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ABSTRACT

Realizing Hebbian plasticity in large-scale neuromorphic systems is
essential for reconfiguring them for recognition tasks. Spike-timing-
dependent plasticity, as a tool to this effect, has received a lot of
attention in recent times. This phenomenon encodes weight update
information as correlations between the presynaptic and postsy-
naptic event times, as such, it is imperative for each synapse in a
silicon neural network to somehow keep its own time. We present
a biologically plausible and optimized Register Transfer Level (RTL)
and algorithmic approach to the Nearest-Neighbor STDP with time
management handled by the postsynaptic dendrite. We adopt a
time-constant based ramp approximation for ease of RTL imple-
mentation and incorporation in large-scale digital neuromorphic
systems.
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1 INTRODUCTION

In a giant messy soup of neuronal connections, timing is every-
thing! Computing with spikes heavily relies on the arrival times of
presynaptic events and their correlations with postsynaptic spike
times.[1] A well-appreciated contributor to hebbian learning is
spike-timing-dependent plasticity (STDP). This involves either the
potentiation (increase) or depression (decrease) of synaptic weights
based on a causal or anti-causal postsynaptic spiking with respect
to the presynaptic activity. The biological basis of this arises from
the modulation of the density of the solely ligand-gated AMPA re-
ceptors in response to the amounts of Ca?* ions in the dendrite of
the postsynaptic neuron. While these AMPA receptors, in the pres-
ence of the neurotransmitter glutamate released by the presynaptic
neuron, allow the influx of excitatory Na* and K~ ionic currents;
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another dendritic receptor, the voltage- and ligand-sensitve NMDA
channels in addition to other ionic currents facilitate the influx
of the needed Ca?*ions. A causal postsynaptic spike leads to an
increased intra-dendritic Ca?* concentration which through a se-
ries of chemical pathways leads to either an increased postsynaptic
sensitivity (via an enhanced AMPA receptor synthesis) [15] or an
increased presynaptic neurotransmitter release probability (via a
positive nitric oxide feedback from the post-synaptic neuron) [8].
Conversely, an acausal postsynaptic spike results in lower intra-
dendritic concentration, which in turn leads to the depopulation of
AMPA receptors.

Realizing in silico implementations of the STDP has largely been
approached in two ways: the classical all-to-all spike pairing and
the Nearest-Nearest (NN) approach [2, 9, 11, 13]. In the former,
the contributions of all presynaptic and postsynaptic spike pairs
occurring within a specified time window (typically a few tens
of milliseconds) are equally considered in determining a synaptic
weight update. The NN approach, on the other hand, only considers
the peripheral spike pairs, triplet or quadruplet arising from two
terminating post-synaptic (presynaptic) events and intermediate
presynaptic (postsynaptic) events if any. Izhikevich and Desai[9]
argue out the biological plausibility of the NN STDP relative to
the all-to-all approach. Their justifications include the backpropa-
gation of postsynaptic spike into the dendrites, which effectively
resets membrane potential there, thus annihilating the effects of
past postsynaptic spikes. Another perspective is that the immedi-
ate succeeding postsynaptic spike possibly overrides the influence
of subsequent spikes as a results of desensitization of glutamate
receptors or calcium saturation.

Hardware implementation of STDP requires consideration for
time management to prevent time saturation or overflow, especially
when the system is intended to run indefinitely. More so, optimal
caching of event times offers memory- and power-saving advan-
tages at the scale of large networks. In the digital domain, timing
can be kept via a registered accumulator and in the analog domain
via a pulsed-capacitor based circuit. For a large-scale neural net-
work, one may choose to either keep a global timer with which all
synapses stamp their events or several local timers for the various
synapses. While the option of a global timer naively seems simple,
it has the drawback of not easily determining a judicious range
(or bits required) sufficient for covering the nuanced random spike
patterns over the entire network. Even if, one manages to arrive
at a suitably-ranged timer, computing time differences between
spikes become unnecessarily slow and cumbersome in the event of
uncorrelated spiking activity. Postsynaptic spikes may occur well
outside of the potentiation/ depression window and computing
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the time difference needed for determining the weight update will
require a large-bit arithmetic operation.

