
1. Introduction
Soil organic matter is one of the largest carbon reservoirs, and its decomposition plays a key role in bioge-
ochemical carbon cycling. At a global scale, organic matter decomposition drives annual fluxes of 210 Gt 

Abstract The Q10 coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has 
been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, 
biogeochemists and ecologists have long recognized that a constant Q10 coefficient does not describe the 
temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the 
constant Q10 assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter 
decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation 
results to the predictions with Q10 coefficients. By accounting for the reactions of extracellular enzymes, 
mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical 
reaction model reproduces the observations of previous laboratory incubation experiments, including 
the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon 
dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter 
decomposition. The modeling results illustrate the oversimplification inherent in the constant Q10 
assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter 
decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate 
increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential 
relationship given by the Q10 coefficient. As a result, the constant Q10 approach tends to underestimate the 
rates of organic matter decomposition within the temperature ranges where Q10 values are determined, 
and overestimate the rates outside the temperature ranges. The results also show how biogeochemical 
reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity 
of organic matter decomposition arising from underlying catalytic mechanisms.

Plain Language Summary The Q10 coefficient is a key parameter for quantifying the 
temperature sensitivity of organic matter decomposition. Most modeling studies fix the Q10 coefficient 
at a constant of 1.5 or 2, assuming that decomposition rates increase by a factor of 1.5 or 2 per 10°C 
increase, respectively. However, the Q10 coefficients obtained from laboratory and field experiments are 
not constant, varying from less than 2 to over 300. We evaluated the constant Q10 approach by simulating 
anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA. Our 
biogeochemical reaction model was constructed and validated on the basis of previous laboratory 
incubation experiments, and accounts for the reactions of extracellular enzymes, mesophilic fermenting 
and methanogenic microbes, and their temperature responses. The modeling results show that organic 
matter decomposition responds almost linearly to temperature variations between 5°C and 30°C, and the 
resulting Q10 coefficients decrease from >400 around 0°C to close to 1 at 30°C. These results challenge 
Q10 coefficient as an effective parameter for studying organic matter decomposition, and suggest that 
biogeochemical reaction modeling, combined with laboratory experiments, can be applied to discover 
the temperature responses of decomposition arising from underlying enzymatic and microbial reaction 
mechanisms.
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carbon dioxide (CO2) and 0.6 Gt methane (CH4) into the atmosphere, directly contributing to the CO2 and 
CH4 accumulation in the atmosphere and the resulting global warming by the greenhouse effect (Ciais 
et al., 2013; Jackson et al., 2020; Thauer et al., 2008). In return, surface warming speeds up the reactions of 
enzymes and microbes participating in organic matter decomposition, leading to a positive feedback (Gill 
et al., 2017; Hopple et al., 2020; Romero-Olivares et al., 2017). Therefore, models that predict how organic 
matter decomposition responds to temperature changes play an integral role in simulating the dynamics of 
soil carbon storage and the fluxes of carbon cycles, and for forecasting future climate (Allison et al., 2010; 
Todd-brown et al., 2018; Zheng et al., 2019).

To describe the temperature sensitivity of organic matter decomposition, most models have used versions of 
the van't Hoff's temperature coefficient Q10,
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Here ro and r1 are the rates of organic matter decomposition at temperature To and T1, respectively, and ΔT 
is the difference between the two temperatures (van't Hoff, 1898). The Q10 coefficient can be intrinsic where 
the temperature sensitivity arises primarily from the inherent kinetic properties of organic compounds, or 
apparent if the temperature response is also shaped by the physicochemical heterogeneity and biological 
processes, such as in laboratory and field experiments (Davidson & Janssens, 2006; Perkins et al., 2012). 
Most applications fix the Q10 coefficient at a constant of 1.5 or 2, assuming that decomposition rates in-
crease by a factor of 1.5 or 2 per 10°C increase, respectively (Foereid et al., 2014; von Lützow & Kögel-Knab-
ner, 2009). However, the constant Q10 approach has proven repeatedly to be inconsistent with laboratory 
and field observations. For example, the apparent Q10 coefficients obtained from laboratory and field studies 
are not constant, but decrease from >300 at ∼0°C to near 2 around 25°C (Hamdi et al., 2013).

The Q10 approach assumes that reaction rates increase exponentially with temperatures. This assumption 
originates from the transition state theory for elementary reactions (Eyring, 1935), but its application to 
complex processes, such as organic matter decomposition, is problematic. Specifically, organic matter de-
composition consists of a series of reactions catalyzed by extracellular enzymes and fermenting and re-
spiring microbes, and its rates are often assumed to be limited by the fermentative degradation of complex 
organic molecules (Allison et al., 2010; Roy Chowdhury et al., 2015; Zheng et al., 2019). Like other micro-
bially catalyzed reactions, fermentative reactions respond to temperature variations by following unimodal 
functions (Finke & Jørgensen, 2008; Parashar et al., 1993). Therefore, rates of organic matter decomposition 
may not vary exponentially with temperatures (Fissore et al., 2008; Hagerty et al., 2014; Hopkins et al., 2014; 
Raich et al., 2006). Nevertheless, model practitioners continue to use constant Q10 coefficients routinely, 
perhaps because the uncertainty inherent in forecasting the progress of organic matter decomposition out-
weighs the error introduced by the Q10 approach.

The temperature response of organic matter decomposition can also be investigated by biogeochemical re-
action modeling. This approach breaks organic matter decomposition into a reaction network that consists 
of enzymatic and microbial reactions, and simulates numerically the decomposition progress according to 
the rate laws of enzymatic and microbial reactions (Jin & Roden, 2011). Typical network reactions include 
the conversion of soil organic matter (SOM) to dissolved organic carbon (DOC) by extracellular enzymes, 
fermentation reactions that consume DOC, and respiration reactions that oxidize fermentation products 
by reducing dioxygen (O2), sulfate, and other electron acceptors (Allison et al., 2010; Schink, 1997; Zheng 
et al., 2019). This modeling approach does not assume a priori how organic matter decomposition responds 
to variations in temperature. Instead, it uses rate laws to relate individual enzymatic and microbial rates 
to temperature, pH, nutrient concentrations, and other environmental conditions. By integrating the rate 
laws forward over time, the modeling approach simulates the temperature sensitivity of organic matter 
decomposition as a systems property that emerges from the interactions between enzymatic and microbial 
reactions under the constraints of the quality and availability of organic matter and other environmental 
conditions.

