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ABSTRACT
Realizing Hebbian plasticity in large-scale neuromorphic systems is

essential for reconfiguring them for recognition tasks. Spike-timing-

dependent plasticity, as a tool to this effect, has received a lot of

attention in recent times. This phenomenon encodes weight update

information as correlations between the presynaptic and postsy-

naptic event times, as such, it is imperative for each synapse in a

silicon neural network to somehow keep its own time. We present

a biologically plausible and optimized Register Transfer Level (RTL)

and algorithmic approach to the Nearest-Neighbor STDP with time

management handled by the postsynaptic dendrite. We adopt a

time-constant based ramp approximation for ease of RTL imple-

mentation and incorporation in large-scale digital neuromorphic

systems.
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1 INTRODUCTION
In a giant messy soup of neuronal connections, timing is every-

thing! Computing with spikes heavily relies on the arrival times of

presynaptic events and their correlations with postsynaptic spike

times.[1] A well-appreciated contributor to hebbian learning is

spike-timing-dependent plasticity (STDP). This involves either the

potentiation (increase) or depression (decrease) of synaptic weights

based on a causal or anti-causal postsynaptic spiking with respect

to the presynaptic activity. The biological basis of this arises from

the modulation of the density of the solely ligand-gated AMPA re-

ceptors in response to the amounts of Ca2+ ions in the dendrite of

the postsynaptic neuron. While these AMPA receptors, in the pres-

ence of the neurotransmitter glutamate released by the presynaptic

neuron, allow the influx of excitatory Na+ and K− ionic currents;
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another dendritic receptor, the voltage- and ligand-sensitve NMDA

channels in addition to other ionic currents facilitate the influx

of the needed Ca2+ions. A causal postsynaptic spike leads to an

increased intra-dendritic Ca2+ concentration which through a se-

ries of chemical pathways leads to either an increased postsynaptic

sensitivity (via an enhanced AMPA receptor synthesis) [15] or an

increased presynaptic neurotransmitter release probability (via a

positive nitric oxide feedback from the post-synaptic neuron) [8].

Conversely, an acausal postsynaptic spike results in lower intra-

dendritic concentration, which in turn leads to the depopulation of

AMPA receptors.

Realizing in silico implementations of the STDP has largely been

approached in two ways: the classical all-to-all spike pairing and

the Nearest-Nearest (NN) approach [2, 9, 11, 13]. In the former,

the contributions of all presynaptic and postsynaptic spike pairs

occurring within a specified time window (typically a few tens

of milliseconds) are equally considered in determining a synaptic

weight update. The NN approach, on the other hand, only considers

the peripheral spike pairs, triplet or quadruplet arising from two

terminating post-synaptic (presynaptic) events and intermediate

presynaptic (postsynaptic) events if any. Izhikevich and Desai[9]

argue out the biological plausibility of the NN STDP relative to

the all-to-all approach. Their justifications include the backpropa-

gation of postsynaptic spike into the dendrites, which effectively

resets membrane potential there, thus annihilating the effects of

past postsynaptic spikes. Another perspective is that the immedi-

ate succeeding postsynaptic spike possibly overrides the influence

of subsequent spikes as a results of desensitization of glutamate

receptors or calcium saturation.

Hardware implementation of STDP requires consideration for

time management to prevent time saturation or overflow, especially

when the system is intended to run indefinitely. More so, optimal

caching of event times offers memory- and power-saving advan-

tages at the scale of large networks. In the digital domain, timing

can be kept via a registered accumulator and in the analog domain

via a pulsed-capacitor based circuit. For a large-scale neural net-

work, one may choose to either keep a global timer with which all

synapses stamp their events or several local timers for the various

synapses. While the option of a global timer naively seems simple,

it has the drawback of not easily determining a judicious range

(or bits required) sufficient for covering the nuanced random spike

patterns over the entire network. Even if, one manages to arrive

at a suitably-ranged timer, computing time differences between

spikes become unnecessarily slow and cumbersome in the event of

uncorrelated spiking activity. Postsynaptic spikes may occur well

outside of the potentiation/ depression window and computing
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the time difference needed for determining the weight update will

require a large-bit arithmetic operation.

