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In this work, we use heat treatment to vary the size of nanoscale droplets in a phase-separated BoO3-SiO2-Al2O3-
P,05 glass without traditional modifiers and explore the effect of phase separation on the mechanical properties.
The melt-quenched version of this glass already exhibits phase separation with a droplet phase rich in BoO3. The
glass transition temperature (Ty) of the droplet phase is lower than that of silica-rich glass matrix. Upon heat
treatment at a temperature below the Ty of the droplet phase, the size of droplets decreases but the fraction of the
droplet phase increases. Consequently, the crack initiation resistance more than doubles. Upon heat treatment at
the T of the matrix phase, the fracture toughness increases from 0.61 to 0.73 MPa-m®®, which is primarily due to

the aggregation of individual droplets. Upon the different heat treatments, the phase-separated glasses retain
their optical transparency, while the hardness increases slightly.

1. Introduction

Oxide glass materials play a critical role in consumer electronics,
energy, information technology, and other important industrial areas
due to their unique properties, such as optical transparency, high
hardness, and properties that are tunable by composition and structure
tuning [1,2]. Compared to other optically transparent analogues like
polymers and some crystals, glass materials combine good mechanical
properties and chemical stability with low cost. Therefore, they are
widely used for fiber applications, flexible substrates, roll-to-roll pro-
cessing of displays, solar modules, planar lighting devices,
next-generation touch-screen devices and large-scale architectural
glazing, etc. However, their high brittleness is a major bottleneck, which
limits the application ranges [1]. To improve the glass mechanical
properties, the complex structure of glasses, involving both short- and
intermediate-range order, needs to be understood and controlled [2].
The common strategy to improve the mechanical performance of glasses
generally involves methods to prohibit (i) the generation of new cracks
and/or limit (ii) the growth of pre-existing cracks. The former is typi-
cally quantified by indentation as the crack initiation resistance (CR),
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while the latter is evaluated by measuring the fracture toughness (Kic).
The difference between CR and K. is discussed in details in Ref. [3].
Recently, the design of damage-tolerant glasses based on microstructure
optimization has attracted attention as an additional degree of freedom
as compared to simple composition optimization or post-processing
techniques such as thermal tempering and ion exchange to induce sur-
face compressive stresses [4-6].

So-called extrinsic strengthening techniques typically rely on the use
of reinforcements to control the driving force at the crack tip, e.g.
through the crack opening displacement and crack-tip shielding [7,8]. In
contrast, intrinsic techniques rely on the optimization of the inherent
fracture resistance of the glass network by tuning the structure [1]. For
example, rigid glasses with fully polymerized networks can exhibit high
resistance to crack growth and thus resulting in high Kj. [5,9]. On the
other hand, glasses with large free volume or with self-adaptive net-
works can feature high CR since energy dissipation can easily occur
through densification process [10,11]. Typical approaches for tailoring
the glass microstructure involve liquid-liquid phase separation or partial
crystallization to form glass ceramics. For both approaches, the me-
chanical properties are influenced by the composition, shape, and
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fraction of the secondary phase. For example, Dong et al. found that the
formation of BagNb;oOag crystals in a borosilicate glass enhances the
crack resistance significantly since the crystalline phase acts as a “crack
bridge” [12]. Yang et al. found that the conversion between two
different zirconia crystalline phases (tetragonal to monoclinic ZrOs) in a
glass with the composition MgF5-Al,03-B203-P205-Mg0-SiO2-Ko0 con-
sumes the fracture energy and thus reduces the driving force for the
crack extension [13,14]. However, these reinforcements can cause the
glass to lose its unique advantage, i.e., transparency in the visible region
[15].

Studies have shown that compliant inclusion droplets within a stiff
matrix can attract and arrest cracks by undergoing local failure [16],
whereas stiff inclusions can redirect cracks to the interface [16] or
promote multiple failures around them [17]. As an example, some
phase-separated borosilicate glasses with higher interconnectivity
exhibit a 50% increase in their indentation fracture toughness compared
to the as-prepared glass without phase separation [18], clearly demon-
strating the potential of using phase separation as a toughening mech-
anism. However, as inclusions larger than ~500 nm typically induce a
loss of transparency [19], phase separation with nanometric droplets of
well-controlled sizes is required [20,21]. Moreover, the relation be-
tween glass microstructure and mechanical properties is not yet well
understood [18,22].

The volume fraction and size of the droplet phase in phase-separated
glasses are two important factors affecting the mechanical properties
[18,22-24]. Furthermore, Cheng et al. have investigated the indentation
cracking behavior and its relation to structure in glasses featuring
nanophase separation, finding that the droplet boron-rich phase in the
silica matrix could restrain the cracks [25]. In general, borosilicate glass
has been found to be a good base glass system to induce a soft droplet
phase and tune the phase composition through heat treatment [18,26].
However, the separated boron-rich phase is usually formed in glasses
with both network modifiers (such as Li* or Na™*) and formers, and such
borosilicate glasses can suffer from chemical instability, sensitivity to
water and be prone to crystallization upon heat treatments [27].
Meanwhile, the relation among phase separation and mechanical
properties has not been well studied for network glasses without tradi-
tional network modifiers. It is therefore of interest to investigate nano-
phase separation in borate-based glass without modifiers. Specifically,
based on the work of Liu et al. [20], we choose a modifier-free glass
(B203-Si02-Al;03-P50s) that is prone to nanoscale phase separation as
our glass system, in which alumina plays the role as a network inter-
mediate in the glass. We vary the phase separation process through heat
treatments, on the premise of keeping the glass transparent, and then
measure three mechanical properties, namely, hardness, crack initiation
resistance, and fracture toughness. In addition, the glass structure and
phase separation morphology are studied to reveal the relationship be-
tween microstructure and mechanical properties.

