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Nitin J. Sanket and Yiannis Aloimonos

Perception and Robotics Group, University of Maryland, College Park, MD, United States

Tactile sensing for robotics is achieved through a variety of mechanisms, including magnetic,
optical-tactile, and conductive fluid. Currently, the fluid-based sensors have struck the right
balance of anthropomorphic sizes and shapes and accuracy of tactile response
measurement. However, this design is plagued by a low Signal to Noise Ratio (SNR) due
to the fluid based sensing mechanism “damping” the measurement values that are hard to
model. To this end, we present a spatio-temporal gradient representation on the data obtained
from fluid-based tactile sensors, which is inspired from neuromorphic principles of event based
sensing. We present a novel algorithm (GradTac) that converts discrete data points from
spatial tactile sensors into spatio-temporal surfaces and tracks tactile contours across these
surfaces. Processing the tactile data using the proposed spatio-temporal domain is robust,
makes it less susceptible to the inherent noise from the fluid based sensors, and allows
accurate tracking of regions of touch as compared to using the raw data. We successfully
evaluate and demonstrate the efficacy of GradTac on many real-world experiments performed
using the Shadow Dexterous Hand, equipped with the BioTac SP sensors. Specifically, we
use it for tracking tactile input across the sensor’s surface, measuring relative forces, detecting
linear and rotational slip, and for edge tracking. We also release an accompanying task-
agnostic dataset for the BioTac SP, which we hope will provide a resource to compare and
quantify various novel approaches, and motivate further research.

Keywords: tactile-sensing, tactile-events, active-perception, event-based, bio-inspired

1 INTRODUCTION

Computational tactile sensing has myriad applications in robotics, especially in tasks related to
grasping and manipulation. The robotics community has put a significant amount of effort into the
design of hardware and algorithms to equip robots with tactile sensing capabilities that rival that of
the human skin. Decades of research have led to the design of fluid based sensing mechanisms as the
gold-standard for striking the balance between anthropomorphic shapes, sizes and responses.
However, as computational algorithms have utilized such sensors widely, some largely
unexplored issues still persist due to their non-linear behavior observed in both spatial and
temporal responses due to external factors that are hard to model Wettels et al. (2008).

Primarily, these sensors have low Signal to Noise Ratios (SNR), owing to the use of a fluid-based
transmission of forces from the skin to the sensing electronics which “damps” the values. Secondly,
because of the non-uniform distribution of the sensing elements inside the mechanical construction,
each sensing element has a different sensing range, and respective biases. These issues have
prohibited the development of a standard representation of the data, and processing techniques
have been designed engineered for a particular set of tasks rather than being general.

Frontiers in Robotics and Al | www.frontiersin.org 1

June 2022 | Volume 9 | Article 898075


http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.898075&domain=pdf&date_stamp=2022-06-17
https://www.frontiersin.org/articles/10.3389/frobt.2022.898075/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.898075/full
http://creativecommons.org/licenses/by/4.0/
mailto:kganguly@terpmail.umd.edu
https://doi.org/10.3389/frobt.2022.898075
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.898075

Ganguly et al.

Many approaches have been proposed for interpreting the
sensor data, with highly accurate computer models on one end
Narang et al. (2021b,a), and a variety of signal processing
techniques Wettels and Loeb (2011) on the raw data on the
other. Both these approaches are computationally expensive and
need extensive hand-crafted calibration procedures for them to be
operational.

On the contrary, biological systems calibrate for these
environmental factors on-the-fly by processing tactile
information as spikes or events, which provides advantages for
transmission and processing along with built-in robustness. This
ideology inspired neuromorphic engineers to develop sensors and
low-power hardware Brandli et al. (2014), that record and process
events, as well as algorithms to compute events Mitrokhin et al.
(2018); Gallego et al. (2020); Sanket et al. (2020). Recently event
based hardware has become available for the research
community. The best known among these is a vision sensor
called DVS Brandli et al. (2014); Lichtsteiner et al. (2008), and
another sensor is the event based audio cochlea Yang et al. (2016).
Event-based processing has also been introduced to the olfactory
domain Jing et al. (2016) and for tactile data Janotte et al. (2021).

We propose a novel intermediate representation computed
directly from the raw fluid-based tactile data such as that of the
BioTac SP sensor. Instead of accurately simulating the
deformations and forces on the sensor, as in Narang et al
(2021a,b), we compute robust features from the spatio-
temporal changes in the tactile data, which carry essential
information about the sensor’s deformation and forces at the
location of touch. The approach is computationally inexpensive
and sufficiently accurate to perform a series of tasks.