Related work (digital domain) include the STDP implementation

using an elegant digital combinational logic-based convolutation by

Cassidy et al.[4] and a more elaborate implementation by Belhadj

et al. [3] involving first order approximation to exponential weight

decay function. However, both effectively adopt an all-to-all STDP

approach. A more recent work is that by Lammie et al.[10], where
separate implementations of paired-, triplet-, and quadruplet-spike

STDP implementation were performed. A much closely related

work is the pairwise NN STDP rule adopted in Loihi[5], a digital

large-scale neuromorphic system. Here, depressive weight updates

can be easily determined in an event-driven manner as the weight

update occur in a feedforward fashion, i.e. on presynaptic events.

On the other hand, Davies et al.[5] articulate the difficulty of com-

puting the potentiating half of the STDP function in an event-driven

manner as it requires some form of backward routing and instead

resort to a weight update on an epoch basis.

In this paper, we present LODeNNS, an optimized Register-

Transfer-Level (RTL) cum algorithmic implementation of the NN

STDP with a bounded local synaptic timekeeping useful at im-

plementing decentralized and postsynaptic-event-driven weight

update computations in a silicon neural networks. Major design

optimization highlights of this work are the constraining of and

minimal storage of event times to prevent expensive arithmetic and

time saturation or overflows; as well as an integrated solution that

allows the transition between paired-, triplet-, and quadruplet spike

selection at the end of a terminating postsynaptic spike depending

on the arrival times of the pre- and post- synaptic spike(s). The pa-

per is organized as follows: §I presents the motivation for this work

and related work, §II captures the theory for the adopted curve ap-

proximation strategies , §III contains implementation details is then

followed by §IV, a preliminary feature extraction demonstration

and §V, conclusion and future work.

2 THEORY
In order to simply realize STDP in the digital domain, the poten-

tiation/depression time window and weight update rule must be

aptly approximated as the actual curves decay exponentially with

the spike time difference (∆t = tpost − tpre ). The STDP curve is

mathematically defined by;

∆w(∆t) =

{
A+e

− ∆t
τ+ ∆t > 0

A−e
∆t
τ− ∆t < 0

(1)

where A+ > 0 and A− < 0 are the initial/ maximum potentiation

and depression intensities respectively. Whereas τ+ and τ− are the
potentiation and depression time constants. Typical parameter val-

ues determined from experimental data from pyramidal neurons

within Layer 2/3 of rat visual cortex can be found in [6]. While it is

obviously easy to implement exponentials in the analog subthresh-

old domain, a linear/ ramp approximation is relatively convenient

to implement in the digital domain with fewer arithmetic opera-

tions at a reasonable approximation error and as such we adopt that

it in this study. From a time-constant based consideration for either

∆w or ∆t range preservation, two kinds of linear approximations

can be used – tangential and chordal. Both are discussed next.

2.1 Time-Constant-based Linear
Approximations: Tangential vs. Chordal

The approximation can be expressed as a piecewise linear relation

shown in eq. 2;

∆w̃k (∆t) =


−
A+
τ+ a

T
k s+ 0 < ∆t < αkτ+

A−
τ− a

T
k s− −αkτ− < ∆t < 0

0 elsewhere

(2)

where ak =
[
βk
mk

]
, s+ =

[
−τ+
∆t

]
and s− =

[
τ−
∆t

]
.

αk , βk andmk are kτ -dependent scalings for the horizontal, vertical
intercept and slope factors respectively.

Tangential approximation involves the weight update line pick-

ing up the gradient of a point on the curve. A reasonable point

of choice proposed here is a line tangent at (kτ ,Ae−k ), where
k ∈ Z : k = 0, 1, 2, · · · . Choosing smaller k values favor the preser-

vation of the weight update intensity at the expense of the time

window and vice versa for larger k values. The general tangential

linear approximation slope and vertical- and horizontal intercept

factors are respectively defined by:

mk = e−k

βk = (k + 1)e
−k

αk =
βk
mk
= k + 1

(3)

Here, k = 1, 2, 3 are presented as suitable approximations for ∆w
intensity preservation, trade-off between ∆w intensity and time

window, and time window preservation respectively. This can be

inferred from the Figure 1. The Figure of Merit (FOM) used here is

the Area-Under-Curve overlap (AUC) between the approximation

and the STDP curve, shown in eq. 4, which is merely the area under

the approximation (AUA).