Related work (digital domain) include the STDP implementation
using an elegant digital combinational logic-based convolutation by
Cassidy et al.[4] and a more elaborate implementation by Belhadj
et al. [3] involving first order approximation to exponential weight
decay function. However, both effectively adopt an all-to-all STDP
approach. A more recent work is that by Lammie et al.[10], where
separate implementations of paired-, triplet-, and quadruplet-spike
STDP implementation were performed. A much closely related
work is the pairwise NN STDP rule adopted in Loihi[5], a digital
large-scale neuromorphic system. Here, depressive weight updates
can be easily determined in an event-driven manner as the weight
update occur in a feedforward fashion, i.e. on presynaptic events.
On the other hand, Davies et al.[5] articulate the difficulty of com-
puting the potentiating half of the STDP function in an event-driven
manner as it requires some form of backward routing and instead
resort to a weight update on an epoch basis.

In this paper, we present LODeNNS, an optimized Register-
Transfer-Level (RTL) cum algorithmic implementation of the NN
STDP with a bounded local synaptic timekeeping useful at im-
plementing decentralized and postsynaptic-event-driven weight
update computations in a silicon neural networks. Major design
optimization highlights of this work are the constraining of and
minimal storage of event times to prevent expensive arithmetic and
time saturation or overflows; as well as an integrated solution that
allows the transition between paired-, triplet-, and quadruplet spike
selection at the end of a terminating postsynaptic spike depending
on the arrival times of the pre- and post- synaptic spike(s). The pa-
per is organized as follows: §I presents the motivation for this work
and related work, §II captures the theory for the adopted curve ap-
proximation strategies , §III contains implementation details is then
followed by §IV, a preliminary feature extraction demonstration
and §V, conclusion and future work.

2 THEORY

In order to simply realize STDP in the digital domain, the poten-
tiation/depression time window and weight update rule must be
aptly approximated as the actual curves decay exponentially with
the spike time difference (At = tpost — tpre). The STDP curve is
mathematically defined by;

At
M) = { A A0 "
A_er- At <0

where Ay > 0and A < 0 are the initial/ maximum potentiation
and depression intensities respectively. Whereas 7, and 7_ are the
potentiation and depression time constants. Typical parameter val-
ues determined from experimental data from pyramidal neurons
within Layer 2/3 of rat visual cortex can be found in [6]. While it is
obviously easy to implement exponentials in the analog subthresh-
old domain, a linear/ ramp approximation is relatively convenient
to implement in the digital domain with fewer arithmetic opera-
tions at a reasonable approximation error and as such we adopt that
it in this study. From a time-constant based consideration for either
Aw or At range preservation, two kinds of linear approximations
can be used - tangential and chordal. Both are discussed next.
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2.1 Time-Constant-based Linear
Approximations: Tangential vs. Chordal

The approximation can be expressed as a piecewise linear relation
shown in eq. 2;

Ay T

—Tragsy 0 <At <oty
Awg(At) = %a{s_ —apT- <At <0 (@)
0 elsewhere

whereak:[ r’ik ],s+:[ _AT; ]ands_:[ Z_t ]
k

ag, P and my. are kr-dependent scalings for the horizontal, vertical
intercept and slope factors respectively.

Tangential approximation involves the weight update line pick-
ing up the gradient of a point on the curve. A reasonable point
of choice proposed here is a line tangent at (kt, Ae™¥), where
ke€eZ:k=0,1,2,---.Choosing smaller k values favor the preser-
vation of the weight update intensity at the expense of the time
window and vice versa for larger k values. The general tangential
linear approximation slope and vertical- and horizontal intercept
factors are respectively defined by:

mkze_k
_ -k
ﬁk—(k+l)€ (3)
ay = ﬁ—k =k+1
mg

Here, k = 1, 2,3 are presented as suitable approximations for Aw
intensity preservation, trade-off between Aw intensity and time
window, and time window preservation respectively. This can be
inferred from the Figure 1. The Figure of Merit (FOM) used here is
the Area-Under-Curve overlap (AUC) between the approximation
and the STDP curve, shown in eq. 4, which is merely the area under
the approximation (AU A).
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Figure 1: Tangential Linear Approximation

1
AUC = EakﬁkT|A| (4)
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Figure 2: Chordal Linear Approximation

AUCs for Awy, Aw; and Awy; are 0.57|A], %T|A|(z 0.7367]A|),
and %’rlAKz 0.2037|A|) respectively and based on this Aw; (i.e.
k = 1) appears to be the preferred choice and as a matter of fact is
the optimal k value for maximum AUC here.

