [I5, su(5)][
u5

1 + u3
2 = 0

] [
u2 = 0

]

Figure 2. Hasse diagram for the CB of the theory with su(5)5 flavor symmetry.

conjecturally believed that the map from N = 2 theories to VOAs is one-to-one, this is
something which must be checked. In order to check it, we must show that the remaining
combinations of (a4d, c4d), of the flavor symmetry (su(2)⊕ so(7) etc.), and of the Coulomb
branch scaling dimensions do not give rise to any other seemingly legitimate theories. By
repeating the steps above for all of the remaining case (with the help of a computer), one
can indeed verify that this is the case.

4 Rank-two scan

In the previous sections we introduced an algorithm for identifying mutually consistent
sets of VOA and CB data which could correspond to legitimate 4d N = 2 theories. In
particular, the algorithm allowed us to determine the central charges and Coulomb branch
data of the N = 2 theories, including scaling dimensions and possible stratifications. In this
section we will apply these techniques to search for rank-two theories with Schur indices
satisfying an order-four untwisted MDE. In particular, by scanning over a wide range of
values for (c2d, a1, a2) and applying our algorithm in each case, we aim to obtain a chart
of the landscape of such 4d theories.

One obvious drawback of this strategy is that it is quite computationally intensive.
Indeed, our goal is to scan over a large enough range of values c2d = −p

q , a1, and a2, with
p, q, a1, a2 positive integers, such that we are confident that all 4d N = 2 theories would fall
into that range. While there is no guarantee that any finite scan will be exhaustive, we find
it reasonable to restrict to p, q ≤ 200, a1 ≤ 248, and a2 ≤ 1000 a1 — the latter in particular
seems reasonable since the coefficient a2 must be decomposable into representations of
a flavor symmetry of dimension a1, which for a1 ≤ 248 will not be exorbitantly larger
than a1 itself, unless rather baroque representations make an appearance. Restricting to
gcd(p, q) = 1, the total number of cases which we will scan over is then of order O(1011).
Furthermore, for each case one must consider all ways of partitioning a1 into dimensions
of simple Lie algebras. If we truly allow for all possible decompositions, the rough number
of cases which must be checked is of order O(1025). Scanning over such a large number of
cases is clearly impractical, even with a computer.

This number may be reduced drastically by restricting the allowed partitions of a1.
One simplification is to restrict to flavor symmetries with small numbers of U(1) factors
— for example, only up to two U(1) factors. Another is to restrict to flavor symmetries
with only a certain number of simple factors — for example, up to 3 simple factors. Since
these two conditions are satisfied by all known rank-two theories [35], we find it reasonable
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(c2d, a1, a2) c4d a4d (∆u1 ,∆u2) hECB κ gk Status

1. (−124, 248, 31124) 31
3

101
12 (4, 10) 0 2 (e8)20 D20

1 (E8)

2.
(
− 68

7 , 0, 1
) 17

21
67
84

( 8
7 ,

10
7
)

0 2 ∅ (A1, A4)

3. (−44, 66, 2200) 11
3

37
12 (2, 4) 0 2 so(12)8 USp(4) + 6F

4. (−24, 24, 300) 2 7
4

( 3
2 ,

5
2
)

0 1 su(5)5 D2(SU(5))

5. (−12, 3, 9) 1 19
20

( 6
5 ,

8
5
)

0 2 su(2) 16
5

(A1, D5)

6.
(
− 44

5 , 0, 2
) 11

15
43
60

( 6
5 ,

6
5
)

0 6
5 ∅ T (1)

∅,1 × T
(1)
∅,1

7. (−64, 64, 2080) 16
3

14
3 (4, 5) 0 1 su(8)10 × u(1) ?

8.
(
− 44

5 , 2, 2
) 11

15
43
60

( 6
5 ,

6
5
)

0 6
5 u(1)2 ?

9.
(
− 44

3 , 0, 3
) 11

9
49
36

( 4
3 ,

8
3
)

0 4
3 ∅ 7

10. (−36, 18, 189) 3 11
4 (3, 3) 5 3 su(2)4 × su(4)8 7

11. (−28, 8, 38) 7
3

29
12 (3, 3) 0 3 su(3)6 7

12. (−24, 8, 44) 2 15
8

( 3
2 , 3
)

2 3
2 su(2)4×su(2)4×u(1)2 7

13. (−20, 4, 17) 5
3

19
12

( 3
2 ,

5
2
)

1 1 su(2)7/2 × u(1) 7

14. (−10, 2, 7) 5
6

11
12

( 3
2 ,

3
2
)

0 3
2 u(1)2 7

15.
(
− 84

5 , 2, 7
) 27

20
7
5

( 6
5 ,

12
5
)

2 6
5 u(1)2 7

Table 3. The 15 tentative theories identified in our scan. The first six are already known, cf. table
1 of [35]. The remaining nine theories are discussed in the rest of this work. Those marked with an
7 will be shown not to exist, while those marked with a ? have not yet been ruled out but seem
unlikely to exist.

to impose them both, though it is certainly possible for there to exist unknown theories
violating them. These conditions cut the number of cases down to something of order
O(1012) — a large number to be sure, but one which is now accessible with advanced
enough computing.

4.1 Results

We now report the results of the scan described above. Running a number of Mathematica
tasks in parallel, we carried out a scan over O(1011) triplets (c2d, a1, a2). In each case
we applied our algorithm to search for data consistent with a 4d N = 2 interpretation.
Remarkably, amongst all of these cases we identify only 15 candidate theories, of which six
have appeared in the literature [35]. We give the data of all of these candidate theories in
table 3, as well as their CB Hasse diagrams in figure 3.

Before providing information about the putative new theories, let us briefly summarize
the known theories that our algorithm rediscovers. These theories are usually denoted
by D20

1 (E8), (A1, A4), USp(4) + 6F , D2(SU(5)), (A1, D5), and T (1)
∅,1 × T

(1)
∅,1 . Their data,

including Coulomb and Higgs branch geometries, can be found in e.g. table 1 of [35]. In
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section 3, we showed explicitly how our algorithm reconstructs the D2(SU(5)) theory. The
other cases proceed similarly.

Clearly, we have only reproduced a small fraction of the known rank-two theories
catalogued in [35]. This is of course to be expected, since we searched only for theories
whose Schur indices satisfy untwisted order-four MDEs. A preliminary analysis shows
that the overwhelming majority of known rank-two theories satisfy twisted fourth-order
MDEs.15 For this reason, we anticipate that extending the current scan to the order-four
twisted case would give even more interesting results.

We have found that in all cases, for a given set of legitimate (c2d, a1, a2), there is
always a unique possibility for the data of the corresponding 4d N = 2 theory. This gives
non-trivial evidence for the injective nature of the map from 4d N = 2 theories to chiral
algebras.

4.2 New rank-two theories?

We now discuss the nine candidate 4d N = 2 SCFTs which our scan identifies but which
have not appeared in the literature. We will denote these tentative theories by Ti, with the
index i = 7, . . . , 15 corresponding to the label in table 3. It is useful to split them into two
categories: those with characteristic dimension κ 6= 1, 2 and those with κ = 1, 2.

4.2.1 Cases with κ 6= 1, 2

We start with the six candidate theories that have characteristic dimension κ 6= 1, 2. As
discussed in section 2.5, theories of this kind satisfy stronger CB constraints, which allow
us to make more sophisticated statements about the proposed CB stratifications. We warn
the reader that the arguments in this section are somewhat technical, and can be skipped
on a first reading.

To begin, theories with κ 6= 1, 2 cannot support any IR-free strata on their CBs, and
this is indeed reflected in the Hasse diagrams shown in figure 3. This property stemmed
from the more fundamental fact that the CBs of such theories must be isotrivial and
diagonal. The condition of isotriviality means that the total space of the CB is locally a
product A×C2, while the diagonality means that A factors into a product of two genus-one
varieties A = Eτ ×Eτ . Furthermore, the value of τ is fixed by the value of κ: in particular,
we have (locally)

κ ∈
{

4, 4
3

}
: τ = i ,

κ ∈
{

3, 3
2 , 6,

6
5

}
: τ = ρ , (4.1)

with ρ := eπi/3. The global structure of the Coulomb geometry X is then given by choosing
a discrete group G and a group homomorphism

σ : G→ Aut(A) (4.2)
15It remains an open question whether there is a universal upper bound on the order of the MDE for a

fixed rank SCFT.
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T7

[I8, su(8)] [I1,∅]

∆sing = 5 ∆sing = 20

T8

T (1)
∅,1 T (1)

∅,1

∆sing = 6
5 ∆sing = 6

5

T9

T (1)
∅,1 T (1)

∅,1

∆sing = 8
3 ∆sing = 8

3

T10

S(1)
∅,2 S(1)

D4,3

∆sing = 3 ∆sing = 3

T11

T (1)
∅,1 T (1)

A2,1T (1)
∅,1

∆sing = 3 ∆sing = 3

T12

S(1)
∅,2 S(1)

∅,2

∆sing = 3 ∆sing = 3

T13

S(1)
∅,2 [I1,∅]

∆sing = 5
2 ∆sing = 15

2

T14

T (1)
∅,1 T (1)

∅,1

∆sing = 3
2 ∆sing = 3

2

T15

S(1)
∅,4

∆sing = 12
5

Figure 3. Hasse diagrams for the CB of the candidate new theories Ti for i = 7, . . . , 15, as output
by the algorithm.

and defining

X = A× C2/[(a, x) ∼ (σ(g)a, gx) , g ∈ G] . (4.3)

As mentioned before, we assume that the CB chiral ring is freely-generated (or alternatively
that the CB has no complex singularities [25, 75]), and thus G is restricted to be a complex
reflection group by the Chevalley-Shephard-Todd theorem [76, 77]. We will also for the
moment assume that it is indecomposable, i.e. that the rank-two Coulomb branch is not
simply a product of two rank-one Coulomb branches. We will lift this assumption later.