(0, A+)

(τ+,
A+
e )

(2τ+,
A+
e2
)

(0, A−)

(−τ−,
A−
e )

(−2τ−,
A−
e2
)

∆w̃0+

∆w̃τ+ ∆w̃2τ+

βk =
(k+1)
ek

αk = k + 1

∆t = tpost − tpre

∆
w

−α2τ− −α1τ− −α0τ− 0 α0τ+ α1τ+ α2τ+

A+

β1A+

β2A+

0

β2A−

β1A+

A−

Figure 1: Tangential Linear Approximation

AUC =
1

2

αk βkτ |A| (4)
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Figure 2: Chordal Linear Approximation

AUCs for ∆w̃0, ∆w̃τ and ∆w̃2τ are 0.5τ |A|, 2

e τ |A|(≈ 0.736τ |A|),

and
1.5
e2 τ |A|(≈ 0.203τ |A|) respectively and based on this ∆w̃τ (i.e.

k = 1) appears to be the preferred choice and as a matter of fact is

the optimal k value for maximum AUC here.

Chordal approximation, on the other hand, involves the selection

of a pair of chordal points (kτ ,Ae−k ) and ((k + p)τ ,Ae−(k+p)) for a
line that similarly maximizes the AUC preferentially for either the

∆w intensity or time window. The reasonable choice for the chordal

line with curve intersection points as integer multiples of the time

constant. While, the choice of the integer multipliers for the pair

of points must not necessarily be consecutive, increasing the point

separation increases the undesired Area-Above-Curve (AAC) that

is overlapped by the approximation. The general chordal linear

approximation slope, vertical- and horizontal-intercept factors are

defined as:

γp =
1 − e−p

p

mk = γpe
−k

βk = (γpk + 1)e
−k

αk =
βk
mk
=
γpk + 1

γp

(5)

Again, we adopt k = 1, 2, 3 and p = 1 resulting in three approxima-

tion lines from three pairs of consecutive chord points as shown

in Figure 2. Setting p = 0 (and by the L’Hôpital rule), the tangen-

tial linear approximation emerges, indicating the generality of the

chordal approximation. A good trade-off here is chosen based on k
that maximizes the AUC , which is governed by:

AUC =
1

2

αk βkτ |A| − βkp

[
1 −

p + 2(k + 1)

2αk

]
τ |A| (6)

Coincidentally k = 1 yields the optimal approximation of the three.

2.2 Why Dendrocentric?
On the spatial front, the cable properties of a dendrite imputes a

distance-dependent weighting to presynaptic inputs. The closer

the synapse is to the soma, an excitatory (inhibitory) post synaptic

potential, EPSP (IPSP) observed at the soma is attenuated less. [14]

Membrane potential (ϕ) within the dendrite decay exponentially

with a length constant (λ), which is function of resistance per unit

length of the membrane acting as an insulator (rm ) and the intraden-

dritic (conducting core) resistance, ri i.e. ϕ(x) = ϕoe
− xλ , where x

is the axial distance along the dendrite from the synapse input and

λ =
√

rm
ri . Emulating this spatial weighting effect in hardware can

be achieved by simply scaling the corresponding synaptic weight by

the appropriate attenuation factor. By the assumption that synaptic

inputs are permanently localized at a dendritic site, the attenuation

factor is constant.

On the other hand, one can imagine how STDP as a temporal

weighting strategy is curated by the dendrite. Through a cascade

of chemical pathways facilitated by ligand- and voltage-sensitive

channels, the dendrite is able to memorized recent activity and re-

sets the event-time memory upon postsynaptic spiking. We use the

term "dendrocentric"1 here to emphasize the role of the postsynaptic

neuron at reseting the local synaptic "stopwatch" together with

latched event times.