2. Experimental methods
2.1. Sample preparation

We used the glass of composition
27.7B303-58.45105-3.9A1,03-10P,05 (in mol%) from our previous
study [20]. It was prepared by melting the mixture of raw materials
(sand, calcined alumina, boric acid, and boron orthophosphate, with
0.14 wt.% SnO added for fining) in Pt crucibles at 1600°C for 6 h in an
electrical furnace. Then the melt was quenched by pouring into a water
bath. The resulting small glass pieces were then collected and remelted
at 1650 °C for 6 h. Finally, the melt was quenched on a stainless-steel
plate to obtain bulk glass samples. The obtained glasses were quickly
moved to a preheated annealing furnace at an estimated glass transition
temperature value (based on the previous studies) for 30 min and cooled
down to room temperature [20]. As the phase-separated glass contains
two glass transition temperatures, we chose a temperature of 768 K that
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is between two Ty values as the annealing temperature.

The analyzed composition of the glass given above was determined
by inductively coupled plasma optical emission spectroscopy. According
to the previous study [20], this glass exhibits droplet-type phase sepa-
ration with a droplet glass phase (termed G1) and a matrix glass phase
(G2), with corresponding calorimetric glass transition temperatures of
Tg1 = 694 K and Ty = 892 K, respectively. In this study, we further
heat-treated the melt-quenched glass for 4 h at different temperatures
around these values (648 K, 790 K, and 892 K) to explore the effect of
heat treatment on glass atomic-scale and micro-scale structure as well as
the mechanical properties and optical transparency. We did not perform
heat treatment at temperatures above T3 to avoid any crystallization. In
order to control the heat treatment duration and release stress, glass
samples were quickly raised to the desired temperature and allowed to
furnace cool after holding at the desired temperature. All glass samples
in this paper come from the same melt.

2.2. Structural characterization

To confirm that the glass samples did not crystallize upon heat
treatment, we characterized the samples by X-ray diffraction (XRD)
analysis (Empyrean XRD, PANalytical) with a monochromator Cu Ka
radiation (1.5406 A). Spectra were acquired in the range from 10° to 70°
at 40 kV with a scanning speed of 8°min".

The phase morphology of the studied glasses was investigated with a
field emission scanning electron microscope (SEM) (Zeiss Cross Beam) at
an acceleration voltage of 10 kV. Prior to the SEM measurements, we
etched the polished samples in 10% HF for 10 min to improve the
contrast between the droplet and matrix glass phases. All samples were
gold coated before testing. The size distribution of the droplet phase was
analyzed based on the SEM images using the ImageJ software. The
droplet area was measured and the average diameter of the droplet was
calculated. The software operation method details can be found in Refs.
[28-30].

To study if any changes in the short-range order structure of the B, Al,
and P network formers occurred upon heat treatment, we performed
solid-state nuclear magnetic resonance (NMR) spectroscopy. ‘!B and
%Al magic-angle spinning (MAS) NMR spectra were recorded on an
Agilent DD2 spectrometer with a 3.2 mm MAS NMR probe at a magnetic
field of 16.4 T. Powdered glass samples were packed into 3.2 mm outer
diameter zirconia rotors and spun at 20 and 22 kHz for 1'B and 2’Al MAS
NMR, respectively. The data were collected at resonance frequencies of
224.5 and 182.3 MHz for !'B and ?’Al, respectively, while a short
radiofrequency (rf) pulse of 0.6 ps (/12 tip angle) was used with a
recycle delay of 5 s and 2 s for 1B and 2’Al, respectively. Signal aver-
aging was performed using 600 to 1000 scans for each sample. 3'P MAS
NMR spectra were recorded on a Varian VNMRs spectrometer and a 3.2
mm MAS NMR probe at a magnetic field of 11.7 T with 202.3 MHz
resonance frequency. Powdered glass samples were contained in 3.2 mm
outer diameter zirconia rotors and spun at 20 kHz. The signal averaging
for 3'P was performed with 400-800 scans using a short rf pulse of 1.2 s
(/6 tip angle) and a recycle delay of 120 s. All NMR data were processed
without any additional line broadening. The data were plotted using the
normal shielding convention, while the frequency of HB, 27Al, and 3'P
NMR data were referenced to aqueous boric acid (19.6 ppm), aqueous
aluminum nitrate (0.0 ppm) and 85% H3PO4 solution (0.0 ppm),
respectively. The !B and 2’Al MAS NMR data were fit using DMFit
software with second-order quadrupolar lineshapes for the 3-fold coor-
dinated boron peaks and a combination of Gaussian and Lorentzian
lineshapes for the 4-fold coordinated peaks, while the CzSimple line-
shape model was used for 2’Al. The 3'P MAS NMR data were also fit
using DMFit but with 100% Gaussian lineshapes [31,32].