It is useful to introduce notation G′ for the image of the map σ,

G′ := σ(G) ⊂ Aut(A) . (4.4)

The unbroken R-symmetry generated by e2πi/n (with n as given in (2.21)) must be con-
tained in G′, so we have the chain of inclusions

〈e2πi/n〉 ⊂ G′ ⊂ Aut(A) . (4.5)

It is also clear that G′ must be crystallographic, since it should leave the lattice of A
invariant. Noting that the maximal automorphism groups of Eτ ×Eτ at the points τ = i, ρ

are given by [78]

A = Ei × Ei : Aut(A) ∈ {G8, G(4, 1, 2)} ,
A = Eρ × Eρ : Aut(A) ∈ {G5, G(6, 1, 2), G(6, 2, 2)} , (4.6)
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it is then possible to determine all possible groups G′. Indeed, one finds

n = 4 : G′ ∈ {G8, G(2, 1, 2), G(4, 1, 2), G(4, 2, 2)} ,
n = 3, 6 : G′ ∈ {G4, G5, G(3, 1, 2), G(6, 1, 2), G(6, 2, 2)} . (4.7)

Note that the full group G is potentially a non-trivial extension of G′ by a group H, with
H such that the extension preserves the rank of G′. It is actually possible to list all valid
G and H for a given G′, as will be done in upcoming work [79]. Here we will only quote
the portion of those results relevant for the current analysis.

We begin with the case of n = 4, which in particular means that κ ∈
{
4, 4

3
}
. The only

such case in our list of tentative theories is T9, which has (∆u1 ,∆u2) =
(4

3 ,
8
3
)
and two T (1)

∅,1
Coulomb branch strata. From the above discussion, we conclude that the group G must
be a (potentially trivial) extension of G′ = G8, G(2, 1, 2), G(4, 1, 2), or G(4, 2, 2). It is an
important fact that the pair of Coulomb branch dimensions (∆u1 ,∆u2) is proportional to
the pair of degrees (d1, d2) of invariant polynomials of G (see the discussion around (4.11)
for more on this). Since we would like (∆u1 ,∆u2) =

(4
3 ,

8
3
)
, it is clear that we must have

d2 = 2d1. Not every complex reflection group satisfies this property — indeed, the only
ones which do are

G ∈ {G(m, 1, 2), G5, G10, G15, G18} . (4.8)

If G′ = G(2, 1, 2) or G(4, 1, 2), then it is consistent to have G = G′ since these appear
in the list (4.8). In fact, these cases do not admit any extensions to alternative entries
in (4.8), and thus having G = G′ is the only possibility for them. On the other hand, G8
and G(4, 2, 2) do not appear in the list, nor can they be extended to elements of the list,
and thus they must be ruled out.

We are thus left with two choices for G. We would now like to see if either of these
choices can reproduce the desired Coulomb branch stratification. Recall that we want two
T (1)
∅,1 strata, which are of Kodaira-type II. In other words, the monodromy around these

singular loci must be of order 6. For a quotient of C2 by G, the singular loci are in one-
to-one correspondence with conjugacy classes of maximal cyclic subgroups of G generated
by reflections. If we consider the fixed locus of a generator g of one of the maximal
cyclic subgroups, then the monodromy around that locus is given by σ(g). Noting that
neither G(2, 1, 2) nor G(4, 1, 2) have any elements of order 6 and recalling that σ is a group
homomorphism, we conclude that there cannot be any monodromy of order 6, and hence
that the proposed structure of the Coulomb branch is inconsistent.

Before moving on, it is worth noting that though a 4d interpretation for this case can
be ruled out, this does not mean that the corresponding VOA is ill-defined. Indeed, in the
current case the VOA can be identified with a simple-current extension of a Z3 gauging of
the (4, 9) W3 minimal model, as shown in appendix E. What we have shown here is simply
that this VOA does not lie in the image of the 4d → 2d map.

Next consider the case of n = 3, 6, which means that κ ∈
{

3, 3
2 , 6,

6
5

}
. Looking at

table 3, we see that there are two subcases here: those with ∆u2 = 2∆u1 (namely T12 and
T15) and those with ∆u2 = ∆u1 (namely T8, T10, T11, and T14). Let us begin with the former.
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In this case we again require G to be an element of the list (4.8). If G′ = G5, G(3, 1, 2),
or G(6, 1, 2), then we can have G = G′, and indeed this is the only choice since there does
not exist any non-trivial extension to other elements in the list. On the other hand, for G4
and G(6, 2, 2) the extension must be non-trivial. For G4 there is in fact no valid extension,
so this case must be ruled out, whereas for G(6, 2, 2) there does exist an extension by the
quaternion group H = Q8 to G15. There are then a total of four options for G, namely
G = G5, G(3, 1, 2), G(6, 1, 2), or G15.

Next note that the candidate theory T12 has two S(1)
∅,2 strata, which are of Kodaira-type

I∗0 . The monodromy around each must be of order 2. For G5 the only cyclic subgroups
are of order 3 (see e.g. table D.1 of [80]) and hence this cannot give the desired structure
of the Coulomb branch. Likewise for G(3, 1, 2) or G(6, 1, 2), each has only a single cyclic
subgroup of order 2, so these cannot work either. Finally for G15, there do in fact exist
two cyclic subgroups of order 2, but there is also a subgroup of order 3. In this case we
would obtain three singular loci, which is incompatible with the proposed Coulomb branch
stratification.

As for the candidate theory T15, this has a single S(1)
∅,4 stratum of Kodaira type III∗,

and hence must be of order 4. By the comments in the previous paragraph, there is again
no way to realize the desired Coulomb branch. We may thus rule this case out as well.

We now return to the case of ∆u2 = ∆u1 . In this case we must consider complex
reflection groups such that the degrees are equal, d1 = d2. The only complex reflection
groups for which this holds are

G(m, 2, 2), G7, G11, G19 . (4.9)

For G′ = G4, G5, G(3, 1, 2) or G(6, 1, 2), we conclude that we must have a non-trivial
extension to a group in this list. For G′ = G4, G5 no such extension is possible, but for
G′ = G(3, 1, 2), G(6, 1, 2) we can do a Z2 extension to obtain G = G(6, 2, 2), G(12, 2, 2)
respectively. On the other hand, for G′ = G(6, 2, 2) we can take G = G′, and indeed there
exists no extension giving an alternative element of (4.9). Hence we have a total of two
possibilities for G, namely G = G(6, 2, 2), G(12, 2, 2) (and for the case of G = G(6, 2, 2) we
have seen that there are two choices for G′).

We now ask whether any of these cases can give rise to the desired Coulomb branch
stratifications. The Kodaira type of the strata of the various theories are as follows:

T8 : (II, II) T10 : (I∗0 , II∗)
T11 : (II, II, IV ) T14 : (II, II) (4.10)

The strata of type I∗0 have monodromy of order 2, while those of type II/II∗ have mon-
odromy of order 6, and those of type IV have monodromy of order 3. Note that both
G(3, 1, 2) and G(6, 2, 2) have two conjugacy classes of maximal cyclic subgroups generated
by reflections, of order 2 and 3 respectively, while G(12, 2, 2) has subgroups of order 2
and 6 instead. It is thus clear that the Coulomb branch stratifications proposed for the
T8, T11, and T14 theories can never be realized in this way. These theories may thus be
ruled out as indecomposable rank-two theories (we will discuss the possibility of them
being decomposable below).
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On the other hand, it is seemingly possible for T10 to be realized by G = G(12, 2, 2).
To rule this out, we will need additional information about the form of the Seiberg-Witten
differential. First, note that there are two possibilities for σ in (4.2), namely (i) the natural
map G(12, 2, 2)→ G(6, 1, 2) and (ii) the conjugate to the natural map [79]. Denoting the
coordinates on A× C2 as (a, x), the Seiberg-Witten differential may then be written as

(i) : λ = x1da1 + x2da2 ,

(ii) : λ = ∂p1
∂x1da1 + ∂p2

∂x1da2 , (4.11)

where dai are a basis of holomorphic differentials on A and the coefficient functions were
chosen such that λ is well-defined on the orbifold space. This in particular means that the
pi(x) are built from invariant polynomials of G(12, 2, 2). Let us say that these pi(x) are
degree-k polynomials in x, and since we are restricting to complex reflection groups whose
invariant polynomial have the same dimensions d1 = d2 = d, we can assume without loss
of generality that k = n · d for some n ∈ N. Since the integrals of λ along the cycles of A
give rise to masses, we expect that [∂p1(x)

∂x ] = [p1(x)] − [x] = 1 and hence that [x] = 1
k−1 .