2.3 Dendrocentric NN STDP Synaptic
Timekeeping

The dendrocentric NN STDP presented here focuses on two bound-

ary postsynaptic spikes and the intermediary earliest and latest

presynaptic spike(s). Synaptic clocking managed by the dendrite

is needed to determine the event times. Since the digital timer is

merely a counter-increment every clock period Tclk , it is impor-

tant to make adjustments to eq. 2 to account for discreteness of

time. Here, all time parameters are expressed as integer multiples

of qTclk , where q is the time-acceleration factor. The constraint

for q is q > 0 (q = 1: real-time, q > 1: accelerated-time, q < 1:

delayed-time). As such,

s+ = qTclk

[
−η+
∆nc

]
and s− = qTclk

[
η−
∆na

]
where η+ =

τ+
qTclk

, η− =
τ−

qTclk
whereas ∆na is the acausal duration obtained as a difference be-

tween the initial postsynaptic event time count (npost1 ) and the

the earliest presynaptic time count (npre1 ) and ∆nc is the causal

duration obtained as the difference between the terminating postsy-

naptic event and latest time count (npost2 ) and the latest presynaptic
time count (npre2 ). Here on, we switch from using explicit time

parameters to their time count equivalents.

Two time rollover conditions are adopted here. The first andmore

prioritized condition is determined by the terminating postsynaptic

event time. Here, the timer is reset to 1 instead of 0 as the later

is reserved for the Primus Spike Lock (PSL) condition, which is

explained later. The second rollover condition is determined by the

maximum sizes of the depression and the potentiation windows and

an additional headroom for instances when the earliest and/or latest

presynaptic event(s) occur(s) outside of the sum of the potentiation

1
Perhaps the first and recent use of this term in the context of neuromorphics is

by Kwabena Boahen [12]
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and depression time windows (i.e., αk (η− + 2η+)). This provides an
upper bound to the timer instead of a naive arbitrarily large timer

bit-width and consequently offers computation-/memory-saving

advantages per synapse. In fact, the minimum bit width for the

timer can be determined from

Nk,min = ceil
(
log

2
(αk (η− + 2η+))

)
(7)

Intuitively, increasing the clock frequency fclk for a real-time

implementation improves the resolution at the expense of stor-

ing larger-bit width register values and arithmetic operations, and

vice versa for lower clock frequencies. To ameliorate such a bur-

den, we encourage a clock frequency scaling in powers of 2, so

register values are merely scaled through static shifts instead of

explicit multiplications. This leads to adjusted count relation of

n = (2No+M+Q ) · t , where No is the minimum bit-width for the

parameters Tclk = 1ms and q = 1 (i.e. No = 8), whileM and Q are

scaling exponents for fclk and q respectively.

By the NN principle adopted here, only the peripheral presy-

naptic events within postsynaptic spike interval are of importance,

while the medial ones are considered redundant. As such, this ame-

liorates the large memory requirement for storing all possible event

times. It is also important to note that a terminating postsynaptic

spike in the recent past interval becomes the initial in the next

interval as such resets event-time registers. In all, three time regis-

ter are used to cache a maximum of four event times. By resetting

the initial postsynaptic event time is inferred from a rollover, i.e.

npost1 = 0. The terminating postsynaptic event time is tracked by

the current timer value, i.e., npost2 = ni , while the earliest and the

latest postsynaptic event times are cached (as andwhen) in thenpre1
and npre2 registers respectively. These are adopted in time vectors

of the linear approximation s− = qTclku− and s+ = qTclku+.

where u− =
[

η−
−npre1

]
and u+ =

[
−η+

ni − npre2

]
Importantly, npre1 and npre2 is reset to either the lower or the

upper bound where a coincidence between postsynaptic and presy-

naptic events can be checked without explicit need for time. This

involves monitoring the single-bit event registers for a concurrent

bit assertion. We arbitrarily choose the lower bound of 0 as reset for

the presynaptic event time registers and 1 for ni . Thus, any weight

update computation is preceded by a check for such reset value in

the earliest event time register (i.e. npre1 = 0) and if true, ∆w is

set to 0. This is important as it prevents a rollover reset generat-

ing an already-handled spike coincidence. We reserve an on-start

initialization of ni = 0 for the PSL condition, which involves the

suppression of weight update computation until the second ever

postsynaptic event is observed. The first-ever postsynaptic event

sets ni = 1, and readies the system for weight update on the second.

