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1 Introduction

In this paper we revisit the deformation of N = 4 super Yang-Mills theory by the leading
irrelevant operator that preserves 16 of the total 32 supercharges. Any maximally super-
symmetric RG flow whose endpoint is N = 4 SYM can be described in the infrared by an
effective action of the form

SSYM + h

∫
d4xO8 + . . . , (1.1)

where O8 denotes the leading irrelevant scalar operator (of conformal dimension ∆ = 8, as
it turns out) and the dots indicate an infinite tower of higher-dimensional operators.
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Examples and inspiration. There are several interesting examples of RG flows that end
in (1.1). A familiar one is the Coulomb branch flow, obtained by moving on the moduli space
of vacua of an SU(N +k) SYM gauge theory in such a way that an SU(N)×U(1)k subgroup
remains unbroken. In the far infrared, the theory is described by k decoupled vector
multiplets, plus an interacting superconformal field theory (SCFT), with a leading irrelevant
correction given by O8. In this case, the UV fixed point is a well-defined four-dimensional
field theory, indeed another SYM theory with larger gauge group. Another class of examples
arise by considering flows from higher-dimensional SCFTs, such as compactification of (2, 0)
theories on the two-torus, yielding N = 4 SYM at low energy. Perhaps the most intriguing
maximally supersymmetric flow is the one defined by the full open string field theory on N
D3 branes in IIB string theory. On general grounds, the infrared theory takes again the
form (1.1), with h ∼ (α′)2, but the UV behavior is not controlled by a local field theory.

It has been a long-standing speculation that the canonical AdS/CFT duality (the
equivalence of N = 4 SYM theory and AdS5 × S5 string theory) might extend beyond
the low energy/near horizon limit — that the full D3 brane effective field theory might
be dual to closed string theory in the full asymptotically flat D3 brane geometry. In fact,
this idea even predates the precise formulation [1–3] of AdS/CFT, being implicit in the
comparisons of worldvolume and gravity calculations of particle absorption by D-branes by
Klebanov and collaborators [4–6] that provided crucial early hints for the gauge/gravity
correspondence. A more explicit statement of this conjecture was given by Intriligator [7].
Consider closed string theory on the background defined by the three-brane metric

ds2 = H−
1
2dxmdxm +H

1
2dxIdxI (1.2)

H(r) = h̃+ R4

r4 , r2 = xIxI ,

with coordinates xm spanning the brane worldvolume R3,1 and coordinates xI spanning
the transverse R6. The scale R is fixed by R4 = 4πgsN(α′)4, where N is the number of D3
branes, while h̃ is an arbitrary integration constant. There are also N units of self-dual five
form flux F5 ∼ (1 + ∗)(dx)4 ∧ dH−1. Intriligator argued that this closed string background
is dual to the boundary theory defined by the action

SSYM + h̃R4
∫
d4xO8 . (1.3)

In order to test this intriguing proposal, we need a more precise understanding of the field
theory side. Is (1.3) meant as a shorthand for the full open string field theory? Or is there a
sense in which (due perhaps to the high degree of supersymmetry, or some other principle)
one can make sense of it in field-theoretic terms, unambiguously moving upstream the RG
flow? These difficult questions are immaterial to leading order in h̃, and remarkably, the
proposal passes a non-trivial leading-order test in the supergravity limit of large N and
large ’t Hooft coupling [8].

We feel encouraged to revisit this circle of ideas thanks to the recent progress in
understanding a very special irrelevant deformation of two-dimensional QFTs, the so-called
TT deformation [9–11] (see also [12] for a review). Due to its “quasi-topological” nature,
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the TT deformation appears to define a sensible theory, albeit one with exotic UV behavior,
outside the framework of conventional local quantum field theory. This is just what one
would desire for the flow (1.3). Is there perhaps a sense in which O8 may be regarded as a
four-dimensional, maximally supersymmetric analog of TT?

The leading irrelevant deformation. Let us now describe the leading irrelevant opera-
tor O8 in some more detail, and review some of the requisite superconformal representation
theory. The systematic classification of deformations of N = 4 SCFTs that preserve
maximal supersymmetry has been carried out in [13], as a special case of a much more
general analysis. The main result is easy to understand in elementary terms [7]. To preserve
maximal supersymmetry, we need to add the top component of an N = 4 multiplet. As
we are after the susy-preserving deformations of lowest dimension, we should focus on the
shortest (one-half BPS) multiplets. The one-half BPS multiplets are built on superconformal
primary operators O(p), scalars of dimension ∆ = p, p ≥ 2, in the p-th symmetric traceless
representation of the SO(6) R-symmetry. The susy-preserving deformation of smallest
dimension is the top components of the p = 2 multiplet (the stress-tensor supermultiplet),
Oτ = Q4O(2). This is a complex scalar operator with ∆ = 4, corresponding to the exactly
marginal deformation parametrized by the complexified gauge coupling τ . The p = 3 multi-
plet does not contain a scalar among its top components. Finally, the top component of the
p = 4 multiplet is a real scalar, R-symmetry singlet of dimension eight, O8 = Q4Q̃4O(4),
which is thus the leading irrelevant deformation of an N = 4 SCFT.

The abstract representation-theoretic argument that we have just reviewed is blind to
the color structure of the theory. In N = 4 SYM with gauge group SU(N) (for N > 2)
there are two linearly independent versions of O8, a single-trace and a double-trace version.
The single-trace version reads

OST
8 = Q4Q̃4 Tr Φ(IΦJΦKΦL) (1.4)

= Tr
[
F 4 − 1

4(F 2)2 + 4
(
FmpF

np − 1
4FpqF

pqδnm

)
DmΦIDnΦI

− (DmΦI)(DmΦI)(DnΦJ)(DnΦJ) + 2(DmΦI)(DmΦJ)(DnΦI)(DnΦJ) + . . .

]
where ΦI , I = 1, . . . 6 are the six real scalar fields and Fmn the gauge field strength. Terms
containing fermions are omitted. We recognize the structure of the leading irrelevant
operator in the derivative expansion of the Dirac-Born-Infeld action for D3 branes (see [14]
for a nice review). This has to be, since the D3 brane flow is maximally supersymmetric,
and as we have just argued OST

8 is the unique leading irrelevant single-trace deformation
that preserves the full Poincaré supersymmetry.

On the other hand, the double-trace version takes the schematic form

ODT
8 = Q4Q̃4 Tr Φ(IΦJ Tr ΦKΦL) = TmnTmn +OτOτ + . . . (1.5)

Superficially, this comes as close to a four-dimensional maximally supersymmetric version
of the two-dimensional TT operator as one may hope, but there is no reason to expect any
of the same remarkable quasi-topological properties.1

1For very different approaches to higher-dimensional generalizations of TT , see, e.g., [15–17].
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The complete list of irrelevant deformations of N = 4 SCFTs that preserve maximal
supersymmetry can be found in table 28 of [13]. There are four classes: three based
on shortened representations (one-half BPS, one-quarter BPS and one-sixteen BPS) and
one based on long representations. If one further demands that the deformation be an
R-symmetry singlet, so that the full SU(4)R is preserved, the list is shorter: besides O8,
there is one deformation of dimension 10, top component of a one-quarter BPS multiplet,
and an infinite set of non-protected deformations with ∆ > 10. The one-quarter BPS
deformation of dimension 10 is realized in N = 4 SYM by a double-trace operator. If we
are interested in the planar limit of the theory, we should restrict attention to single-trace
deformations, and then OST

8 is the unique protected irrelevant deformation that preserves
the full Poincaré supersymmetry and the full R-symmetry.

These considerations provide a first way to interpret Intriligator’s proposal. In the
limit of large ’t Hooft coupling λ = g2

YMN , where N = 4 SYM is dual to the classical
supergravity background (1.2), all long single-trace operators (dual to single string states)
acquire a large anomalous dimension. There is then at least a formal sense that we are
perturbing the theory by just OST

8 , as indicated in (1.3). At finite λ however, representation
theory alone does not determine the dots in (1.1), and we need a principle to fix the infinite
tower of D-terms Q8Q̃8OL

∆, where OL
∆ is a Lorentz scalar, R-symmetry singlet superprimary,

with ∆ > 2 from unitarity.2 The same ambiguity plagues all naive attempts to fix the
non-abelian version of the Dirac-Born-Infeld action for D3 branes.

Integrability on S3 × R? In this paper, we will focus on the planar limit of N = 4
SYM theory and thus restrict attention to single-trace irrelevant deformations. This is
similar in spirit to [18–20], which studied a single-trace version of the TT deformation in
two-dimensional conformal field theory examples.3

The TT deformation [10, 11] can be canonically defined all along the RG flow, for finite
values of the deformation parameter h. A key step is the derivation of differential equations
for physical observables as functions of h, which can then be integrated starting from the
IR initial conditions. We do not have such a luxury, but we can still attempt to make
sense of our irrelevant deformation order by order in conformal perturbation theory, as a
series expansion in h. Of course, we need to cancel divergences by adding suitable local
counterterms, which as argued above take the form of D-terms Q8Q̃8OL

∆. Barring some
additional principle, the finite part of these counterterms is ambiguous, with the number of
undetermined coefficients growing at each successive order in h.

Could integrability be the missing principle? Famously, planar N = 4 SYM theory
is integrable [27]. Integrability is so powerful to lead, at least in principle, to a complete
solution of the theory [28–30]. We are speculating that among the infinitely many RG
trajectories that look in the IR as N = 4 SYM perturbed by OST

8 , there may be one (and
2The lightest such operator is the Konishi operator Tr ΦIΦI .
3The analogy between OST

8 and the deformation considered in [18–20] becomes sharper if one looks at
their (4, 4) supersymmetric examples. Superconformal representation theory works rather similarly in the 2d
(4, 4) case and in the 4d N = 4 case. In both cases, the leading irrelevant deformation is the top component
of a one-half BPS multiplet, whose superprimary has R quantum numbers twice those of the stress-tensor
multiplet. Supersymmetric extensions of the TT deformation have been studied in, e.g., [21–26].
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perhaps many) that preserve planar integrability. The question of planar integrability of
irrelevant deformations of N = 4 SYM was initially motivated by the desire to make sense
of the dual field theory to full D3 brane geometry, but is worth investigating in its own
right. The present paper is a first exploration of this question.

Our approach will be to study the theory on the cylinder S3 × R, because this setup
allows for a particularly sharp formulation of the integrability question. At the conformal
point the theory on the cylinder is entirely equivalent to the theory on R4, because the two
frames are related by a Weyl transformation. As we turn on the irrelevant deformation, the
two frames cease to be equivalent. We will be concerned with the spectral problem on the
cylinder, i.e., with the evolution of energy eigenstates as a function of the dimensionless
deformation parameter h/`4, where ` is the radius of the S3. For h = 0, we have the usual
state/operator map of conformal field theory: states on S3 are in one-to-one correspondence
with local operators, with the cylinder Hamiltonian being identified with the flat-space
dilation generator. As we turn on the deformation, the state/operator map is lost, but we
still have a perfectly well-defined spectral problem for the cylinder Hamiltonian.4 What’s
more, we can use the familiar spin-chain language to represent states [31], so that the
question of integrability of our spectral problem becomes the question of integrability of a
specific spin-chain Hamiltonian, which can be analyzed by standard techniques.

The first nice surprise is that the “rigid” subalgebra of the original psu(2, 2|4) supercon-
formal symmetry that is preserved by the irrelevant deformation is psu(2|2)× psu(2|2)nR2.
This is precisely the algebra that plays a crucial role in integrability of N = 4 SYM theory.
In the standard SYM case, the breaking to this subalgebra occurs spontaneously, by the
choice of the BMN vacuum for the spin-chain Hamiltonian. In our case, the breaking is
explicit, by the change in the spin-chain Hamiltonian induced by the irrelevant deformation.
Nevertheless, the algebraic consequences are the same. Beisert’s analysis [32] of the magnon
dispersion relation and of the 2 → 2 magnon scattering matrix using centrally extended
psu(2|2) goes through with no essential modification. In particular, the magnon excitations
are gapless, and symmetry arguments are sufficient to fix uniquely their 2 → 2 scattering,
up to an undetermined dynamical phase. It follows that just as in the standard N = 4
case, the Yang-Baxter equation for magnon scattering is automatically satisfied. These are
very nice structural features, but integrability is not guaranteed: one still needs to check
factorization of the S-matrix for multi-magnon processes, which is a dynamical question.