The Coulomb branch scaling dimensions are obtained by the resulting dimension of the
invariant polynomials in x:

(i) : (∆u1 ,∆u2) = (d, d) ,

(ii) : (∆u1 ,∆u2) = 1
nd− 1(d, d) . (4.12)

In our case d = 12, since the degree of the invariant polynomials of G(12, 2, 2) are (12, 12),
and it is immediate to see that no n exists for which (∆u1 ,∆u2) = (3, 3). Hence we arrive
at a contradiction and T10 must be ruled out as well.

We have thus seemingly ruled out all of our candidate theories with κ 6= 1, 2. How-
ever, it should be noted that the previous analysis assumed that the Coulomb branch is
indecomposable. We may now consider lifting this assumption. For this to be possible, the
four-dimensional central charges of the rank-two SCFT should be decomposable into the
sum of two rank-one central charges. By referring to table 1, it is easy to check that this is
only possible for the theory T8. Indeed, in this case c4d = −44

5 is simply twice the central
charge of the T (1)

∅,1 SCFT. This suggests that the Coulomb branch is simply the product of
two copies of the Coulomb branch of T (1)

∅,1 . We will discuss this case in more detail now.

T8. The candidate theory T8 is specified by 2d data (c2d, a1, a2) =
(
− 44

5 , 2, 2
)
. As shown

in table 3, one finds that this 2d data is consistent with a 4d theory with central charges
(a4d, c4d) =

(43
60 ,

11
15
)
, Coulomb branch scaling dimensions (∆u1 ,∆u2) =

(6
5 ,

6
5
)
, and U(1)2

flavor symmetry. This looks nearly identical to the data of the T6 = T (1)
∅,1 × T

(1)
∅,1 theory,

except for the presence of two spin-one currents. The Schur index of the theory is given by

ZT8 = 1 + 2q + 2q2 + 4q3 + 5q4 + 8q5 + 11q6 + 16q7 + 21q8 + 30q9 + 39q10 + . . . ,

(4.13)
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to be contrasted with that of T6,

ZT6 = PE
[

2(q2 − q4)
(1− q)(1− q5)

]
= 1 + 2q2 + 2q3 + 3q4 + 4q5 + 7q6 + 8q7 + 13q8 + 16q9 + 23q10 + . . . . (4.14)

In the current case the minimal MDE satisfied by the vacuum character is of order four,
with the tentative chiral dimensions of the corresponding VOA being

{hi} =
{

0, −1
3 , −

2
5 ,

4
15

}
. (4.15)

The general lore that no two SCFTs should have the same CB geometry seems to
suggest that this candidate theory is invalid, since it has the same geometry as T6, which is
known to exist. What’s more, we could not come up with a natural ansatz for the strong
generators of the VOA associated to the putative index (4.13). Our hunch is that this
candidate theory is inconsistent, but unfortunately we will not be able to say anything
more conclusive.

4.2.2 Cases with κ = 1, 2

We next consider the theories with κ = 1, 2. Amongst the candidate new theories, only
two satisfy this property, namely T7 and T13. Because in these cases the CB is no longer
required to be isotrivial and diagonal, the powerful tools used in the previous subsection
are no longer applicable.

T13. The candidate theory T13 is defined by 2d data (c2d, a1, a2) = (−20, 4, 17). As shown
in table 3, one finds that this 2d data is consistent with a 4d theory with central charges
(a4d, c4d) =

(19
12 ,

5
3
)
, Coulomb branch scaling dimensions (∆u1 ,∆u2) =

(3
2 ,

5
2
)
, and flavor

symmetry su(2)7/2 × u(1). The Schur index of the tentative theory is obtained by solving
the MDE, giving

ZT13 = 1 + 4q + 17q2 + 56q3 + 163q4 + 428q5 + 1063q6

+2472q7 + 5515q8 + 11792q9 + 24404q10 + . . . (4.16)

Let us check whether this putative Schur index is compatible with the sum rule (A.2). First
note that there are no Kac-Moody nulls at level two, so aKM

2 = 14. It is simple to check
that the Sugawara condition is obeyed, so nT = 0. Additional h = 2 states must be affine
Kac-Moody (AKM) primaries. An AKM primary in the spin-j representation of su(2)−7/4
and with charge q under u(1) has holomorphic dimension

h(j, q) = j(j + 1)
−7

4 + 2
− q2 = 4j(j + 1)− q2 , (4.17)

and thus in order to have h = 2 we need both a non-trivial su(2) representation and a
non-zero u(1) charge (for example, j = 1/2 and q = ±1). CPT invariance implies that
both signs of the u(1) charge must be present. We then conclude that #B̂2 must be even,
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and thus from (A.2) that a2 itself is even, in contradiction with the value 17 in (4.16). We
conclude that our candidate character does not have a consistent 4d interpretation.

It is intriguing that an actual N = 2 SCFT with the same flavor symmetry (including
the level) and central charges does exist, but at rank three. This is the (A1, D8) theory
with CB scaling dimensions

(3
2 ,

5
4 ,

7
4
)
and Schur index [81]

Z(A1,D8) = 1 + 4q + 18q2 + 56q3 + 167q4 + 436q5 + 1086q6

+2520q7 + 5631q8 + 12024q9 + 24906q10 + . . . (4.18)

Comparing with (4.16), the two indices look remarkably similar. Indeed the O(q2) term
is off by only one (allowing the coefficient to circumvent the issue that led to the previous
inconsistency) and the O(q3) term matches. It is unclear whether this coincidence has any
meaning.

T7. The candidate theory T7 is defined by 2d data (c2d, a1, a2) = (−64, 64, 2080). As
shown in table 3, one finds that this 2d data is consistent with a 4d theory with central
charges (a4d, c4d) =

(14
3 ,

16
3
)
, Coulomb branch scaling dimensions (∆u1 ,∆u2) = (4, 5), and

flavor symmetry su(8)10 × u(1). The Schur index of the tentative theory is obtained by
solving the corresponding MDE, giving

ZT7 = PE
[

64(q + q3)
1− q4

]
= 1 + 64q + 2080q2 + 45824q3 + 770576q4 . . . (4.19)

We have found it difficult to obtain a compelling guess for the Higgs branch of this theory.
Indeed, the simplest guess would be that the first stratum is located on the minimal
nilpotent orbit of a7, and that the theory eventually Higgses to free hypermultiplets. This
simplest guess turns out to be inconsistent.

To see this, begin by noting the following. Say that upon moving onto the Higgs
branch, we spontaneously break a g flavor symmetry, thereby taking a putative theory T
to a new SCFT THiggs. Denote the sublocus (i.e. symplectic leaf) of the HB where this
specific Higgsing takes place S. Using anomaly matching, the central charges of the two
theories can be related by [82, 83]

12cT = 12cTHiggs + 2
(3

2kg − 1
)

+ dimHS− 1 . (4.20)

In the current case, we have 12cT7 = 64, ksu(8) = 10, and with the assumption that the
theory Higgses to free hypers, we also conclude that dT7

HB = 24(c4d − a4d) = 16. Since
dimHS = dT7

HB−d
Higgs
HB , where dHiggs

HB is the dimension of the HB of THiggs, we then conclude
that the theory on S must have

12cTHiggs − d
Higgs
HB = 21 . (4.21)

Furthermore, by definition hECB = 0 implies that Higgsing T7 should necessarily lead to
theories of rank lower than two. Under the assumption that the only rank-zero theories
are free hypermultiplets and discrete gauging thereof — which are inconsistent with the

– 26 –



J
H
E
P
0
3
(
2
0
2
2
)
2
1
0

analysis above — the theory on the lowest stratum should have rank one. We are thus
led to search for a rank-one theory satisfying (4.21). The only such theory is S(1)

A1,3, with
flavor level kIR given in table 1. Noting that the flavor level ksu(8) of the UV theory must
be related to that on the minimal nilpotent orbit by [82, 84, 85]

ksu(8) = 2 + kIRIfIR↪→a7

Ia5↪→a7
, (4.22)

where Ih↪→g is the embedding index of h in g, we see that in no case does this combination
reproduce the correct value of ksu(8) = 10.