The NN STDP idea presented here is based on an arbitrated

selection of acausal and causal postsynaptic-presynaptic spike pairs

depending on the regimes in which the earliest and latest spike(s)

occur. Since the postsynaptic spike interval is randomly dynamic,

there is the need to verify the relevance of lateral presynaptic events

to the overall weight update determination. Figure 3 shows how

the potentiation and depression windows of interest can overlap

partially and at the extreme either fully-overlap or become adjacent,

i.e., ni − αkη+ ∈ [0,αkη−], as well as non-overlapping with a gap,

in which case ni − αkη+ ∈ [0,+∞].

depression window

potentiation window

postsynaptic spike interval

maximum time window

n0 ni − αkη+ αkη− ni αk (η− + η+)

post:

Figure 3: Dynamic overlap between the potentiation and de-
pression windows.

Accommodating this infinite time range seems impractical. We,

however, present a workaround for this by pausing the count when

αk (η− + η+) is reached and a terminating postsynaptic event is

absent. We term this Spike Limbo (SL). In this case, the acausal pre-

post paired-spike, (hencenpre1 ) is not ofmuch use, as the depression

window is guaranteed to have been exceeded. Rather, the causal

pre-post paired-spike (involving npre2 ) is tracked by resuming the

count in the event of a presynaptic spike occurence at this point

with the anticipation that a postsynaptic spike arrives afterwards

within the potentiation window (i.e. < αk (η− + 2η+)). The count is
reset to αk (η− + η+) if the terminating postsynaptic event does not

show up. It is important to note that, a successive presynaptic event

after the first spike in this regime is given attention by resetting the

count to αk (η− + η+) + 1, which is just above the pause condition

hence, the count resumes. We introduce a two single-bit spike

pairing flags, v0 (associated with the initial acausal pre-post pair)

andv1 (associated with the terminating causal pre-post pair) here to

switch between no-, paired-, triplet- or quadruplet-spike selection

as shown in Figure 5. Conditions for asserting or clearing these

flags are as follows,

v0 =

{
1 npre1 ≤ αkη−
0 otherwise

v1 =

{
1 npre2 ≥ ni − αkη+
0 otherwise

(8)

In summary, the general equation for the net linear weight up-

date, denoted by ∆ŵk (shown in eq. 9), involves a summation of

the causal and acausal weight update contributions while allowing

the paired-, triplet-, and quadruplet-spike selection via the spike

pairing flags v1 and v2.
2

∆ŵk = −

(
v0
|A− |

η−
aTk u− +v1

A+
η+

aTk u+

)
(9)

In the case of a symmetric STDP, i.e. A = |A− | = A+ and η = η− =
η+, eq. 9 simplifies to:

∆ŵk = −
A

η
aTk Uv (10)

2
Triplet and quadruplet STDP rules used in other related works may vary. While it

is common to adopt a product of causal and acausal weight contributions[7], we rather

adopt an additive (instead of multiplicative) rule, guided by the aim of implementing

lightweight compute
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acausal causal

postsynaptic spike interval

full time window

n0
npre1 npre2 ni αk (η− + η+)

post:

pre: v0 v1

Figure 4: Spike groupings. Up to two spike pairs can be
selected: an acausal pair involving the initial postsynaptic
event and the earliest presynaptic event and a causal pair
involving the terminating postsynaptic event and the latest
presynaptic event. A single presynaptic event in the postsy-
naptic interval doubles as the earliest and latest presynap-
tic event leading to triplet-spike selection when v0 and v1
are asserted. If multiple presynaptic events occur, then ear-
liest and the latest event are distinct leading to a quadruplet-
spike selection when v0 and v1 are asserted, or either an
acausal or causal paired-spike if only one of v0 and v1 is as-
serted.(see eq. 8 for spike grouping flag conditions)

where U =
[
u− u+

]
, v =

[
v0
v1

]
.