The second nice surprise regards the construction of the classical deformed Lagrangian
on S3 × R. Writing down a supersymmetric Lagrangian on a curved manifold is a priori a
non-trivial task, see, e.g., [33]. As our deformation is irrelevant, it entails an infinite set of
corrections with increasing powers of h/`4, already at the classical level, just to preserve
supersymmetry. Remarkably, following [34–36], we have found a novel off-shell formalism,
precisely tailored for the symmetries of our background. We are able to realize off-shell
eight of the sixteen preserved supercharges and to write a close form expression for the
classical supersymmetric action on S3 ×R in the presence of the irrelevant deformation. Of
course, this is just the classical action. As we have emphasized, the quantum theory suffers

4The analogous problem is exactly solvable for the TT deformation on S1 × R [11].
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from the ambiguities parametrized by the finite values of the counterterms. Our hope is
that there is at least one choice of counterterms for which integrability is preserved.

To test this idea, we proceed to study the spin-chain Hamiltonian in planar perturbation
theory. We focus on a closed subsector, analogous to the su(2|3) sector of N = 4 SYM; the
deformation breaks the symmetry down to su(2|2)nR. The spin-chain Hamiltonian admits
a double series expansion, in the ’t Hooft coupling λ and in the deformation parameter
h/`4. They play a similar role: higher powers of both parameters correlate to the spin-chain
interactions becoming less and less short-range. It is then convenient to organize the
expansion in terms of an effective “loop order” which measures the non-locality of the chain
(one-loop is nearest neighbor, two-loops is next-to-nearest neighbor, etc.). The most efficient
way to fix the spin chain Hamiltonian to low orders in this loop expansion is to leverage
symmetry, following the purely algebraic approach of [37]. A tedious but straightforward
generalization of Beisert’s method yields the spin-chain Hamiltonian up to two loops. When
the dust settles, one finds that the smaller symmetry of the deformed theory is still sufficient
to fix the result uniquely (to this order): there is an accidental symmetry enhancement to
su(2|3) and one recovers the integrable Hamiltonian of N = 4 SYM. A two-loop calculation
is thus not sufficient for a dynamical test of integrability. A three-loop calculation is beyond
the scope of this paper, but we make some structural observations on a conjectural integrable
long-range spin chain that would preserve the smaller symmetry of the deformed theory
and be truly distinct from the N = 4 spin chain. The upshot is that we see no conceptual
obstacles in constructing such a long-range spin chain.

It would be of great interest to find an integrable irrelevant deformation of N = 4
SYM on S3 ×R. Such a deformation would be worth studying in its own right, even if it is
not obviously related to the irrelevant deformation of the theory on R4 and its proposed
duality with the full D3 brane background, which was one of the initial motivations for
this work. A plausible holographic interpretation of maximally supersymmetric irrelevant
deformations on S3 × R is that they are instead dual to the bubbling geometries of Lin,
Lunin and Maldacena [38]. We offer some brief comments about this interpretation.

The remainder of the paper is organized as follows. In section 2 we explain how to
construct a classical action for the deformed theory that preserves the rigid superalgebra on
S3×R. In section 3 we study the spectral problem. We review the structural features guaran-
teed by the triply centrally extended psu(2|2) symmetry; we fix the spin-chain Hamiltonian in
the su(2|2)nR subsector up to two loops (accidentally recovering the N = 4 result); and we
comment on the possible integrability of the all-orders long-range spin chain. In section 4 we
discuss a possible holographic interpretation. We conclude in section 5 with a brief discussion
and a list of open questions. Many technical details are relegated to six appendices.

2 Deformation on S3 × R and off-shell classical action

Thanks to the conformal flatness of S3 × R, one can straightforwardly place N = 4 super
Yang-Mills theory on this geometry by performing a Weyl transformation. The symmetry
algebra of the curved-space theory will still contain the full psu(2, 2|4) superconformal
algebra. Its Lagrangian density is obtained by covariantizing the flat-space one and adding
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conformal masses to the scalar fields, i.e.,

LYM = Tr
(1

2FMNF
MN + ΨΓMDMΨ + R

6 ΦIΦI
)
, (2.1)

where R is the scalar curvature of space-time, which for S3 × R is given by R = 6
`2 with `

the radius of S3. As is often useful, we have used ten-dimensional notations: the indices
M,N, . . . take the values 0, 1, 2, . . . 9 and can be split into the four-dimensional space-time
indices µ, ν = 0, 1, 2, 3 and the six-dimensional R-symmetry indices I, J, . . . = 4, 5, 6, 7, 8, 9.
The temporal direction lies along R. The ten-dimensional gauge field AM thus contains
the four-dimensional connection Aµ and six scalars ΦI . Furthermore, Ψ is a 32-component
spinor satisfying the standard Majorana-Weyl condition and ΓM are ten-dimensional gamma-
matrices. All fields are valued in the adjoint representation of the gauge group. We choose
the generators anti-Hermitian and thus the covariant derivative acts as DM = ∂M + [AM , ·].
We refer the reader to appendix A for a summary of our notations and conventions. The
Lagrangian density in (2.1) is invariant (up to total covariant derivatives) under the on-shell
transformation rules

δAM = ΨΓMε , δΨ = −1
2FMNΓMNε− 1

2ΦIΓµIDµε . (2.2)

Here ε is a conformal Killing spinor — it satisfies the equation Dµε = 1
4ΓµΓνDνε — and is

of Majorana-Weyl type. See appendix B for more details.
Our aim is to add to this curved-space Lagrangian the irrelevant deformation. Upon

turning on the deformation, we can only hope to preserve an algebra of “rigid” (i.e.,
non-conformal) superisometries. This algebra is a subalgebra of psu(2, 2|4) and a supersym-
metrization of the algebra of (bosonic) isometries of S3 × R, i.e.,

su(2)L × su(2)R × RH . (2.3)

Indeed, the three-sphere can be viewed as the group-manifold of SU(2), and the two SU(2)
factors in the isometry group SO(4) ' SU(2)L × SU(2)R correspond to the left and right
action of SU(2) on this group-manifold. Furthermore, RH denotes translations along the
temporal direction generated by H. Various supersymmetrizations of the algebra (2.3),
preserving half the number of supersymmetry charges, i.e., sixteen, exist. We will argue in
subsection 2.1 that the only feasible choice for our purposes is

psu(2|2)× psu(2|2) nR2 , (2.4)

whose bosonic subalgebra contains, in addition to the algebra of isometries in (2.3), the
R-symmetry subalgebra

su(2)a × su(2)ȧ × u(1)J ⊂ so(6)R . (2.5)

The supercharges retained in the “rigid” algebra of (2.4) are selected by the requirement
that they commute with H−J . We denote them as

Qaα , Q†aα , Q̃ȧα̇ , Q̃†ȧα̇ , (2.6)
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where α(α̇) is an su(2)L(su(2)R) index. Note that Q, Q̃ carry U(1)J charge +1/2, while
their conjugates have U(1)J charge −1/2. In appendix C we provide more details from the
viewpoint of the associated Killing spinors. We remark that the generator H− J is the
common central extension of the psu(2|2) algebras. Associated with the breaking of the full
SO(6)R R-symmetry as in (2.5), we often rename the six scalars ΦI into the standard fields
Z,Z, and φaȧ. The latter we often also endow with an SO(4)R vector index, i.e., φj . The
U(1)J charge assignments are J (Z) = +1,J (Z) = −1,J (φaȧ) = 0.

The flat-space irrelevant term hO8 must be accompanied by curvature corrections
to indeed preserve the “rigid” algebra of (2.4). Before discussing these corrections, let
us first consider the flat-space deformation hO8 itself. One can build this operator, for
example, by acting with the eight Poincaré supercharges of positive U(1)J charge on the
bottom component Tr Z4. These flat-space Poincaré variations can be described by the
transformation rules in (2.2) for suitably specialized constant Killing spinors.5 Of course,
one antisymmetrizes the supersymmetry variations to avoid generating anticommutators.
The resulting operator, however, is only supersymmetric when using the field equations of
the undeformed theory, as the supersymmetry variations (2.2) only close upon using these
equations of motion. In other words, the newly constructed action of the deformed theory is
only supersymmetric to order h. To improve on the situation, one can attempt to add higher
order terms in h to both the deformation term and the supersymmetry variations, which,
because the deformation is irrelevant and thus the parameter h has negative mass dimension,
will generate an infinite series of corrections to both. This is clearly an undesirable state of
affairs, the more so because we will have to add 1/` corrections to every single one of these
correction terms. Fortunately, following [34, 35], we found an elegant off-shell formalism
that produces in one fell swoop the full deformed action including its curvature corrections.
N = 4 super Yang-Mills theory requires seven bosonic auxiliary fields K` to offset the

mismatch between fermionic and bosonic off-shell degrees of freedom. We split the seven
auxiliary fields as 7 = 3 + 4, and declare that the set of three fields transforms as a spatial
vector on S3 while the group of four fields transform as a vector of SO(4)R = SU(2)a×SU(2)ȧ.
In other words, K` → (K µ̂,Kj). As explained in more detail in appendix D, we can then
realize off-shell, while preserving the full isometries of S3 ×R, the eight supercharges of the
superisometry algebra (2.4) with positive U(1)J charge, i.e., Qaα and Q̃ȧα̇. What’s more,
the realization is linear. It is given concretely by

δQ,Q̃AM = ΨΓMε , (2.7)

δQ,Q̃Ψ = −1
2FMNΓMNε− i

`
ΦIΓI0ε− iKm̂Γm̂0ε− iKjΓj0ε , (2.8)

δQ,Q̃Km̂ = −iDMΨΓMΓm̂0ε , (2.9)

δQ,Q̃Kj = −iDMΨΓMΓj0ε . (2.10)

As emphasized in the notation “δQ,Q̃”, these transformation rules are only valid for the
selected eight supercharges Qaα and Q̃ȧα̇ of psu(2|2) × psu(2|2) n R2. One can verify

5The full flat-space conformal Killing spinors are given by ε(x) = εs + xµΓµεc, where εs and εc are
constant spinors describing Poincaré and special conformal supercharges respectively.
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that the off-shell algebra of these transformations closes onto gauge transformations with
gauge-parameter the field Z. The Yang-Mills Lagrangian density invariant under these
off-shell transformation rules is

Loff-shellYM = Tr
(1

2FMNF
MN + ΨΓMDMΨ + 1

`2
ΦIΦI −K µ̂Kµ̂ −KjKj

)
. (2.11)

The construction of the irrelevant deformation itself is facilitated by setting up a curved-
space superspace formalism.6 Such formalism is possible because the off-shell transformation
rules (2.7)–(2.10) are linear in the Killing spinor (and don’t contain derivatives acting on
the Killing spinor anymore). We introduce Grassmann-odd coordinates θaα, θ̃ȧα̇ and declare
that the supercharges are realized as

Qaα ←→ ∂

∂θaα
− iεabεαβθbβ [Z, ·] , Q̃ȧα̇ ←→

∂

∂θ̃ȧα̇
− iεȧḃεα̇β̇ θ̃

ḃβ̇ [Z, ·] . (2.12)

This realization correctly implements the supersymmetry algebra. On this superspace, we
can define a superfield Z(θaα, θ̃ȧα̇) with bottom component Z:

Z(θaα, θ̃ȧα̇) = Z − 2iεabεαβΨ−aα θbβ − 2iεȧḃεα̇β̇Ψȧα̇
− θ̃ḃβ̇

+ iεabεαβ
(1

2F
mn(σmn) γ

α δca + 1
2[φi, φj ](σij) c

a δ
γ
α + iKm̂(σm̂0) γ

α δca

)
θcγθbβ

+ iεȧḃεα̇β̇

(1
2F

mn(σmn)α̇γ̇δȧċ + 1
2[φi, φj ](σij)ȧċδα̇γ̇ + iKm̂(σm̂0)α̇γ̇δȧċ

)
θ̃ċγ̇ θ̃ḃβ̇

+ 2iεċḃεζ̇β̇
(
Dmφj − iδm0

(
Kj + 1

`
φj

))
(σj)ċc(σm)ζ̇ζθcζ θ̃ḃβ̇

+ . . . (2.13)

Here the subscript − on the fermionic fields denotes the (negative) U(1)J charge. The
full expression of Z(θaα, θ̃ȧα̇) can be found in appendix E. Its schematic content, omitting
commutators, 1/` corrections, and auxiliary fields, is

Z

Ψ−aα Ψȧα̇
−

(F−)αβ Dmφaȧ (F+)α̇β̇

DmΨȧ
+α DmΨα̇

+a

DmDpZ

(2.14)

6One could consider attempting to set up an N = 1 superspace formalism based on the results of [33].
Constructing the appropriate N = 1 curved space D-term is, however, challenging. For some flat-space,
Abelian results in this direction, see for example [14].
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Note also that
δQ,Q̃ Z = 0 . (2.15)

With this superfield in hand, we can now easily write down the full off-shell action of
the deformed theory:

S(gYM, h) = 1
g2
YM

∫
S3×R

d4x
√
|g| Loff-shellYM + h

∫
S3×R

d4x
√
|g|
∫
d4θd4θ̃ TrZ(θ, θ̃)4 + h.c.