Of course this alone does not rule this out as a consistent theory — it simply rules out
the simplest guess for the structure of the Higgs branch. We may for example consider more
complicated guesses in which the lowest stratum is not located on the minimal nilpotent
orbit of a7, or cases in which the theory does not Higgs completely down to free hyper-
multiplets. It would be interesting to use more sophisticated Higgs branch technology to
reach a definitive conclusion about the status of this putative theory. The candidate data
also look somewhat implausible from the point of view of the sum rule (A.2). Substituting
a2 = 2080, aKM

2 = 2144 and nT = 1 we find

#B̂2 − 2 #D1(0,0) + 2 #D 1
2 (0, 1

2 ) = −65 . (4.23)

There are of course many ways to assign flavor representations to the additional generators
so that this sum rule is satisfied, but there appears to be no economical or natural choice.

5 Outlook

In this paper we have introduced an algorithm that takes as input the first few terms of a
putative Schur index and gives as output a (potentially empty) set of mutually consistent
Schur and Coulomb data. The algorithm uses constraints encoding the general principles
of unitarity and superconformal invariance. These constraints turn out to be extremely
powerful, vastly winnowing down the number of consistent possibilities. As a proof of
concept, we performed a search for rank-twoN = 2 superconformal field theories with Schur
indices satisfying an untwisted modular differential equation of order four. Our analysis
reproduces a variety of known examples, but perhaps surprisingly it does not conclusively
produce any new candidate theories. This may be evidence that our understanding of
rank-two theories is more complete than expected, or just an artifact of our restriction to
low order and low rank.

Only six of the nearly seventy known rank-two theories [35] have a vacuum character
satisfying an untwisted order-four MDE; most of them have characters satisfying a twisted
order-four MDE. So even the simplest extension of our scan to twisted fourth-order is
expected to have a large payoff. This extension is conceptually straightforward, but rather
challenging from a computational viewpoint. A solution of a fourth-order twisted MDE is
specified by eight parameters, and thus the number of cases that serve as input would be
too large for a scan as thorough as the one given here. One might hope to implement a
more limited scan (e.g. searching for cases with no or small-dimensional flavor symmetry)
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or parallelize on a cluster. More speculatively, since we now have a method for generating
large data sets of consistent versus inconsistent inputs (in the form of tuples of integers),
one might envision the use of machine learning techniques.

The other obvious extension is to perform searches for 4d SCFTs of higher rank. Un-
fortunately, it is not in general understood how the rank is related to the order of the MDE.
Both are in some sense measures of the complexity of the SCFT, and experimentally one
notices that the order grows at least linearly with the rank. An order-four untwisted MDE
scan is thus likely to produce sparser and sparser candidate theories at higher rank, and it
will be necessary to consider higher-order MDEs. Apart from the increased computational
cost, there are also some conceptual obstacles that must be overcome starting at rank three.
For example, the scaling dimension ∆sing for a knotted stratum is no longer set solely by
the scaling dimension of the unknotted ones. This difficulty arises from the known fact
that the set of irreducible homogenous polynomial in three complex variables is infinite.
To explore theories of rank three or higher, one would thus need to find an efficient way to
get around this limitation.

Altogether, we have seen that the space of consistent 4d N = 2 theories is subject to
a stringent set of constraints, which, when imposed in their entirety, admit a surprisingly
small set of solutions. The approach of this paper is similar to that used in the conformal
bootstrap to identify candidate theories from general principles, though in the current case
the complete set of principles remains unknown. Furthermore, the principles which are
known are likely still not phrased in their most economical form. Once the full set of com-
patibility conditions between CB and VOA data is uncovered, one could imagine carrying
out an even more stringent scan over candidate theories. If some of the new constraints
are imposable already at the level of the inputs to the algorithm, scans could be done over
smaller numbers of input parameters, thereby allowing for significant computational im-
provement. We hope that this work provides a first step in a new, computational approach
to the classification of 4d N = 2 theories.
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A Superconformal representation theory constraints

In order for a vacuum character to be identifiable with a 4d Schur index, one must be
able to interpret its Fourier coefficients as counting Schur operators. Superconformal rep-
resentation theory imposes certain constraints. In table 4 we list the 4d superconformal
multiplets that contain Schur operators (one for each multiplet). It will be useful to recall
the interpretation of a few of them (see e.g. [22, 86] for more details):
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• B̂R: Higgs branch multiplets. Their bottom components are Higgs chiral ring oper-
ators, with conformal dimension ∆ = 2R. The corresponding VOA operators have
chiral dimension h = R. The cases R = 1

2 and R = 1 are special: B̂ 1
2
are free hy-

permultiplets, whereas B̂1 are moment-map multiplets, which contain the conserved
flavor currents of the theory. The VOA counterparts of the latter are affine Kac-
Moody currents.

• D0(0,j2) and D0(j1,0) are free field multiplets. For j1 = j2 = 0 they correspond to the
standard free vector multiplet, while for higher j1, j2 they are (exotic) higher-spin
free fields.

• Ĉ0(j1,j2) contain conserved currents of spin 2 + j1 + j2. In particular, Ĉ0(0,0) is the
standard stress tensor multiplet.

• D 1
2 (0,0), D 1

2 (0,0) are “additional” supercurrent multiplets, on top of the supercurrent
contained in the stress tensor multiplet. Their presence signals supersymmetry en-
hancement. In the VOA, they correspond to fermionic h = 3

2 operators (i.e. 2d
supercurrents).16

We wish to assume that the 4d SCFT is fully interacting, i.e. that it doesn’t contain any
free field subsector. It follows that:

(i) No free field supermultiplets are allowed. This forbids B̂ 1
2
, D0(0,j2), and D0(j1,0)

multiplets.

(ii) No supermultiplets containing conserved currents of spin greater than two are allowed.
Indeed, such higher spin currents would imply the existence of a free subsector [1].
This forbids Ĉ0(j1,j2) with j1 + j2 > 0.

It is also natural to assume:

(iii) The theory contains a single spin-two conserved current, which is identified with the
stress tensor operator. This demands the presence of precisely one Ĉ0(0,0) multiplet.

This last assumption is meant to capture locality (the existence of a local stress tensor)
and indecomposibility (a direct product of SCFTs would have multiplet stress tensors).17

The Schur index only gives us information about the chiral dimension h, and we see
from table 4 that for fixed h there is a certain ambiguity in identifying the corresponding
4d supermultiplet, which gets worse for increasing h. Nevertheless, leveraging the physical
assumptions above, some useful statements can be made for low h. A general Schur index

164d N = 3 SCFTs map to VOAs containing an N = 2 super-Virasoro algebra, while 4d N = 4 SCFTs
map to VOAs containing a (small) N = 4 super-Virasoro algebra.

17Strictly speaking, we are not aware of a rigorous argument showing the converse, i.e. that a theory with
multiple spin two conserved currents is necessarily decomposable. Nevertheless it is a standard assumption.
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Multiplet h r
B̂R R 0

DR(0,j2) R+ j2 + 1 j2 + 1
2

DR(j1,0) R+ j1 + 1 −j1 − 1
2

ĈR(j1,j2) R+ j1 + j2 + 2 j2 − j1

Table 4. List of 4d N = 2 superconformal multiplets that contain Schur operators (one for
each multiplet). Here R and (j1, j2) denote the Cartan of the SU(2)R symmetry and the Lorentz
quantum numbers of the superconformal primary of the multiplet, while h is the chiral dimension
and r the U(1)r charge of the Schur operator. In our conventions, R, j1, and j2 take non-negative
half-integer values. Even and odd values of 2r correspond to bosonic and fermionic Schur operators,
respectively.

has a series expansion of the form18

ZSchur(q) =
∑
k∈N

2

akq
k = 1 + a 1

2
q

1
2 + a1q + a 3

2
q

3
2 + a2q

2 + . . . , ak ∈ Z . (A.1)

Let us interpret the first few coefficient:

• We see at once that a 1
2

= 0, because the only supermultiplet that could yield h = 1
2

states is the hypermultiplet B̂ 1
2
, violating assumption (i).

• a1 counts the number of B̂1 multiplets, which are the only non-free multiplets with
h = 1. This basic fact is used throughout the paper.

• a 3
2
gets a positive contribution from the number of B̂ 3

2
multiplets and a negative

contribution from the number of additional supercurrent multiplets (if any). One
often has an a priori opinion about the number of supersymmetries of the theory,
and thus can read off the number of Higgs operators with R = 3

2 . (They are neces-
sarily generators of the chiral ring since they cannot be composites of operators with
lower R).