Here, we examine the temperature sensitivity of anaerobic organic matter decomposition by comparing 
the results of the Q10 approach with those of biogeochemical reaction modeling. We use as an example 
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anaerobic organic matter decomposition in peatlands in the Upper Penin-
sula of Michigan, USA (Ye et al., 2016). Unlike previous efforts, we focus 
not on Q10 estimation or the influences of physicochemical or biological 
conditions of the environment, but on how the choice of an approach for 
describing the temperature sensitivity might affect the rate predictions 
of organic matter decomposition, and hence the fluxes of carbon cycling.

2. Methods
2.1. Q10 Approach

The Q10 approach treats organic matter decomposition as a black box, 
and provides a simple means of quantifying temperature sensitivity of de-
composition rate. At temperature T, decomposition rate r can be related 
to the base rate ro at base temperature To according to

 
 
  

o
10

o 10 .
T T

r r Q (2)

Therefore, the application of the Q10 approach requires the base rate ro 
and the Q10 coefficient determined at base temperature To.

2.2. Biogeochemical Reaction Model

Anaerobic microbial decomposition of organic matter consists of a series of reactions catalyzed by extra-
cellular enzymes and microbes. In the simplest possible configuration (Figure  1), four reactions would 
be required to decompose organic matter to CO2 and CH4. The first is the degradation of SOM to DOC by 
extracellular enzymes, followed by the fermentation reaction that consumes DOC and produces acetate 
and dihydrogen (H2), and by the methanogenesis reactions that consume acetate and H2 (Schink, 1997; 
Zheng et al., 2019). This model is applicable to an environment where O2, ferric minerals, oxidized humic 
substances, sulfate, and other electron acceptors are absent and the reduction of these electron acceptors 
contribute little to the consumption of acetate and H2.

Rates of SOM degradation to DOC depend on the concentrations of SOM and extracellular enzymes and can 
be described according to the Michaelis-Menten equation. We assume that extracellular enzymes are pro-
duced primarily by fermenting microbes and that their production and decay are at steady state (Aderibigbe 
& Odunfa, 1990; Burns et al., 2013; Gueguen et al., 1995). We also assume that SOM degradation is inhibited 
by the accumulation of DOC. Based on these assumptions, we relate enzyme concentrations to the biomass 
concentrations [XF] of fermenting microbes (see Text S1), and calculate the rates of SOM degradation r ac-
cording to the revised Michaelis-Menten equation,

 
           

SOM DOC
F

SOM m,SOM DOC,o
X max 1 ,0 .m mr k

m K m
 (3)

Here, k is the rate constant (mol ⋅ g-biomass−1 ⋅ s−1), mSOM and mDOC are the molal concentrations of SOM 
and DOC, respectively, Km,SOM is the Michaelis constant, and mDOC,o is the threshold DOC concentration 
above which the synthesis of the extracellular enzymes stops. This equation simplifies to

 
        

 

DOC
app F

DOC,o
X max 1 ,0 ,mr k

m
 (4)

where mSOM >> Km,SOM, or SOM concentrations remain nearly constant. Here kapp is the apparent rate con-
stant. Under these conditions, the effect of SOM concentrations can be safely neglected.

We represent microbial reactions using stoichiometric equations, and calculate their rates by using the 
modified Monod equation (Jin & Bethke, 2003, 2005). Specifically, the fermentation reaction is,

    2 2 2DOC Acetate H CO H O H ,a b c d e (5)
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Figure 1. Anaerobic organic matter decomposition to CO2 and CH4. 
soil organic matter (SOM), and dissolved organic carbon (DOC) are soil 
organic matter and dissolved organic carbon, respectively; ovals indicate 
extracellular enzyme and microbial functional groups.
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where DOC is represented using a generic chemical formula of C6H12O6, and a and others are stoichiomet-
ric coefficients (Tang et al., 2016). Acetoclastic methanogenesis is

  2 2 4Acetate H O CO CH . (6)

Hydrogenotrophic methanogenesis is

  2 2 2 44H CO 2H O CH . (7)

Rates r of microbial reactions are calculated according to

      T K TX ,r k f F F (8)

where k is the rate constant, or cell-specific maximum rate (mol ⋅ g-biomass−1 ⋅ s−1), fT is the dimensionless 
factor that describes the temperature response of the rate, [X] is the biomass concentration, FK is the kinetic 
factor, and FT is the thermodynamic potential factor. The kinetic factor accounts for nutrient concentration 
mN (molal),



N

K
N N

,mF
m K (9)

where KN is the half-saturation constant. The thermodynamic factor considers the Gibbs free energy change 
ΔG (J ⋅ mol−1) of microbial reactions,




    
   

 
P P

T 1 exp .G GF
RT

 (10)

Here νP is the ATP yield, the number of ATPs synthesized per microbial reaction, ΔGP is the phosphoryla-
tion energy (the energy consumed by ATP synthesis in the cytoplasm with a value of 45 kJ ⋅ mol−1), χ is the 
average stoichiometric number, R is the gas constant (8.3145 J ⋅ mol−1 ⋅ K−1), and T is the absolute temper-
ature. The Gibbs free energy change is calculated from the reaction quotient Q and equilibrium constant K 
according to

  ln .QG RT
K

 (11)

Variations in the equilibrium constants with temperature are shown in Figure S1.

Evaluating Equation 8 requires biomass concentrations [X], which are calculated by using the modified 
logistic equation. Taking the biomass concentration [XF] of fermenting microbes as an example,

                     

F F
F

F max

X X
1 X ,

X
d

Y r D
dt

 (12)

where Y is the biomass yield (g ⋅ mol−1), the amount of biomass synthesized per reaction, [XF]max is the max-
imum biomass concentration supported by the environment, and D is the maintenance rate (s−1). Here the 
maintenance rate accounts for the decrease in growth rate due to cellular maintenance, that is, metabolic 
processes that maintain the integrity and function of cellular components but do not contribute to the pro-
duction of new cells (Hoehler & Jørgensen, 2013).

