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Abstract

The 2019 coronavirus disease (COVID-19) is the disease caused by SARS-CoV-2 infection. Although this infection has been
shown to affect the respiratory system, a high incidence of thrombotic events has been observed in severe cases of COVID-
19 and in a significant portion of COVID-19 nonsurvivors. Although prior literature has reported on both the coagulopathy and
hypercoagulability of COVID-19, the specifics of coagulation have not been fully investigated. Observations of microthrombosis
in patients with COVID-19 have brought attention to potential inflammatory endothelial injury. Von Willebrand factor (VWF) and
its protease, A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), play an impor-
tant homeostatic role in responding to endothelial injury. This report provides an overview of the literature investigating the
role the VWF/ADAMTS13 axis may have in COVID-19 thrombotic events and suggests potential therapeutic strategies to pre-
vent the progression of coagulopathy in patients with COVID-19.
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INTRODUCTION

The 2019 coronavirus disease (COVID-19) outbreak has had
a devastating impact across the world. The outbreak and the
virus causing the disease, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), were first identified in Wuhan,
China, in December 2019. As of November 2021, the number
of deaths from COVID-19 has climbed above 5 million world-
wide. Instances of coagulopathy and thrombosis have been
found to be common in patients with COVID-19 and nonsurvi-
vors. This report will provide our perspective on COVID-19
coagulopathy and its potential connection with viral infection
and von Willebrand factor/ADAMTS13 imbalance.

THROMBOTIC EVENTS IN PATIENTS WITH
COVID-19

Studies in The Netherlands, France, and Italy, observed rates
of venous thromboembolism (VTE) and arterial thrombosis of
15% and 30%, respectively, in critically ill patients with COVID-
19, despite their receipt of anticoagulant thromboprophylaxis
(1-3). However, this increased incidence remains disputed. In a
multicenter retrospective study in Massachusetts, Al-SamKari et
al. (4) reported rates of VTE at 7.6%, a figure more in line with
rates of disease in noncritically ill patients with COVID-19. In
addition, thrombotic complications were observed in 31% of 184
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patients in ICU, although pulmonary emboli were observed in
27% (5). Yet, hypercoagulability is not limited to this group; 72%
of patients with COVID-19 who had been diagnosed with a pul-
monary embolism (PE) after computer tomography (CT) pulmo-
nary angiography did not have severe enough disease to qualify
for ICU care (6). PE has been determined as the cause of death
in a significant portion of patients with COVID-19, but PE in
patients with COVID-19 is often overlooked until autopsy.
Autopsies revealed an incidence of deep venous thrombosis in
58% of patients with COVID-19, none of whom had preclinical
evidence of PE (7). PE was the direct cause of death in 33% of
these patients (7). In a separate autopsy study, alveolar-capillary
microthrombi were more abundant in COVID-19-afflicted lungs
compared with influenza-afflicted lungs by a factor of 9 (8). The
incidence of thrombogenesis is closely correlated with the high
mortality observed in severe COVID-19 cases; 50% of nonsurvi-
vors presented a procoagulant state, whereas only 7% of survi-
vors were procoagulant (9). Thus, the presence of coagulopathy
in patients with COVID-19 is more common than previously
thought and has significant implications for patient mortality.

COVID-19 COAGULOPATHY

The most appropriate description of the COVID-19 coagul-
opathy is a mild form of sepsis-induced diffuse intravascular
coagulopathy (DIC) and localized pulmonary thrombotic
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microangiopathy (TM). Studies examining ICU and non-ICU
patients with COVID-19 observed normal in vitro thrombin
generation despite adherence to an anticoagulant regimen,
suggesting that traditional anticoagulant therapy was insuf-
ficient in preventing clotting (10-12). The decreased fibrino-
lytic potential observed in patients with COVID-19 may be
explained by decreased local anticoagulant activity caused
by endothelial injury and subsequent decreases in thrombo-
modulin and endogenous heparinoids (10). Elevated D-
dimer levels have been observed in most patients with
COVID-19, and the magnitude of D-dimer levels is closely
associated with patient mortality (7, 9, 10, 12-16). Modest
thrombocytopenia has been observed in 70%-95% of
patients with severe COVID-19 in addition to modest
increases in prothrombin time (7, 9, 10, 12, 13, 16). Patients
with severe COVID-19 have modest elevations in fibrinogen
levels that rapidly decline before death (10, 12, 13, 17-21).
Strikingly high levels of lactate dehydrogenase and C-reac-
tive protein have been observed in COVID-19 nonsurvivors
(7). Exceedingly high D-dimer levels and milder incidences
of thrombocytopenia distinguish COVID-19 coagulopathy
from sepsis-induced DIC, which features lower D-dimer lev-
els and severe thrombocytopenia (9). The COVID-19 coagul-
opathy is separate from traditional TM as the observation of
schistocytes, hemolysis, and severe thrombocytopenia is
rare in patients with COVID-19 (9).