(2.16)
This action is manifestly invariant under the eight supercharges Qaα and Q̃ȧα̇. It is
straightforward to verify that it is also invariant on-shell under the other eight supercharges
provided one turns on a background U(1)J connection V along the temporal direction

V = 1
`
dt , Dt = ∂t −

i

`
J + [At, ·] . (2.17)

The desired effect of this background connection is that the central element H−J , that
makes an appearance in the anticommutators of the supercharges and their daggered
counterparts, acts as a temporal derivative. The on-shell invariance under the supercharges
Q†, Q̃† can then be established by realizing that these charges annihilate Z and by observing
that when anticommuting the daggered supercharge through the eight supercharges that act
on TrZ4, one only encounters combinations of bosonic supercharges whose action, inside
the space-time integral, vanishes.

Finally note that upon integrating out the auxiliary fields in (2.16), one generates an
infinite power expansion in h.

2.1 Flat-space limit

Before analyzing the deformed action of (2.16), let us provide a complementary point
of view on its construction. This alternative viewpoint comes about by considering the
decompactification limit of the space S3 × R, i.e., `→∞. Equivalently, we can look at the
physics in the tangent space to a point on S3 × R. From the Killing spinor equation (D.7)
and its analog for the supercharges of negative U(1)J charge, it is straightforward to write
down the flat-space expression of the supercharges (2.6). They are

Qaα → Qaα+ + i

2`(σ0)α̇α S̃a+α̇ , Q̃ȧα̇ → Q̃+ȧα̇ + i

2`(σ0)αα̇ Sα+ȧ , (2.18)

Q†aα →
1
2`S−aα + i(σ0)αα̇Q̃α̇−a , Q̃†ȧα̇ → 1

2` S̃
ȧα̇
− + i(σ0)α̇αQȧ−α . (2.19)

It is easy to verify that their leading order anticommutators are those of the standard
Poincaré algebra.

Let us now consider the deformed on-shell (and thus to leading order in h) Lagrangian
at the point we chose, which we label the origin in the tangent space. It is clear that it is
given by

∏
a,α

(
Qaα+ + i

2`(σ0)α̇α S̃a+α̇
) ∏

ȧ,α̇

(
Q̃+ȧα̇ + i

2`(σ0)αα̇ Sα+ȧ
)

TrZ(0)4 . (2.20)
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Evaluating this expression is straightforward: the action of the Poincaré/special conformal
supercharges will simply move us up/down in the 105 supermultiplet. Its result will take
the form

O8(0) + O7(0)
`

+ . . .+ O4(0)
`4

, (2.21)

where the operators On can be identified with components of dimension n operators occurring
in the 105 supermultiplet. What’s more, these components are necessarily singlets of the
tangent space symmetry subgroup SO(3) ⊂ SO(3, 1) and of the R-symmetry subgroup
SO(4)R×U(1)J , as these are the symmetries preserved by the combinations of supercharges
that are acting in (2.20).

For example, the operator O4 can be easily constructed. Recalling that the adjoint
representation of SU(4) decomposes as 15→ (3,1)0 ⊕ (1,3)0 ⊕ (2,2)+2 ⊕ (2,2)−2 under
the subgroup SU(2)a × SU(2)ȧ × U(1)J , it is clear that the nonzero anticommutators of
the Poincaré and special conformal supercharges appearing in (2.18) result in R-symmetry
generators in the (2,2)+2. At order `−4 in (2.20), we then find

O4 = 1
16
(
detR(2,2)+2

)2
TrZ4 = 3

2Str
(
3Z2Z

2 − 6ZZφjφj + φiφiφjφj
)
, (2.22)

where we used the symmetrized trace. This analysis can be continued and produces the full
leading order deformed action, to which we will return in the next subsection.

Note that we can now also argue that the only feasible supersymmetrization of (2.3)
is the one in (2.4). The argument starts by making the trivial observation that O8 is
always the top-component of the 105 supermultiplet. Now, for any supersymmetrization
of (2.3), we can consider the flat-space limit as above. Acting with the flat-space limit of
any of the supercharges, which necessarily involves a special conformal supercharge, on
O8, it is clear that the special conformal supercharge will not annihilate O8, but rather it
takes us one level down in the supermultiplet. In other words, O8 is not supersymmetric
by itself and we need to include a bosonic operator O7 such that its Poincaré variation
cancels the S-variation of O8. Moreover, this operator should be a singlet under the
preserved R-symmetry and under the SO(3) ⊂ SO(3, 1) preserved spatial subgroup. The
special conformal variation of O7 is however non-zero, demanding the addition of O6 and
so forth. This process keeps going until we reach an operator that is annihilated by all
special conformal supercharges appearing in the flat-space limit of the supercharges. A
democratic supersymmetrization of the two SU(2) factors of (2.3) as in (2.4) can be easily
seen to be a valid option. Indeed, the 105-supermultiplet contains candidate operators Oi
singlet under both the preserved R-symmetry of (2.5) and the spatial subgroup. However,
trying to supersymmetrize (2.3) into su(2|4) × su(2) fails already when looking for an
SU(4)R singlet operator O7, while O8 is acted on by all special conformal supercharges.
Similarly, aiming to preserve su(2|3)× su(2|1) does not work either. There does not exist
a candidate operator O4 because the representation 105 does not contain a singlet when
decomposed into SU(3)×U(1) representations, neither does the 105 supermultiplet contain
a candidate for O5. For O6 there is a single candidate originating from an SO(3, 1) singlet
operator transforming in the SU(4)R representation (2, 0, 2) = 84. However, it is easy to
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convince oneself that it is not annihilated by all S appearing in the flat-space limit of the
supercharges.7

2.2 Leading order deformed action

Let us analyze the action (2.16) in some more detail to leading order in h. To this order, the
integration over the auxiliary fields is easy to perform. They appear purely quadratically in
the Yang-Mills action (see (2.11)), and thus their field equation is K = O(h). We can thus
effectively set them to zero in the leading order deformed action. The computation of the
superspace integral in (2.16) is technical but straightforward. Alternatively, to this order in
h, we can just as well evaluate (2.20). Either way, the resulting Lagrangian density takes
the form

L(gYM, h) = 1
g2
YM
LYM + h

[
O8 + O7

`
+ . . .+ O4

`4

]
+O(h2) , (2.23)

where, as we have already argued above, the operators On can be identified with components
of dimension n operators occurring in the 105 supermultiplet. Recall that these components
necessarily are singlets of the tangent space symmetry subgroup SO(3) ⊂ SO(3, 1) and
of the R-symmetry subgroup SO(4)R ×U(1)J . The former requirement implies that the
operator of which we are considering particular components has Lorentz spins j1 = j2.

For example, O8 is the top-component of the multiplet. Considering for simplicity only
the leading term in gYM, we find

O8 = Tr
[
FmnF

npFpqF
qm − 1

4(FmnFnm)2 + 4
(
FmpF

np − 1
4FpqF

pqδnm

)
DmΦIDnΦI

− (DmΦI)(DmΦI)(DnΦJ)(DnΦJ) + 2(DmΦI)(DmΦJ)(DnΦI)(DnΦJ)
+ (terms with fermions)
+ (total derivatives and terms proportional to field equations)

+O(gYM)
]

(2.24)

Note that the equations of motion contain terms of higher order in both h and `−1. The
former are part of the O(h2) corrections in (2.23), while the latter (at order h0) have
additional terms at order `−2. The result in (2.24) is precisely the leading term of the
N = 4 supersymmetric DBI action, see for example equation (4.28) of [14]. More generally,
one may be tempted to speculate that the `→∞ limit of the complete action S(gYM, h) is
the full flat-space non-abelian DBI action. However, as was also the case for the all-order
DBI-deformation in [39], there is no compelling reason for such a speculation — one needs
a principle to fix D-term ambiguities.

To identify the operator O7, capturing the `−1-correction, we first recall that the
Q3Q̃3 descendant of the 105 supermultiplet is a dimension seven operator that transforms

7More in detail, the operator is given by εαβεα̇β̇S
(I
α S

J )
β S̃α̇(KS̃

β̇
L)O8(0), where I,J , . . . are SU(4)R indices,

and further symmetrizations are needed to produce the representation 84 and to avoid the occurrence of
special conformal generators. The singlet under SU(3)× U(1) is simply εαβεα̇β̇S4

αS
4
βS̃

α̇
4 S̃

β̇
4O8(0). Acting on

this expression with any of the charges S̃γ̇I=1,2,3 or SI=1,2,3
γ clearly does not vanish: they can be anticommuted

through the S’s with impunity, but act nontrivially on O8.
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operator desc dim (j1, j2) SU(4) rep

O(0)
4 ∼ Tr Φ4 − 4 (0, 0) (0, 4, 0) = 105
O(3)

2 ∼ Trλλ̃Φ2 QQ̃ 5 (1
2 ,

1
2) (1, 2, 1) = 175

O(9)
2 ∼ TrF+F−Φ2 Q2Q̃2 6 (1, 1) (0, 2, 0) = 20′

O(12)
0 ∼ Trλλλ̃λ̃ Q2Q̃2 6 (0, 0) (2, 0, 2) = 84
O(17)

0 ∼ TrF+F−λλ̃ Q3Q̃3 7 (1
2 ,

1
2) (1, 0, 1) = 15

O(20)
0 ∼ TrF 2

+F
2
− Q4Q̃4 8 (0, 0) (0, 0, 0) = 1

Table 1. Operators in 105 supermultiplet with bonus symmetry quantum number Y = 0 and
rotational quantum numbers j1 = j2.

as a spatial vector and in the adjoint representation of the SU(4)R symmetry. See, for
example, entry O(17)

0 of table 1 of [40], the relevant part of which we reproduce in table 1.
Note that our setup guarantees that the Y -symmetry quantum number is zero for all On.
The operator O7 can now be recognized (up to total derivatives and terms proportional
to equations of motion) as the component that is a singlet of SO(3) ⊂ SO(3, 1) and
SO(4)R ×U(1)J ⊂ SU(4)R.

This type of analysis can be continued. The operator O6 is a particular linear combina-
tion of the Q2Q̃2 descendants in the 105 supermultiplet that contain singlets under the
decomposition into the preserved spatial and R-symmetry group. There are two candidates,
namely, in the notation of table 1 of [40], O(12)

0 , which transforms as a spatial singlet in the
84 of SU(4)R, and O(9)

2 , which is a spatial symmetric traceless tensor that transforms in
the 20′ of SU(4)R. Similarly, O5 is given by the appropriate component of O(3)

2 . Finally,
we arrive at O4, which can only be the unique singlet of the 105 representation under
SO(4)R ×U(1)J and was reported in (2.22) already.

3 Spectral problem and spin chains

When quantizing a relativistic theory on S3 × R, we can regard the time translation
generator H as an operator acting on the Hilbert space of states on S3. In the absence of
the deformation, this corresponds to the standard dilatation operator and time translations
on the cylinder are equivalent to dilatations on R4. Nevertheless, time translations on
the cylinder remain a symmetry even when the irrelevant deformation is turned on and
therefore it is a physically meaningful question to enquire about the spectrum of H. This is
the problem we will be addressing in this section.

The main difficulty is to resolve the mixing of states under renormalization. The large N
limit simplifies the analysis in that it automatically establishes the standard parametrically
large suppression of the mixing of single with multiple traces. By single and multiple-trace
states, we mean the states that correspond to single and multiple-trace operators respectively
under the state-operator map when the irrelevant is turned off and we get back to the
original conformal N = 4 SYM. From now on we will consider only the single trace sector
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and define the corresponding states as

|χ1 . . . χL〉
state-operator map←−−−−−−−−−−→ Tr (χ1 . . . χL) when h = 0 , (3.1)

for a given set of elementary fields {χ1, . . . , χm}.

3.1 Dispersion relation and two-body S-matrix

One of the most appealing properties of the deformation under study is its underlying
psu(2|2)× psu(2|2)nR2 symmetry algebra. Both psu(2|2) copies share the common central
extension H − J where H and J are the time-translation and the u(1)J generators,
respectively. As in [32], we enlarge the algebra by two additional unphysical central
charges which allow for nontrivial representations of psu(2|2) depending on a free continuous
parameter related to the coupling constants. It turns out that this triply extended symmetry
by itself is sufficiently constraining to guarantee a number of nonperturbative properties in
the spectrum, some of those are required for integrability as we will see below.