To obtain further structural information also at the medium-range
length scale, we acquired micro-Raman spectra (inVia, Renishaw) of
the studied glass surfaces in the 120-1600 cm ™' wavenumber range.
Measurements were done using a 532 nm diode pumped solid state laser
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for an acquisition time of 10 s. Spectra from five different surface lo-
cations were collected to ensure homogeneity. All spectra were uni-
formly treated in Origin software for background correction and area
normalization.

2.3. Property characterization

The glass transition temperatures (Tg) of the phase-separated glasses
were determined using differential scanning calorimetry (DSC) (STA
449 F1, Netzsch). We used samples polished down to a thickness of 1
mm. These were tested in Pt crucibles under a flow of argon (gas flow 60
mL-min~!). The heating rate and the prior cooling rate were both 10
K-min . The intercept between the tangent to the inflection point of the
endothermic peak and the extrapolated heat flow of the glass was
interpreted as the Ty of each phase, i.e., the droplet and matrix glass
phases. The error in the determined T value is around £5 K.

Vickers hardness (Hy) and crack resistance (CR) of the samples were
determined by using a Nanovea CB500 hardness tester. The glass spec-
imens were successively polished by SiC paper with decreasing abrasive
particle size (up to grit 4000) in ethanol and finally with a water-free 1
pm diamond suspension. The indentations were performed using a
Vickers indenter tip (four-sided pyramid-shaped diamond with an angle
of 136°). To determine Hy, 20 indents were performed for each specimen
at a load of 4.9 N applied for 10 s, which was low enough to ensure that
no cracks formed upon the indentation at this load. The Hy values were
calculated as Hy = 1.8544P/d?, where P is the contact load and d is the
average length of the indent diagonals [33]. CR was also determined by
using Vickers indentation, but by applying different loads. Each glass
specimen was indented 30 times per load, increasing in steps from 0.1 N
to 19 N with loading duration of 15 s and dwell time of 10 s, while the
loading/unloading rate value was 50 N-min*. Following indentation,
the number of corner cracks was counted. According to the method of
Wada et al. [34], the probability of crack initiation is defined as the ratio
between the number of corners with cracks and the total number of
corners on all indents (i.e., four corners for Vickers indenter). CR was
determined as the load at which the crack probability is 50%. All in-
dentations were conducted at room temperature (~295 K) and relative
humidity of 25-32%.

Fracture toughness (Ki.) was determined using the single-edge pre-
crack beam (SEPB) method, following the well-established procedure
[35,36]. First, four pieces of glass were cut from the annealed glass bulk,
and three of them were heat-treated under different heat treatment
conditions. Each of the four samples were cut into five glass beams with
dimension of 1.5 x 2 x 10 mm® and then polished. Then eight Vickers
indents with a load of 9.8 N for a dwell time of 5 s were placed on a line
on the breadth side (B = 1.5 mm). The indented specimen was posi-
tioned in a compression fixture with a groove size of approximately 3
mm (1.5 times the specimen width, W = 2 mm) to produce a precrack
with a cross-head speed of 0.05 mm-min~!. Under the compression
fixture, the lower part of the specimen (indented or grooved part)
experienced tensile stress, whereas the upper part experienced
compressive stress. The tensile stress opened a crack from the indent
corners and allowed it to propagate until it reached the compressive
stress region (approximately at the middle of the specimen width). This
prevented further extension of the precrack and allowed us to obtain a
precrack with the size about half-length of W. Then, the precracked
specimen was positioned in a three-point bending fixture and the
specimen was fractured with a cross-head speed of 10 pm-s~! to avoid
humidity effects [36,37]. We note that this adapted three-point bending
span (S) of 7.5 mm was designed to fulfill the span-to-width ratio of
about 4 as required in the standard [38]. Kj. was then calculated from
the peak load (Ppax) [36,371,

Pmax *
Y

Ky = —mpe
T BYW
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——p/ @) 1)

where « is the precrack-width ratio (a/W) and f(a) = [1.99 — (a — a®)
(2.15 — 3.93a + 2.7a%1/(1 + 2a). The average Kj. value was calculated
from the results of five valid tests.

An example of fracture toughness measurement is shown in Fig. 1.
Fig. 1la shows the typical load-displacement curves of the indented
glasses. An indented glass specimen was placed into the bridge-
compressive fixture (see inset of Fig. 1a) and it was ensured that the
indentation line was in the middle of the groove. Under the bridge-
compressive fixture, the tensile stress from the groove part opened up
the crack from the indentation line, and the length of the produced
precrack was around 50% of the specimen width. The precracked
specimen was placed into the three-point bending fixture and it was
ensured that the precrack was in the middle, as shown in Fig. 1b. Fig. 1b
also shows a typical load-displacement curves of a precracked glass. The
Pnax value can be obtained from the load-displacement curve. Finally,
the precrack length of the fractured specimen was measured by
magnification microscope (Fig. 1c). The details of the experimental
setup and testing can be found in Ref. [35].