• a2 gets a variety of contributions. There are first of all the affine Kac-Moody alge-
bra states {Ja−2|0〉, Ja−1J

b
−1|0〉}, where a, b are adjoint indices of the flavor symmetry

algebra. We denote their number by aKM
2 .19 If the central charge satisfies the Sug-

awara condition (2.18), the 4d stress tensor multiplet Ĉ0(0,0) is already accounted for
by the 2d Sugawara construction [22, 73]. If the Sugawara condition is not obeyed,
there must be an independent generator with h = 2 to account for the 4d stress ten-
sor. Finally, there can be additional generators of type B̂2 (bosonic), D1(0,0), D1(0,0)

18In most of the paper we focus on untwisted modular equations, which yield characters with an integer
power expansion, but here we discuss the general case.

19To determine aKM
2 , one must of course take care of subtracting possible null states, which are determined

if one knows the levels of the (simple factors of the) affine current algebra. In the absence of null states,
aKM

2 = a1 + a1(a1 + 1)/2.
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(fermionic), or D 1
2 (0, 1

2 ), D 1
2 ( 1

2 ,0) (bosonic). It is important to note that CPT invari-
ance of the 4d theory implies that DR(0,j) and DR(j,0) multiplets must come in pairs.
All in all then, we have20

a2 = aKM
2 + nT + #B̂2 − 2 #D1(0,0) + 2 #D 1

2 (0, 1
2 ) , (A.2)

where nT ≡ 0 if the Sugawara condition is obeyed and nT ≡ 1 if it is not obeyed.

The sum rule (A.2) can sometimes be used to rigorously rule out putative Schur indices. In
the context of this paper, our algorithm yields the requisite information to compute aKM

2
and nT. If we happen to also have an opinion about the Higgs branch of the theory, in
particular on the number of B̂2 generators, we get a sharp constraint on the parity (even or
odd) of a2. A more heuristic use of the sum rule is as a plausibility check. The additional
level-two generators must form representations of the flavor algebra. There are usually
ways to satisfy the sum rule, but if they require baroque choices of flavor decomposition,
we may conclude that the character is unlikely to have a 4d interpretation.

B Allowed rank-two Coulomb branch dimensions

In this appendix we rederive the allowed pairs of Coulomb branch dimensions for rank-two
N = 2 SCFTs, which will be necessary data for our rank-two scan. We begin by noting
that, based solely on the fact that CB monodromies must take values in the discrete group
Sp(2r,Z), the allowed scaling dimensions of Coulomb branch operators are constrained to
take values in [29, 30]:

∆ ∈
{
n

m

∣∣∣ n,m ∈ N, 0 < m ≤ n, gcd(n,m) = 1, ϕ(n) ≤ 2r
}
, (B.1)

where ϕ(n) is Euler’s totient function. This set depends only on the rank r of the SCFT.
The maximum allowed value scales as ∆max ∼ r ln ln r, while the total numbers of allowed
scaling dimensions N and integer scaling dimensions N int scale as [30]

N ∼ 2r2 ζ(2)ζ(3)
ζ(6) , N int ∼ 2r ζ(2)ζ(3)

ζ(6) , (B.2)

with ζ(s) the Riemann zeta function. Naively, the number of allowed r-tuples would be

Number of r-tuples =
(
N + r − 1
N − 1

)
. (B.3)

However, we will now see that this number can be cut down significantly [69].
First observe that the product of a rank-n SCFT and a rank-(r−n) SCFT (for n < r)

gives a consistent rank-r N = 2 theory. This implies that the union of any allowed (r−n)-
tuple with an allowed n-tuple gives an allowed r-tuple. Thus, without loss of generality,

20Here #B̂2 denote the number of additional B̂2 multiplets, on top of the ones that correspond to the
composites Ja

−1J
b
−1|0〉. These additional B̂2 operators are generators of the Higgs chiral ring.
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we can focus on determining the genuine r-tuples, i.e. those which contain at least one
Coulomb branch scaling dimension which is not allowed at rank r − 1. Now consider the
following locus of the Coulomb branch,

Ii := {u1 = 0 , . . . , ui−1 = 0, ui 6= 0, ui+1 = 0, . . . , ur = 0} (B.4)

and assume that this locus is regular, i.e. Ii is not part of the singular locus. In particular,
by Proposition 2, if we choose i such that ∆i is not an allowed scaling dimension at rank-
(r − 1), then Ii is necessarily non-singular.

Since Ii is non-singular, the fiber Xi
u is a rank-r Abelian variety for all u∈Ii. That is,

Xi
u = Cr/Λiu , ∀u ∈ Ii (B.5)

with Λiu a rank-2r lattice. The following U(1)r transformation

ξi : uk → exp (2πi∆k/∆i)uk , ξi ∈ U(1)r (B.6)

acts trivially on Ii and thus generates an automorphism of Xi
u, i.e. an element ξi ∈ GL(r,C)

such that ξi(Λiu) = Λiu. Using the fact that the holomorphic symplectic form on X → C is
non singular [87], given (B.6) it is possible to derive an explicit representation of ξi:

ξi := ρa(ξi) ∈ GL(r,C) (B.7)
:= diag

(
e2πi(∆1−1)/∆i , . . . , e2πi(∆i−1−1)/∆i , e−2πi/∆i , e2πi(∆i+1−1)/∆i , . . . , e2πi(∆r−1)/∆i

)
which explicitly depends on the r-tuple of Coulomb branch scaling dimensions {∆1, . . . ,∆r}.
We now observe that there is a general relation between ξi, which is also called the analytic
representation of ξi, and the induced action ξiH ∈ Sp(2r,Z) on the homology of Xi

u, i.e.
the homological representation of ξi. In particular, the following isomorphism of complex
representations holds:

ξiH ⊗ C ∼= ξi ⊕ (ξi)∗ (B.8)

where ∗ denotes complex conjugation. Given (B.8) and (B.7), we obtain the restriction
that the following quantities

exp
(

2πi∆j − 1
∆i

)
, i = 1, 2, . . . , r (B.9)

must be roots of a degree-2r polynomial Pi(z) (the characteristic polynomial of ξiH) which
is a product of degree-d cyclotomic polynomials Φd(z):

Pi(z) =
∏
d

Φd(z)n(d) ,
∑
d

ϕ(d)n(d) = 2r , (B.10)

where again ϕ(d) is Euler’s totient function. Imposing that ∆i is not a rank-(r − 1)
dimension further constraints the form of Pi(z), giving

P new
i (z) = Φd(z) , ϕ(d) = 2r . (B.11)
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Genuinely rank-two pairs
Pi(z) {∆1,∆2}

Φ5(z)
{4

3 ,
5
3
} {5

4 ,
3
2
} {3

2 ,
5
2
} {5

4 , 3
} {5

3 , 3
} {5

2 , 3
} {

3, 5
} {5

4 , 4
}{5

3 , 4
} {5

2 , 4
} {

4, 5
} {5

4 , 8
} {5

3 , 8
} {5

2 , 8
} {

5, 8
}

Φ8(z)

{6
5 ,

8
5
} {4

3 ,
8
3
} {8

7 ,
10
7
} {8

7 ,
12
7
} {8

5 ,
12
5
} {8

3 ,
10
3
} {8

7 , 4
} {8

5 , 4
}{8

3 , 4
} {

4, 8
} {8

7 , 6
} {8

5 , 6
} {8

3 , 6
} {

6, 8
} {8

7 , 12
} {8

5 , 12
}{8

3 , 12
} {

8, 12
}

Φ10(z)
{10

9 ,
4
3
} {4

3 ,
10
3
} {10

9 , 4
} {10

7 , 4
} {10

3 , 4
} {

4, 10
} {10

9 , 8
} {10

7 , 8
}{10

3 , 8
} {

8, 10
}

Φ12(z)
{6

5 ,
12
5
} {12

11 , 6
} {12

7 , 6
} {12

5 , 6
} {

6, 12
} {12

11 , 8
} {12

7 , 8
} {12

5 , 8
}

Non-Genuine Rank-Two Pairs{
∆1,∆2

}{6
5 ,

6
5
} {6

5 ,
4
3
} {6

5 ,
3
2
} {6

5 , 2
} {6

5 , 3
} {6

5 , 4
} {6

5 , 6
} {4

3 ,
4
3
} {4

3 ,
3
2
} {4

3 , 2
}{4

3 , 3
} {4

3 , 4
} {4

3 , 6
} {3

2 ,
3
2
} {3

2 , 2
} {3

2 , 3
} {3

2 , 4
} {3

2 , 6
} {

2, 2
} {

2, 3
}{

2, 4
} {

2, 6
} {

3, 3
} {

3, 4
} {

3, 6
} {

4, 4
} {

4, 6
} {

6, 6
}

Table 5. Full list of allowed pairs of scaling dimensions at rank-two. The genuinely rank-two pairs
are those which include at least one entry which is not allowed at rank-one. In the first column
we report the form of the characteristic polynomial where Φd(z) denotes a degree-d cyclotomic
polynomial.