To make the symmetry manifest, it is customary to write the elementary fields trans-
forming in the bifundamental of psu(2|2)2 in the following form,

{Φaȧ,Ψa
α̇,Ψα

ȧ,Dαα̇}, a, ȧ = 1, 2 and α, α̇ = ± , (3.2)

where dotted and undotted indices belong to a fundamental representation of each copy of
psu(2|2), respectively. These are the excitations or magnons to be inserted on top of the
vacuum state. The vacuum state is in turn constructed out of the U(1)J charged field Z as

|ZJ〉 . (3.3)

Contrary to the N = 4 SYM case, the magnons are not Goldstones as this vacuum does
not break any global symmetry: the U(1)J group is singled out from the get-go. We will
be considering infinite chains where the charge J is taken to be larger than the range of the
interactions (perturbatively the range of the interactions is finite at a given loop order),
but nevertheless the states are required to be periodic.

Spin chains which contain a centrally extended psu(2|2) symmetry are rather special as
shown in [32], in that the single and double excitation dynamics is strongly constrained.
For example, we can run precisely the same arguments to show that the energy of a single
magnon is fixed to be

E(p)− J = 1
2

√
1 + 16α(g2, h/`4) sin2

(
p

2

)
, (3.4)

where α(g2, h/`4) is an unfixed function of the coupling constants and p is the magnon
momenta which is quantized from the periodicity condition. As a consequence, we observe
that the excitations remain massless despite not being interpreted as Goldstone particles.
Another important direct consequence of this symmetry concerns the two-body scattering
matrix. Up to a global phase and coupling redefinition, the S-matrix is otherwise fixed and
its explicit expression can be found in [32]. It turns out to be a solution of the Yang-Baxter
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equation and although this fact per se is not a sufficient condition for the integrability of the
model, it is nevertheless a good hint. In order to probe integrability, we have to determine
the Hamiltonian itself and investigate whether it is a conserved charge in involution with a
larger set of commuting charges. This is will be the goal of the next section.

3.2 Perturbative su(2|2) n R Hamiltonian

In the large N limit, the problem of determining the Hamiltonian on S3 × R is technically
analogous to the one of determining the dilatation operator in planar N = 4 SYM. We will
be looking at the particular su(2|2) nR closed subsector, whose field content is

φa ≡ Φa1̇ , ψα ≡ Ψα
1̇ , Z , (3.5)

where a = 1, 2 and α = ± . The generators of su(2|2)nR satisfy the following commutation
relations

{Q†aα,Qbβ} = δba Lαβ + δβαRab + 1
2δ

b
a δ

β
α (H−J ) (3.6)

{Qaα,Qbβ} = εab εαβ P , {Q†aα,Q
†
bβ} = εab εαβ K (3.7)

[Rab,Gc] = −δca Gb + 1
2 δ

b
a Gc , [Rab,Gc] = δbc Ga −

1
2 δ

b
a Gc (3.8)

[Lαβ ,Gγ ] = δγα Gβ −
1
2 δ

β
α Gγ , [Lαβ ,Gγ ] = −δβγ Gβ + 1

2 δ
β
α Gγ (3.9)

[H−J ,Qaβ ] = [H−J ,Q†bα] = 0 , (3.10)

where J is the u(1)J generator and H is the time translation generator, the two extended
central charges (besides H−J ) are P and K, and G is a generic generator with an su(2)α
or su(2)a index. This sector is the counterpart of the maximally compact subsector su(2|3)
of N = 4 SYM upon identifying Z with φ3, except that now the symmetry is smaller. We
are interested in studying what are the consequences of this symmetry on the perturbative
form of the Hamiltonian H.

Our deformation is hermitian and preserves the spin chain parity. Parity is related to
the following Z2 transformation of the SU(N) generators

TAB → −TBA . (3.11)

Consequently, we can define a parity operator P that acts on a state as defined in (3.1), as

P |χ1 . . . χm〉 = (−1)m+nf (nf+1)/2|χ1 . . . χm〉 (3.12)

with nf being the number of fermions in the state. The action (2.16) can be verified to
be invariant under this symmetry8 and hence we expect the Hamiltonian to inherit this
property, namely

[P,H] = 0 . (3.13)
8The effect of the parity operation amounts to inverting the order of the fields within a trace and

introducing a minus sign if the number of fields is odd. Since the action is quartic and fully symmetric under
the permutation of the fields, it remains invariant.
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We assume that under the RG flow this classical symmetry is preserved and we will impose
parity symmetry at every order in the perturbative expansion.

We will now follow closely the strategy outlined in [37]: in short, we allow for quantum
corrections to the symmetry generators and impose that order by order in the loop expansion,
the algebraic relations (3.6) are preserved. Compatibility with the algebra will then impose
constraints on these corrections.

A practical way of parametrizing the invariant tensor structures from which the
generators are made of is by means of the symbols introduced in [37],

{A1...An
B1...Bm

}
(3.14)

which act on a spin chain state by replacing the sequence of fields A1 . . . An by the sequence
B1 . . . Bm, or kill the state in case such sequence does not show up (see [37] for more details).
A generic generator G admits an expansion in standard perturbation theory

G(α) =
∑
m=0

κmGm, (3.15)

where the parameter κ is related to the coupling constants of the theory as we now explain.
Generically, we will have a double expansion in g2 and h but we now argue that they are
on the same footing and therefore a term of order O(g2j(h/`4)i = O(κj+i) contributes
to the j + i loop order in the perturbative expansion. Recall that the classical off-shell
Lagrangian (2.11) includes seven auxiliary bosonic scalar fields K l, which have to be
integrated out and this will produce higher order terms in the coupling h/`4. These fields
appear quadratically in the original Super Yang-Mills action in the form

Loff-shellYM = Tr
(
· · · −K µ̂Kµ̂ −KjKj

)
, (3.16)

and at the leading order in the deformation h/`4, all fields appear quartically including the
auxiliary ones as can be explicitly checked in the example (2.24). This means that their
equations of motion will be schematically of the form

K = hX3 + . . . (3.17)

where X can be any of the fields. This in turn has the consequence that a term of order j
in the coupling h will contain a vertex with at most 2j + 2 elementary fields. For example,
for j = 2, the term in front of h2 contains sextic scalar vertices.

The range of planar interactions from such new vertices is then the same as in the
original N = 4 SYM, see figure 1 for an example. We then conclude that, as in N = 4
SYM, the symbols (3.14) should contain at most k + 2 fields at order k in the expansion in
the coupling κ, see (3.15).
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∼ 𝒪(α2ℓ) ∼ 𝒪(α2ℓ)…

2ℓ quartic vertices ℓ sextic vertices

…

Figure 1. The left graphs contains 2` quartic vertices (hence it can appear at least at 2` loops in
the gauge theory) and has range 2`+ 1. The graph on the right contains ` sextic vertices but has
the same range and it appears at the same loop order as the left graph.

3.2.1 Leading order

At leading order, the most general ansatz for all generators compatible with su(2)a ×
su(2)α × u(1)J symmetry is

Rba = c1
{a
b

}
+ c2δ

a
b

{c
c

}
Lβα = c3

{α
β

}
+ c4δ

α
β

{γ
γ

}
Qaα = c5

{a
α

}
Q†aα = c6

{α
a

}
H0 = c7

{a
a

}
+ c8

{α
α

}
+ c9

{Z
Z

}
J = c10

{Z
Z

}
+ c11

{α
α

}
.

(3.18)

The only nontrivial solution that realizes the algebra is given by

c1 = c3 = c7 = 1, c2 = c4 = −c11 = −1
2 , c6 = e−iβ1 = 1

c5
, c8 = 3

2 , c10 = c9 = eiδ1 .

(3.19)
The unfixed parameters β1 and δ1 are simply a manifestation of the similarity transformations
that can be performed on the generators G(α) without affecting the algebra. They can be
interpreted as the freedom in rescaling the normalization of the bosonic and fermionic fields.
From now on, we will fix the constant δ1 = 0 and leave β1 arbitrary.

3.2.2 Higher orders

Ultimately we will be interested in determining the spectrum of the Hamiltonian. A
useful observation, largely explored in [37, 41], is that one can always perform a similarity
transformation H(α)→ U(α)H(α) U(α)−1, such that H(α) can be diagonalized on a basis
with definite classical energy. In other words, in such a basis we have [H(α),H0] = 0,
regardless of the field theory being conformal or not. This means that the mixing problem
is significantly simplified because the classical energy E0 is preserved in the transitions
induced by H(α).
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Using this observation, it is immediate to write at one-loop the most general structure
of H2 compatible with the symmetries and conservation of classical energy,

H2 = d1
{ab
ab

}
+ d2

{aβ
aβ

}
+ d′2

{αb
αb

}
+ d3

{αβ
αβ

}
+ d4

{ab
ba

}
+ d5

{aβ
βa

}
+ d′5

{αb
bα

}
+ d6

{αβ
βα

}
+ d00

{ZZ
ZZ

}
+ d01

{Zβ
Zβ

}
+ d02

{βZ
βZ

}
+ d03

{βZ
Zβ

}
+ d04

{Zβ
βZ

}
+ d05

{Zb
Zb

}
+ d06

{bZ
bZ

}
+ d07

{Zb
bZ

}
+ d08

{bZ
Zb

}
.

(3.20)

Imposing parity invariance gives 6 constraints,

d′2 = d2, d′5 = d5, d02 = d01, d04 = d03, d06 = d05, d08 = d07 (3.21)

which leaves 11 parameters to be fixed. Out of those, 10 turn out to be fixed by imposing
the algebraic relations up to third order leaving one single overall constant d1 ≡ α2

1, which
can be interpreted as the freedom of redefining the coupling and cannot be settled through
this algebraic procedure. The resulting Hamiltonian at this order is then given by

H2 = α2
1

({ab
ab

}
+
{aβ
aβ

}
+
{αb
αb

}
+
{αβ
αβ

}
−
{ab
ba

}
−
{aβ
βa

}
−
{αb
bα

}
+
{αβ
βα

}
+
{Zβ
Zβ

}
+
{βZ
βZ

}
+
{Zb
Zb

}
+
{bZ
bZ

}
−
{Zβ
βZ

}
−
{Zb
bZ

}
−
{bZ
Zb

}
−
{βZ
Zβ

})
.

(3.22)

We then conclude that at first order the symmetry gets enhanced and we get back to the
su(2|3) Hamiltonian of N = 4 SYM up to the coupling definition. This means at this order
in this particular subsector the theory is integrable.

We can proceed to higher loops in a systematic way: at each order, the generators are
made out of linear combinations of the structures in (3.14) that preserve the classical energy
as well as the R-charge, and the number of fields involved should be compatible with the
loop order as discussed in section 3.2. Then imposing parity, hermiticity and closure of the
algebra puts constraints on the allowed space of parameters. Upon eliminating additional
unphysical parameters related to similarity transformations, we find for the perturbative
corrections to the time translation generator H up to order α4 (see appendix F for some
more details):

H0 =
{a
a

}
+ 3

2
{α
α

}
+
{Z
Z

}
(3.23)

H2 =α2
1

({ab
ab

}
+
{aβ
aβ

}
+
{αb
αb

}
+
{αβ
αβ

}
−
{ab
ba

}
−
{aβ
βa

}
−
{αb
bα

}
+
{αβ
βα

}
+
{Zβ
Zβ

}
+
{βZ
βZ

}
+
{Zb
Zb

}
+
{bZ
bZ

}
−
{Zβ
βZ

}
−
{Zb
bZ

}
−
{bZ
Zb

}
−
{βZ
Zβ

})
(3.24)

H3 = α3
1 e
iβ2
√

2
εabεαβ

{ αβ
Zab

}
+ α3

1e
iβ2
√

2
εabεαβ

{ αβ
abZ

}
+ α3

1e
−iβ2
√

2
εabεα,β

{aZb
αβ

}
− α3

1e
iβ2
√

2
εabεα,β

{ αβ
aZb

}
− α3

1e
−iβ2
√

2
εabεα,β

{Zab
αβ

}
− α3

1e
−iβ2
√

2
εabεα,β

{abZ
αβ

}
(3.25)
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H4 =
(
−2α4

1+2α3α1−α2
){abc

abc

}
+
(

3α4
1

2 −α1α3

)
(
{abc
acb

}
+
{abc
bac

}
)+
(
−2α4

1+2α3α1−4α2
){aZc

aZc

}
−4α2

{aZc
cZa

}
+
(
α4

1
2 +2α3α1−6α2

){aβc
aβc

}
+
(
−3

2α
4
1+α3α1−

3α2

2

)
(
{abZ
aZb

}
+
{aZc
acZ

}
+
{aZc
Zac

}
+
{Zbc
bZc

}
)