2.3. Temperature Responses

Unimodal temperature responses are key features of enzymatic and microbial reactions. In general, enzy-
matic and microbial reaction rates first increase with increasing temperature and, after reaching maximum 
values at their optimal temperatures, the rates start to decrease. Such temperature responses have been de-
scribed by both mechanistic and phenomenological models (Alster et al., 2016; DeLong et al., 2017; Rossol 
et al., 1993; Schipper et al., 2014).

We describe the temperature responses of extracellular enzymes according to the enzyme-assisted Ar-
rhenius equation (DeLong et  al.,  2017). This equation differs from the standard Arrhenius equation by 
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accounting for the temperature-dependent protein unfolding or denaturation. It gives the apparent rate 
constant of extracellular enzymes as

 

                  
       

app app,o m
m m

1exp 1 ln .b H Cp
T Tk k E E E T T T

RT T T
 (13)

Here kapp,o is the maximum apparent rate constant, Eb, EΔH, and EΔCp are the baseline activation energy (J ⋅ 
mol−1), the change in the activation energy due to the enthalpy of enzyme folding, and the change from 
the change in heat capacity of the enzymes, respectively, and Tm is the melting temperature of the enzymes 
(K). The values of Eb, EΔH, and EΔCp delineate the temperature responses of enzyme reactions (Figure 2A), 
and are estimated based on laboratory observations of the enzymes harvested from mesophiles. Based on 
Feller (2010), we take Tm, EΔH, and EΔCp as 66°C, 59 kJ ⋅ mol−1 and 2 kJ ⋅ mol−1 ⋅ K−1, respectively. We es-
timate the Eb value by fitting Equation 13 to temperature response of extracellular enzymes reported by 
Stone et al. (2012). The best-fit Eb is 36.5 ± 1.94 kJ ⋅ mol−1 (mean ± 95% confidence interval). As shown in 
Figure 2A, the equation captures the temperature responses of the different extracellular enzymes.

We describe the temperature responses of fermentation and methanogenesis by using the cardinal temper-
ature model, a phenomenological equation (Rossol et al., 1993). According to this model, the temperature 
factor fT of microbial reactions can be calculated as

  
       

     
          

2
max min

T
opt min opt min opt opt max opt min

max 0, .
2

T T T T
f

T T T T T T T T T T T
 (14)

Here, Tmin, Topt, and Tmax are the minimum, optimal, and maximum temperature, respectively. Compared 
to other phenomenological models (Heitzer et al., 1991; Ratkowsky et al., 1983; Rossol et al., 1993), the car-
dinal temperature model is unique in that it describes microbial temperature responses by taking cardinal 
temperatures as input, without the need of additional parameters. Figure 2B shows, according to the cardi-
nal temperature model, how the temperature factor fT varies with temperature.

Other unimodal models, such as the enzyme-assisted Arrhenius model (DeLong et al., 2017) and the mac-
romolecular rate theory (Schipper et al., 2014), can also be used to describe the temperature response of mi-
crobial reactions. These models build on kinetic theories of enzyme catalysis, and their applications require 
parameters related to the thermokinetic properties of enzymes and their reactions, which are not available 
for most microbial reactions. Therefore, their applications are currently limited. Furthermore, microbial re-
actions are catalyzed by tens to hundreds of enzymes and, according to metabolic control theory, their rates 
are not controlled by a single rate-limiting enzyme, but by multiple enzymes at the same time (Fell, 1992). 
Considering that different enzymes tend to display different thermokinetic properties and activity levels, 
and that interactions among enzymes are nonlinear, direct application of enzyme kinetic theories to com-
plex microbial reactions can be problematic. On the other hand, the cardinal temperature model does not 
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Figure 2. Variations with temperature in the relative activities and the apparent rate constant kapp of extracellular enzymes from soils reported by previous 
laboratory studies (A), the temperature factor fT of microbial reactions (B), and maintenance rate (C). In panel A, data points are relative activities of N-acetyl-
glucosaminidase (▽), cellobiohydrolase (□), β-xylosidase (◇), β-glucosidase (△), and α-glucosidase (□), calculated as the ratios of enzyme reaction rates to 
those determined at 40°C (Stone et al., 2012), line is the best-fit of Equation 13, and kapp,o stands for the maximum rate constant at 57°C. In panel (B), factor fT is 
calculated according to Equation 14 and by taking the minimum, optimal, and maximum temperature at 0, 37 and 50°C, respectively.
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consider underlying catalytic mechanisms of microbial reactions, but reproduces well the temperature re-
sponses of microbial reactions, which is adequate for our purpose, to predict the temperature sensitivity of 
organic matter decomposition from the temperature responses of individual reaction steps.

No mechanistic or phenomenological model is available to calculate the maintenance rate at different tem-
peratures. According to the microbial maintenance rates at different temperatures compiled by Price and 
Sowers (2004), maintenance rates D vary exponentially with temperature, which can be described with the 
Arrhenius equation (Figure 2C),

 
    

 

a,D
D exp .

E
D A

RT
 (15)

Here, AD is the preexponential factor (s−1), and Ea,D is the apparent activation energy (J ⋅ mol−1). Based on 
the data compiled by Price and Sowers (2004), we set AD at 2.5  1010 s−1 and ED at 1.02  102 kJ ⋅ mol−1.

2.4. Sensitivity Analysis

Following the framework of metabolic control analysis (Fell, 1992), we conducted a sensitivity analysis to 
analyze the significance by which the kinetic parameters of extracellular enzymes and microbes control the 
rates of anaerobic organic matter decomposition. The scaled control coefficient  r

p of a parameter p on the 
rate r is the ratio of the fractional change in the rate to the fractional increase of the parameter,

 
 


.r

p
p r
r p (16)

A coefficient of 0 indicates that the rate of anaerobic organic matter decomposition is insensitive to the 
parameter. A value of unity occurs where the rate varies proportionally to the changes of the parameter, 
indicating a strong control.