To investigate the effect of heat treatment and thus phase separation
microstructure on the optical transparency of the glass sample, we used
an ultraviolet-visible (UV-VIS) spectrometer (Cary 50 Bio, Varian) to
determine the optical transparency of 2.0 mm thick polished glass
sample. The wavelength range of transmission spectrum was set to
200-800 nm. The average transmittance was calculated from the results
of three specimens for each glass sample. All the UV-VIS transmittance
spectra were normalized to a thickness of 1 mm.

3. Results
3.1. Phase microstructure analysis

As shown in Fig. 2a, the phase-separated glasses remain non-
crystalline upon the different heat treatments, as no sharp diffraction
peaks are observed. In the previous work, it was suggested that the
studied glass exhibits two distinct glass transition temperatures, i.e., the
lower Tg corresponding to the droplet phase (rich in B20O3) and the
higher Tgy corresponding to the glass matrix phase (rich in B-O-Si
linkages) [20]. Fig. 2b shows the DSC heating curves of the as-prepared
and heat-treated glasses. Indeed, we observe two well-separated glass
transition peaks in all samples, confirming that the glasses remain
phase-separated after heat treatments. For the glass heat-treated at 648
K, Ty decreases from 694 K (for the as-prepared glass) of the
as-prepared glass to 677 K, while Ty slightly increases from 892 K to
900 K. Considering the error in Ty determination being £5 K, the Ty
values of glass heat-treated at 648 K are within the measurement error.
As such, Ty is trending toward the T, value of vitreous B2O3 (around
533 K), but still significantly above, showing that the droplet phase is
not made of pure B,O3 (see more details later). For the glasses
heat-treated at 790 K and 892 K, T decreases slightly to around 685 K
but also within the measurement error. Ty of the glass heat-treated at
790 K decreases significantly to 843 K, while for the glass heat-treated at
892 K, Ty, decrease to 879 K. In conclusion, the heat treatment below
Tg1 mainly influences the separated phase, and heat treatment above Ty
mainly affects the glass matrix phase. The details are shown in Figure S1.

To explore the changes in the microstructure of the phase-separated
glasses after heat treatment, we performed SEM measurements on the
glass surfaces after etching treatment. Fig. 3 shows the morphology and
size distribution of the droplet phase in these etched samples. Spherical
phases but with different sizes are present in all samples. In the study of
Liu et al. on the same glasses, the droplet phase could be identified to be
one rich in B303, including boroxol rings [20]. Here, we find for the
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Fig. 1. Fracture toughness measurement. (a) Load—displacement curves of a glass specimen. The inset shows the bridge-compression fixture as captured during
precracking. (b) Load-displacement curves of three-point bending of the precracked SEPB specimens. The three-point bending fixture with a precracked specimen is

shown in the inset. (c) Post-fractured SEPB specimen.
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Fig. 2. (a) XRD patterns and (b) DSC heating curves (at 10 K-min~1) of as-prepared glass and glass samples heat-treated at 648 K for 4 h, 790 K for 4 h, and 892 K for
4 h. The two arrows in each curve indicate the onset temperature of the endothermic glass transitions of the droplet and matrix phases in each sample, respectively.

as-prepared glass that the average size of the droplet phase is around 87
nm, while it decreases to 63 nm upon heat treatment at 648 K. As the
heat treatment temperature further increases to 790 K, the average size
of the droplet continues to decrease to 57 nm. When the temperature
increases to 892 K, the average size of the single droplet phase is about

77 nm, but we note some agglomeration of the droplets (see inset in
Figs. 3d and S2), which can reach a size of more than 300 nm. The
average size of the droplets is listed in Table 1.
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Fig. 3. SEM micrographs and droplet phase size distribution in the different glass samples before and after heat treatments: (a) as-prepared glass, (b) 648 K for 4 h,

(c) 790 K for 4 h, and (d) 892 K for 4 h.
3.2. Glass network structure

Fig. 4 shows the Raman spectra of the studied glasses in the fre-
quency range of 200-1500 cm™!, and the enlarged view around 800
cm ! is shown in Fig. $3. Each spectrum consists of six bands or band
regions, which are centered at ~465 cm_l, ~715 cm_l, ~805 cm_l,
~935 em™!, ~1145 cm™! and ~1315 cm™?, respectively. The band
situated at 200 to 620 cm ™! can be attributed to mixed bending and

stretching vibrations of the bridging oxygens (BOs) [39-42], while the
band centered at ~1145 cm™' can be assigned to Q* units of Si (SiO4
tetrahedra with 4 BOs) [43]. The relative intensity of these two bands
increases upon heat treatment, indicating an increased connectivity of
the glass structure. The Raman band at ~805 cm ™! is associated with the
breathing vibration of boroxol rings [11,44], and its intensity increases
upon heat treatment at 648 K, whereas it decreases for the glass
heat-treated at 892 K. For the glass heat-treated at 790 K, the intensity of
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Table 1

Droplet average size, Vickers hardness at 4.9 N (Hy), crack resistance (CR), and
fracture toughness (Kj.) measured using the SEPB technique of the as-prepared
and heat-treated glasses.