ENDOTHELIAL INJURY IN COVID-19

Endothelial cell injury has been a primary finding in
autopsies of COVID-19 nonsurvivors and may contribute sig-
nificantly to the procoagulant state observed in these
patients. Swelling, disruption of junctions, and loss of con-
tact with the basilar membrane have been observed in endo-
thelial cells. Transmission electron microscopy (TEM) also
revealed ultrastructural damage to the endothelium (14). A
study of 68 patients with COVID-19 further supports that en-
dothelial cell injury plays a major role in the observed coa-
gulopathy; von Willebrand factor (VWF) antigen, soluble P-
selectin, and PAI-1, markers of endothelial cell injury, were
elevated in ICU patients compared with non-ICU patients
(10, 12, 22, 23). In addition, thrombomodulin, a vasculopro-
tective membrane glycoprotein expressed on the luminal
surface of vascular endothelial cells also associated with en-
dothelial cell injury (24), was correlated with increased mor-
tality (22). Patients with elevated soluble thrombomodulin
were discharged from the hospital at a significantly lower
rate (10, 12, 22).

Endothelial dysfunction is a known contributor to throm-
bosis, where dysfunction leads to the exposure of subendo-
thelial collagen to blood, prompting the initial adhesion of
platelets to collagen (25). Inflammation-induced endothelial
cell injury in COVID-19 may also result in a large release of
plasminogen activators, providing a potential explanation
for high D-dimer levels and fibrin degradation products
observed in severe COVID-19 coagulopathy (9). Although it is
unclear how many factors contribute to endothelialitis
observed in patients with COVID-19, direct SARS-CoV-2
infection has been observed in endothelial cells of nonsurvi-
vors and may account for widespread endothelial cell dys-
function (8, 26). Angiotensin-converting enzyme 2 (ACE2)
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(18) has been reported as the receptor mediating the entry of
SARS-CoV-2 (27, 28), and prior studies suggest the expression
of ACE2 on human endothelium (28, 29). However, a recent
study indicated that human endothelial cells express little to
no ACE2 and may not support productive infection of SARS-
CoV-2 (30). Therefore, the endothelial damage observed in
patients with COVID-19 may likely stem from indirect
mechanisms, including infection of neighboring cells,
complement activation, and/or circulating proinflamma-
tory cytokines.

HEMOSTATIC ROLE OF VWF/ADAMTS13
AXIS

A potential explanation for the thrombotic events
observed in patients with COVID-19 may be triggered by an
imbalance between levels and activity of VWF and its prote-
ase, A disintegrin and metalloproteinase with a thrombo-
spondin type 1 motif, member 13 (ADAMTS13). VWF and
ADAMTSI13 play an important role in vascular thrombosis.

VWEF is a large multimeric protein formed of up to 200
monomers. After synthesis in platelets and endothelial cells
and removal of their signal peptides, pro-VWF subunits asso-
ciate in the endoplasmic reticulum into COOH-terminal
“tail-to-tail” dimers by the formation of disulfide bonds
between the CK domains. These dimers further multimerize
in the Golgi apparatus by forming “head-to-head” disulfide
bonds connecting the amino-terminal D3 before secretion
(Fig. 1A). Also occurring in the Golgi is the maturation
step, where pro-VWF is cleaved by furin and becomes the
mature protein (from D’ to CK). Among the 12 domains of
matured VWF, the A1-A2-A3 tridomain is central to VWF’s
function. Upon tissue damage, the A3 domain first anchors
the VWF onto subendothelial collagen under blood flow.
Subsequently, the Al domain, via its engagement with the
platelet GPIb, captures platelets from the flowing blood
(Fig. 1, A and B) (31). The A2 domain, which can be sub-
jected to mechanoenzymatic cleavage by ADAMTS13, pro-
vides a “shear bolt” mechanism to prevent excessive
platelet adhesion (31).

The size of VWF (i.e., how many monomers make up the
multimer) is critical to its hemostatic functional capacity.
Newly secreted ultralarge VWF (ULVWF) that contains hun-
dreds of monomers can generate spontaneous thrombosis
and are, therefore, thrombotic to the body (31). These
ULVWF must be degraded to shorter forms to decrease their
thrombogenic potential. The size of VWF is controlled by the
blood enzyme ADAMTSI13, which cleaves the scissile bond
between residues Y1605 and M1606 within the A2 domain.