The main idea is to compute from a sequence of raw data, the
significant changes in data values from individual sensors, which
we call Tactile Events, and then compute the essential tactile
features from these events via a spatial interpolation. Specifically,
by temporally accumulating the tactile events we construct
surface contours, that can be used as a generic representation
for tracking touch across the BioTac SP skin. Our approach
handles the challenges mentioned above, i.e., it can account for
noise and individual sensor biases.

1.1 Problem Formulation and Contribution
The question we tackle in this work can be summarised as “What
representation do we need to handle noisy data from a Fluid Based
Tactile Sensor (FBTS)?”. To answer this question, we draw
inspiration from neuromorphic computing and propose a
computational model for representing tactile data using spatio-
temporal gradients. Our contributions are formally described
next.

e We present an intuition for the relationship between the
volumetric deformations of the skin and fluid on a fluid
based tactile sensor and spatio-temporal gradients. We
further discuss why our method can robustly compute
the maximal region of deformation.

e We present a computational model to convert raw tactile
signals from an FBTS into an interpolated spatio-temporal
surface. This is then used to track regions of applied
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stimulus across the sensor’s skin surface which
corresponds to the regions of touch.

e We demonstrate the capabilities of our proposed approach
on several real-world experiments, including detecting
slippage during grasp, detecting relative direction of
motion between fingers, and following planar shape
contours.

e We release a novel dataset containing the various
experiments we perform on the BioTac SP. It can be
used to validate not only our method, but also for
comparing other tracking algorithms for the BioTac SP.

and help push the field forward.
1.2 Prior Work

Tactile sensors broadly fall into several broad -categories,
including but not limited to piezoresistive, piezoelectric,
optical, capacitive, and elastoresistive. We further categorize
them into two main classes, based on their sensing modality:
optical-tactile (i.e. indirect) and direct. This categorization is
based on whether the sensing element makes direct contact
with the surface being touched. The main tasks performed
with tactile data found in the literature include: 1) estimation
of the contact location and the net force vector, 2) estimation of
high-density deformations on the sensor surface, 3) slip detection
and classification, and 4) tracking object edges. We next discuss
state-of-the-art works on using the various classes of tactile
sensors and solving tasks related to those mentioned above.
Studies that perform estimation directly on the sensor data
include Lin et al. (2013), who present an analytical method to
estimate the 3D point of contact and net force acting on the
BioTac sensor based on electrode values, where they assume that
electrodes measure force in the direction their normals. Su et al.
(2015) discuss several methods for force estimation from tactile
data, including Locally Weighted Projection Regression and
neural network based regression. They also present a signal
processing technique for slip detection using the BioTac,
comparing their results using an IMU. Sundaralingam et al.
(2019) introduce a method to infer forces from tactile data
using a learning-based approach. They implement a 3D voxel
grid to maintain spatial relations of the data, and use a
convolutional neural network to map forces to tactile signals.
Recently, some studies modeled a mapping between sensor
readings and the field of deformations on the whole sensor
surface. Narang Y. S. et al. (2021) presented a finite element
model for the 19 taxel BioTac sensor and demonstrated the most
accurate simulations of the sensor thus far. They relate forces
applied to specific locations to the sensor’s skin deformation.
They learn using data they collected, the mapping between 3D
contact locations and netforce vectors to the 19 taxel readings,
and then by combining the FEM simulation and experimental
data they extrapoloate a mapping between taxel sensor
measurements and skin deformations and vice-versa. In
Narang Y. et al. (2021) the authors extended this work using
variational autoencoder networks to represent both FEM
deformations and electrode signals as low-dimensional latent
variables, and they performed cross-modal learning over these
latent variables. This enhanced the accuracy of the mapping
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between taxel readings and skin deformations previously
obtained. However, they also showed that for unseen indenter
shapes these methods poorly generalise in predicting deformation
magnitudes and distributions from electrode values.

Lepora et al. (2019) using a TacTip optical-tactile sensor (Ward-
Cherrier et al. (2018)) learn via a CNN to perform reliable edge
detection, and then use that in a visual servoing control policy for
tracking and moving across object contours. In related work by the
authors (Cramphorn et al. (2018)), they present a Voronoi
tesselation based processing pipeline to predict contact location,
as well as shear direction and magnitude on the surface of the sensor.
This method is novel in that it does not use any classification or
regression techniques and is purely analytical in nature.