2.5. Model Application

We implemented the biogeochemical reaction model with PHREEQC (version 3.0), a software package 
for geochemical and biogeochemical reaction modeling (Charlton & Parkhurst,  2011). We amended its 
thermodynamic database by adding SOM and DOC. The amended thermodynamic database and the input 
scripts are available at https://zenodo.org/record/4480176 (Wu et al., 2021a). Table 1 lists the parameters 
and their values for computing microbial reaction rates. Some parameter values are taken directly from 
previous laboratory studies, whereas other parameters, including the maximum apparent rate constant kap-

p,o of extracellular enzymes, the minimum and optimal temperature of the cardinal model, and the initial 
biomass concentrations of fermenting and methanogenic microbes, depend on the field site of interest and 
are determined based on previous experimental observations. Note that due to the limited experimental 
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Reaction (substrate)

Kinetic parameter Thermodynamic parameter

Initial 
biomass 

(mg ⋅ kg−1)
Rate constant k  
(mol ⋅ g−1 ⋅ s−1)

Half-saturation constant  
KN (molal)

Growth yield 
Y (g ⋅ mol−1)

Maximum 
biomass 

(mg ⋅ kg−1)

Average 
stoichiometric 

number χ ATP yield

Fermentation (DOC; 
glucose)

0.20 ± 0.13a 5  10−6 (DOC); 2  10−5 
(glucose)b

1  10–3c 10.0 0.5 ± 0.01a 1d 2e

Methanogenesis 
(acetate)

1.85 ± 0.17a 2.9  10–6f 1  10–5g 1.0 20h 2f 0.2f

Methanogenesis (H2) 7.0 ± 0.13a 7.4  10–6f 1  10–7g 1.25 20h 2f 0.25f

aDetermined by this study (mean ±95% confidence interval). bShiloach et al. (1996). cKim et al. (2007). dAssuming that glucose uptake is the rate-determining 
step. eLee et al. (2008). fJin and Kirk (2018). gHungate (1967); Stams et al. (2003). hJiang et al. (2010).

Table 1 
Kinetic and Thermodynamic Parameters of Microbial Reactions
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observations at temperatures above 25°C, we fix Tmax of the cardinal model at 50°C (Kolton et al., 2019; 
Singh & Das, 2019).

We built the biogeochemical reaction model on the basis of the laboratory experiments conducted by Ye 
et al.  (2016). Ye et al.  (2016) sampled peatlands from the Upper Peninsula of Michigan, USA (sampling 
site, rich fen), and incubated the peat slurries anaerobically for 45 days. They included six independent 
sets of experiments, with and without glucose amendment at 7°C, 15°C, and 25°C in quadruplicate. They 
monitored the concentrations of both intermediate and final products of anaerobic organic matter decom-
position, including DOC, acetate, H2, CO2, and CH4 (Figures 3 and 4). According to their results, the SOM 
decomposition can be represented by a simple reaction network, including enzymatic reaction that hydro-
lyzes SOM to DOC, the fermentation reaction that consumes DOC and produces acetate and H2, and the 
reactions of acetoclastic and hydrogenotrophic methanogenesis (Figure 1). The fermentation reaction can 
be described by the stoichiometric equation,

    2 2 2DOC 2.7Acetate 1.2H CO 0.6H O 2.7H . (17)

At the end of their experiments, the amounts of SOM decomposed by microbes were relatively small, <1% 
of the SOM available at the beginning of the experiments (see Text S1). Therefore, we calculated the rates of 
SOM degradation by extracellular enzymes according to Equation 4. Furthermore, the acetoclastic pathway 
dominated methanogenesis, contributing to ∼90% of total CH4 production and leading to nearly equal pro-
duction of CO2 and CH4. Therefore, we quantified the kinetics of anaerobic organic matter decomposition 
by using the rate of methane production.

We calibrated the model and achieved the possible ranges of the unknown model parameters by least-
square fitting of the modeling results to the observations of the glucose-amended incubation experiments 
at 7°C, 15°C, and 25°C (Table  1). Specifically, the maximum apparent rate constant kapp,o of enzymatic 
SOM degradation was estimated by minimizing the mean square error (MSE) between the simulated and 
observed temporal variations of DOC concentrations. The initial biomass concentration of fermenting mi-
crobes was obtained based on the variations in the concentrations of acetate and H2. The initial biomass 
concentration of acetoclastic methanogens was estimated according to the concentrations of acetate, CH4, 
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Figure 3. Parameter estimation by fitting the modeling results to the variations with time in the concentrations of dissolved organic carbon (DOC), as 
represented by glucose empirically (A, F, K), acetate (B, G, L), H2 (C, H, M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 
with glucose amendment at 7°, 15° and 25°C. Data points are the experimental observations of Ye et al. (2016); error bars show the 95% confidence intervals of 
the observations; solid lines and shaded areas are the simulation results by using the minimum and maximum initial biomass concentrations (see Table 1).
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and CO2. The initial biomass concentration of hydrogenotrophic methanogens was determined from the 
concentrations of H2. The maximum biomass concentration of fermenting microbes was determined by fit-
ting to the concentrations of DOC, CO2, and CH4. The minimum and optimal temperatures of the cardinal 
model were estimated on the basis of the concentrations of acetate, H2, CH4, and CO2.

All simulations ran for 45 days, the same duration as the laboratory incubation experiments. Methane pro-
duction rates were calculated from the total methane concentrations at day 45. Statistical analyses, includ-
ing one-way ANOVA analysis and Spearman correlation, were conducted with python 3.7.