Sample ID Droplet Average Size Hy CR [N] Kie
[nm] [GPa] [MPa-m®?]
as- 87 49+ 52+0.1 0.61 + 0.02
prepared 0.1
648 K 4h 63 55+ 11.2 £ 0.69 + 0.03
0.2 0.2
790 K 4h 57 53+ 8.7+ 0.2 0.65 + 0.03
0.1
892 K 4h 77 53+ 7.7 £0.1 0.73 £+ 0.02
0.1
—— as-prepared
mixed bending 648K 4 h
—_ l and stretching vibration —— 790K 4 h
S (bridging oxygen) ——892K 4 h
©
N
>
=
2] boroxol ring
c
3 .
c Si(Q)
c '
@® B-O-B super- BPO,+AIPO, p
E \ structures and| n
m P (Q ) n
o \Al-P structure B" ring+P=0
_ SeiA

200 400 600 800 1000 1200 1400

Wavenumber (cm'1)

Fig. 4. Raman spectra of as-prepared glass and glass samples heat-treated at
648 K for 4 h, 790 K for 4 h, and 892 K for 4 h.

boroxol ring band is only slightly increased. This indicates that the
higher treatment temperature (around Tgp) induces the boroxol ring
structure to partially transform to other borates structure, while the
lower heat treatment temperature (below Tg1) facilitates more droplet
phase formation. The other bands, which are located at ~715 em L,
~935 cm’l, ~1315 ecm™!, and a shoulder at ~1080 em ! can be
assigned to B-O-B superstructural unit and Al-P structure, P QH, B ring
and P=0, and BPOy, and AIPOy, respectively. The intensity of these
bands does not change significantly upon heat treatments.

Fig. 5 shows the !B, ?7Al, and 3'P MAS NMR spectra of the four
studied glass samples. Fig. 5a and 5b show the normalized !B MAS NMR
spectra and deconvolution of the spectrum for the as-prepared glass,
respectively. The deconvolution results of boron speciation for the entire
series are shown in Table 2, and the deconvoluted !B MAS NMR spectra
of each glass are shown in Fig. S4. The peaks centered near —4 ppm
correspond to [BO4], while the broad signal between 2 and 20 ppm
corresponds to [BOs] structural units. From the deconvolution, we
calculate the fraction of tetrahedral to total boron (N4). Upon heat
treatment, N4 increases from 18.3% in the as-prepared glass to 18.6% in
the glass heat-treated at 892 K, i.e., a very small change in boron
speciation. After deconvolution, [BOs] structural units can be separated
into three resonances, and the peak having an isotropic chemical shift of
17.4 ppm is assigned to ring B™. Thus, we also find that the fraction of
ring B™! increases from 19.3% in the as-prepared glass to 19.9% in the
glass after heat treatment at 648 K, which could be related to an increase
in the fraction of droplet phase (rich in BO3 and boroxol ring structure)
upon this heat treatment. We here note that the uncertainties in Ny
values (see Table 2) are determined from fitting of the MAS NMR data
and consideration of the overlapping satellite transition spinning
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sidebands. While the uncertainty is larger than the differences between
some of the glasses, the relative changes in NMR lineshape and thus Ny
values, are significantly more precise. That is, even a small difference in
N, is meaningful given the identical way N4 is determined, as indicated
by subtle changes in peak intensities in Fig. 5a.

Considering the 3'P MAS NMR spectra (Fig. 5¢), the peak centered at
—33.7 ppm corresponds to the resonance of P Q* (PO, tetrahedra with 4
BOs) bonded to Al (AlIPO4-like units) and B (BPOjy-like units). This band
exhibits only negligible changes upon heat treatment, i.e., the heat
treatments have no significant effect on the phosphorus speciation. We
note that based on the NMR line shapes, there is no evidence for any
small AIPO4 or BPOy crystallites. This confirms that both the as-prepared
and heat-treated glasses are non-crystalline, as consistent with the XRD
results. We also note that the observation of only P Q* groups indicates
that the glasses do not contain any non-bridging oxygens.

The 2’Al MAS NMR spectra (Fig. 5d) can be deconvoluted into three
Al resonances, centered around 38, 6, and —19 ppm, corresponding to
AlY, AlY, and A1V respectively. The deconvoluted 27Al MAS NMR
spectra are shown in Fig. S5, and the derived aluminum speciation re-
sults are shown in Table S1. These resonances are all shifted to higher
shielding than those usually observed in aluminosilicate glasses due to
the existence of P as the next-nearest neighbor (NNN) aluminum poly-
hedra and the higher electronegativity of P compared to that of Si [20,
45]. The NMR shifts of these three resonances are all consistent with
substantial Al-O-P bonding (i.e., all have P NNN) [20]. Upon heat
treatment, the fraction of AlY decreases from 16% in the as-prepared
glass to 15% in the heat-treated samples. Meanwhile, the fraction of
Al also decreases upon heat treatment from 3% in the as-prepared glass
to 2% in the glass heat-treated at 648 K and 892 K, and to 1% in the glass
heat-treated at 790 K. The average coordination number of aluminum is
slightly decreased from 4.22 of as-prepared glass to 4.17 of glass heat
treated at 790 K. For the glass heat-treated at 648 K and 892 K, the
average coordination number of aluminum is around 4.19, which is also
slightly lower than that of the as-prepared glass. According to the pre-
vious research in this modifier-free glass system [20], AlY and A1V! units
are present as charge-balancing polyhedra, and Al'Y combines with P
NNN to form AIPOg4-like units. In this modifier-free glass, the Si-O
network consists of structural Si Q* units, i.e., with four bridging oxy-
gens bonded to Si. In addition, other glass formers also form different
structural units, such as P Q4, [BOsl, and [BOg4]. As glass intermediate,
portions of AI** bonded with four bridging oxygen to form A"V also join
into the glass network. Due to the lack of any traditional modifiers in the
studied glass, the non-network forming fraction of Al**act as the only
cation to balance the charges of various structural units in the glass
network, resulting in the formation of A1V and Al"! units in the glass.