Taunyazoz et al. (2020) use the NeuTouch, a novel event-
based tactile sensor along with a Visual-Tactile Spiking Neural
Network to perform object classification and rotational slip
detection. They also perform ablation studies with an event-
based visual camera, and compare their spiking neural networks
to traditional network architectures like 3D convolutional
networks, and Gated Recurrent Units.

We use the prior work described above as a source of motivation
for our pipeline, and we attempt to use the validated experiments in
them as a proof of concept of our approach. We perform slip
detection experiments as in Su et al. (2015), perform edge tracking
using visual servoing as in Lepora et al. (2019) and compute forces
from touch as described by Sundaralingam et al. (2019).

1.3 Organization of the Paper

Our paper is organized as follows: In Section 2, we present the
motivation for using the BioTac SP sensor for tactile sensing, and
how our method is a practical solution to the challenges posed by
this particular type of sensor. We describe in detail why the
spatio-temporal gradients are an intuitive way for computing
features of deformation on the BioTac SP.

Section 3 discusses our high-level pipeline, and our experimental
setup. We then go into detail regarding our algorithm to generate
spatio-temporal gradients, i.e. events from raw tactile data, and then
discuss how we generate contour surfaces from these events. Lastly,
in this section we discuss how we use these spatio-temporal surfaces
to track touch stimulus across the BioTac SP skin.

In Section 5 we demonstrate our pipeline on three distinctly
different tasks, and discuss their results and outputs. We first
show that our contour surfaces are able to accurately track tactile
stimulus in motion across the surface of the BioTac SP skin. We
then discuss results on experiments involving varying applied
forces on the BioTac SP, where we show that our contour surfaces
can distinguish between various levels of force. Lastly, we employ
our algorithm on a more practical task of slippage detection
during grasping, where we detect time of slippage, and distinguish
between longitudinal and rotational slippage types.

2 METHODS
2.1 Motivation

We consider for our work the BioTac SP tactile sensor, which
comes with a unique sensing mechanism as compared to other
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contemporary tactile sensors. Tactile sensing mechanisms, as they
are available commercially today, lie on a spectrum ranging from
accurate sensing capabilities on one side to biomimetic form-factors
on the other. Most sensors on this spectrum make trade-offs on
form factor to provide high accuracy. The BioTac SP is one
particular sensor that strikes a right balance and is in the
middle of the range, where we have a physical shape and
sensing mechanism very close to the human finger tip, but this
comes at the cost of accuracy and fidelity of sensing.

2.2 Challenges With Fluid-Conductive

Sensors

Unlike optical-tactile, magnetic or capacitive tactile sensors, fluid
based tactile sensors use a conductive fluid to transmit electrical
impulses from spatially distributed excitation electrodes to a few
sensing locations (taxels) distributed over a solid core. The values
generated by the taxels are thus primarily dependent on the
characteristics of the fluid, specifically its conductivity.

The conductivity of a fluid, such as the electrolytic solution present
in the BioTac SP sensor is non-linearly related to various external
factors. These include, but are not limited to the temperature of the
fluid, the humidity of the surroundings, the area and distance between
the excitation and sensing electrodes, and the concentration of the
conductive fluid. Each of these factors contribute non-linearly
(Wettels et al. (2008)) to the noise of the individual taxels.
Furthermore, the noise characteristics of the sensor electronics are
also non-linear, which further exacerbates the situation.

We also need to consider sources of noise in the electronic
implementation of each taxel’s sensing mechanism, which
include amplification and analog-to-digital conversion circuitry
among others.

2.3 Modelling Fluid-Conductive Sensors
While it might be feasible to model each of the aforementioned
sources of noise independently and in isolation, the combination
and interactions between them when considered together in the
system makes it an arduous task. There have been several attempts
to develop a physical model of the BioTac sensor, the most recent
of which is presented in the work by Narang Y. etal. (2021). In this,
the authors present a finite element model (FEM) of an ideal
BioTac sensor, and provide an accurate simulation of the skin, the
sensing core, and the internal fluid. While the FEM approach
provides a physically accurate measurement of the deformation of
the skin and fluid based on force stimuli, it does not account for the
sources of noise described earlier. This is because the model of the
sensor electronics is not considered along with the computational
challenges of fluid modelling. Currently, to the best of our
knowledge, there is no mathematical model between sensor
readings and skin deformations, thereby inhibiting research in
this area when utilizing raw sensor measurements.