3. Results and Discussion
3.1. Biogeochemical Reaction Modeling

To simulate the temperature sensitivity of organic matter decomposition, we first constructed the biogeo-
chemical reaction model by fitting the simulation results to the progress of organic matter decomposition 
in the glucose-amended experiments of Ye et al. (2016). The best-fit maximum apparent rate constant kapp,o 
of enzymatic SOM degradation was 1.0 ± 0.1 × 10−2 mol ⋅ g−1 ⋅ s−1, and the best-fit microbial parameters 
are listed in Table 1. These results are within the ranges of previous field and laboratory observations. In 
particular, the best-fit initial biomass concentrations are smaller than those determined in peatlands, for 
example, about 10 mg methanogens and 100 mg fermenting microbes per kg (dry weight) of peat (Horn 
et  al.,  2003; Jiang et  al.,  2010; Vester & Ingvorsen,  1998). The best-fit Tmin is 0.0  ±  0.3°C, close to 2°C, 
the lowest temperature at which methanogens in Michigan peatlands remain metabolically active (Avery 
et al., 1999; Shannon & White, 1996). The best-fit Topt is 27.0 ± 1.0°C, within the range of the optimal growth 
temperatures of mesophiles, from 20°C to 45°C (Robbins & Konhauser, 2021). As illustrated in Figure 3, the 
model simulation reproduces well the experimental results: DOC concentrations stabilize at ∼0.22 mM; ac-
etate and H2 accumulate at the beginning of the experiments; CO2 and CH4 accumulate steadily over time.

WU ET AL.

10.1029/2021JG006264

8 of 18

Figure 4. Model validation by applying the calibrated biogeochemical reaction model to the experiments of organic matter decomposition without glucose 
amendment at 7°C, 15°C, and 25°C. Data points are the concentrations of dissolved organic carbon (DOC), as represented by glucose empirically (A, F, K), 
acetate (B, G, L), H2 (C, H, M), CO2 (D, I, N), and CH4 (E, J, O) reported by Ye et al. (2016); error bars show the 95% confidence intervals of the observations; 
solid lines and shaded areas are the simulation results by using the minimum and maximum initial biomass concentrations (see Table 1).
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We then validated the model by applying the biogeochemical reaction model, together with the best-fit 
model parameters (Table 1), to the glucose-free incubation experiments of Ye et al.  (2016). As shown in 
Figure 4, without glucose amendment, DOC concentrations increase at the beginning of the experiments, 
and then stay constant at ∼0.25 mM. Acetate and H2 do not accumulate significantly, and their concentra-
tions are more than one order of magnitude smaller than those in the glucose-amended experiments. CO2 
and CH4 accumulate with time at rates slightly smaller than those in the glucose-amended experiments. 
Moreover, the simulation results suggest that acetoclastic methanogenesis accounts for approximately 90% 
of methane production, consistent with the laboratory assessment (Ye et al., 2012).

In both model construction and validation (Figures 3 and 4), the coefficient R2 of determination for CH4 
and CO2 are close to 1, but the R2 of acetate and H2 are relatively low (i.e., <0.7). The simulation results 
from the 95% confidence intervals of the initial biomass concentrations can cover the majority of the ex-
perimental results, except the temporal variations of acetate and H2 concentrations. The mismatch between 
the simulated and observed concentrations is likely due to the technical challenge in analyzing low acetate 
and H2 levels and the incomplete consideration of microbial reactions that consume and produce acetate 
and H2, such as syntrophic metabolism and microbial reduction of sulfate and other external electron ac-
ceptors (Schink & Stams, 2013). In addition, among the different chemical species, acetate and H2 respond 
most significantly to the variations in the initial biomass concentrations: by increasing the initial biomass 
concentrations from the minimum to the maximum values, acetate and H2 concentrations increase up to 
55% and 28%, respectively. Nevertheless, the model does capture the overall trends of acetate and H2 con-
centrations, despite nearly two orders of magnitude concentration differences between the experiments of 
glucose amendment (Figure 3) and those without glucose addition (Figure 4). Combining these results, we 
conclude that the biogeochemical reaction model can be applied to simulate the temperature response of 
organic matter decomposition in the peatlands from the Upper Peninsula of Michigan.

The modeling results highlight the complexity of the organic matter decomposition even with our relatively 
simplified reaction network (Figure  1). First, among the three microbial functional groups, acetoclastic 
methanogens grow most significantly (Figures 5A–5C). Their biomass concentrations increase linearly with 
time, and the growth rates increase from 6.0 × 10−3 mg ⋅ kg−1 ⋅ d−1 at 7°C to 5.6 × 10−2 mg ⋅ kg−1 ⋅ d−1 at 25°C. 
At 7°C, the growth of fermenting microbes follows the same trend as those of acetoclastic methanogens, but 
at 15°C and 25°C, the growth is limited by the maximum biomass of 0.5 mg·kg−1. In comparison, the bio-
mass concentrations of hydrogenotrophic methanogens do not respond significantly. The growth limitation 
of hydrogenotrophs is due to the limited H2 production, whereas the limitation of fermenters is due to the 
holding capacity of the environment, the maximum biomass concentration supported by the environment. 
At the field sites, how physical and chemical conditions, such as nutrient concentrations and the availability 
and connectivity of space, lead to the limitation requires further investigation.

Second, the modeling results suggest that the organic matter decomposition can be separated into two phas-
es, a dynamic phase followed by a stationary phase. In the dynamic phase, the enzymatic and microbial re-
action rates and hence the rates of organic matter decomposition vary significantly. In the stationary phase, 
the rates remain nearly constant (Figures  5D–5G). The time required for reaching the stationary phase 
depends on temperature, and is 40, 15, and 10 days at 7°C, 15°C, and 25°C, respectively.

The variations in the reaction rates arise from changes in the environmental and biological factors. For 
example, variations in the enzymatic reaction rates result from the antagonistic effects of microbial growth 
and the accumulation of DOC. At the beginning of the experiments, the growth of fermenting microbes 
raises the rates (Figure 5A), but later into the experiments, the DOC accumulation (Figures 4A, 4F, and 4K) 
slows the process down.

Variations in fermentation rates (Figure 5D) match well with the variations in the biomass concentrations 
of fermenting microbes (Figure 5A), reflecting the controlling effect of biomass. Acetoclastic methanogen-
esis rates first increase and then remain constant. Although acetoclastic methanogen continues to grow 
in the stationary phase, the stimulatory effect of microbial growth is offset by the decrease in acetate con-
centrations (Figures 4B, 4G, and 4L) – another controlling factor of the methanogenesis rate. Our model 
also considers the limitation of the Gibbs free energy change. However, the free energies of the microbial 
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reactions are much larger than the energies conserved by microbes (Figures 5H–5J), and hence have limited 
effect on microbial reactions rates.