+
(
α4

1
2 + α2

2

)
(
{abZ
bZa

}
+
{aZc
caZ

}
+
{aZc
Zca

}
+
{Zbc
cZb

}
)+
(
2α1α3−2α4

1

)
(
{abZ
abZ

}
+
{Zbc
Zbc

}
)

+
(

3α4
1

2 −α3α1+2α2

)
(
{abZ
baZ

}
+
{Zbc
Zcb

}
)+
(
−2α4

1+2α3α1+α2
){ZbZ

ZbZ

}
+
(
α1α3−

α4
1

2

)
(
{aZZ
aZZ

}
+
{ZZc
ZZc

}
)

+ α4
1

2 (
{aZZ
ZZa

}
+
{Zbγ
γbZ

}
+
{ZZc
cZZ

}
+
{ZZγ
γZZ

}
)+
(
α4

1
2 +2α3α1−2α2

)
(
{aβZ
aβZ

}
+
{Zβc
Zβc

}
)+
(
α4

1
2 +2α3α1+α2

){ZβZ
ZβZ

}
+
(
−5

4α
4
1+α3α1−α2

)
(
{abγ
aγb

}
+
{aβc
acβ

}
+
{aβc
βac

}
+
{αbc
bαc

}
)+
(
α2−

α4
1

2

)
(
{abγ
γba

}
+
{αbc
cbα

}
)

+
(

2α1α3−
11α4

1
4

)
(
{abγ
abγ

}
+
{αbc
αbc

}
)+
(
−5

4α
4
1+α3α1−2α2

)
(
{aβZ
βaZ

}
+
{Zbγ
Zγb

}
+
{Zβc
Zcβ

}
+
{αbZ
bαZ

}
)

+
(
α4

1
4 −α2

)
(
{aβZ
Zaβ

}
+
{Zbγ
bγZ

}
+
{Zβc
βcZ

}
+
{αbZ
Zαb

}
)+
(
−11

4 α
4
1+2α3α1+2α2

)
(
{Zbγ
Zbγ

}
+
{αbZ
αbZ

}
)

+
(
−α4

1+α3α1−α2
)

(
{abγ
baγ

}
+
{aβγ
βaγ

}
+
{αbc
αcb

}
+
{αbγ
bαγ

}
)− α4

1
4 (
{abγ
bγa

}
+
{aβc
caβ

}
+
{aβc
βca

}
+
{aβγ
γaβ

}
+
{αbc
cαb

}
+
{αbγ
bγα

}
)

+
(
−4α4

1+2α3α1+2α2
){αbγ

αbγ

}
+
(
α4

1
2 −α2

)
(
{abc
bca

}
+
{abc
cab

}
+
{abZ
Zab

}
+
{Zbc
bcZ

}
+
{αbγ
γbα

}
)

+
(
−α

4
1

2 −4α2

)
(
{aZγ
γZa

}
+
{αZc
cZα

}
)+
(
α2

2

)
(
{aZγ
γaZ

}
+
{Zbγ
γZb

}
+
{αbZ
bZα

}
+
{αZc
Zcα

}
)

+
(
−5

4α
4
1+α3α1−

3α2

2

)
(
{aZγ
aγZ

}
+
{aβZ
aZβ

}
+
{Zβc
βZc

}
+
{αZc
Zαc

}
)+
(
−11

4 α
4
1+2α3α1−4α2

)
(
{aZγ
aZγ

}
+
{αZc
αZc

}
)

− α4
1

2 (
{αbZ
Zbα

}
+
{αZZ
ZZα

}
)+
(
α4

1−α1α3
)

(
{aZZ
ZaZ

}
+
{ZbZ
bZZ

}
+
{ZbZ
ZZb

}
+
{ZZc
ZcZ

}
+
{ZZγ
ZγZ

}
+
{ZβZ
ZZβ

}
+
{ZβZ
βZZ

}
+
{αZZ
ZαZ

}
)

+
(
α1α3−

7α4
1

4

)
(
{ZZγ
ZZγ

}
+
{αZZ
αZZ

}
)+
(
−α

4
1

4 −
α2

2

)
(
{aZγ
Zγa

}
+
{aβZ
βZa

}
+
{Zβc
cZβ

}
+
{Zβγ
γZβ

}
+
{αZc
cαZ

}
+
{αZγ
Zγα

}
)

+
(
−4α4

1+2α3α1−4α2
){αZγ

αZγ

}
+
(
α4

1
2 +4α2

){αZγ
γZα

}
−α2(

{aβγ
γβa

}
+
{αβc
cβα

}
)+
(
α4

1−α3α1+α2
)

(
{αbγ
αγb

}
+
{αβc
αcβ

}
)

+(2α1α3−4α2)(
{aβγ
aβγ

}
+
{αβc
αβc

}
)+ α4

1
4 (
{αbγ
γαb

}
+
{αβc
βcα

}
)+
(
−7

4α
4
1+α3α1−α2

)
(
{aβγ
aγβ

}
+
{αβc
βαc

}
)

+α2(
{aβc
cβa

}
+
{Zβγ
βγZ

}
+
{αβZ
Zαβ

}
)

+
(
α4

1−α3α1+ 3α2

2

)
(
{aZγ
Zaγ

}
+
{Zbγ
bZγ

}
+
{Zβγ
βZγ

}
+
{αbZ
αZb

}
+
{αZc
αcZ

}
+
{αZγ
Zαγ

}
+
{αZγ
αγZ

}
+
{αβZ
αZβ

}
)

+2α1α3(
{Zβγ
Zβγ

}
+
{αβZ
αβZ

}
)+
(
α4

1
4 + α2

2

)
(
{αZγ
γαZ

}
+
{αβZ
βZα

}
)+
(
−7

4α
4
1+α3α1−2α2

)
(
{Zβγ
Zγβ

}
+
{αβZ
βαZ

}
)

+
(

2α1α3−
α4

1
2

){αβγ
αβγ

}
+
(
−7

4α
4
1+α3α1−3α2

)
(
{αβγ
αγβ

}
+
{αβγ
βαγ

}
)+2α2(

{αβγ
βγα

}
+
{αβγ
γαβ

}
)−3α2

{αβγ
γβα

}
(3.26)

Similarly, for the perturbative corrections to the SUSY generators Q and S up to order α2,
we find

(Q0)aα = eiβ1
{a
α

}
(3.27)

(Q1)aα = α1e
iβ1+iβ2
√

2
εabεαβ

{ β
bZ

}
− α1e

iβ1+iβ2
√

2
εabεαβ

{ β
Zb

}
(3.28)

(Q2)aα =−α
2
1

4 e
iβ1
({Za

Zα

}
+
{Za
αZ

}
+
{aZ
Zα

}
−
{aZ
αZ

}
−
{aβ
βα

}
+
{βa
αβ

}
+
{ab
bα

}
−
{ab
αb

}
−
{ba
bα

}
+
{ba
αb

})
(3.29)(

Q†0
)
aα

= e−iβ1
{α
a

}
(3.30)(

Q†1
)
aα

= α1e
−iβ1−iβ2
√

2
εabε

αβ{bZ
β

}
− α1e

−iβ1−iβ2
√

2
εabε

αβ{Zb
β

}
(3.31)(

Q†2
)
aα

=−α
2
1

4 e
−iβ1

({Zα
Za

}
+
{αZ
Za

}
+
{Zα
aZ

}
−
{αZ
aZ

}
−
{βα
aβ

}
+
{αβ
βa

}
+
{bα
ab

}
−
{αb
ab

}
−
{bα
ba

}
+
{αb
ba

})
(3.32)
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The outcome of this analysis is the appearance of a new parameter α2 when compared to
the su(2|3) case. When this parameter is zero, we recover precisely the two loop Hamiltonian
of [37] in the basis where all the unphysical parameters there are set to zero. The two other
unfixed parameters α1 and α3 are associated to coupling redefinition which is of course a
symmetry of the algebra: an inspection of the above two-loop Hamiltonian shows that the
terms in front of α3 are proportional to H2,

H4 = H4
∣∣
α3=0 + 2α1α3H2 . (3.33)

This can then be interpreted as the freedom of redefining the coupling constant as
α1κ→ α1κ+ α3κ

3. We need to resort to some additional input to fix them. Here we
will use the all-loop dispersion relation or, equivalently, the central extensions of the algebra
not considered so far and we will see that in fact the parameter α2 will be fixed while the
remaining α1 and α3 are left free.

3.3 Dispersion relation

We have not yet made use of the two additional central extensions of the algebra besides
H. A shortcut to impose the constraints that follow from the additional central extensions
is to consider the magnon dispersion relation. As we have briefly described before, the
fully centrally extended algebra fixes the form of the all-loop dispersion relation up to
the precise definition of the coupling constant. Here, we will compute the perturbative
dispersion relation obtained from the previous Hamiltonian and match it with the all-loop
prediction (3.4) in order to impose further constraints on the remaining unfixed parameters
α1,2,3. We consider a single-magnon state,

|φa(p)〉 ≡
L∑
n=1

eipn |Z . . . φa
nth site

. . . Z〉 (3.34)

and a straightforward computation shows that the corresponding energy is given by

E(p) =
(
−4κ2α2

1 + 8κ4α1α3
)

sin2
(
p

2

)
+ κ4α2 − 8κ4α4

1 sin4
(
p

2

)
. (3.35)

Comparison with the expansion of (3.4) sets

α2 = 0 . (3.36)

On the other hand, as we have observed above, α1,3 are associated to the precise definition
of the coupling constant which cannot be fixed by any of these methods. The upshot of
this analysis is that, as in the one-loop case, we get an enhancement of symmetry leading
to the integrable su(2|3) spin chain.

3.4 Long-range spin chains

We have shown that the su(2|2) n R symmetry uniquely fixes the form of the planar
time-translation generator to be the same as the integrable planar N = 4 SYM dilatation
operator up to two loops, apart from the definition of the coupling constant. A natural
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question is whether there exists integrable su(2|2) n R long range spin chains which are
truly distinct from the planar N = 4 SYM one and if so, how large is the corresponding
moduli. Clearly the procedure we have employed up to two loops can only take us so far.
Nevertheless, we can systematically address this problem in a smaller and more tractable
closed subsector. The simplest is the u(1) sector composed of the elementary fields Z and
φ1 which corresponds to an XXZ spin chain. Fortunately, such case has been studied in [42].
It was found that there is a large class of long-range XXZ spin chains whose moduli can be
compactly encoded in the Bethe ansatz equations for N magnons,

exp(ip(uk)L) = exp(iφL)
N∏
i 6=k

exp (−2iθ(uk, ui))
sinh ~(uk − ui + i)
sinh ~(uk − ui − i)

, (3.37)

where the momentum is defined in terms of the rapidity u as

p(u) = 1
i

log
(sinh ~(u+ i/2)

sinh ~(u− i/2)

)
+
∞∑
r=2

γr qr(uk) (3.38)

and qr(u) are the higher conserved charges given by

qr(u) = qNN
r (u) +

∞∑
s=r+1

γr,s q
NN
s (u) . (3.39)

In this expression, qNN
r (u) are the standard higher conserved charges of the nearest-neighbor

XXZ spin chain

qNN
r (u) = 1

(r − 1)!
dr−2

dur−2

 i~
tanh

(
~
(
u+ i

2

)) − i~
tanh

(
~
(
u− i

2

))
 . (3.40)

Finally, the dressing phase θ is given by

θ(uk, ui) =
∞∑

s>r=2
βr,s (qr(uk)qs(ui)− qs(uk)qr(ui)) +

∞∑
r=2

ηr (qr(uk)− qr(ui)) , (3.41)

where the parameters ~, φ, γr, γr,s, βr,s, ηr generally admit an expansion in the coupling
constants. Different choices of these parameters correspond to different integrable models.
We note that embedding these spin chains in a larger su(2|2) symmetry forces ~ = φ = 0
to all orders by comparison with the restriction of the full S-matrix to the u(1) subsector.
Invariance under the centrally extended su(2|2)nR2 fixes the relation between the momentum
p and the rapidity u through the Zhukovski variable x(u),

p(u) = 1
i

log x(u+ i/2)
x(u− i/2) , where x(u) + α(g2, h/`4)

2x(u) = u . (3.42)