2.4 Bio-Inspired Motivation for Logarithmic
Change

In our work, we draw inspiration from nature regarding how
changes over the skin surfaces may be related to location of touch
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and relative forces. To this end, we break away from the core
robotics ideology that one requires a complex and accurate
mathematical model or a very high quality sensor to perform
useful tasks. In particular, we are driven by nature’s efficient and
parsimonious implementations which perform amazingly well
with minimal quality sensors and very simple computing.

To build such an efficient data representation for fluid based
sensors, we turn to the Weber-Fechner Laws of psychophysics,
which state that the perceived stimulus on any of the human
senses is related via an exponential function to the actual
stimulus. As a result, humans perceive stimuli such as touch,
sound or light as the changes in the logarithm between existing
values and new ones. It is thus not surprising that the
manufacturers of the BioTac SP sensor, who designed it to be
as anthropomorphic as possible, also recommend that the best
way to process the data from such fluid-based sensors is to use
relative changes instead of raw taxel values.

In practice, the two main challenges with the BioTac SP sensor
are that 1) the different taxels do not have same baseline value,
and 2) the taxel values exhibit a low signal to noise ratio. By
computing only the taxel changes on a logarithmic scale, our
values become independent of the baseline and are more robust to
noise, thus tackling both aforementioned issues.

2.5 Computing Events From Raw Data

One of the primary outputs of our pipeline is to generate “events”
from raw tactile data. The concept of an event is inspired from the
neuromorphic research community, which essentially is a data
point in time that is “fired” only when there exists a change in the
stimulus above a specified threshold.

We consider two consecutive packets of taxel data, at times ¢
and t + § respectively. Each of these packets contains the raw taxel
values Xt_| ,, and X{9 ,,. We then compute the logarithmic
change between each of the j € 1, 24 consecutive taxels, and fire an
event when the logarithm of the value at a taxel increases or
decreases by a threshold value 7. That is, when:

[In XZ,:”S -l X7 >7 1)
In other words, a positive event is said to be “fired” when
In X;ZM >e'ln X;:i )
and a negative event when
In X;:i >e’ln X;:"“s (3)

This gives us intermediate taxel values between times t and ¢ + 6,
and their respective timestamps for each taxel j € [1, 24].

We know from the design of the sensor, as well as ideal sensor
simulations that the largest change in the values of the taxels
correlates with the region of highest tactile stimulus. Also, this
change is dependent on the forces already present on the region of
touch, and reaches saturation and demonstrates hysteresis in the
raw values. Our algorithm accounts for that by non-linearly
interpolating the taxel data, on the log scale. The previously
obtained taxel events thus give us a temporal gradient over the
change in taxel values, caused by the deformation of the skin and
fluid because of the applied force stimulus. Intuitively, these
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intermediate events between two discrete taxel data values
signify change in localized volume of the skin and fluid over
time due to the applied tactile stimulus.

As part of our algorithm, we then process these spatially
discrete events for each of the 24 taxel locations and convert
them into a continuous, interpolated surface. We use a Voronoi
tesselation of the discrete and irregular grid, and perform Natural
Neighbors Interpolation to construct an event surface, that gives
us an interpolated event value at each point. This surface
indirectly depicts the deformation of the skin and fluid, due to
applied stimulus. Since the deformation due to applied forces on
the BioTac SP is greatest at the region of touch, we generate iso-
contours of the event surface, and consider only the maximal
valued contour as the region of touch.

3 OUR APPROACH
3.1 Pipeline

Figure 1 shows an overview of the proposed framework, where
we start with 24 points of raw tactile data from the BioTac SP
sensors and generate a contact trajectory as output. The pipeline
involves converting the raw data into events, aggregating said
events by spatial clusters, performing Voronoi Tessellation on the
aggregate events, and then using the interpolated values to
generate a contour plot whose centroid is tracked over time.
We elaborate each of the steps of our pipeline below.

3.2 Setup and Methodology

Our hardware setup consists of a UR-10 manipulator equipped
with the Shadow Dexterous Hand, which has the BioTac SP
sensors attached to each finger tip. The BioTac SP provides a ROS
interface to obtain the raw data, at a rate of 100 Hz. This data
consists of 24 electrode values which we term “taxels” (tactile
element), as well as overall fluid pressure and temperature flux.
For our pipeline, we use only the 24 taxel readings. These readings
are the result of forces due to contact and the resultant
compression of the skin and the enclosed fluid. The nature of
our pipeline allows for processing readings from any other tactile
sensor, as long as they are spatially distributed across some
surface, and timestamps for each data packet are provided. We
perform basic min-max normalization and Savitzky-Golay
filtering before using the data. Our event-generation algorithm
is influenced by principles of event-based sensors, which record
logarithmic changes of signal on individual sensing elements,
independently and asynchronously.