Chordal approximation, on the other hand, involves the selection
of a pair of chordal points (kz, Ae %) and ((k + p)z, Ae~k*P)) for a
line that similarly maximizes the AUC preferentially for either the
Aw intensity or time window. The reasonable choice for the chordal
line with curve intersection points as integer multiples of the time
constant. While, the choice of the integer multipliers for the pair
of points must not necessarily be consecutive, increasing the point
separation increases the undesired Area-Above-Curve (AAC) that
is overlapped by the approximation. The general chordal linear
approximation slope, vertical- and horizontal-intercept factors are

defined as:

1—e7?
)/ =
PTop
my = ype_k (5)
Brc = (rpk + 1)e™*
ak = — = —
m Yp

Again, we adopt k = 1,2,3 and p = 1 resulting in three approxima-
tion lines from three pairs of consecutive chord points as shown
in Figure 2. Setting p = 0 (and by the L’Hdpital rule), the tangen-
tial linear approximation emerges, indicating the generality of the
chordal approximation. A good trade-off here is chosen based on k
that maximizes the AUC, which is governed by:

_pt2akk+1)

A 6
| M ©

1
AUC = EakﬁkT|A| = Prp [1

Coincidentally k = 1 yields the optimal approximation of the three.

2.2 Why Dendrocentric?

On the spatial front, the cable properties of a dendrite imputes a
distance-dependent weighting to presynaptic inputs. The closer
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the synapse is to the soma, an excitatory (inhibitory) post synaptic
potential, EPSP (IPSP) observed at the soma is attenuated less. [14]
Membrane potential (¢) within the dendrite decay exponentially
with a length constant (1), which is function of resistance per unit
length of the membrane acting as an insulator (r,,) and the intraden-
dritic (conducting core) resistance, r; i.e. ¢(x) = ¢>oe_§ , where x
is the axial distance along the dendrite from the synapse input and

A=, /rr—'l" Emulating this spatial weighting effect in hardware can

be achieved by simply scaling the corresponding synaptic weight by
the appropriate attenuation factor. By the assumption that synaptic
inputs are permanently localized at a dendritic site, the attenuation
factor is constant.

On the other hand, one can imagine how STDP as a temporal
weighting strategy is curated by the dendrite. Through a cascade
of chemical pathways facilitated by ligand- and voltage-sensitive
channels, the dendrite is able to memorized recent activity and re-
sets the event-time memory upon postsynaptic spiking. We use the
term "dendrocentric'! here to emphasize the role of the postsynaptic
neuron at reseting the local synaptic "stopwatch" together with
latched event times.

2.3 Dendrocentric NN STDP Synaptic
Timekeeping

The dendrocentric NN STDP presented here focuses on two bound-
ary postsynaptic spikes and the intermediary earliest and latest
presynaptic spike(s). Synaptic clocking managed by the dendrite
is needed to determine the event times. Since the digital timer is
merely a counter-increment every clock period T, it is impor-
tant to make adjustments to eq. 2 to account for discreteness of
time. Here, all time parameters are expressed as integer multiples
of qT.;x, where q is the time-acceleration factor. The constraint
for g is ¢ > 0 (g = 1: real-time, ¢ > 1: accelerated-time, ¢ < 1:
delayed-time). As such,

s+ = qTleik [ ZZ; ands_ = qTcjk [ An,;a ]

T4 o
T’ T qTek

whereas Ang is the acausal duration obtained as a difference be-
tween the initial postsynaptic event time count (np0s¢,) and the
the earliest presynaptic time count (np,e,) and Anc is the causal
duration obtained as the difference between the terminating postsy-
naptic event and latest time count (10s¢,) and the latest presynaptic
time count (npre,). Here on, we switch from using explicit time
parameters to their time count equivalents.