This relation sets γ2r = 0 while the remaining γ2r+1 can be trivially fixed by matching (3.38)
with (3.42). Analogously, [42] shows that the coefficients γr,s are related to the variable
x(u) by

1
x(u)r−1 =

∞∑
s=r

γr,s
r − 1
s− 1

1
us−1 (3.43)
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∼ 𝒪(α3) ∼ 𝒪(α2)

Figure 2. The left graph illustrates an example of a range three interaction involving three
permutations that might appear at three loop order in a gauge theory with at most quartic vertices.
On the right graph, the same range three interaction might appear at a lower order in perturbation
theory for a gauge theory containing sextic vertices.

which can be used to fix γr,s. In particular, γr,s = 0 for |r − s| odd. Requiring a parity
invariant Hamiltonian also enforces βr,s = 0 for even r + s and η2r = 0.9

Furthermore, we should impose compatibility with planar Feynman diagrams. Each
structure in the Hamiltonian should be consistent with the planar graphs which originates
them: at a given fixed loop order, planar graphs have a maximal range and number of
interactions, and the corresponding spin chain tensor structures must do so as well. The
coefficient βr,s leads to interactions of range s+ 1 and generally may arise at order O(κs−1).
In the case of N = 4 SYM, it was argued that consistency with the gauge theory vertices
delays the appearance of such deformation parameters to O(κr+s−2). In our theory, the
existence of vertices with 2r legs at r − 1 loop order allows for the appearance of these
coefficients at order

βr,s = O(κs−1) , (3.44)

see figure 2 for an example. From the analysis of [42], the parameters ηr may arise at order
O(κr−1) and are associated to deformations of range r + 1. For example, it is shown that
the first of such parameters, η2, arises in front of the following range three structures on
the spin chain

σ− ⊗ 1⊗ σ+ and σ+ ⊗ 1⊗ σ− . (3.45)

These structures could have been generated from a sextic vertex of two loop order, which
means that the starting order of these deformations are compatible with the vertices of the
gauge theory under study.10 Our explicit two-loop computation of the Hamiltonian shows
nevertheless that ηr = 0 at order κ. Beyond this order, there may exist corrections.

A further restriction on the long-range spin chain Hamiltonian comes from crossing
symmetry. In integrable models, this property is often used to constraint the S-matrix
dressing factor θ. In our case, we will consider the same decomposition of the phase as in
N = 4 SYM [43],

θ = χ(x+, y−)− χ(x+, y+)− χ(x−, y−) + χ(x−, y+) , (3.46)
9This can be seen from the following: at the level of the spin chain, parity conjugation acts by sending

the roots uk → −uk; these conditions are then required to ensure invariance of the Bethe equations.
10Recall that if a deformation parameter appearing in the Bethe equations is of order κr then it must

appear on the gauge theory Hamiltonian at r + 1-loop order.
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where χ(x, y) is an antisymmetric function, χ(x, y) = −χ(y, x). Compatibility with (3.41),
requires that χ should admit an expansion for large x and y of the form

χ(u, v) =
∞∑

r,s=1

cr,s
xrys

+
∑
r=1

br

((y + 1/y)
xr

− (x+ 1/x)
yr

)
, (3.47)

where cr,s and br are related to the parameters βr,s and ηr in (3.41). Being a function
of the Zhukovski variables x as in (3.42), we expect to find an analogous type of branch
cut structure as in N = 4 SYM and therefore, crossing symmetry must be implemented
similarly. The crossing equation [44, 45] must then hold,

χ(x, 1/y) + χ(1/x, y) + χ(1/x, 1/y) + χ(x, y) = 1
i

log Γ(1 + iu− iv)
Γ(1− iu+ iv) , (3.48)

which can be regarded as a Riemann-Hilbert problem for the function χ. Solving this
equation requires specifying the analytic properties and asymptotic conditions of the function
χ. It is precisely in this last point where we expect a deviation from the N = 4 SYM
solution. In that case, the asymptotic limit x → ∞ is expected to render χ(x, y) to a
constant in such a way that the phase θ trivializes. This is so as scattering with zero
momentum particles is expected to be trivial given their interpretation as a global symmetry
transformation of a state with finite momentum excitations. In our context, the global
symmetry is broken and hence the scattering with zero momentum particles is not expected
to be immaterial. Instead, we already see from (3.41) that the second term does not become
trivial as one of the rapidities, say uk, is sent to infinity. Therefore one possibility is to
consider solutions of the crossing equation of the form

χ(u, v) = χ0(u, v) +
(
y + 1

y

)
χ1(u)−

(
x+ 1

x

)
χ1(v) , (3.49)

where χ0 is a solution of (3.48) with the property that limx→∞ χ0(x, y) = constant and
χ1(x) solves the homogeneous equation

χ1(u+ i0) + χ1(u− i0) = 0 , for |u| < 2α(g2, h/`4) . (3.50)

In this way, an expansion of χ0 for large x and y will give rise to the first term of (3.41)
whereas χ1 produces the second term. The equation for χ0 singles out a unique solution
when supplemented with its analytic structure as in N = 4 SYM. The equation (3.50) for
χ1 allows for ample freedom in the choice of the coefficients ηr in (3.41)11 and further input
is needed to fix a particular solution. We then conclude that integrable long-range XXZ
spin chains embedded in crossing invariant theories with larger supersymmetry appear to
leave a large moduli space of parameters.

We close this section by observing that the phase θ as given by (3.41), vanishes for the
scattering of two infinite Bethe roots. Given that 1/2-BPS states are interpreted as Bethe
states with all roots at infinity (for which the corresponding energy vanishes), we then
expect that any integrable deformed theory with this symmetry preserves the same BPS
spectrum as N = 4 SYM despite having a smaller global symmetry. This can be regarded
as a prediction for a putative holographic dual model.

11For example, any function of the form χ1(u) = (g(x)− g(1/x)) (f(x) + f(1/x)) for generic functions
g(x) and f(x) solves (3.50) and thus crossing.
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4 Comment on holography and LLM geometries

Supergravity solutions corresponding to N = 4 SYM on S3 × R have been found by Lin,
Lunin and Maldacena (LLM) [38]. These solutions preserve SO(4) × SO(4) × R bosonic
symmetries and have sixteen supersymmetries, and for this reason they seem to provide a
natural setting for an holographic description of the irrelevant deformation studied here.
Let us briefly review them.

These solutions can be uniquely classified by bi-coloring a certain plane (spanned
by r and ϕ below) into black and white regions. This bi-colored plane is the result of
demanding regularity of the background metric. This enforces a certain function entering the
supergravity solution to take only two possible discrete values in this plane, or equivalently,
to make a choice of black and white colored regions. To make contact with our deformation,
we will be considering LLM solutions with an additional U(1) symmetry on the plane.
Explicitly, the background metric is given by

ds2 = −2y coshG (dt+Vϕdϕ)2 + 1
2y coshG(dr2 +dy2 + r2dϕ2) +yeGdΩ2

3 +ye−GdΩ̃2
3 (4.1)

where the function G and Vϕ depend only on the radial coordinate r on the plane (due to
rotational invariance) and y. They take the following form

1
2 tanhG(r, y) ≡ z(r, y) = 1

2 +
p∑
k

(−1)k+1

 r2 − r2
k + y2

2
√

(r2 + r2
i + y2)2 − 4r2r2

k

− 1
2


Vϕ(r, y) =

p∑
k

(−1)k
 r2 + r2

k + y2

2
√

(r2 + r2
i + y2)2 − 4r2r2

k

− 1
2

 ,
(4.2)

with rk > rk+1. For y = 0, z(r, 0) indeed can only take two values ±1
2 and therefore this

plane is characterized by a set of p concentric rings with colors alternating in black and
white depending on the value of z. The simplest of these configurations is a single black
disk (p = 1) and that corresponds to the AdS5 × S5 solution (see figure 3). The radius of
such disk is identified with the radius of AdS (more precisely, r1 = R2

AdS). The next to
simplest case is obtained by setting p = 2 with the resulting picture being a white annulus
on a black background, see figure 3.

The LLM backgrounds can be understood as global coordinates analogs of Coulomb
branch solutions (the near horizon geometries of stacks of parallel D3 branes in asymptotically
flat space), to which they indeed reduce in a suitable limit [38]. As we move from the
boundary to the interior along the radial direction, the effective number of D3 branes (the
effective rank of the gauge group) decreases. From the viewpoint of the theory living on
the boundary of the full space, this is a standard RG flow. A comprehensive analysis of
the standard holographic dictionary for the LLM solutions was presented in [46]. But we
can also imagine describing the flow from the viewpoint of the “interior” effective field
theory with the smaller number of branes. On general grounds, the low-energy EFT will be
of the form described in this paper, i.e. SYM theory perturbed by the leading irrelevant
deformation O8.

– 24 –



J
H
E
P
1
2
(
2
0
2
1
)
1
1
9

r1

(a) (b)

r2r1

Figure 3. (a) LLM picture for the AdS5 × S5 background with the radius r1 identified with the
AdS radius as r1 = R2

AdS. (b) Next-to-simpest LLM geometry with an additional U(1) symmetry.

Focussing on the simplest non-trivial case p = 2, we can form a dimensionless parameter
by considering the ratio of the two radii of the outer and inner circle, r2

2/r
2
1. As this

parameter goes to zero, we recover the AdS5 × S5 solution in analogy to the IR limit of
the irrelevant deformation. It is then tempting to consider this geometry as a potential
candidate for an holographic dual to the irrelevant deformation and identify the ratio of
the radii with the dimensionless combination of the coupling constant and sphere radius `
as follows

r2
2
r2

1
∼ h

`4
. (4.3)

The LLM geometries are however asymptotically AdS and we cannot recover the flat space
asymptotics similar to the D3-brane background. This is a consequence of the deformed
theory being defined on S3 × R rather than in flat space.

The classical integrability properties of the LLM solutions have been investigated
in [47] for the point-like limit of strings in this background.12 The separability of the
equations for massless geodesics was studied and the outcome shows that only the AdS5×S5

background (and its pp-wave limit) can be integrable. Nevertheless, we should remark that
our perturbative analysis was performed for operators with very large R charge, which is
expected to be related to very long strings, far from the point-like limit. In case this LLM
solution is in fact dual to the irrelevant deformation studied here, one logical possibility
to make this result compatible with our findings could be that finite size effects might lead
to the integrability breakdown. An alternative but related scenario, is that one might hope
to find at least some perturbatively closed subsectors that remain integrable while the full
theory is not. We hope to further investigate the relation between LLM and our deformation.

12See also [48] for some tests of integrability on the LLM backgrounds based on the underlying central
extended algebra.
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5 Discussion

In this paper we have studied the leading irrelevant deformation of N = 4 SYM preserving
half of its 32 supercharges on S3 × R. Thanks to an off-shell formalism well suited for the
symmetries of our problem, we have managed to write down the full deformed classical action
in closed form. At the quantum level and in the planar limit, we have studied in conformal
perturbation theory the generator of time translations along the cylinder axis and its
integrability properties. For the su(2|2) nR closed subsector of the theory, purely algebraic
considerations are enough to fully constraint the form of the supersymmetric generators up
to two loops. As an outcome, we have found an enhancement of the symmetries so that the
time-translation generator reduces to the spin chain Hamiltonian of N = 4 SYM. Therefore
this does not settle the question of integrability of the theory, which remains open.

Since the method employed here to probe integrability only involved an extensive
use of the underlying symmetries, one can formulate the more general question of finding
long-range integrable spin chains with psu(2|2)2 nR2 symmetry. At higher orders this is a
highly nontrivial problem and a generalization of the tools developed in [49] for bosonic
spin chains might be a possible route. In particular, two significant differences in our setup
compared to the examples studied there are the dynamic nature of the spin chains (by
this we mean that the spin chain length fluctuates) and the fact that the generators of
the algebra are themselves corrected at quantum level. In particular, the latter makes the
global symmetry not manifest at the level of the Hamiltonian.