3.3 Generating Events From Raw Tactile
Data

In Section 2.1, we established that our approach does not
approximate the entire sensor’s surface but only the regions
with maximum tactile stimulus. The data from the BioTac SP
sensor is obtained at a rate of 100 Hz, or one packet of data every
0.01 s. Our method computes the number of events at each taxel,
where each event corresponds to the change of some threshold
value 7. This essentially decides the granularity of change we are
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FIGURE 1 | High-level organization of our pipeline.
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(D) Contours generated from the interpolated surface.

FIGURE 2 | Contour Generation Pipeline. (A) 24 taxel locations, projected onto 2D plane, (B) Initial event aggregates per taxel, (C) Voronoi tesselation of the grid,

interested in measuring, and more events correspond to larger
change, which is correlated to the amount of force that was
applied to a particular region. For each event triggered, we also
generate a corresponding timestamp between t and ¢ + . Taking
inspiration from the Weber-Fechner laws of psychophysics
mentioned earlier in Section 1, we trigger events based on the
natural log of the threshold 7. This intuitively means that the
frequency of events are higher initially at time ¢, and gradually
taper off as we get closer to the value at time f + 4.

Once the events have been computed for all the raw tactile data
points, we aggregate them into temporal frames. The size of the
temporal window used for aggregation is an important heuristic
that can be fine tuned to favor robustness to noise or allow for a
more sensitive tactile response.

3.4 Natural Neighbors Based Interpolation
The 24 taxels are located in some 3D space inside the BioTac SP,
as per the sensor’s design. We project these ellipsoidal locations
onto a 2D surface, shown in Figure 2A, to get an irregular grid of
locations on a plane. For each of these 24 2D points, we have the
aggregate event counts, as shown in Figure 2B.

We proceed to perform Voronoi tessellation of this grid, based
on the aggregate event values, shown in Figure 2C. Compared to
other methods of interpolation, such as Inverse Distance
Weighting or Gaussian interpolation, Voronoi tessellation
provides a more accurate representation of the underlying
function we are trying to interpolate. Considering the

unstructured nature of our data, ie, an irregular grid of
taxels, traditional methods of interpolation do not take into
account the different areas of influence of each taxel when
computing the interpolated function. Voronoi tesselation
partitions the space proportional to the “strength” of each
sample point, by “stealing” some area from the neighboring
polygons any time a new point is interpolated Lucas (2021).
This is mathematically represented by:

G(x) =) wi(x)f(x) ()
_ A(x;)
w0 = 25 (5)

where G(x) is the estimate computed at x, and w; are weights, and
f(x;) are the known data values at x;, which are obtained from the
24 event aggregate values. A(x) is the volume of the new cell
centered at x, and A (x;) is the volume of the intersection between
the new cell centered in x and the old cell centered in x;.
Owing to the irregular structure of the sensing locations
(taxels) within the BioTac SP, we want to employ a method of
interpolation that gives weight to each taxel location proportional
to the applied stimulus. Intuitively, Voronoi tessellation
partitions the space into irregularly shaped polygons that are
proportional to (or representative of) the tactile stimulus exerted
on each taxel location. This is better than say, nearest neighbors
interpolation which interpolates force values uniformly around
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each taxel. Although similar to a weighted-average interpolation,
Natural Neighbors interpolation weights values by their
proportionate area instead of just the raw values at each taxel.
This resultant interpolation is a more “truthful” representation of
the underlying surface function than other methods. The results
of the Voronoi tessellation are used to interpolate points on the
2D surface of the BioTac SP, resulting in a continuous surface
(Figure 2D) whose values correspond to the amount of force on
each taxel, and consequently, the deformation of that region of
the BioTac SP skin.

4 DATASET

There is a lack of standardized datasets in the tactile sensing
community, especially when sensors like the BioTac SP are
concerned. Most datasets available today are task-specific, or
are from optical-tactile sensors. This makes quantitative
comparisons difficult for novel algorithms being introduced to
the field.

As part of our work, we are releasing an accompanying dataset
on tactile motion on the BioTac SP sensor, which is independent
of any particular task. The dataset samples include the following:

e Tactile responses from various indenter sizes, applied at
different forces

e Motion across the sensor surface in various directional
trajectories. We include 1) top-to-bottom, 2) bottom-to-
top, 3) left-to-right, 4) right-to-left, 5) diagonal top-to-
bottom, 6) diagonal bottom-to-top, 7) clockwise and 8)
counter-clockwise data samples.