We note that acetate accumulates throughout the incubation at 7°C (Figure 4B). At 15°C and 25°C, acetate 
accumulation is limited to the beginning of the experiments, the first 10 and 5  days, respectively, with 
empirical results showing even greater acetate depletion (Figures 4G and 4L). These results suggest that 
acetate production by fermentation is not fast enough to compensate for the consumption by acetoclastic 
methanogenesis at higher temperatures, consistent with the assumption that fermentation is the rate-deter-
mining step of anaerobic organic matter decomposition (Allison et al., 2010; Roy Chowdhury et al., 2015; 
Zheng et al., 2019).

3.2. Temperature Sensitivity

We applied the validated biogeochemical reaction model and simulated the organic matter degradation to 
CH4 and CO2 at different temperatures. Figures 6A and 6B show that, according to the simulation results, 
methane production responds to temperature variations by following an asymmetric unimodal curve, and 
can be described with the cardinal temperature model for mesophilic microbes (Equation 14). In particu-
lar, at temperatures <37°C, the production rate increases with increasing temperature and the increase is 
nearly linear between 5°C and 30°C (R2 = 0.98). Between 37°C and 50°C, the rate decreases relatively fast 
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Figure 5. Variations with time in the biomass concentrations of fermenting microbes (F), acetoclastic (AM), and hydrogenotrophic methanogens (HM, panel 
A–C), reaction rates of fermentation, acetoclastic and hydrogenotrophic methanogenesis, and extracellular enzyme (panel D–G), and the Gibbs free energy 
change ΔG of fermentation reaction (Equation 17), and acetoclastic (Equation 6) and hydrogenotrophic methanogenesis reaction (Equation 7, panel H–J) at 
7°C, 15°C, and 25°C.
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with temperature. These results differ from the exponential responses assumed by the Q10 approach, but 
similar unimodal responses have been widely observed in previous laboratory incubation studies (Blake 
et al., 2015; Morrissey et al., 2014; Sha et al., 2011; Svensson, 1984). At temperatures <30°C, the nearly 
linear relationship has also been reported in peatlands (Avery et al., 2003; Bergman et al., 1998; Nykanen 
et al., 1998). Moreover, according to a meta-analysis of 376 laboratory incubation data sets, organic matter 
decomposition rates determined across different climate zones show a curvilinear relationship with incuba-
tion temperatures (Xu et al., 2016).

3.3. Q10 Approach

To apply the Q10 approach, we first calculated the Q10 coefficient from the modeling results (Figure 6C). 
Because methane production rate is 0 at 0°C, we calculate the Q10 coefficient between 1°C and 30°C. The 
coefficient is at its largest value, 484, at 1°C and decreases with increasing temperature. The initial decrease 
is fast; the Q10 coefficient drops to 3 at 13°C. Afterward, the decrease is modest, and the coefficient is near 1 
at 30°C. At low temperatures, previous laboratory incubation studies have reported Q10 coefficients as large 
as 430 (Elberling & Brandt, 2003). According to our modeling results, these large Q10 values can be account-
ed for by relatively low rates of methane production at base temperatures (Equation 1). The decreasing Q10 
coefficient with increasing temperature is consistent with the results of previous laboratory analyses. Ham-
di et al. (2013) compiled the Q10 coefficients determined for aerobic CO2 production (n = 317), and found 
that the Q10 values negatively correlate with temperatures, decreasing from >300 at about 0°C to 1.2 at 20°C.

We apply the Q10 coefficients to predict how rates of methane production vary with temperature. We first 
take 5°C, 15°C, and 25°C as examples, and calculate the rates by substituting into Equation 2 the basal rates 
ro and the Q10 values determined at the three different temperatures (Figure 6A). The calculated rates at any 
particular temperature vary dramatically, depending on the base temperature used to determine the basal 
rate and the Q10 value. By comparing the predictions of the Q10 approach to the modeling results, we see that 
the Q10 approach tends to overestimate the rates of methane production.

We also calculate the rates by evaluating Equation 2 with the basal rates ro at 5°C, 15°C, and 25°C and a con-
stant Q10 coefficient of 2 (Figure 6B). The calculations also deviate significantly from the simulation results. 
The Q10 approach with the basal rate at 5°C tends to underestimate the simulated rates, while the calcula-
tions with the basal rate of 25°C tend to overestimate the rates. These results confirm that the constant Q10 
approach brings in significant error in predicting the temperature response of methane production.
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Figure 6. Variations with temperature in CH4 production rate (A and B) and Q10 coefficient (C). In panels (A) and (B), data points represent the results of 
biogeochemical reaction modeling, and solid line is the product of the cardinal temperature model (Equation 14) and the maximum methane production 
rate obtained from the modeling, that is, 4.4 μmol ⋅ g−1 ⋅ d−1 at 37°C. Dashed lines in panel (A) are predictions according to the Q10 coefficients (labels in 
parentheses) and the basal rates obtained at 5, 15, and 25°C, and those in panel (B) are predictions by setting the Q10 coefficient at 2. In panel (C), line stands for 
the Q10 coefficients calculated according to the modeling results and Equation 1, and is plotted on a logarithmic scale.
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3.4. Rate-Determining Step

Discrepancy between predictions of the Q10 and the modeling approaches 
arises mainly from the treatment of the temperature sensitivity of organic 
matter decomposition. The Q10 approach takes organic matter decompo-
sition as a black box, and assumes that the decomposition rates vary with 
temperature according to the Arrhenius equation. This assumption does 
not hold according to the kinetics of enzymatic and microbial reactions. 
Both enzymatic and microbial reactions respond to temperature varia-
tions by following unimodal functions. As shown in Figures 2A and 2B, 
beyond the optimal temperatures for extracellular enzymes and mi-
crobes, the rates of enzymatic and microbial reactions no longer increase 
with increasing temperature.