Carrying out the analysis for r = 2, we then obtain 51 genuinely rank-2 pairs of CB scaling
dimensions. Together with 28 pairs having both entries being allowed at rank-one, this
gives a total of 79 allowed pairs of scaling dimensions at rank-two. These are tabulated in
table 5. As promised, this provides a great improvement on the naive counting in (B.3),
which would have predicted a total of 276 allowed pairs.

Let us conclude by noting that for cases in which one of the Coulomb branch scaling
dimensions is ∆ui = 2, the theory has an exactly marginal operator parameterizing a
conformal manifold. In [88, 89] it was conjectured that any N = 2 n-dimensional conformal
manifold arises by gauging n simple factors in the global symmetry of isolated N = 2
SCFTs. This means that if ∆ui = 2 the corresponding theory is either Lagrangian, or an
SU(2) conformal gauging of a lower rank theory. Since all Lagrangian theories have already
been classified, we will for the most part exclude such cases from our scan.

C Rank-one IR-free theories

In this appendix we discuss the set of rank-one IR-free theories, which will serve as necessary
data for our rank-two scan. The full set of rank-one IR-free is obtained by considering
U(1) or SU(2) gauge theories coupled to sufficient numbers of hypermultiplets (or discrete
gaugings thereof). Let us begin with the case of U(1) gauge theory. The most general
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[
I∑

i

q2
i ni

,
⊕
i
su(ni)

]
12c4d ∆u hECB R T (R) b g kg

2 +∑
i ni 1 0 (1, . . . ,1) 0 ∑

i ni
⊕

i su(ni) (2, . . . , 2)

Table 6. CFT data of N = 2 IR-free theories with U(1) gauge group and ni hypermultiplets of
charge qi.

[
I∗∑

i
niT (Ri)−4,

NR⊕
i=1

sp(2ni)
NR+NP R⊕
i=NR+1

so(2ni)
]

12c4d ∆u hECB R T (R) b g kg

6+
NR+NP R4pt∑

i=1
ni dRi 2

NR∑
i=1

ni (2n1, ...,2nNR
1, ...,1︸ ︷︷ ︸
NP R times

) NR 2+
NR∑
i=1

ni(dRi
−1)

2 +
NR+NP R4pt∑
i=NR+14pt

ni dRi
2

NR⊕
i=1

sp(2ni)
NR+NP R4pt⊕
i=NR+14pt

so(2ni) (3, . . . , 3︸ ︷︷ ︸
NR times

, 4, . . . , 4︸ ︷︷ ︸
NP R times

)

Table 7. CFT data of N = 2 IR-free theories with a SU(2) gauge group and with NR real and
NP R pseudoreal representations. dRi indicates the dimension of the representation Ri.

matter content consists of ni hypermultiplets of charge qi for i = 1, . . . , N . The beta-
function for this theory is given by β ∝∑i q

2
i ni. The relevant Kodaira fiber is then of type

I∑
i
q2

i ni
, and the corresponding flavor symmetry is ⊕i su(ni). By nature of being a U(1)

theory we have ∆u = 1, and it is easy to see that 12c4d = 2 +∑
i ni and hECB = 0. This

is enough data to compute b = ∑
i ni and ki = 2. A summary of the CFT data for U(1)

IR-free theories is given in table 6.
One may also consider discrete gaugings of this class of theories. In particular, when

one of the ni is even a Z2 gauging can be done. This results in a theory with the same
data as above, but with the corresponding su(2ni) flavor factor replaced by sp(2ni).

Next consider IR-free SU(2) gauge theories. The most general matter content consists
of ni hypermultiplets in real representations Ri for i = 1, . . . , NR, and ni hypermultiplets
in pseudoreal representations Ri for i = NR + 1, . . . , NR + NPR. The beta-function is
given by β ∝

∑
i niT (Ri) − 4. The relevant Kodaira fiber is of type I∗∑

i
niT (Ri)−4, and

the corresponding flavor symmetry is ⊕NR
i=1 sp(2ni)

⊕NR+NP R
i=NR+1 so(2ni). Since it is a SU(2)

gauge theory, we must have ∆u = 2. Note that each sp(2ni) flavor factor contributes a
factor of ni to the dimension of the extended Coulomb branch, i.e. hECB = ∑NR

i=1 ni, and
the central charge receives contributions from all matter fields 12c4d = 6 + ∑

i ni dim Ri.
From this information we may then compute the quantity b as well as the flavor levels. A
summary of the CFT data for SU(2) theories is reported in table 7.

Note that in the SU(2) case there is an additional subtlety which is that changing the
normalization of the generators can lead to different monodromies — see e.g. section 4.2
of [2]. However, this change in normalization does not affect any of the data in table 7, and
hence will be irrelevant for the purposes of this paper. One could also consider discrete
gaugings of this class of theories, but we will not do so here.

For the purposes of our computerized scan, it will be necessary to restrict to a finite
subset of rank-one IR-free theories. As will be discussed in the main text, our scan will
restrict to theories with at most three simple factors in their flavor symmetry, and hence
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we will impose the same on the allowed IR-free theories. In the case of U(1) gauge theories
and their discrete gaugings, this gives rise to infinite families of theories labelled by charges
(q1, q2, q3) and degeneracies (n1, n2, n3). Since the charges do not appear anywhere in the
data in table 6, and since we do not discuss the monodromy of IR-free theories anywhere
in this paper, we can neglect them for the purposes of the scan. As for the degeneracies,
we simply restrict them to a finite range — in practice 0 ≤ ni ≤ 10.

Turning next to the case of SU(2) gauge theories, these are labelled by representations
(R1,R2,R3) and degeneracies (n1, n2, n3). As before, we restrict the degeneracies to take
values in a finite range 0 ≤ ni ≤ 10. However, in the current case the dependence on the
representations (R1,R2,R3) does not drop out, and hence we must place restrictions on
these as well. We find it well-motivated to restrict Ri to be either the fundamental or
adjoint representation. This gives the finite set of theories which is fed into the algorithm.

D General structure of the extended Coulomb branch

In this appendix we collect a number of observations on the generic structure of the ex-
tended Coulomb branch (ECB) of N = 2 SCFTs and the way it transforms under the
flavor symmetry g. These observations are necessary to properly run our scan and, to the
authors’ knowledge, have not yet appeared in the literature. After introducing the general
idea, we will provide two concrete Lagrangian examples where these features arise. For
simplicity we focus on rank-two theories, though the entire discussion straightforwardly
generalizes to higher rank (and non-Lagrangian) SCFTs.

General discussion

We begin with some general remarks. At rank-one there is only one way in which the ECB
arises, namely as a series of free hypermultiplets with perhaps global quotienting structure,
thus allowing for g 6= sp(2n). At rank-two there are instead two conceptually distinct ways:

• The ECB arises from free hypermultiplets tensored over every point of the CB (up
to global twists). This means that the CB has locally a CB×Hn structure over all
points. This is the way in which the ECB of only one of the two examples below
(N = 4 su(3) theory) behaves as well as all ECBs of rank-one theories.

• The ECB might arise from rank-one theories supported on singular strata carrying
a non-trivial ECB themselves. In this case, the local CB×Hn structure breaks down
on the complex codimension-one locus where the rank-one theory is supported, and
the n free hypers in question become strongly-coupled there. This is a distinctively
higher rank feature and in fact applies to both rank-two cases discussed below.

We will call the former possibility a free ECB and the latter a coupled ECB. There is
a major difference among these two possibilities:

(1) A free ECB carries a flavor symmetry which does not act on BPS states which are
both massless and charged under the low-energy u(1)2. As we will soon argue, a
free ECB necessarily implies a coupled ECB, and that the ECB does not transform
irreducibly under g.
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(2) A coupled ECB carries a flavor symmetry which instead acts on charged states which
become massless where the rank-one theory is supported.

The UV-IR simple flavor condition [32] forces any simple flavor factor to act on massless
charged states somewhere on the CB, and thus free ECBs seem to contradict this condition.
However there are situations in which a free ECB can be realized: namely, when one of the
rank-one theories on the codimension-one strata carries the same flavor symmetry which
acts on the free ECB (either sp(2n) or su(n)/u(n)) and the flavor symmetry of the rank-
two SCFT is the diagonal combination of the two. Thus a free ECB necessarily requires a
coupled one with the same flavor symmetry factor. This implies that the complex scalars
of the free hypermultiplets of the ECB transform in a reducible representation of the flavor
symmetry:

R = ⊕aRa︸ ︷︷ ︸
Coupled ECB

Free ECB︷ ︸︸ ︷
⊕RH , (D.1)

where the sum is over all the irreducible singular complex codimension-one strata which
realize the flavor symmetry g. Here RH is the contribution to the ECB which is decoupled
on the whole CB\{0}.