Two time rollover conditions are adopted here. The first and more
prioritized condition is determined by the terminating postsynaptic
event time. Here, the timer is reset to 1 instead of 0 as the later
is reserved for the Primus Spike Lock (PSL) condition, which is
explained later. The second rollover condition is determined by the
maximum sizes of the depression and the potentiation windows and
an additional headroom for instances when the earliest and/or latest
presynaptic event(s) occur(s) outside of the sum of the potentiation

where 14 =

!Perhaps the first and recent use of this term in the context of neuromorphics is
by Kwabena Boahen [12]
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and depression time windows (i.e., g (- + 214)). This provides an
upper bound to the timer instead of a naive arbitrarily large timer
bit-width and consequently offers computation-/memory-saving
advantages per synapse. In fact, the minimum bit width for the
timer can be determined from

Nk, min = ceil (Ing(ak(U— + 2’7+))) 7)

Intuitively, increasing the clock frequency f,ji for a real-time
implementation improves the resolution at the expense of stor-
ing larger-bit width register values and arithmetic operations, and
vice versa for lower clock frequencies. To ameliorate such a bur-
den, we encourage a clock frequency scaling in powers of 2, so
register values are merely scaled through static shifts instead of
explicit multiplications. This leads to adjusted count relation of
n = (2No+*M+QY .t wwhere N, is the minimum bit-width for the
parameters T = 1 ms and g = 1 (i.e. Np = 8), while M and Q are
scaling exponents for f ;i and q respectively.

By the NN principle adopted here, only the peripheral presy-
naptic events within postsynaptic spike interval are of importance,
while the medial ones are considered redundant. As such, this ame-
liorates the large memory requirement for storing all possible event
times. It is also important to note that a terminating postsynaptic
spike in the recent past interval becomes the initial in the next
interval as such resets event-time registers. In all, three time regis-
ter are used to cache a maximum of four event times. By resetting
the initial postsynaptic event time is inferred from a rollover, i.e.
Npost; = 0. The terminating postsynaptic event time is tracked by
the current timer value, i.e., npost, = n;, while the earliest and the
latest postsynaptic event times are cached (as and when) in the npye,
and npre, registers respectively. These are adopted in time vectors

of the linear approximation s_ = gT.jxu— and s = qT,j;u4.
where u_ = - and u; = T+
—Npre; ni —nNpre,

Importantly, npre, and npre, is reset to either the lower or the
upper bound where a coincidence between postsynaptic and presy-
naptic events can be checked without explicit need for time. This
involves monitoring the single-bit event registers for a concurrent
bit assertion. We arbitrarily choose the lower bound of 0 as reset for
the presynaptic event time registers and 1 for n;. Thus, any weight
update computation is preceded by a check for such reset value in
the earliest event time register (i.e. npre, = 0) and if true, Aw is
set to 0. This is important as it prevents a rollover reset generat-
ing an already-handled spike coincidence. We reserve an on-start
initialization of n; = 0 for the PSL condition, which involves the
suppression of weight update computation until the second ever
postsynaptic event is observed. The first-ever postsynaptic event
sets n; = 1, and readies the system for weight update on the second.

The NN STDP idea presented here is based on an arbitrated
selection of acausal and causal postsynaptic-presynaptic spike pairs
depending on the regimes in which the earliest and latest spike(s)
occur. Since the postsynaptic spike interval is randomly dynamic,
there is the need to verify the relevance of lateral presynaptic events
to the overall weight update determination. Figure 3 shows how
the potentiation and depression windows of interest can overlap
partially and at the extreme either fully-overlap or become adjacent,
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ie,n; —arn+ € [0, arn-], as well as non-overlapping with a gap,
in which case n; — agn4+ € [0, +o0].

post:

|
|
|
|
|
|
|
} 4 4 4 }
T T T T T

0 ni = agi: apn. M

ar(n-+ny) M
¢—— depression window ——

<— potentiation window —
<———  postsynaptic spike interval ——

¢ maximum time window ——>

Figure 3: Dynamic overlap between the potentiation and de-
pression windows.

Accommodating this infinite time range seems impractical. We,
however, present a workaround for this by pausing the count when
ar(n- + n4+) is reached and a terminating postsynaptic event is
absent. We term this Spike Limbo (SL). In this case, the acausal pre-
post paired-spike, (hence npye, ) is not of much use, as the depression
window is guaranteed to have been exceeded. Rather, the causal
pre-post paired-spike (involving nyye,) is tracked by resuming the
count in the event of a presynaptic spike occurence at this point
with the anticipation that a postsynaptic spike arrives afterwards
within the potentiation window (i.e. < ag (- + 2n+)). The count is
reset to a(n- + n4) if the terminating postsynaptic event does not
show up. It is important to note that, a successive presynaptic event
after the first spike in this regime is given attention by resetting the
count to ag(n- + n+) + 1, which is just above the pause condition
hence, the count resumes. We introduce a two single-bit spike
pairing flags, vy (associated with the initial acausal pre-post pair)
and vy (associated with the terminating causal pre-post pair) here to
switch between no-, paired-, triplet- or quadruplet-spike selection
as shown in Figure 5. Conditions for asserting or clearing these
flags are as follows,

on = 1 Npre; < Ol— or = 1 Npre, = Ni — 0N+
0 0 otherwise 1 0 otherwise
8)