It has been reported that when the B,O3 content increases, the
fraction of droplet phase increases, meanwhile the average coordination
number of aluminum slightly decreases [20]. The main structure of
droplet phase might be boroxol ring (B3Og), which only contains BOs
[46]. Since the P-related structure does not exhibit any changes upon
heat treatment (Fig. 5¢), the main network structure of the glass matrix
phase we consider here is the Si-O-B network [20]. After heat-treatment,
the reduced size of droplet phase will lead to an increased interface area
between droplet phase and glass matrix, so the glass heat-treated at 790
K with the smallest average size of droplet exhibits the lowest average
coordination number of aluminum. Secondly, the increase in the frac-
tion of droplet phase contributes to the formation of B-O-B, which would
also decrease the average coordination number of aluminum. The latter
is also confirmed by the Raman results (Fig. 4). Finally, the observed
decrease in the fraction of AlV and Al"! reflected through the Al MAS
NMR data (Fig. 5d) could be because the heat treatment enables a small
amount of P to move from droplet to matrix phase. This extra P is then
available to be coordinated with tetrahedral Al in the form of AIPO4-like
groups, which then removes some of the higher coordinated Al
polyhedra.
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Fig. 5. MAS NMR spectra of the studied glasses: (a) 1B (b) deconvoluted !'B spectra of as-prepared glass, (c) 31p, (d) AL

Table 2

Boron speciation from !B MAS NMR spectra deconvolution (Figs. 5b and S4). The uncertainties for the isotropic chemical shift and area fraction of the B resonances
are + 0.5 ppm and 0.5%, while errors for shift and area fraction for the B'Y resonances do not exceed + 0.1 ppm and + 0.2%. The uncertainty in Ny is on the order of +

0.2%.

Sample ID 1-B" (ring) 2-B" (non-ring) 3-g™" 4.8V 5-BY N4

Shift (ppm) Area shift (ppm) Area Shift Area shift (ppm) Area shift (ppm) Area (%)
(%) (%) (ppm) (%) (%) (%)

as-prepared 17.4 19.3 13.5 39.8 11.5 22.6 -2.2 3.8 —4.4 14.5 18.3

648 K 4h 17.4 19.9 13.5 39.0 11.5 22.6 -21 3.9 —4.4 14.6 18.5

790 K 4h 17.4 19.4 13.5 38.7 11.5 23.3 —-2.2 4.1 —4.4 14.5 18.6

892 K 4h 17.4 19.3 13.5 39.2 11.5 22.9 -2.1 3.5 —4.4 15.1 18.6

3.3. Mechanical properties

The mechanical properties of the as-prepared and heat-treated
glasses are summarized in Table 1, including Vickers hardness, crack
resistance, and fracture toughness measured using the SEPB technique.
First, we find that the hardness increases from 4.9 GPa for the as-
prepared glass to about 5.3 to 5.5 GPa for the heat-treated samples, i.
e., the hardness increases slightly with heat treatment. Compared with
the fracture toughness (Kj.) value of 0.61 MPa-m®® of the as-prepared
glass, we observe that Kj slightly increases (although within the error
range) to 0.69 and 0.65 MPa-m®® for the samples heat-treated at 648
and 790 K, respectively. The highest value of Ky, i.e., 0.73 MPa-m®%®, is
measured for the sample heat-treated at 892 K for 4 h.

Crack resistance (CR) refers to the ability of the glass to resist crack
initiation under the impact of a sharp object. For the Vickers indentation
method, it is defined as the corresponding load when the probability for

corner cracking reaches 50% [11]. Fig. 6 shows the curves of crack
initiation probability as a function of applied indentation load for the
different samples, while the specific values of CR are given in Table 1.
The crack resistance is generally improved upon heat treatment, espe-
cially for the temperature of 648 K, for which CR has increased from 5.2
to 11.2 N, i.e., an increase of more than 110% compared with the
as-prepared glass. However, for higher treatment temperatures, the in-
crease compared to the as-prepared sample is smaller. That is, CR is 8.7
N and 7.7 N for the glasses treated at 790 and 892 K, respectively.