Our modeling results support that the temperature response of anaerobic 
organic matter decomposition can be described according to the cardinal 
temperature model (Rossol et al., 1993). We account for this result with 
the limitation of anaerobic organic matter decomposition by the fermen-
tation reactions that consume DOC (Allison et al., 2010; Roy Chowdhury 
et al., 2015; Zheng et al., 2019). We carried out a sensitivity analysis of 
the biogeochemical reaction model to evaluate the controlling effects of 
enzymatic and microbial reactions. Figure 7 shows the scaled control co-
efficients computed for the model parameters at different temperatures. 
Across the different temperatures, the control coefficient of the cell-spe-

cific maximum rate k of fermentation is 106 ± 8%, which indicates that the rate of organic matter decom-
position varies proportionally with the rate constant of fermentation. The initial biomass concentration 
of fermenting microbes also has a relatively large control coefficient, ∼80%, at <7°C, and the coefficient 
decreases gradually to 4% at 35°C. The control coefficient of fermentation growth yield ranges from 10–30% 
from 5°–15°C, and decreases to 3% at 35°C. Other model parameters do not control organic matter de-
composition significantly. For example, the control coefficient of the apparent rate constant kapp,o of the 
enzymatic reaction ranges from 14% at 5°C to 3% at 35°C. These results confirm that the anaerobic organic 
matter decomposition is limited by the fermentation reaction of DOC to acetate and H2. In the biogeochem-
ical reaction model, the fermentation reaction responds to temperature variations by following the cardinal 
temperature model, and so does the decomposition of SOM.

The rate limitation by the fermentation reaction suggests that the simulated temperature response of meth-
ane production depends on the parameters of the cardinal temperature model applied to the fermentation 
reaction. Figure 7 shows the scaled control coefficients of parameter Tmin, Topt, and Tmax at temperatures 
ranging from 1°C to 35°C. While the control coefficient of Tmin remains small, between −8% and 0, the con-
trol coefficient of Topt stays <−50% across the different temperatures, and the coefficient of Tmax is >80% at 
temperature <26°C. These results support the important and contrasting roles of Topt and Tmax in shaping the 
temperature response of methane production rates. According to the cardinal temperature model, increase 
in Topt shifts the rate peak toward higher temperatures and, correspondingly, lowers the rates between Tmin 
and Topt. On the other hand, increase in Tmax expands the unimodal relationship, thereby elevating the rates.

3.5. Meta-Data Analysis

A key outcome of our modeling exercise is that the cardinal temperature model provides a better description 
of the temperature response of methane production than the constant Q10 approach in the peatlands from 
the Upper Peninsula of Michigan, USA. To evaluate whether the cardinal temperature model is applicable 
to other field sites, we compiled the Q10 values of CO2 (n = 109) and CH4 (n = 190) production from anaer-
obic laboratory incubations (see https://zenodo.org/record/4480176, Wu et al., 2021b). Two patterns appear 
from the compilation. First, as shown in Figure 8A, methane production has a larger median Q10 value 
(2.9) than anaerobic CO2 production (2.6). Second, according to the results of one-way ANOVA analysis 
with post-hoc Tukey's test (see Tables S1–S4), the Q10 values of CH4 and CO2 production differ significantly 
between different climate zones (p < 0.05, Figures 8B and 8C). In particular, the Q10 for CH4 differs between 
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Figure 7. Variations with temperature in the scaled control coefficients of 
model parameters, including maximum rate constant kapp,o of extracellular 
enzymes, biomass concentrations, rate constants, and growth yields 
of fermenting microbes (F), acetoclastic (AM), and hydrogenotrophic 
methanogens (HG), and the minimum (Tmin), optimal (Topt), and 
maximum temperatures (Tmax) of the cardinal model for fermenting 
microbes. Control coefficients are calculated according to Equation 16.
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the temperature and warm zones, and the Q10 for CO2 differs between cold and warm zones and marginally 
between cold and temperature zones (p = 0.11). In addition, Spearman correlation analyses show that Q10 
coefficients of anaerobic CH4 production and CO2 production correlate negatively with incubation temper-
atures (Figures 8D and 8E). A notable example of this pattern is the 22 Q10 values obtained along a 3,800 km 
long north–south transect of forests in China, with low Q10 values in subtropical forests and high Q10 values 
in temperate forests (Wang et al., 2018).

The Q10 difference between anaerobic CO2 and CH4 production has been attributed to the availability of 
methanogenic substrates and alternative electron acceptors in the environment (Megonigal et al., 2003; Mu 
et al., 2018; Van Hulzen et al., 1999). Higher temperatures promote the degradation of SOM and increase 
the availability of H2, acetate, and other methanogenic substrates, which in turn raises the temperature 
sensitivity of CH4 production (Inglett et al., 2012). At the same time, higher temperatures also speed up 
microbial CO2 production coupled to the reduction of ferric minerals, sulfate, and other external electron 
acceptors. Where these electron acceptors are limited, the temperature responses of CO2 production are also 
limited. In addition, changes in temperatures shift the structure and function of microbial communities, 
which further contributes to the Q10 difference between CO2 and CH4 production (Auffret et al., 2016; Kol-
ton et al., 2019). In our study, we did not include competing respiring microbial groups and, as a result, the 
simulated Q10 values of CO2 and CH4 productions are the same at given temperatures (results not shown).

The inverse relationship between Q10 and temperature has been accounted for by the differences in car-
bon quality or activation energy. In general, recalcitrant carbon tends to have larger activation energies 
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Figure 8. Q10 coefficients of anaerobic organic matter decomposition to CO2 and CH4 compiled from previous laboratory incubation studies. (A) Q10 
coefficients of CH4 production and CO2 production. Q10 coefficients of CH4 production (B) and CO2 production (C) in different climate zones (only values 
with sampling locations are included). Q10 coefficients of CH4 production (D) and CO2 production (E) show significantly negative correlations with incubation 
temperatures (Spearman's coefficients of −0.51 and −0.25, respectively; p < 0.05). Box edges are the 25% and 75% percentiles of the data, horizontal center lines 
are median values, whisker bars show standard deviations, and star points are outliers. In panel (B) and (C), compact letter displays indicate the differences 
between groups (p < 0.05). In panel (D), solid line is the best-fit on the basis of the cardinal temperature model (Equation 18).
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and hence large Q10 coefficients than labile carbon (Davidson & Janssens, 2006; Hilasvuori et al., 2013; Li 
et al., 2018). The availability of SOM also constrains the relationship. At high temperatures, SOM decom-
position tends to be fast, which lowers the availability of SOM and therefore masks the intrinsic effect of 
temperature on decomposition rates, lowering the temperature sensitivity (Almulla et al., 2018; Gershenson 
et al., 2009; Inglett et al., 2012).