How is this discussion relevant for the algorithm outlined in the main text? Recall that
the way in which we compute the flavor central charge for a given simple flavor symmetry
factor kgi was to use (2.15), which we reproduce here for convenience:

kgi =
∑
Ia∈Igi

∆sing
a

∆a
[ka − T i(Ra)] + T i(R) . (D.2)

This sum is over all the irreducible singular complex co-dimension one strata which realize
the flavor symmetry gi and we have introduced an indexed Dynkin index T i(·), which
indicates the Dynkin index of the corresponding irreducible representaion with respect to
the flavor factor gi, i.e. acting on a representation R = (R1,R2) of g1 ⊕ g2, we have

T 1(R) := dimR2 T (R1) , (D.3)
T 2(R) := dimR1 T (R2) . (D.4)

The Dynkin index also satisfies T i(R1⊕R2) = T i(R1) +T i(R2) and thus, using (D.1) and
assuming that each gi is realized on a single irreducible stratum, we find:

T i(R) =
{
T i(Ra) Coupled ECB ,

2T i(Ra) Free ECB .
(D.5)

The upshot is then that a free versus coupled ECB affects the computation of the quantities
kgi appearing in our algorithm. In cases in which one cannot rigorously exclude a free ECB
based on flavor symmetries, our algorithm checks both the free and coupled cases. In the
scan carried out in section 4, the only case that we identify which has a free ECB is T15.

The discussion above generalizes straightforwardly to the ECB of rank-r SCFTs, but
with caveat that there are r− 1 different types of free ECB depending on the co-dimensio-
nality, strictly larger than one, of the locus where the free hyper is decoupled.
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Examples

Let us now see how these features arise in two rank-two Lagrangian examples, namely
N = 4 su(3) SYM and N = 2 sp(4) gauge theory with four hypers in the 4 and one in the
5. Both of these theories have a non-trivial ECB, but the former has a free ECB while the
latter has a coupled one.

N = 4 su(3). From the N = 2 point of view, this theory is an su(3) vector multiplet
with a single hypermultiplet transforming in the adjoint representation. The globally well-
defined Coulomb branch coordinates are u1 =

〈
Tr
(
Φ2)〉 and u2 =

〈
Tr
(
Φ3)〉, where Φ is

the complex scalar of the N = 2 vector multiplet. It follows that ∆u1 = 2 and ∆u2 = 3.
A generic point on the Coulomb branch is parametrized, up to Weyl transforma-

tions, by:

〈Φ〉 =

 a1 0 0
0 a2 0
0 0 −a1 − a2

 . (D.6)

As expected, this breaks su(3) → u(1)2. Notice that on the generic point of the CB not
all components of the adjoint hypermultiplet are massive. In fact, the massless compo-
nents are those which are uncharged under both u(1) factors. It is then a straightfor-
ward exercise (involving decomposing the adjoint representation) to show that at a generic
point of the CB there are two free hypermultiplets giving, locally, a CB×H2 structure
and hECB = 2. This matches our expectation that any rank-r N ≥ 3 theory has an
r-(quaternionic-)dimensional ECB.

Now let’s extend the analysis to the singular strata. Extra massless states appear on
special loci where either there is an enhancement of the unbroken gauge group, or some
component of the hypermultiplet become massless. The only relevant enhancement in this
case is when a1 = a2 (and their Weyl equivalents) which corresponds to an enhancement
u(1)2 → su(2)⊕ u(1). This locus can be written in terms of the CB coordinates as

u3
1 + u2

2 = 0 ⇒ ∆sing = 6 , (D.7)

and the 8 decomposes as:
8→ 30 ⊕ 2±2 ⊕ 10 , (D.8)

where the subscript denotes the u(1) charge. To understand which component charged
under the su(2) is massless, we need to look at its charge under the commutant of su(2)
inside su(3). This is simply u(1). All in all we find that

a) 10 denotes a massless component of the adjoint hyper which is a singlet under both
the su(2) and the u(1) and which is therefore massless not just over the generic point
of the CB but over the entire CB\{0} - the aforementioned hallmark of a free ECB.

b) The 30 instead gives rise to N = 4 su(2) SYM, denoted S(1)
∅,2 in what follows, which

is then identified as the rank-one theory describing the low-energy effective theory
along the singularity. Notice that S(1)

∅,2 itself has a one dimensional ECB, which gives
rise to the second free hyper which is present at a generic point on the CB.

– 37 –



J
H
E
P
0
3
(
2
0
2
2
)
2
1
0

Let’s now discuss the flavor structure of the theory. Since the theory has a single
eight-dimensional real representation, the flavor symmetry is su(2)8. We would like to
reproduce this result from the analysis of the CB stratification. Under the flavor su(2), the
two-(quaternionic-)dimensional ECB transforms as R = 2⊕2, one 2 coming from the free
hyper in (a) and one from (b). In particular, the ECB does not transform irreducibly. The
UV-IR simple flavor condition is satisfied as the su(2) is realized on the singular stratum
— i.e. the N = 4 su(2) theory also has an su(2) flavor symmetry. To compute the level we
can use (D.2) which simplifies since there is a single singular stratum:

ksu(2) = ∆sing

∆S(1)
∅,2

[
kS(1)

∅,2
− T (RS(1)

∅,2
)
]

+ T (R) (D.9)

where T (·) indicates the Dynkin index of the corresponding representation, normalized
in such a way that T (N) = 1 for N being the fundamental representation of su(N). To
compute T (RS(1)

∅,2
) observe that the ECB of the N = 4 su(2) theory transforms as 2 under

the su(2) flavor symmetry. Similarly,

T (R) = T (2⊕ 2) = T (2) + T (2) = 2 . (D.10)

The remaining quantities can be directly read off from table 1. Plugging this in to (D.9),
we obtain the desired ksu(2) = 8.

sp(4) with 4(4)⊕ 5. Let’s now discuss the second example. We will be somewhat brief
since most of the analysis follows closely the one above. In this case the globally defined
Coulomb branch coordinates are u1 =

〈
Tr
(
Φ2)〉 and u2 =

〈
Tr
(
Φ4)〉, hence ∆u1 = 2 and

∆u2 = 4.
In the sp(4) case there are two inequivalent directions, up to Weyl tranformation,

where an su(2) is left unbroken (corresponding to the long and short simple roots) and
which therefore give rise to singularities. The loci can be written in both cases in terms of
the global coordinates as u2 + λu2

1 = 0, λ ∈ C∗, giving ∆sing = 4.
The commutant, whose charges determine which component is massless, is different

in the two cases. Let us denote the case with commutant su(2) by (i) and the case with
commutant u(1) by (ii). We may now analyze how the hypermultiplets decompose:

(i) :
{

4→ (2,1)⊕ (1,2) ,
5→ (2,2)⊕ (1,1) , (D.11)

(ii) :
{

4→ 2±1 ,

5→ 3±0 ⊕ 1±2 .
(D.12)

These imply that along (i), each hyper in the 4 contributes a massless hyper in the funda-
mental of the su(2), while the 5 contributes only a decoupled free hyper. In contrast, along
(ii) all the components of the hyper in the 4 are massive but the 5 contributes a massless
hyper in the adjoint. We conclude that along (i) the low-energy effective theory looks like
T (1)
D4,1 ×H, i.e. an su(2) N = 2 theory with Nf = 4 times a free hyper, while along (ii) the

low-energy theory is simply S(1)
∅,2.
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Let us now discuss the flavor symmetry, which in this case is so(8)4⊕su(2)5. Since only
the su(2)5 acts on the ECB, we will not discuss the so(8)4 factor. Notice three important
things:

1. The su(2) only acts on charged massless states along (ii) — again S(1)
∅,2 has a su(2)

flavor symmetry. Along (i), the su(2) instead acts on the free hyper which is massless
but decoupled.

2. Relatedly, in this case there is no component of the ECB which is decoupled on the
entire CB\{0}. The free hyper on (i) couples on (ii) to form a low-energy S(1)

∅,2.

3. The ECB in this case transform irreducibly under the su(2), i.e. R = 2.

To conclude our discussion, let’s compute the flavor level. Since the su(2) is realized only
one of the two strata where the rank-one theory describing the massless states is S(1)

∅,2, the
relevant equation is analogous to (D.9), but now

su(3)
∆sing = 6
T (R) = 2

→
sp(4)

∆sing = 4
T (R) = 1

(D.13)

which, with the new values, gives ksu(2) = 5.