3.4. Optical transparency

Fig. 7a shows photographs of the polished as-prepared and heat-
treated glasses. As shown, even after heat treatment, the phase-
separated glasses appear optically transparent. To quantify this obser-
vation, Fig. 7b shows the measured UV-VIS transmittance of the glasses
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Fig. 6. Crack probability as a function of applied indentation load for the
same samples.
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Fig. 7. (a) Photographs of polished glasses before and after heat treatments
(superimposed over the AAU text). (b) UV-VIS transmittance spectra of the as-
prepared and heat-treated glasses.

as a function of wavelength. There is almost no change in transmittance
upon heat treatment, with very high transmittance above 90% in most of
the visible region for all glass samples. In previous work on CaO-Al,O3-
SiO4 glasses, phase-separated nano-domains with sizes between 5 and
470 nm could be observed [21]. When the average size of the
nano-domains was kept below 50 nm, it is found that the glass was
transparent when viewed with the naked eye. In this work, we also
ensure transparency by maintaining the size of the droplet phase be-
tween 50 and 100 nm, besides the agglomeration observed in the sample
heat-treated at 892 K (Fig. 3d).

4. Discussion

The mechanical properties of glasses are determined by their struc-
ture, hence, we discuss the correlations among the glass network con-
nectivity, phase separation microstructure, and mechanical properties.
First, hardness represents the resistance to elastoplastic deformation,
which is determined by glass matrix structures and any secondary phase
in phase-separated glasses (or crystals as in the case of glass-ceramics)
[10,22,47]. For instance, an increasing amount of non-bridging oxy-
gen will reduce the network connectivity, which in turn leads to a
decrease in hardness [5,47]. On the other hand, soft particles dispersed
in a stiff glass matrix may also decrease hardness, whereas it has been
shown that hardness is independent of the particle size and interparticle
spacing if the volume fraction of second phase is kept constant [48]. In
this work, the hardness of droplet phase (B-rich phase) is low as
compared to that of the glass matrix (Si-rich phase) [20]. Considering
the Raman and NMR results, the fraction of droplet phase structure
(B-rich boroxol ring phase) increases upon heat treatments at 648 and
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790 K, but it seems to decrease for the samples heat-treated at 892 K.
Thus, from the aspect of phase separation, the reduction of the soft phase
favors the improvement of hardness for the glass heat-treat at 892 K.
However, the connectivity of the glass network also affects the hardness,
as the discussed above. The Raman and NMR results show that the in-
tensity of the band assigned to mixed bending and stretching vibrations
of bridging oxygen and N4 increased for all heat treatments, indicating
the glass network connectivity increases after heat treatment, which
contributes to the increase of hardness. Further, the finding that the
average coordination number of aluminum is slightly decreased after
heat treatment also means higher fraction of bridging oxygen formation.
Thus, the network connectivity increases for heat-treated glasses could
explain the slight increase in hardness observed herein (Table 1) [49].

Previous work has shown that crack initiation resistance is closely
related to the structure of both matrix and secondary phases in a phase-
separated glass [23]. For example, considering the effective way of stress
dissipation under the indenter, glasses with large free volume and
self-adaptive networks tend to have higher crack resistance, since en-
ergy dissipation is easy to occur during the densification process
[50-52]. Indeed, different residual stresses will also affect the crack
resistance of the glass, especially for composite or phase-separated
glasses [22]. Based on the present structure data and micro-structure
morphology from the SEM, the observed variation in CR can be dis-
cussed from different aspects. From a structural point of view, shear
deformation will occur in borate glasses where easy-slip units such as
boroxol rings exist or where trigonal to tetrahedral boron trans-
formations occur under applied stress, which can lead to higher CR [52].
From the perspective of stress, nano-scale phase separation and the
change of the separated phase size also play important roles. Firstly, we
consider the well-known Griffith-type fracture mechanics equation, 6. =
/2Ey,/na, where o is the critical stress required to create a new crack
surface, a is the size of a central crack, E is the modulus of elasticity and
vs is the fracture surface energy per unit area [53]. If the crack size
around a single particle is assumed to be proportional to the size of the
particle/matrix interface area, the critical debonding stress will increase
as the particle size decreases [54,55]. Secondly, the nano-scale in-
clusions have different energy absorption mechanisms from conven-
tional composites. As the nano-particle size decreases (at constant
volume fraction of droplets), the total surface area of particle/matrix
interfaces available for energy dissipation increases, meanwhile the
critical stress for particle/matrix debonding also increases, which can
cause the nano-separated glass to be more resistant against crack initi-
ation [54]. Thirdly, based on finite element method calculations coupled
with the mode mixity of interfacial cracks in fracture mechanics (mode
mixity considering the mode I and II stress intensity factors of the
interfacial crack), attempts have been made to understand the effect of
the particle size (in pm-scale) on the failure process [56]. Maximum
energy release rate criterion has been extensively used to predict the
initiation of mixed mode cracks through calculating the energy release
rate around the crack tip [57-59]. It is known that the interface char-
acteristics are crucial for the material’s mechanical response, so the
energy release rate at the interface between the droplet phase (inclu-
sion) and glass (matrix) may determine the crack behavior of trans-
parent modifier-free glasses with phase separation. According to the
maximum energy release rate criterion [58,59], the interfacial
pre-existing crack for smaller particles requires higher applied stress to
grow into an observable crack, because the energy release rate decreases
as the particle size decreases for the same applied stress in spherical
particle inclusion composite materials [56]. It should be noted that
droplet phases in a transparent modifier-free glass can be regarded as
inclusions inside a homogeneous/heterogeneous matrix according to the
fracture mechanics, which is the same as the particle inclusion com-
posites. As a result, the crack at the interface between the droplet phase
and glass matrix requires higher applied stress to propagate.