For the triplet-spike selection and the quadruplet spike selection,

the critical/ anticipated temporal parameters leading to ∆w = 0,

n
(0)

i , n
(0)
pre1 and n

(0)
pre2 have a planar relation shown in eq. 11:

n
(0)

i = n
(0)
pre2 +

(
|A− |

A+

η+
η−

)
n
(0)
pre1 + (k + 1)

(
1 −
|A− |

A+

)
η+ (11)

with the constraint 0 < npre1 ≤ npre2 < ni for any causal-acausal

analysis. In the case of the triplet-spike, a given n
(0)
pre = n

(0)
pre1 =

n
(0)
pre2 , ni < n

(0)

i yields ∆w > 0 as it effectively shifts n
(0)
pre further

into the causal regime than acausal, and vice versa for ni > n
(0)

i .

The thinking is reversed if an analysis of a variable npre compared

against n
(0)
pre determined from a given n

(0)

i is preferred. More so, the

quadruplet spike selection follows a similar thought. Eq. 11 is useful

in the sense that it also shows the time relations for symmetric

STDP; the right hand side of the equation reduces to n
(0)
pre1 + n

(0)
pre2 .

On another hand, if one manages to implement the exponential

function in digital domain, albeit at most likely an expensive com-

putational cost, the sum of the exponentials in eq.1, yields critical

event time planar relation of:

n
(0)

i = n
(0)
pre2 +

(
η+
η−

)
n
(0)
pre1 + log

(
|A− |

A+

)
η+ (12)

Similarly, STDP symmetry yields to the n
(0)
pre1 + n

(0)
pre2 on the RHS

of eq.12 and the resulting ∆w sign follows as before.

3 IMPLEMENTATION
Two implementations of the NN STDP per clock instance are pre-

sented – algorithmic and RTL. The algorithmic implementation,

which is suitable for a sequential implementation, has been shown

in algorithm 1 where A∗+, A
∗
−, η
∗
+, η
∗
−, k
∗
are tunable hyperparame-

ters.

Algorithm 1 Proposed Nearest Neighbor Algorithm

1: function NN_STDP(Epre , Epost , ∆w , ni , npre
1
, npre

2
, v0 , v1 , A∗+ , A

∗
− , η

∗
+ ,

η∗− , k
∗
)

2: αk ← k + 1
3: if Epost = 1 then
4: if Epre = 1 then
5: ∆w ′ ← 0

6: else
7: if npre1 = 0 then
8: ∆w− ← 0

9: else
10: ∆w− ← v0

|A− |
η−
[npre

1
− αkη−]

11: if npre2 = 0 then
12: ∆w+ ← 0

13: else
14: ∆w+ ← v1

A+
η+
[npre

2
− ni + αkη+]

15: ∆w ′ ← e−k (∆w− + ∆w+)
16: n′i ← 1, n′pre

1

← 0, n′pre
2

← 0, v0 ← 1, v1 ← 1

17: else
18: if ni = 0 then ▷ Primus Spike Lock

19: n′i ← 0, n′pre
1

← 0, n′pre
2

← 0, v0 ← 0, v1 ← 0

20: else
21: ∆w ← 0 ▷ Optional

22: if ni = αk (η− + η+) then ▷ Spike Limbo

23: if Epre = 1 then
24: n′i ← ni + 1
25: else
26: n′i ← αk (η− + η+)
27: else if ni > αk (η− + 2η+) then
28: n′i ← αk (η− + η+)
29: else if ni > αk (η− + η+) then
30: n′i ← αk (η− + η+) + 1
31: else
32: n′i ← ni + 1
33: if Epre = 1 then ▷ Flags Logic