On the string theory side of the problem, we have suggested a potential candidate for
a holographic dual of the deformed theory, motivated by the match of symmetries and a
common IR limit: the bubbling geometries of Lin, Lunin and Maldacena. To sharpen this
suggestion, it would be interesting to study the first perturbation in the small parameter
r2

2/r
2
1 of the LLM background around AdS5 × S5 and relate it to the field theory leading

irrelevant operator. More generally, numerous integrable deformations of the AdS5 × S5

sigma model have been thoroughly studied (see for instance [50] for a review). A natural
question is whether one can find among those some further examples which have the same
symmetries studied here and are also type IIB solutions.13

Finally, we would like to mention a natural generalization of our setup, inspired by the
analysis of [46].14 The asymptotically flat D3-brane solution (1.2) can be generalized to any
harmonic function H(xI). Terms that fall-off as r →∞ are associated with the Coulomb
branch of N = 4 SYM. The constant term in H is associated with O8, and the terms that
go as 1/rk with its Kaluza-Klein cousins, of the schematic form O8+k ∼ TrF 4Xk. This
more general setup in flat space has a natural counterpart on S3 × R, where we deform
N = 4 SYM by a general sum of the irrelevant one-half BPS operators O8+k. In order to
preserve 16 supercharges on S3 × R, we need to align the operators in R-symmetry space

13Recently, a new class of integrable deformations of sigma-models has been proposed in [51] for which the
resulting world-sheet S-matrix gets modified only by a CDD factor in line with the analysis of section 3.4.
However, when applied to the AdS5 × S5 example, this modification of the S-matrix seems incompatible
with our perturbative results.

14We thank Kostas Skenderis for asking about this generalization.
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so that they are charged under the same U(1)J ⊂ SO(6)R, which would then be broken by
adding them to the action. The classical action is an immediate generalization of what we
wrote above, with the additional terms corresponding to

∫
d8θTrZ

4+k in our superspace
language. It would be interesting to repeat the spin chain analysis in this more general
case. As the preserved symmetry is smaller, it is conceivable that one might find a genuine
deviation from the N = 4 result already at two loops.
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A Notations and conventions

We realize N = 4 super-Yang-Mills theory in the usual fashion as the trivial dimensional
reduction of ten-dimensional N = 1 SYM on T6. Correspondingly, the ten-dimensional
vielbein indices are subjected to a 4 + 6 split. Additionally, we will separate the latter six
indices into a group of four and a group of two. To keep track of the various ranges the
indices take values in, we use the following notations:

M,N, . . . = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
m,n, . . . = 0, 1, 2, 3
m̂, n̂, . . . = 1, 2, 3
I, J, . . . = 4, 5, 6, 7, 8, 9
i, j, . . . = 4, 5, 6, 7
u, v . . . = 8, 9

The curved-space indices associated with m,n, . . . and m̂, n̂, . . . are denoted by their corre-
sponding Greek letters µ, ν, . . . and µ̂, ν̂, . . .

The vielbein indices M,N, . . . are acted on by SO(1, 9) local Lorentz rotations. This
symmetry groups breaks into SO(1, 3) × SO(6)R upon performing the 4 + 6 split. Here
SO(1, 3) are the standard four-dimensional local Lorentz rotations, while SO(6)R is the
N = 4 R-symmetry. The latter is broken further to SO(4)× SO(2) by the 4 + 2-split. We
denote the generator of so(2) ∼= u(1) as J .

We represent the ten-dimensional gamma-matrices in a guise most natural from the
point of view of the SO(1, 3)× SO(4)× SO(2) ⊂ SO(1, 9) subgroup. Concretely,

Γm = 12 ⊗ 14 ⊗ γm (A.1)
Γi = 12 ⊗ γ̃i−3 ⊗ γ5 (A.2)
Γu = τu−7 ⊗ γ5 ⊗ γ5 . (A.3)
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Here 1d is the d-dimensional unit-matrix, and we used the standard four-dimensional
γ-matrices in (1, 3)-signature, and denoted those in (0, 4) signature as γ̃. Using the standard
Pauli-matrices τ1 = ( 0 1

1 0 ), τ2 =
( 0 −i
i 0

)
, and τ3 =

( 1 0
0 −1

)
, we write them in terms of the

σ-matrices

σ0 = −i12 , σ1 = −iτ1 , σ2 = −iτ2 , σ3 = −iτ3 , σ4 = 12 , (A.4)
σ0 = −i12 , σ1 = +iτ1 , σ2 = +iτ2 , σ3 = +iτ3 , σ4 = 12 , (A.5)

as

γm =
(

0 σm
σm 0

)
, and γ̃i−3 =

(
0 σi−3

σi−3 0

)
. (A.6)

Finally, γ5 = −iγ0γ1γ2γ3 = γ̃1γ̃2γ̃3γ̃4 is the standard four-dimensional chirality matrix. We
endow the σ-matrices with spinor-indices, each taking two values, in the standard manner:

(σm)aȧ , (σm)ȧa , and (σi−3)aȧ , (σi−3)ȧa . (A.7)

As usual, these can be used to trade vector indices with spinorial indices. Here we
notationally distinguished the SU(2)a × SU(2)ȧ ' SO(4)R R-symmetry indices a, ȧ, from
the spatial spinor indices a, ȧ. To avoid clutter, we often omit the subtractions of three
(seven) units of the indices i, j, . . . (u, v, . . .) that keep their values in their standard range.

The ten-dimensional chirality matrix is given by

Γ11 = Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9 = −τ3 ⊗ γ5 ⊗ γ5 . (A.8)

We will be interested in Weyl spinors. The ten-dimensional charge conjugation matrix reads

C10d = iτ2 ⊗ C4d ⊗ C4d , C10d ΓM C−1
10d = −ΓT

M , CT
10d = −C10d , (A.9)

where

C4d = iγ0γ2 = γ̃4γ̃2 , C4d γmC
−1
4d = −γT

m , C4d γ̃iC
−1
4d = −γ̃T

i , CT
4d = −C4d .

(A.10)
The spinors we encounter satisfy the Majorana reality condition:

Ψ = Ψ† iΓ0 = ΨTC10d . (A.11)

The 32-component index of a Dirac spinor Ψ can be decomposed similarly to (A.1)

Ψ
[
s⊗

(
(l)a
(u)ȧ

)
⊗
(

(l)a
(u)ȧ

)]
, (A.12)

where s = ± and (l), (u) indicate a lower or upper position of the index. Note that the
U(1)J generator acts on spinors as

J = − i2Γ89 = 1
2τ3 ⊗ 14 ⊗ 14 , (A.13)
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hence the sign s = ± is (proportional to) the U(1)J charge. In view of the tensor product
structure of the chirality matrix in (A.8), the Weyl condition demands the product of the
chirality of the three factors be of definite sign. Hence we have

components of positive chirality spinor: ψȧ
+a , ψȧ+a , ψ−aa , ψȧȧ

− , (A.14)
components of negative chirality spinor: ψȧ

−a , ψȧ−a , ψ+aa , ψȧȧ
+ . (A.15)

The reality property (A.11) implies that

(ψsaa)∗ = −εst εab εȧḃ ψ
ḃ
tb , (ψȧsa)∗ = −εst εȧḃ εȧḃ ψ

ḃḃ
t . (A.16)

Here ȧ on the right-hand side takes the same numerical value as a on the left-hand side.
Furthermore, the ε-tensors are

εab =
(

0 −1
1 0

)
, εab =

(
0 1
−1 0

)
, (A.17)

and indices are raised and lowered as

va = εabv
b , va = εabvb , (A.18)

and similarly with dotted indices, and for the other kinds of indices.

B N = 4 SYM on S3 × R

Euclidean S3×R is conformally flat, hence, via a Weyl transformation, it is easy to convince
oneself that it supports all 16+16 N = 4 super(conformal) charges, which are the fermionic
generators of the superalgebra psu(4∗|4∗). Next, we can of course Wick rotate along R
without changing the number of preserved supercharges. In other words, we can find 16+16
independent solutions to the conformal Killing spinor equation

Dµε = Γµε̃ , (B.1)

for ε̃ = 1
4ΓµDµε. Here ε is a Majorana-Weyl spinor, which we choose to be of positive

chirality. Furthermore,
Dµε = ∂µε+ 1

4ω
mn
µ Γmnε , (B.2)

where ωmnµ are components of the spin-connection.
Let us describe these solutions explicitly. We take the metric on S3 × R to be

ds2 = −dt2 + `2
(

cos2 ϑdϕ2 + sin2 ϑdχ2 + dϑ2) . (B.3)

The coordinates ϕ, χ are periodic with period 2π and ϑ runs over [0, π/2]. We choose the
vielbein

e0 = dt , e1 = ` cosϑdϕ , e2 = ` sinϑdχ , e3 = `dϑ , (B.4)

and compute

e0 = ∂t , e1 = 1
` cosϑ∂ϕ , e2 = 1

` sinϑ∂χ , e3 = 1
`
∂ϑ . (B.5)
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The nonzero components of the spin-connection are

ω13 = −ω31 = − sin θdϕ , ω23 = −ω32 = cos θdχ . (B.6)

As mentioned above, a convenient way to find the solutions to the Killing spinor
equation (B.1) is to consider the Euclidean flat space solutions, i.e., ε = (ε̂s + xµΓµε̂c), with
constant ε̂s, ε̂c satisfying the appropriate reality and chirality conditions, then to perform
the Weyl map to S3 × R, and finally apply a frame rotation to align the frame with the
one defined in (B.4). Alternatively, we can straightforwardly solve the equation directly
on S3 × R, following, for example, [52]. Either way, the solution can be most conveniently
written in terms of the two-component spinors

κss̃ = 1
2

(
e
i
2 (sχ+s̃ϕ−ss̃ϑ)

−se
i
2 (sχ+s̃ϕ+ss̃ϑ)

)
, for s, s̃ = ±1 , (B.7)

which satisfy
∇µ̂κss̃ = − iss̃2` τµ̂κss̃ . (B.8)

The components of the most general spinor ε solving the Killing spinor equation (B.1) are

εȧ
+a =

∑
sa,s̃a=±1

c(sa,s̃a)
a e

isas̃at
2` (κsas̃a)ȧ , εȧ+a =

∑
sȧ,s̃ȧ=±1

cȧ(sȧ,s̃ȧ) e
− isȧs̃ȧt2` (κsȧs̃ȧ)a (B.9)

ε−aa =
∑

sa,s̃a=±1
d(sa,s̃a)
a e−

isas̃at
2` (κsas̃a)a , εȧȧ

− =
∑

sȧ,s̃ȧ=±1
dȧ(sȧ,s̃ȧ) e

isȧs̃ȧt

2` (κsȧs̃ȧ)ȧ , (B.10)

where the coefficients c(sa,s̃a)
a , d(sa,s̃a)

a , cȧ(sȧ,s̃ȧ) and d
ȧ
(sȧ,s̃ȧ) are complex constants satisfying

reality properties implementing the Majorana constraints in (A.16):

(d(sa,s̃a)
a )∗ = −sa εab c(−sa,−s̃a)

b , (cȧ(sȧ,s̃ȧ))
∗ = sȧ εȧḃ d

ḃ
(−sȧ,−s̃ȧ) . (B.11)

In total, we recover the expected 32 (real) supercharges.
The on-shell transformation rules of the N = 4 vector multiplet can be easily written

down (see, e.g., [36])

δAM = ΨΓMε , (B.12)

δΨ = −1
2FMNΓMNε− 1

2ΦIΓµIDµε . (B.13)

Here AM = (Aµ,ΦI) contains the gauge field Aµ and the standard six scalar fields ΦI , and
Ψ is a Majorana-Weyl fermion of positive chirality, as ε, and thus with components as
in (A.14). All are valued in the adjoint representation of the gauge group, and we take
the generators to be antihermitian. The spinor ε is chosen Grassmann-even, so that δ is
a linear combination of (Grassmann-odd) supercharges, and it satisfies the Killing spinor
equation (B.1). One can verify that

δ2 = LAξ + Scale(w) +RSO(6)R(ΘIJ) + eom[Ψ] , (B.14)
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where LAξ denotes the gauge covariant Lie derivative along the conformal Killing vector field
ξM = εΓMε, Scale(w) is a local scale transformation with parameter w = εε̃, and finally
RSO(6)(ΘIJ) represents an SO(6)R R-symmetry rotation with parameter ΘIJ = 2εΓIJ ε̃.

The Lagrangian invariant (up to total derivative terms) under the on-shell transforma-
tion rules (B.12)–(B.13) reads

L
(on-shell)
YM = 1

2FMNF
MN + ΨΓMDMΨ + R

6 ΦIΦI , (B.15)

where R is the scalar curvature of space-time, which for S3 × R is R = 6
`2 .