¢ Longitudinal slippage for various objects from a labelled list
of objects, as well as the ground-truth timestamps for slip
events.

e Rotational slippage for cylindrical object on a constant-
speed turntable, as well as the ground-truth timestamps for
slip events.

All our data is presented in both NumPy and CSV data
formats, and includes all raw 24 taxel values as well as their
timestamps. For ease of adoption and use, we eschew the use of
ROS Bag format in this dataset, but it may be made available on
request.

5 EXPERIMENTS AND RESULTS
5.1 Experimental Setup

The hardware used to perform all experiments, shown in
Figure 3, consists of a UR-10 manipulator equipped with a
Shadow Dexterous Hand, with one BioTac SP sensor attached
to each of the five finger tips.

Alongside the 24 taxel values from each BioTac SP sensor, the
setup also provides us with the 6 DoF pose of the arm and each
finger, relative to a world coordinate system at the base of the
manipulator. This information is used in the shape tracking
experiments.

GradTac: Spatio-Temporal Tactile Sensing

FIGURE 3 | Hardware Setup: Shadow Hand mounted on UR-10
manipulator.

Replication of the experiments as described in this work is only
feasible with access to the BioTac SP hardware. As such, our
algorithm can be applied to, and modified for other sensors. We
will release an accompanying dataset with the labelled data
collected for each experiment, along with their respective
ground truth values.

5.2 Tracking Location of Touch

We collected data from the BioTac SP at a rate of 100 Hz by
making contact at different sensor locations. Three different
probes with varying indenter diameters (1, 2, and 5mm
respectively) were used to gather this dataset. The taxel values
are time-synchronised with an RGB camera feed which provides
us with visual ground truth of contact location at every instance.
This data was then used to generate events according to the
method described in Section 3.3.

We evaluate our method of tracking contact by comparing it
qualitatively with the ground truth trajectories of the probes obtained
from the RGB images. We hand-label several marker locations
(shown in Figure 4 on the physical sensor and align them in
image coordinate space to the 2D projected locations of the
taxels. We used 8 different trajectories, as shown in Figure 5.

We move the indenters on various trajectories along the surface
of the BioTac SP, as shown in Figure 5, from top to bottom, bottom
to top (Figure 5A), left to right, right to left ((Figure 5B), diagonally
top to bottom, diagonally bottom to top (Figure 5C), circular
clockwise, and circular counter-clockwise (Figure 5D).

Figure 6 shows the outputs from two sample
trajectories—diagonal motion from bottom left to top right and
counter-clockwise circular motion. Figure 6A and Figure 6C show
the trajectories overlaid on the contour surfaces generated from the
event aggregates stacked along the time axis. In both outputs, we
can clearly see the event aggregates in red representing the current
region of touch. Tracking these across time, we can generate a
trajectory of touch across the skin surface.
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for tracking diagonal trajectory, and (D) Markers for tracking circular trajectory.

FIGURE 4 | Touch Tracking Ground Truth Marker Locations. (A) Markers for tracking horizontal trajectory, (B) Markers for tracking vertical trajectory, (C) Markers

Au B!

Cc i D i

FIGURE 5 | Touch tracking trajectories. (A) Up and down trajectories, (B) left and right trajectories, (C) diagonal trajectories, (D) circular trajectories.

TABLE 1 | Mean errors in the ratio of computed contact location and BioTac SP
width at each way-point over different trajectories. The values in bold refer to
the best results for a given trajectory.

1 2 3 4 5

Circle Raw MLP 0.76 0.47 0.78 0.45 0.75
Raw Contours 0.07 0.06 0.35 0.15 0.31
Event Contours 0.04 0.11 0.29 0.12 0.02

Diagonal Raw MLP 0.86 0.30 0.01 0.28 0.75
Raw Contours 0.02 0.24 0.17 0.05 0.02
Event Contours 0.10 0.11 0.05 0.05 0.01
Horizontal Raw MLP 0.47 0.33 0.01 0.30 0.45
Raw Contours 0.04 0.10 0.32 0.40 0.50
Event Contours 0.13 0.09 0.21 0.04 0.01
Vertical Raw MLP 0.56 0.28 0.02 0.22 0.40
Raw Contours 0.59 0.32 0.17 0.14 0.10

Event Contours 0.05 0.11 0.02 0.12 0.07

For comparison, in Figures 6B,D we compare the outputs
obtained from the filtered, but otherwise unprocessed raw data
from the BioTac SP. It is clear that the outputs from our

approach, shown in Figure 6, produces smoother trajectories
with reduced noise.