34: n′pre
2

← ni
35: if ni ≥ ni − αkη+ then
36: v ′

1
← 1

37: else
38: v ′

1
← 0

39: if npre
1
= 0 then

40: n′pre
1

← ni
41: if ni ≤ αkη− then
42: v ′

0
← 1

43: else
44: v ′

0
← 0

45: else
46: if npre

1
< αkη− then

47: v ′
0
← 1

48: else
49: v ′

0
← 0

50: if npre
2
> ni − αkη+ then

51: v ′
1
← 1

52: else
53: n′pre

2

← 0

54: v ′
1
← 0

55: return ∆w ′, n′i , n
′
pre

1

, n′pre
2

, v ′
0
, v ′

1

* indicates tunable hyperparameters

The RTL implementation suitable for a concurrent implemen-

tation has been presented in Figure 7 and design considerations

are as follows. Precise multiplications by
A
η are posed as multipli-

erless static shifts in powers of 2 to reduce compute, whereas the

v0 and v1 scalings are multiplexed. For generality, we introduce

ψ = round(log
2
(|Aη |)) to provide the discrete shift magnitude and

direction, shifting |ψ | times left ifψ > 0, right ifψ < 0 and no shift
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Figure 5: Behavioral simulation of LODeNNS: Weight updates, along with the underlying timekeeping and causal-acausal
flag selection for various prominent pre-post cases are presented. A+ = |A− | = 1, η+ = η− = 32, k = 1. Primus Spike Lock
(i.e. ni = 0) suppresses ∆w computation until first postsynaptic spike A (C): acausal pre-post spike pair selection on a single
(multiple) presynaptic spike, B (D): causal spike pair selection on a single (multiple), E: spike triplet selection, F: quadruplet
spike selection, G, H: Spike Limbo cases for paired and quadruplet spikes. I: No spike.

Figure 6: Memory-encoded spatial feature maps (synaptic
weights) for A: Pattern A, an eastward moving columnar
event and B: Pattern B, a westward moving columnar event
generated using LODeNNS incorporated in a two-layer fully
connected network. Spatiotemporal patterns A and B have a
common spatial energy per instance but reversed sequence.

ψ = 0 (i.e. 2
ψ
). Additionally, k values that favor αk to be powers of

two such that ρ = log
2
(αk ), ρ ∈ Z for the same reason as

A
η can

be chosen. This leads to

∆ŵk− = v0 · shift
(
npre1 + shift(−η−, ρ), ψ−

)
∆ŵk+ = v1 · shift(npre2 − ni + shift(η+, ρ), ψ+)

∆ŵk = e−k × (∆ŵk− + ∆ŵk+)

(13)

where × refers combinational logic multiplier.

As opposed to the algorithmic implementation, tuning hyper-

parameters in the RTL implementation post synthesis comes at

an elevated computational complexity as shifts become dynamic.

Notwithstanding, if a specific application with computational ef-

ficiency is desired, one can algorithmically determine optimal hy-

perparameters prior to RTL synthesis. Biologically plausible pa-

rameter values chosen for demonstrative purposes are: A+ = 1,

τ+ = 16ms , A− = −0.5, τ− = 32ms as convenient approximations

to experimentally-determined[6] values of A+ = 1.03, τ+ = 14ms ,
A− = −0.51 and τ− = 34ms adopted by [9]. Running atTclk = 1ms
and in real-time (q = 1), η+ = 16 and η− = 32 which are powers of

2 and thus, allow multiplierless scaling by
A
η factors through static

shifts. Choosing k = 1 for an optimal tangential approximation pre-

viously discussed yields ρ = 1,ψ+ = −4,ψ− = −6 and consequently
leads to eq 14. In all, 5 adders and a single multiplier are used - four

for ∆w and one for the timer update, which is fewer than a naive

implementation of eq. 9 that may require at least four multipliers

(two each for the depressive and the potentiating portions).