C Rigid subalgebra

Let us consider in some more detail the Killing spinors describing the supercharges of the
“rigid” subalgebra presented in (2.4), i.e.,

psu(2|2)× psu(2|2) nR2 , (C.1)

which are selected by the requirement that they commute with H−J . First, we remark that
the spinors κss̃ introduced in equation (B.7) can be organized in doublets of SU(2)L×SU(2)R
as follows: (κ+−, κ−+) is a doublet of SU(2)L, and similarly (κ−−, κ++) is a doublet of
SU(2)R. The SU(2)L and SU(2)R Killing vectors LA,RA can be constructed as the usual
Killing spinor bilinears. One finds

L3 = (κ+− τm̂ κ−+) `em̂ = i

2(∂ϕ − ∂χ) , (C.2)

L+ = (κ+− τm̂ κ+−) `em̂ = 1
2e
−i(ϕ−χ)(− tanϑ ∂ϕ − cotϑ ∂χ + i∂ϑ) , (C.3)

L− = (κ+− τm̂ κ+−) `em̂ = 1
2e

i(ϕ−χ)(− tanϑ ∂ϕ − cotϑ ∂χ − i∂ϑ) , (C.4)

and

R3 = (κ++ τm̂ κ−−) `em̂ = i

2(∂ϕ + ∂χ) , (C.5)

R+ = (κ−− τm̂ κ−−) `em̂ = 1
2e
−i(ϕ+χ)(tanϑ ∂ϕ − cotϑ ∂χ − i∂ϑ) , (C.6)

R− = (κ++ τm̂ κ++) `em̂ = 1
2e

i(ϕ+χ)(tanϑ ∂ϕ − cotϑ ∂χ + i∂ϑ) , (C.7)

where κ = (τ2 κ)T. It is standard to define the left-invariant frame eA(L) on the three-sphere
as the frame whose dual framevectors are the vectorfields LA. This frame, completed to a
frame on S3 × R in the obvious manner, can be obtained from our frame (B.4) by a local
Lorentz rotation M(L): eA(L) = (M(L))Amem. We denote its corresponding rotation on chiral
spinors as m(L) and on anti-chiral spinors as m̃(L).15 In particular, one finds that in the

15Since the local Lorentz rotation is an element of SO(3) ⊂ SO(3, 1), the same matrix acts on chiral and
anti-chiral spinors: m(L) = m̃(L) as matrices.
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new frame the SU(2)L doublet of spinors (κ+−, κ−+) is constant and diagonal in the spinor
index and SU(2)L doublet index. In other words,

m(L) · κ+− =
(
c

0

)
, m(L) · κ−+ =

(
0
c′

)
, (C.8)

for some constants c, c′. Similar statements can be made about the right-invariant frame
and the SU(2)R doublet of spinors (κ−−, κ++).

With these preparations, we come to the description of the Killing spinors associated
with the raising supercharges of the rigid subalgebra; the lowering supercharges are described
by complex conjugation. The associated Killing spinors are described by the eigenvalues
H = J = −1

2 . Recalling from (A.13) the action of U(1)J on spinors and setting H = i`∂t,
we are thus focusing on the Killing spinors

ε−aa = e
it
2` (d(+−)

a (κ+−)a + d(−+)
a (κ−+)a) , εȧȧ

− = e
it
2` (dȧ(++) (κ++)ȧ + dȧ(−−) (κ−−)ȧ) .

(C.9)
Note that the former is a linear combination of the components of the SU(2)L doublet of
spinors, while the latter of the SU(2)R doublet of spinors. To emphasize these transfor-
mation properties, we introduce the index α (α̇) for SU(2)L (SU(2)R) and write for the
doublet of terms

ε−aaα , εȧȧα̇
− . (C.10)

Per the previous discussion, in the left-invariant frame, it is redundant to keep both
the index a and α on ε−aaα as they can be identified, and similarly for the indices ȧ, α̇ of
the other Killing spinor in the right-invariant frame. While our frame is neither left- nor
right-invariant, we will use notations adopted to these respective frames and simply write

ε−aα , εȧα̇− . (C.11)

This notation can thus be read as either having suppressed the explicit spinor indices, or,
more usefully and as we will use it, as having kept implicit the frame-rotations m(L) and m̃(R).

D Off-shell realization

It was shown in [34, 35] that one can simultaneously close off-shell at most nine super-
symmetries of N = 4 super Yang-Mills.16 In general, the off-shell theory preserves only a
subgroup of the spatial and R-symmetry group of the original theory. Following [34, 35],
we would like to realize off-shell and in a linear manner the eight raising supercharges of
the rigid subalgebra in (2.4), while preserving the full rigid bosonic subalgebra.

16More generally, one can preserve nine supersymmetries and nine special conformal supersymmetries.
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The first step is to introduce seven auxiliary fields K` and modify the supersymmetry
transformation rules (B.12)–(B.13) to

δAM = ΨΓMε , (D.1)

δΨ = −1
2FMNΓMNε− 1

2ΦIΓµIDµε−K`ν` , (D.2)

δK` = −ν`ΓMDMΨ . (D.3)

Here ν` are seven auxiliary spinors. To ensure that the algebra closes off-shell they must
satisfy

εΓMν` = 0 , ν`ΓMν`′ = δ``′ εΓMε , (D.4)

for each Killing spinor ε we would like to preserve off-shell. Using that the Killing spinors
we have selected satisfy J = −1

2 , i.e.,

iΓ89ε = ε , (D.5)

one can easily verify that a solution to the constraints (D.4) is given by

νm̂ = iΓm̂0ε , and νj = iΓj0ε . (D.6)

Recall from appendix A that m̂ = 1, 2, 3 and j = 4, 5, 6, 7. Remarkably, this 7 = 3 + 4 split
preserves the full isometries of S3 × R and the full SO(4)R × U(1)J R-symmetry, if we
declare that the corresponding auxiliary fields K µ̂ transform as a spatial vector on S3 and
Ki as a vector of SO(4)R.

It is useful to write the supersymmetry variations of these eight (raising) supercharges
of the rigid subalgebra in detail. To do so, we first observe that they satisfy

Dµε = − i

2`ΓµΓ0ε . (D.7)

Then we find

δAM = ΨΓMε , (D.8)

δΨ = −1
2FMNΓMNε− i

`
ΦIΓI0ε− iKm̂Γm̂0ε− iKjΓj0ε , (D.9)

δKm̂ = −iDMΨΓMΓm̂0ε . (D.10)
δKj = −iDMΨΓMΓj0ε . (D.11)

Note that the variation of Ψ has an explicit 1/` correction. We should also keep in mind
that these variations are only valid for the eight supercharges we selected.
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E Z superfield

The complete Z-superfield is given by

Z(θaα, θ̃ȧα̇) =Z−2iεabεαβΨ−aα θbβ−2iεȧḃεα̇β̇Ψȧα̇
− θ̃ḃβ̇

+iεabεαβ
(1

2F
mn(σmn) γ

α δca+ 1
2 [φi,φj ](σij) c

a δ
γ
α+iKm̂(σm̂0) γ

α δca

)
θcγθbβ

+iεȧḃεα̇β̇
(1

2F
mn(σmn)α̇γ̇δȧċ + 1

2 [φi,φj ](σij)ȧċδα̇γ̇ +iKm̂(σm̂0)α̇γ̇δȧċ
)
θ̃ċγ̇ θ̃ḃβ̇

+2iεċḃεζ̇β̇
(
Dmφi−iδm0

(
Ki+

1
`
φi
))

(σi)ċc(σm)ζ̇ζθcζ θ̃ḃβ̇

−iεċḃεζ̇β̇
[
δċ
ḋ

((
−(σm)γ̇ζDmΨα̇

+a+ 2i
`

Ψα̇
+a(σ0)γ̇ζ

)
εac(εα̇η̇δζ̇γ̇+εγ̇η̇δζ̇α̇)

+
(
DmΨα̇

+a(σm)αα̇εac−i[Z,Ψ−aα]εac−[φj ,Ψȧ
+α]εȧė(σj)ėc

)
(σ0)α̇ζ(σ0)δ̇α(εα̇η̇δζ̇δ̇+εδ̇η̇δ

ζ̇
α̇)
)

+[Ψȧ
+αε

αζδζ̇η̇ ,(σi)ėcφi](εȧḋδ
ċ
ė+εėḋδ

ċ
ȧ)
]
θ̃ḋη̇θcζ θ̃

ḃβ̇

−iεċḃεζ̇β̇
[
εdc
((
DmΨċ

+α(σm)ζ̇θ− 2i
`

Ψċ
+α(σ0)ζ̇θ

)
(εαζδηθ+εαηδζθ)

+
(
−DmΨċ

+δ(σm)α̇δ+i[Z,Ψċα̇
− ]+[(σj)ċaφj ,Ψα̇

+a]
)
(σ0)ζ̇θ(σ0)αα̇(εαζδηθ+εαηδζθ)

)
+[−Ψζ̇

+aε
ζη,(σi)ċeφi](εadδce+εacδde )

]
θdηθcζθ

ḃβ̇

− 1
2 iεċḃεζ̇β̇

[(
−iDmDpZ(σm)γ̇(ζ(σp)α̇η)δea−i

3
`

1
`
Z(σ0)α̇η(σ0)γ̇ζδea

+41
`
DmZ(σm)γ̇(ζ(σ0)α̇η)δea+2[Ψγ̇

+dε
deεζη,Ψα̇

+a]
)
δċ
ḋ
εac(εα̇η̇δζ̇γ̇+εγ̇η̇δζ̇α̇)

+
(
iDmDmZε

ecδηα+[2Ψγ̇
+dε

deεγ̇α̇ε
acδηα,Ψα̇

+a]−
i

`

1
`
Zεecδηα

+i[Z,−1
2 [Z,Z]δηα]εec−2[Ψḃ

+γε
γη,Ψȧ

+α]εecεȧḃ−[φi, i[φi,Z]δηα]εce
)
(σ0)α̇ζ(σ0)δ̇α(εα̇η̇δζ̇δ̇+εδ̇η̇δ

ζ̇
α̇)δċ

ḋ

+[Z,Km̂]εecδċ
ḋ
(σm̂)δ̇(η(σ0)α̇ζ)(εα̇η̇δζ̇δ̇+εδ̇η̇δ

ζ̇
α̇)

+
(
[i[φj ,Z]εηζδζ̇η̇ ,φi](σj)ȧ(e(σi)ėc)+2[Ψȧ

+αε
αζδζ̇η̇ ,Ψė

+βε
ecεβη]

)
(εȧḋδ

ċ
ė+εėḋδ

ċ
ȧ)
]
θeη θ̃

ḋη̇θcζ θ̃
ḃβ̇ .

F Details on the perturbative Hamiltonian

In this appendix, we provide more details on the perturbative computation of the generators
of the su(2|2) nR algebra.

With the exception of the tree level case, generally we need to impose the algebraic
constraints up to order k+1 in order to fix the Hamiltonian at order k and the supersymmetry
generators at order k − 2. The relevant commutation relations for our study are

[H−J ,Qaβ ] = [H−J ,Q†bα] = 0

{Q†aα,Qbβ} = δba Lαβ + δβαRab + 1
2δ

b
a δ

β
α (H−J )

(F.1)

since the Lorentz and R-symmetry generators do not get corrected at loop level. After
imposing the algebraic constraints, we also need to identify among the remaining unfixed
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parameters which ones are physical and affect the energies and the ones which are associated
to similarity transformations. We can estimate the number of parameters of the similarity
transformation. These transformations are generated by an operator T (κ) as

G(κ)→ exp (T (κ)) G(κ) exp(−T (κ)) . (F.2)

This operator T (κ) admits an expansion in the coupling constant T (κ) =
∑∞
k=1 κ

kTk and
at each order, Tk must be invariant under Lorentz and R-symmetry, and should preserve
the classical energy. Therefore, Tk must be built out of the same tensor structures as the
Hamiltonian itself. In particular, T1 = 0. This means that at order κ2 the Hamiltonian
cannot be modified by a similarity transformation (since [H0, Tk] = 0) but at order κ4, it
can be changed as

H4 → H4 + [H2, T2] . (F.3)

The supersymmetry generators are also transformed and at lowest nontrivial order they
transform acoording to

Q2 → Q2 + [Q0, T2] , Q†2 → Q
†
2 + [Q†0, T2] . (F.4)

The operator T2 contains 11 structures, as in (3.20), and we find 7 solutions to the equations
[H2, T2] = [Q0, T2] = [Q†0, T2] = 0. This means that we have a total of four unphysical
parameters that can be removed by similarity transformations. Obviously, H2 itself generates
a nontrivial similarity transformation on the supersymmetry generators but it leaves H4
invariant. Therefore, we expect to be able to eliminate three parameters of the Hamiltonian.
In addition, we impose that the action is trivial on cyclic states (this allows to kill three
parameters) and use su(2) Jacobi identities{ abc

[abc]
}

=
{ αβγ

[αβγ]
}

= 0 , (F.5)

which allows to further eliminate two parameters.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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