In summary, the general equation for the net linear weight up-
date, denoted by AW (shown in eq. 9), involves a summation of
the causal and acausal weight update contributions while allowing
the paired-, triplet-, and quadruplet-spike selection via the spike
pairing flags v; and v,.?

~ A_ A
Awyp = — vou zu_ + 01—+azu+ 9)
n N+

In the case of a symmetric STDP, i.e. A=|A_| = Ay andnp=1n- =
N+, €q. 9 simplifies to:

~ A
AWy = —=a] Uv (10)
n

2Triplet and quadruplet STDP rules used in other related works may vary. While it
is common to adopt a product of causal and acausal weight contributions[7], we rather
adopt an additive (instead of multiplicative) rule, guided by the aim of implementing
lightweight compute
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Figure 4: Spike groupings. Up to two spike pairs can be
selected: an acausal pair involving the initial postsynaptic
event and the earliest presynaptic event and a causal pair
involving the terminating postsynaptic event and the latest
presynaptic event. A single presynaptic event in the postsy-
naptic interval doubles as the earliest and latest presynap-
tic event leading to triplet-spike selection when vy and v;
are asserted. If multiple presynaptic events occur, then ear-
liest and the latest event are distinct leading to a quadruplet-
spike selection when vy and v; are asserted, or either an
acausal or causal paired-spike if only one of vy and v; is as-
serted.(see eq. 8 for spike grouping flag conditions)

(0]
v1
For the triplet-spike selection and the quadruplet spike selection,
the critical/ anticipated temporal parameters leading to Aw = 0,

(0) (0 (0)

n; s Npre and npy e,

o_,0 (Al o 14|
"E):n;")ez-'-(zn_j n, + (k+1) L= e ()

with the constraint 0 < npre, < npre, < n; for any causal-acausal
©0) _ (0)

analysis. In the case of the triplet-spike, a given n pre = Npre, =
ng),)eZ, n; < nE.O) yields Aw > 0 as it effectively shifts ng),) o further
into the causal regime than acausal, and vice versa for n; > ngo).

The thinking is reversed if an analysis of a variable np, compared

against ng)r) e EO) is preferred. More so, the
quadruplet spike selection follows a similar thought. Eq. 11 is useful

in the sense that it also shows the time relations for symmetric
STDP; the right hand side of the equation reduces to n®  +al®

pr61 prez :
On another hand, if one manages to implement the exponential
function in digital domain, albeit at most likely an expensive com-
putational cost, the sum of the exponentials in eq.1, yields critical

event time planar relation of:

0 _ (0 n+) (0 |A-|
ng ) n;r)ez + (U—i) n;r)el +Iog( " )r]+ (12)

+

where U = [u_ u+] , V=

have a planar relation shown in eq. 11:

determined from a given n

Similarly, STDP symmetry yields to the ng)r) e T n;JOr) ¢, 0N the RHS

of eq.12 and the resulting Aw sign follows as before.

3 IMPLEMENTATION

Two implementations of the NN STDP per clock instance are pre-
sented — algorithmic and RTL. The algorithmic implementation,

which is suitable for a sequential implementation, has been shown
in algorithm 1 where A%, A%, %, n¥, k* are tunable hyperparame-

ters.
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Algorithm 1 Proposed Nearest Neighbor Algorithm