In summary, this might at least partly explain why the crack
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initiation probability decreases as the separated phase size decreases.
Since the separated phase size decreases from 87 nm in the as-prepared
glass to 63 and 57 nm in the glasses heat-treated at 648 and 790 K,
respectively, the crack resistance has improved significantly upon heat
treatment (Table 1). We also note that CR does not increase mono-
tonically with the decrease of the droplet phase size, possibly because
the volume fraction of the inclusion (droplet phase) is not exactly the
same in the glass samples after heat treatments at 648 K and 790 K for 4
h. Therefore, the glass after heat treatment at 648 K for 4 h shows the
highest CR owing to its highest content of separated phase (boroxol ring)
with a smaller size of separated phase compared to the as-prepared glass.
Although the fraction of boroxol rings in the glass after heat treatment at
790 K only slightly increases, the smallest size of droplet phase is
favorable to increase CR. While the fraction of boroxol rings decreases
after heat treatment at 892 K, which is not favorable for improving CR,
the nano-size effect plays a more critical role in the improvement of CR,
i.e., the CR of this sample also increases.

Finally, the fracture toughness is also determined by the structure
and phase separation in the glass. For homogeneous glasses, Kj is sen-
sitive to the network connectivity, since less cross-linked networks
display less resistance to crack propagation on account on their lower
cohesion [49,60]. For phase-separated glasses, the secondary phase
droplets will either blunt or pin the crack front [23]. Kj. depends on the
properties of the individual particulate and matrix phases, as well as the
particulate size and volume fraction. Regarding the role of the size of the
separated phase, some studies have found that glasses with larger
droplets phase exhibit more toughening [61,62]. Furthermore, the
phase boundaries provide more discontinuities to arrest the motion of
cracks, thus increasing Ki. [18,63]. Thus, the observed increase of Kj.
herein upon heat treatment might be explained by the increase of the
interface caused by the decrease of the droplet size in the glass
heat-treated at 648 and 790 K (see Fig. 3). The separated phase
agglomeration up to 300 nm in the glass heat-treated at 892 K results in
a more significant increase in Ki.. An alternative or additional expla-
nation could be that the heat treatment makes the glass phases in the
droplet and matrix more different from each other, as evidenced from
the divergence of their Ty values (Fig. 2b). Indeed, peridynamics simu-
lations have shown that the higher the stiffness mismatch between
droplets and matrix in phase-separated glasses, the higher the increase
in Ky [64].

In a PbO-rich matrix glass system with ByOs-rich particles, residual
tensile stress exists within particles, as ay < a;, for this composite sys-
tem, where ap, and aj are the thermal expansion coefficient of the matrix
and particles, respectively [62]. Therefore, the growing crack can easily
penetrate the BoOs-rich particles. When the crack front within particles
reaches the particle-matrix interface, the crack tip is assumed to be
locally blunted at the interface [23]. This localized crack blunting may
momentarily inhibit the extension of the entire crack front, and such
impedance to crack extension becomes more effective as the volume
fraction of the secondary phase particles increases. Similarly, in this
work, the oy, of the Si-rich matrix is lower than the «;, of the B-rich
secondary phase [65]. Therefore, compared with the as-prepared glass,
more droplet phases formed in the glass heat-treated at 648 K and 790 K
might also help to explain the increase in K. in this phase-separated
glass system.

5. Conclusion

In this work, we have reported a highly transparent modifier free
glass (B203-Si02-Aly03-P20s) with nanoscale droplet phase separation
and investigated the effects of different heat treatments on the structure
and mechanical properties. Heat treatment at 648 K for 4 h (below Tg; of
the droplet glass phase) promotes the formation of boroxol ring units,
but meanwhile the droplet size decreases from 87 nm in the as-prepared
glass to 63 nm. Such structural changes lead to an increase of crack
resistance from 5.2 N for the as-prepared glass to 11.2 N after heat
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treatment. Although the heat treatments at 790 K and 892 K for 4 h do
not contribute to the formation of more boroxol rings, the decreased
droplet size in these two glasses also tends to improve the crack resis-
tance, but only to around 8-9 N. For heat treatment up to 892 K (Tg2 of
the glass matrix phase), the separated phases agglomerate up to 300 nm,
which contributes to the increase in fracture toughness from 0.61
MPa-m®® of the as-prepared glass to 0.73 MPa-m®® after this heat
treatment. Moreover, the hardness of the glass slightly increases for all
heat treatments, whereas the glass transparency is almost unaffected. As
such, for this system, we vary the size and fraction of phase separation
by heat treatment. The results suggest that a decrease in the size of
nanoscale separation phase and increase in its fraction can help to
potentially overcome the brittleness of glass, in the route toward
damage-tolerant, tough, yet transparent glasses.
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