Figure 7 quantifies the median error in touch tracking results
for each of the waypoints, for each of the four classes of
trajectories (horizontal, vertical, diagonal and circular). Our
results are most accurate for the waypoints in the center of
the BioTac SP as compared to those near the edges due to the
shape and fluid density of the underlying sensor.

Table 1 provides a comparison of the average pixel-wise
error in tracking the known waypoints (Figure 4), computed
with three different methods: First, we take the 24 taxel values
corresponding to the timestamp at which the indenter is on
each of the known waypoints 1 through 5, and train a fully
connected neural network for regression on predicted
locations. The average pixel-wise errors are reported under
the Raw MLP heading. Similarly, we obtain the average pixel-
wise errors for each of the five waypoints, using the contours
from raw data and from event data. These are reported under
the Raw Contours and Event Contours headers respectively in
Table 1.
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FIGURE 6 | Touch Tracking Trajectory Plots. The red line denotes the ground truth trajectory. (A) Diagonal Trajectory using Events Data, (B) Diagonal Trajectory

using Raw Data, (C) Circular Trajectory using Events Data, (D) Circular Trajectory using Raw Data.
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5.3 Magnitude of Force
We applied varying forces on the BioTac SP skin using a 2 mm

indenter to demonstrate the ability of our event contours to
measure the correlation between the magnitude of contact force
and the area of the maximal contour. The ground truth forces
were measured with the help of a calibrated and accurate force
sensor.

In order to obtain the relationship between contour areas and
applied force, we trained a fully connected neural network with 7
hidden layers, with layer widths of 8, 16, 32, 64, 32, 16, and 8
respectively using L2 loss. This network was used to compute a
regression curve mapping the forces to the contour areas. We
applied a logistic activation function, and used an inversely scaled

learning rate. The network was trained for 5,000 epochs, on 200
data points.As a point of comparison, we applied two other
regression methods, a stochastic gradient descent regression
with the ElasticNet regularization and log loss, and another L2
regularized regression with Huber loss.We used the mean
absolute percentage error, defined as

lyi — ¥l ©)

MAP(y,y)=E—2- 2
() max (e, | yi])

where E is the expectation operator.
Each of these methods were trained for 1,000 epochs over 200
data points, but for brevity in Figure 8 we only display 100
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FIGURE 10 | Objects Used for Longitudinal and Rotational Slip Detection. (A) Box shape, (B) Spherical shape, (C) Cylinder shape, (D) Tumbler on constant-speed
turntable.

epochs. The figure also shows the results from the same  as “up” or “down”. In case of rotational slip, i.e. in which the
regression techniques applied to the contours generated from  object rotates between the fingers, we can measure clockwise vs.
raw data. It is evident from the plots, across all learning  counter-clockwise rotation.

algorithms, that the event based data in comparison to the We do this by comparing the event contours from fingers on
raw data, shows a better validation loss curve during training,  opposing sides of the object, while the object is fully grasped by the
and has an overall lower loss score at testing. Shadow Hand, as shown in Figure 10. By tracking and comparing
Figure 9 shows a visual representation of the contour regions  the trajectories generated by the contours on the first finger and the
correlated with the applied forces. As is qualitatively evident,  thumb, we can deduce both the time at which slippage occurs, as
higher forces correspond to larger regions of tactile stimulus, as  well as the direction. In case of longitudinal slippage, as in
shown by the highest contour regions in red. Figure 11C, based on the orientation of the BioTac SP sensors
with respect to the object, both the contour trajectories have the
5.4 Slippage Detection and Classification same direction of motion. In case of rotational slippage, as in
There are many different ways slippage detection has been  Figure 11F, because of opposing shear forces experienced on the
achieved using the BioTac SP (Su et al. (2015); Veiga et al.  thumb versus the first finger, the contour trajectories have
(2020); Calandra et al. (2018); Naeini et al. (2019)), with most opposing directions of motion.
methods specifically designed for the task. Here we show that our For the longitudinal slippage scenario, the object is allowed to

generic method of spatio-temporal contours can also be used for ~ slide down and is then gradually pulled back up, while
slippage detection and classification, demonstrating that our = maintaining a stable grasp. This can be seen by the contours
approach is very adaptive. moving from left to right spatially across the sensor’s surface, and