From the modeling perspective, the inverse relationship between Q10 and temperature supports the appli-
cation of the cardinal temperature model beyond the peatlands from the Upper Peninsula of Michigan. To 
illustrate this point, we substitute Equation 14 to 1, and express Q10 coefficient in terms of the minimum, 
optimal, and maximum temperature of methane production,

  
  

    
    

       
 

       

2
opt opt max opt minmax min

10 2
opt opt max opt minmax min

210 10
.

10 2 20

T T T T T T TT T T T
Q
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We then fit the equation to the median Q10 values from the compiled data set at different temperatures by 
fixing Tmax at 50°C and by using nonlinear least squares fitting (Figure 8D). The best-fit Tmin and Topt are 
−12.0 ± 0.5 and 37.0 ± 12.4°C, respectively, and the MSE and R2 are 1.36 and 0.80, respectively. The best-fit 
Topt value falls within the range of the optimal temperatures of mesophiles, from 20° to 45°C (Hartel, 2005; 
Robbins & Konhauser, 2021). The best-fit Tmin is lower than the Tmin estimated above for the Michigan peat-
lands, and can be attributed to the inclusion of the Q10 values for arctic soils and other cold regions in the 
compiled data set.

The inverse relationship also supports a key assumption of our biogeochemical reaction model, microbial 
reactions respond to temperature variations by following the cardinal model. If we describe the temperature 
response of the fermentation reaction with a different model, such as the Arrhenius equation, we would still 
be able to reproduce the results of the laboratory incubation experiments (Figures S2 and S3). However, due 
to the rate-limiting effect of the fermentation reaction, the temperature response of methane production 
would follow the Arrhenius equation, resulting in a constant Q10 value at different temperatures (Figure S4).

4. Concluding Comments
We explored the temperature sensitivity of anaerobic organic matter decomposition using biogeochemical 
reaction modeling and compared the modeling results to those obtained from the Q10 approach. The bio-
geochemical reaction model presented here was constructed based on the catalytic mechanism of organic 
matter decomposition, a network of enzymatic and microbial reactions, and how the kinetics of individual 
reactions responds to temperature variations. The modeling results captured the influence of individual 
network reactions on anaerobic organic matter decomposition, and how the decomposition rates respond 
to the variations in temperature.

By applying both the biogeochemical reaction modeling and the Q10 approach to the peatlands in the Upper 
Peninsula of Michigan, USA, a number of differences arise:

1.  Whereas Q10 approach treats organic matter decomposition as a black box, biogeochemical reaction 
modeling accounts for the underlying mechanism of organic matter decomposition, including the reac-
tions of extracellular enzymes, fermentative microbes, and methanogens.

2.  The Q10 approach builds on the Arrhenius equation that calculates rates of organic matter decomposi-
tion as an exponential function of temperature. In the biogeochemical reaction model, the temperature 
sensitivity of organic matter decomposition represents a systems property that arises from the interac-
tions among enzymatic and microbial reactions in the entire biogeochemical reaction network.

3.  In contrast to the exponential relationship predicted by the Q10 approach, the modeling results show that 
the temperature response of anaerobic organic matter decomposition follows the same pattern assumed 
for microbial reactions. In particular, between 5°C and 30°C, the decomposition rates vary almost line-
arly with temperature.

Our study helps make clear the extent to which the Q10 approach oversimplifies a complex biogeochemical 
process. As a result, the Q10 approach undermines the kinetic study of organic matter decomposition:
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1.  By neglecting the dynamics of organic matter decomposition. Most experimental studies determine Q10 
coefficients from the accumulative CO2 and CH4 productions and the duration of the experiments are 
variable, from a couple of days to over months (Heslop et al., 2019; Lupascu et al., 2012). Because the 
rates of organic matter decomposition can vary with time, the Q10 coefficients obtained by using different 
incubation times can also be different.

2.  By complicating the rate-temperature relationship of organic matter decomposition. As demonstrated by 
the modeling study here and by previous experimental efforts, the rates of organic matter decomposition 
do not necessarily vary with temperature exponentially. As a result, Q10 coefficients are not a constant, 
and a series of Q10 coefficients would be required to describe the rate-temperature relationship over the 
temperature ranges of interest.

3.  By failing to provide an accurate description of the temperature sensitivity. Applying the Q10 approach 
requires the rate and the Q10 coefficient at a base temperature. However, at different temperatures, the 
rates and the Q10 coefficients are different, and there is no clear theoretical, or even empirical, rationale 
for choosing a particular base temperature.

4.  By overestimating or underestimating the rates of organic matter decomposition, the Q10 applications in-
troduce errors into the flux predictions of carbon cycling and their potential feedbacks to global climate.

Reliable prediction of reaction kinetics should account for catalytic mechanisms. The biogeochemical re-
action model presented here is limited in that it is constructed for a specific field site, and hence does not 
include reactions that are potentially significant at other environments, such as respiration using external 
electron acceptors. It does not consider complicating physical and chemical factors (i.e., water content, 
organic matter accessibility, and so on) that influence the progress of organic matter decomposition (Ger-
shenson et al., 2009, 2009; Wagai et al., 2013). Therefore, our results likely have simplified the temperature 
response of anaerobic organic matter decomposition. Nevertheless, from the dramatic differences between 
the modeling results and those given by the Q10 approach, we can conclude that the Q10 coefficient may not 
be effective as a parameter for quantifying the temperature sensitivity of organic matter decomposition. We 
also suggest that biogeochemical reaction modeling, combined with laboratory incubation experiments, can 
be applied to integrate more realistic description of reaction mechanisms into the kinetic study of organic 
matter decomposition and to uncover the relationship between organic matter decomposition rates and the 
temperature of the environment.
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