∆ŵ1− = v0 · shift
(
npre1 + shift(−η−, 1), −6

)
∆ŵ1+ = v1 · shift(npre2 − ni + shift(η+, 1), −4)

∆ŵ1 = e−1 × (∆ŵ1− + ∆ŵ1+)

(14)

By the linear approximation, ∆ŵk inherits a bit width of the

timer, Nk . With N1,min = 8 for the above mentioned clock pa-

rameters. As such, a 9-bit signed fixed point (FP) representation

for ∆w ∈ [−0.5, 1] can be used. The most significant bit (MSB)

is reserved for the sign while the remaining bits are dedicated to

the fractional part. No integer part is reserved since almost all the

magnitude range of ∆w is sub-unity. The resulting adjusted range

is ∆ŵ1 ∈ (−e
−1, 2e−1) ≈ (−0.3672, 0.7343). ∆w is set to 0 on a spike

coincidence as neither causality nor acausality can be deciphered,
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Figure 7: RTL System Architecture for LoDeNNS. A: General system abstraction showing the inputs (presynaptic, Epre and
postsynaptic Epost events) and the ∆̂wk output B: Top Level RTL architecture, showing how earliest and latest presynaptic
event times, npre1 and npre2 , are deployed in generating solely or combined latched acausal and causal ∆ŵk contributions.
Static shifts instead of explicit multiplications are adopted where possible to reduce the computational burden. C-G captures
the subcircuits that generate the control signals used at the top level. In G, the accommodation for a delayed arrival of Epost,
Spike Limbo, is highlighted.

⊕
and

⊗
represent combinational adder and multiplier respectively

hence the exclusion of the end-points (positive and negative y-

intercepts) from the ∆w interval. The 9-bit FP representation is also

sufficient for storing the scaling factor e−1 (in eq. 14) as this is also

sub-unity. Effectively, e−1 ≈ 0.3672 and a corresponding binary

value of b“001011110”.

4 FEATURE EXTRACTION DEMONSTRATION
Indeed, timing is everything. In this section, we deploy LODeNNS

in converting a spatiotemporal pattern to a spatial synaptic weight

feature map encoding temporal information post exposure as a

preliminary demonstration. The highlight here is that the memory-

encoding dimensionality-reduction property inherent in STDP can
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be leveraged in a prior dynamic feature extraction for a subsequent

static classifier such as a convolutional neural network. We show

this with two spatiotemporal patterns with the same spatial energy

per temporal instance occurring at a reversed sequence. Simply

put, pattern A, is a columnar event travelling eastward, while pat-

tern B travels westward. Both Patterns A and B are of size 30 × 30

and change in unit step over 30 time steps. The feature extraction

mechanism is composed of a two-layer fully connected network

with the input layer being a vectorized instantaneous spatial in-

put activity and the output/postsynaptic neuron being a Leaky

Integrate-and-Fire (LIF) neuron. The neuron parameters used are as

follows: membrane time constant (τm ) of 30ms , refractory period

of 4ms , spike threshold of 10mV and reset potential of 0mV . The

input synaptic current was modeled as a Heaviside alpha function

with a time constant (τs ) of 5 ms , convolved with all connected

presynaptic activity. A time step, dt = 1 ms was used. Synaptic
weights were initialized with 0.5e − 9 and were independently

amenable by LODeNNS. A symmetry STDP with parameters same

as used in Figure 5 was adopted. Figure 6 shows the simulation

results for the memory-encoding feature maps (synaptic weights)

for both patterns. A time-depth and consequently a direction of

travel can be perceived from both spatial feature maps.

5 CONCLUSION
We present LoDeNNS, an algorithmic and optimized RTL imple-

mentation for the nearest nearest STDP suitable for event-driven

weight updates in spiking neural networks and by extension holds

implications for learning-on-the-fly as against epoch-based meth-

ods. We adopted a time constant-based linear approximation to

the exponential STDP function that allows trade-off adjustments

between weight update intensity and pre-post spike interval win-

dow. By substituting, combinational multipliers with static shifts

where possible along with other accommodations such as Primus
Spike Lock and Spike Limbo, we arrive at a computationally opti-

mized NN STDP mechanism. More so, through a dendrocentric

timekeeping, timer saturation or overflow become avoidable thus

allowing for computing indefinitely. Future work include an ana-

log/ mixed-signal implementation to allow ease of hyperparameter

programmability post-hardware realization, as well as adopting Lo-

DeNNS at a network level on a myraid of supervised and unsuper-

vised spatiotemporal recognition tasks. Implementation code have

been made available at https://github.com/Adakwaboah/LODeNNS
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