1: function NN_STDP(Ep e, Eposts AW, i, Nprer, Nprey, Vo, 01, AL, AL, 113,

7, k%)
2: ar — k+1
3: if Epos: = 1 then
4: if Epre = 1then
5: Aw' «— 0
6: else
7: if nprer = 0 then
8: Aw_ «—0
9: else
10: Aw_ — vy I?:‘ [npre; — axn-1
11: if nprez = 0 then
12: Aw, « 0
13: else
14: Awy — vy %[n‘me2 —n; + agny]
15: AW — e F(Aw_ + Awy)
16: nj 1, n’p,e1 «— 0, n})rez — 0,00 1,01 « 1
17: else
18: if n; = 0 then > Primus Spike Lock
19: n < 0,np, < 0,10, — 0,00 0,v; <0
20: else
21: Aw «— 0 > Optional
22: if n; = ax(n- + n,) then > Spike Limbo
23: if Epre = 1then
24: ny —n;+1
25: else
26: n, — a(n-+1n.)
27: else if n; > ap(n- + 2n4) then
28: n} — ap(n- +n4)
29: elseif n; > ar(n- + ) then
30: n} — ar(n-+ns)+1
31: else
32: nye—n;+1
33: if Epre = 1then > Flags Logic
34: Npre, < Ni
35: if n; > n; — axn4 then
36: vy 1
37: else
38: v <0
39: if nyre; =0 then
40: Npre, < Ni
41: if n; < agn- then
42: vy 1
43: else
44: vy 0
45: else
46: if npre; < agn- then
47: vy 1
48: else
49: vy 0
50: if npre, > n; — agns+ then
51: vy 1
52: else
53: Npre, <0
54: vy 0
55: return Aw’, n, n

’ ’ ’
el preir Mpreys Yo» U1
* indicates tunable hyperparameters

The RTL implementation suitable for a concurrent implemen-
tation has been presented in Figure 7 and design considerations
are as follows. Precise multiplications by % are posed as multipli-
erless static shifts in powers of 2 to reduce compute, whereas the
vo and v; scalings are multiplexed. For generality, we introduce
¥ = round(log,(| ? ) to provide the discrete shift magnitude and
direction, shifting || times left if ¢y > 0, right if / < 0 and no shift
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Figure 5: Behavioral simulation of LODeNNS: Weight updates, along with the underlying timekeeping and causal-acausal
flag selection for various prominent pre-post cases are presented. A, = |A_| = 1, n4 = n— = 32, k = 1. Primus Spike Lock
(i.e. n;j = 0) suppresses Aw computation until first postsynaptic spike A (C): acausal pre-post spike pair selection on a single
(multiple) presynaptic spike, B (D): causal spike pair selection on a single (multiple), E: spike triplet selection, F: quadruplet
spike selection, G, H: Spike Limbo cases for paired and quadruplet spikes. I: No spike.
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Figure 6: Memory-encoded spatial feature maps (synaptic
weights) for A: Pattern A, an eastward moving columnar
event and B: Pattern B, a westward moving columnar event
generated using LODeNNS incorporated in a two-layer fully
connected network. Spatiotemporal patterns A and B have a
common spatial energy per instance but reversed sequence.
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¥ =0 (ie. 2¥). Additionally, k values that favor ay to be powers of
two such that p = log,(a), p € Z for the same reason as % can
be chosen. This leads to
AW = vy - shift (npre, + shifi(-n-, p), y-)
AWy = o1 - shift(nprez — n; + shift(ny, p), ¥4) (13)
Aﬁk = e_k X (Av’;k, + AWkJr)
where X refers combinational logic multiplier.

As opposed to the algorithmic implementation, tuning hyper-
parameters in the RTL implementation post synthesis comes at

an elevated computational complexity as shifts become dynamic.
Notwithstanding, if a specific application with computational ef-
ficiency is desired, one can algorithmically determine optimal hy-
perparameters prior to RTL synthesis. Biologically plausible pa-
rameter values chosen for demonstrative purposes are: Ay = 1,
74 = 16 ms, A_ = —0.5, 7_ = 32 ms as convenient approximations
to experimentally-determined[6] values of Ay = 1.03, 74 = 14 ms,
A_ = —0.51and 7— = 34 ms adopted by [9]. Running at T,j; = 1 ms
and in real-time (¢ = 1), n+ = 16 and - = 32 which are powers of
2 and thus, allow multiplierless scaling by % factors through static
shifts. Choosing k = 1 for an optimal tangential approximation pre-
viously discussed yields p = 1, 4 = —4, _ = —6 and consequently
leads to eq 14. In all, 5 adders and a single multiplier are used - four
for Aw and one for the timer update, which is fewer than a naive
implementation of eq. 9 that may require at least four multipliers
(two each for the depressive and the potentiating portions).