E The VOA for T9

In this appendix we give additional information about the VOA of the candidate theory
T9. Despite the fact that T9 was shown to not exist as a legitimate 4d N = 2 theory
in section 4.2.1, here we will see that the corresponding VOA is a perfectly well-defined
minimal model. To begin, note that in this case the inidicial roots give the following chiral
dimensions

{hi} =
{

0,−1
3 ,−

2
3 ,−

4
9

}
. (E.1)

We note further that the central charge c2d = −44
3 is the same as that of the (4, 9) W3

minimal model. The latter theory has a total of 28 modules, with the list of distinct chiral
dimensions being (see e.g. [90–92])

{hi} =
{

0,−1
3 ,−

2
3 ,−

4
9 , 2,

1
3 ,

2
3 ,

1
27 ,

4
27 ,

22
27 ,

25
27 ,−

8
27 ,−

11
27 ,−

14
27 ,−

17
27

}
. (E.2)

We will denote the corresponding operators by Ohi
. For some hi there are in fact two

operators with conjugate W0 eigenvalues, in which case we denote them as Ohi
and Ōhi

.
We see that (E.1) is a subset of (E.2), and that W3(4, 9) has primaries of integer

dimension. Indeed there are two spin-two primaries, O2 and Ō2. Inserting the modular
data of W3(4, 9) (which can be found in [93]) into the Verlinde formula, we may compute
the fusion of these spin-two primaries to be

O2 ×O2 = Ō2 , Ō2 × Ō2 = O2 , O2 × Ō2 = 1 . (E.3)
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This means that the corresponding Verlinde lines L2 and L2̄ satisfy L3
2 = L2L2̄ = 1, and

thus generate a Z3 symmetry.
In order to go from W3(4, 9) to the VOA corresponding to T9, we begin by gauging

this Z3 symmetry. This projects out all but the operators of chiral dimension

{hi}|Z3 even =
{

0,−1
3 ,−

2
3 ,−

4
9 , 2,

1
3 ,

2
3

}
, (E.4)

and leads to a theory with a block-diagonal modular invariant. This modular invariant can
be made diagonal by extending the chiral algebra by operators of integer spin — in this
case, O2 and Ō2.21 That such an extension is legitimate can be checked by explicitly closing
the OPEs of T , W , O2, and Ō2, whereW is the spin-three current of theW3 algebra. Since
we will need these OPEs in a moment, we give the relevant portions here:

O2(z)O2(w) ∼ 2Ō2
(z − w)2 + ∂Ō2

z − w
+ . . .

Ō2(z)Ō2(w) ∼ 2O2
(z − w)2 + ∂O2

z − w
+ . . .

T (z)O2(w) ∼ 2O2
(z − w)2 + ∂O2

z − w
+ . . .

T (z)Ō2(w) ∼ 2Ō2
(z − w)2 + ∂Ō2

z − w
+ . . . (E.5)

O2(z)Ō2(w) ∼ −77
16

1
(z − w)4 + 21

16
T

(z − w)2 +
21
32 ∂T + 3i

16

√
77
2 W

z − w
+ . . .

W (z)O2(w) ∼ 2i
3

√
22
7

O2
(z − w)3 + i

√
11
14

∂O2
(z − w)2 +

4i
√

2
77 ∂

2O2 − 6i
√

2
77 : TO2 :

z − w
+ . . .

W (z)Ō2(w) ∼ −2i
3

√
22
7

Ō2
(z−w)3 − i

√
11
14

∂Ō2
(z−w)2 +

−4i
√

2
77 ∂

2Ō2 + 6i
√

2
77 : TŌ2 :

z − w
+ . . .

where . . . denote terms regular in (z − w), and we have refrained from writing the OPEs
involving only T and W , since these take the standard W3 form.

Noting that the fusion rules of O2 and Ō2 on the surviving primaries take the form

O2 ×O−2/3 = Ō1/3 , Ō2 ×O−2/3 = O1/3 ,

O2 ×O−4/9 = Ō−4/9 , Ō2 ×O−4/9 = Ō−4/9 ,

O2 ×O2/3 = O−1/3 , Ō2 ×O2/3 = Ō−1/3 ,

O2 ×O−1/3 = Ō−1/3 , Ō2 ×O−1/3 = O2/3 ,

O2 × Ō−1/3 = Ō2/3 , Ō2 × Ō−1/3 = O−1/3 ,

O2 ×O1/3 = O−2/3 , Ō2 ×O1/3 = Ō1/3 ,

O2 × Ō1/3 = O1/3 , Ō2 × Ō1/3 = O−2/3 , (E.6)
21Note that this entire discussion has a direct analog in the more familiar realm of Virasoro minimal

models. Indeed, it is well-known that the 3-states Potts model can be obtained by starting with the
tetracritical Ising model and gauging a Z2 symmetry. This gives rise to a block-diagonal modular invariant,
which can be made diagonal by extending by a single spin-three current.
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we see that such an extension identifies O−2/3 ↔ Ō1/3 ↔ O1/3 as well as O2/3 ↔ Ō−1/3 ↔
O−1/3. At the level of characters, we then expect the result to be a theory with four
unrefined characters, namely22

χ0(τ) = χ̃0(τ) + 2χ̃2(τ) ,
χ−1/3(τ) = 2χ̃−1/3(τ) + χ̃2/3(τ) ,
χ−2/3(τ) = χ̃−2/3(τ) + 2χ̃1/3(τ) ,
χ−4/9(τ) = χ̃−4/9(τ) , (E.8)

where χ̃i(τ) are the characters of W3(4, 9). These results match precisely with the four
solutions to the original MDE.

To summarize, we have seen that upon gauging the Z3 of the W3(4, 9) theory and
extending by a pair of spin-two currents, we obtain the VOA for the (failed) T9 theory. In
section 4.2.1, we used a variety of Coulomb branch constraints to show that T9 could not
correspond to a legitimate N = 2 theory. We close this appendix by showing how, even
just from the viewpoint of the VOA data, the putative 4d theory would be rather exotic.

Assuming that T9 did exist, we could us ask which 4d Schur multiplets the 2d operators
O2 and Ō2 could arise from. Both have chiral dimension h = 2, and cannot have a U(1)r
charge, since this would be incompatible with the OPEs, cf. (E.6). Thus from table 4
we conclude that the only possible multiplets are B̂2 or Ĉ0(0,0). The B̂2 multiplet is a
Higgs chiral ring multiplet with corresponding Schur operator being a superprimary with
R = 2, while Ĉ0(0,0) is the conserved stress tensor multiplet with Schur operator being the
R-current with R = 1.

We now combine this information with some further constraints that follow from 4d
unitarity. It can be shown [73, 94] that 4d unitarity implies the existence of an automor-
phism σ of the VOA such that, in a subspace of fixed h and R and with r = 0, the inner
product defined by 〈σ(Oi)Oj〉 should have a definite sign, namely

sgn 〈σ(Oi)Oj〉 = (−1)h−R . (E.9)

An important fact is that σ is anti-linear. Moreover, σ2 = (−1)2R. As a simple example,
we note that for the stress tensor σ(T ) = T, h = 2, R = 1 and hence 〈TT 〉 ∼ c must be
negative. Similarly we have σ(W ) = W,h = 3, R = 2 and hence 〈WW 〉 ∼ c < 0.

To apply this in our current situation, we note that σ(O2) = ε Ō2 with ε = ±1. Indeed,
O2 and Ō2 have opposite imaginary OPE coefficients in theW3O2 andW3Ō2 OPEs of (E.6),
and recalling that σ(W3) = W3, for σ to act as an automorphism of the VOA (sending
the W3O2 OPE to the W3Ō2 one) we need σ(O2) = ε Ō2, for some arbitrary coefficient ε.
Using that σ2 = (−1)2R = 1, we then deduce that ε = ±1. This holds for both R = 1 and
R = 2.

22One could ask about twisted sectors, but these also have character χ−4/9(τ). Similar to the case of
3-state Potts, this manifests itself in a non-unit coefficient for χ−4/9(τ) in the modular invariant,

Zinv = |χ0|2 + |χ−1/3|2 + |χ−2/3|2 + 3|χ−4/9|2 . (E.7)
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We now look at the O2O2 and Ō2Ō2 OPEs in (E.6). In order for σ to act as an
automorphism, we need to require that ε = 1. It follows that the coefficient of the O(z4)
piece of O2(z)Ō2(0) OPE is given by −77

16 .
Finally we check unitarity. We need sgn〈σ(O2)O2〉 = (−1)h−R , which is −1 for the

R = 1 assignment and +1 for the R = 2 assignment. Using σ(O2) = ε Ō2, we conclude
that 〈σ(O2)O2〉 = −77/16 < 0. Thus we are forced to conclude that R = 1, i.e. O2 and
Ō2 correspond to additional spin-two conserved current multiplets. Curiously, it turns out
that there exists a linear transformation from T , O2, and Ō2 to Ti with i = 1, 2, 3 where the
currents Ti appear symmetrically. Each of them obeys a Virasoro algebra with c = −44/3,
but there are also cross terms.

The presence of multiple spin-two currents is usually not forgiven, though as we have
remarked in footnote 17 in appendix A, we are not actually aware of an airtight argument
that a fully interacting and indecomposable SCFT is forbidden to have additional spin-two
currents on top of the stress tensor. It would have been exciting to discover such an exotic
SCFT. Unfortunately, as we have seen, our candidate theory fails the Coulomb geometry
constraints.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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