By tracking the contours spatio-temporally, we are able to  then from right back to the left. As is evident from the trajectories,
detect both the time at which slippage occurs, as well as its  because of shear forces being in the same direction for both
directionality. In case of longitudinal slip, i.e. in which the object ~ sensors, the direction of the respective trajectories are also the
moves linearly between the fingers, we can measure the direction ~ same. For the rotational slippage scenario, the object is affixed to a
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FIGURE 11 | Examples of trajectories during longitudinal and rotational slippage. (A), (B) First Finger and Thumb trajectories for longitudinal slippage, (C)
Directional Diagram for longitudinal slippage, (D), (E) First Finger and Thumb trajectories for rotational slippage, (F) Directional Diagram for rotational slippage.
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FIGURE 12 | Slip Detection Comparison Plots. From top to bottom, we
have a low-pass filtered acceleration on the z-axis, the regression slope on the
raw data, and the binary slip detection results from event contours.

constant-speed turntable and allowed to rotate slowly between
the opposing fingers. In this motion, due to the resultant
opposing shear forces, the contour trajectories for the index
finger and the thumb have clearly opposite directions.

The event contour outputs of these experiments, longitudinal
and rotational slippage, are shown in Figures 11A,B,C,D
respectively. In both cases the contours on the BioTac SP

sensor are tracked over time, separately for the index finger
and the thumb, which as per the diagrams (Figures
11A,B,C,D) have different orientations.We obtain ground
truth for our experiments using an 6-axis IMU mounted on
each object, and use time synchronized outputs from the IMU to
compute the time of slip. We compare our event-based approach
to a regression slope computed on the raw data, and the results of
one such experiment is shown in Figure 12.

5.5 Tracking Edges Using Contact Location
As another implementation of our contour tracking pipeline,
we demonstrate a simple controller that takes the contour
location relative to the UR-10 manipulator, and outputs a
motion vector for the finger to follow. The controller is based
on a simple tactile servoing algorithm, where we try to
maintain the location of the contour location in the center
of the surface frame.

As the finger and the attached sensor move over the edge, only
one portion of the BioTac SP is in contact with the edge surface.
This can be detected and tracked by our controller, and since we
start our controller execution with the sensor’s center touching
the edge, any deviations in the contours from this center is
compensated by an opposing motion vector sent to the UR-10
manipulator as a control command.

We track the edges of various non-trivial patterns, namely
circle, spiral, triangle, and zig-zag. We overlay the ground truth
image of our shapes over the trajectory that is tracked from the
robot’s pose data for the finger. Barring minor alignment issues
between the surface and the finger, and some sliding experienced
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FIGURE 13 | Edge tracking shapes, and results. (A) Circular edge, (B) Triangular edge, (C) spiral edge, (D) Zig-Zag Edge.
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during the execution, the controller is able to guide the finger
across the edges with relative accuracy. The results, with the
ground truth shapes, are shown in Figure 13. In each of the plots,
we have the trajectory of the BioTac SP in world coordinate space
in red, and the black polygons denote the inner and outer
diameters of the edges of the shapes we track, also in world
coordinate space measured in millimeters. We perform pixel-wise
trajectory alignment to align the sensor pose to the ground truth
boundary.

6 DISCUSSION

In conclusion, the work proposes a novel method to convert raw
tactile data from the BioTac SP sensor into a spatio-temporal gradient
(events) surface that closely tracks the regions of maximum tactile
stimulus. Our algorithm approximates the region of touch on the skin
of the BioTac SP sensor sufficiently accurate to perform various tactile
feedback tasks. Specifically, we demonstrated the usefulness of the
new representation experimentally, for the tasks of tracking tactile
stimulus across the sensor, measuring relative force, slippage
detection and classification of direction, and tracking edges on a
plane. In comparison to other methods for data processing of fluid-
based tactile sensors, our method is real-time and requires minimal
overhead in computation. Our approach provides a robust, analytical
method for detecting and tracking location of tactile stimulus on the
BioTac SP from just 24 data points, improves the signal-to-noise ratio
of the raw data and is independent of the baseline taxel values. The
benefits of this approach should be even more apparent if hardware-
based implementations of our algorithm is considered, due to the
inherent nature of event-based processing transmitting only changes
in tactile stimulus. Lastly, our approach is also independent of any
particular sensor type, and we present an accompanying dataset of
task-agnostic data samples gathered with the BioTac SP sensor. These
include motion tracking over known trajectories and their time-
synchronized RGB images, force sensor readings for varying forces
applied to the surface using different indenter diameters, and slippage
data for several objects and their accompanying ground truth
timestamps.
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