AWi_ = vy - shift (npre, + shift(-n_, 1), —6)
AWyt = vy - shift(nprez — n; + shift(ny, 1), —4) (14)
AW] = e_l X (Awl_ + A»T)H)

By the linear approximation, Awj inherits a bit width of the
timer, Ni. With Ni min = 8 for the above mentioned clock pa-
rameters. As such, a 9-bit signed fixed point (FP) representation
for Aw € [-0.5,1] can be used. The most significant bit (MSB)
is reserved for the sign while the remaining bits are dedicated to
the fractional part. No integer part is reserved since almost all the
magnitude range of Aw is sub-unity. The resulting adjusted range
is AWy € (—e1,2¢e71) = (=0.3672,0.7343). Aw is set to 0 on a spike
coincidence as neither causality nor acausality can be deciphered,
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Figure 7: RTL System Architecture for LoDeNNS. A: General system abstraction showing the inputs (presynaptic, Epre and
postsynaptic E,ost events) and the AW output B: Top Level RTL architecture, showing how earliest and latest presynaptic
event times, nyre; and npre,, are deployed in generating solely or combined latched acausal and causal AWy contributions.
Static shifts instead of explicit multiplications are adopted where possible to reduce the computational burden. C-G captures
the subcircuits that generate the control signals used at the top level. In G, the accommodation for a delayed arrival of Epost,
Spike Limbo, is highlighted. () and (X) represent combinational adder and multiplier respectively

hence the exclusion of the end-points (positive and negative y-
intercepts) from the Aw interval. The 9-bit FP representation is also
sufficient for storing the scaling factor e~! (in eq. 14) as this is also
sub-unity. Effectively, e™! ~ 0.3672 and a corresponding binary

value of b“001011110”.

4 FEATURE EXTRACTION DEMONSTRATION

Indeed, timing is everything. In this section, we deploy LODeNNS
in converting a spatiotemporal pattern to a spatial synaptic weight
feature map encoding temporal information post exposure as a

preliminary demonstration. The highlight here is that the memory-
encoding dimensionality-reduction property inherent in STDP can
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be leveraged in a prior dynamic feature extraction for a subsequent
static classifier such as a convolutional neural network. We show
this with two spatiotemporal patterns with the same spatial energy
per temporal instance occurring at a reversed sequence. Simply
put, pattern A, is a columnar event travelling eastward, while pat-
tern B travels westward. Both Patterns A and B are of size 30 X 30
and change in unit step over 30 time steps. The feature extraction
mechanism is composed of a two-layer fully connected network
with the input layer being a vectorized instantaneous spatial in-
put activity and the output/postsynaptic neuron being a Leaky
Integrate-and-Fire (LIF) neuron. The neuron parameters used are as
follows: membrane time constant (z,) of 30 ms, refractory period
of 4 ms, spike threshold of 10 mV and reset potential of 0 mV. The
input synaptic current was modeled as a Heaviside alpha function
with a time constant (zs) of 5 ms, convolved with all connected
presynaptic activity. A time step, dt = 1 ms was used. Synaptic
weights were initialized with 0.5¢ — 9 and were independently
amenable by LODeNNS. A symmetry STDP with parameters same
as used in Figure 5 was adopted. Figure 6 shows the simulation
results for the memory-encoding feature maps (synaptic weights)
for both patterns. A time-depth and consequently a direction of
travel can be perceived from both spatial feature maps.

5 CONCLUSION

We present LoDeNNS, an algorithmic and optimized RTL imple-
mentation for the nearest nearest STDP suitable for event-driven
weight updates in spiking neural networks and by extension holds
implications for learning-on-the-fly as against epoch-based meth-
ods. We adopted a time constant-based linear approximation to
the exponential STDP function that allows trade-off adjustments
between weight update intensity and pre-post spike interval win-
dow. By substituting, combinational multipliers with static shifts
where possible along with other accommodations such as Primus
Spike Lock and Spike Limbo, we arrive at a computationally opti-
mized NN STDP mechanism. More so, through a dendrocentric
timekeeping, timer saturation or overflow become avoidable thus
allowing for computing indefinitely. Future work include an ana-
log/ mixed-signal implementation to allow ease of hyperparameter

Akwaboah and Etienne-Cummings

programmability post-hardware realization, as well as adopting Lo-
DeNNS at a network level on a myraid of supervised and unsuper-
vised spatiotemporal recognition tasks. Implementation code have
been made available at https://github.com/Adakwaboah/LODeNNS
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