ADAMTSI3 is secreted as a relatively active enzyme, pri-
marily from hepatic stellate cells (32), endothelial cells (33,
34), and megakaryocytes/platelets (35). ADAMTS13 regulates
the activity of VWF by cleaving ULVWF (>10,000 kDa) into
hemostatically active circulating VWF of lower weight
(<10,000 kDa) (36). A deficiency in ADAMTS13 can lead to
the accumulation of these ULVWF multimers, further result-
ing in consumptive thrombocytopenia and microvascular
thrombosis (36). In addition, an imbalance between levels of
VWF and ADAMTSI13 is implicated in arterial thrombosis (37)
and ischemic stroke (38, 39). An abnormal VWF:ADAMTS13
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Figure 1. A: schematic illustration of VWF’s domain arrangement and the key functions of the A domains. B: model connecting viral infection, endothelial
injury, the VWF/ADAMTS13 axis, and COVID-19 coagulopathy. Created with BioRender.com and published with permission. ADAMTS13, A disintegrin
and metalloproteinase with a thrombospondin type 1 motif, member 13; VWF, von Willebrand factor.

ratio has also been positively correlated with myocardial in-
farction in young women (40). In a study of acute ischemic
brain injury, a VWF:ADAMTS13 ratio of >2.6 has been identi-
fied to predict mortality (41).

Biotherapeutics targeting the VWF/ADAMTS13 axis have
been under active study during the past 2 decades.
Recombinant VWF (rVWF) and recombinant ADAMTSI13
(rADAMTS13), for example, have been developed by Baxalta
(currently part of Takada). r'VWF was approved by the Food
and Drug Administration (FDA) in 2015 for treating von
Willebrand Disease (VWD) (42), a hereditary bleeding disor-
der causing a defect or deficiency in VWF. rADAMTSI13 is
currently under a phase 3 clinical trial for thrombotic throm-
bocytopenic purpura (TTP) (43), a rare disease caused by
ADAMTSI13 deficiency. Moreover, caplacizumab, a bivalent
nanobody targeting VWF, was approved by the FDA in 2019
for treating acquired TTP (aTTP) (44, 45), a TTP deficiency
due to the presence of inhibitory autoantibodies. A recent
study indicated that caplacizumab binds the Al domain (i.e.,
the platelet-binding domain) of VWF and allosterically
inhibits the Al-platelet GPIba receptor interaction under low
and moderate shear, thereby exerting its antithrombotic
function (46).

A POSSIBLE CONNECTION BETWEEN
COVID-19 COAGULOPATHY AND VWF/
ADAMTS13 IMBALANCE

Despite the role of the VWF/ADAMTSI3 axis in microvas-
cular hemostasis, its connection to the coagulopathy
observed in patients with COVID-19 has not been seriously
considered. The few studies investigating this connection
have discovered a positive correlation between an imbalance
of VWF/ADAMTSI13 activity levels and COVID-19 severity
and mortality. Several studies have observed elevated levels
and activity of VWF and decreased activity of ADAMTSI13 in
patients with COVID-19 (10-12, 23, 47-52). In addition, a
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retrospective study examining 3,672 plasma samples identi-
fied a correlation between elevated levels of VWF and
markers of coagulation (53). One study reported lower
ADAMTSI3 levels in 88 patients with COVID-19 compared
with healthy controls (50). Lower ADAMTSI3 levels and
higher VWF levels were also observed in COVID-19 nonsurvi-
vors compared with survivors (11, 48, 54). Lower levels of
ADAMTSI13 were inversely correlated with D-dimer, fibrino-
gen, and VWF antigen (11). Similarly, several other studies
found a decrease in ADAMTSI3 activity and an increase in
VWF activity in critically ill patients with COVID-19 (34, 51,
55). Furthermore, 50 hospitalized patients with COVID-19
were noted as having a 47% decrease in ADAMTS13 activity
(56). A prospective study of patients with COVID-19 found an
increase in VWF aggregation by a factor of 5 as well as a sig-
nificant decrease in ADAMTS13:VWF ratios without any sig-
nificant decrease in ADAMTSI3 levels compared with
healthy controls (57). An additional study observed a similar
increase in VWF activity with no change in ADAMTSI13 levels
(53). Although studies suggest COVID-19 pathology includes
a reduction in ADAMTSI13 activity and an increase in VWF
activity, the existing body of literature is limited by an insuf-
ficient number of observations and a lack of standardization
in the timing of VWF/ADAMTS13 measurements during
COVID-19 pathogenesis.

All the coagulation and endothelial injury endpoints dis-
cussed in this review and their association with COVID-19
are summarized in Table 1.

A PROPOSED MODEL CONNECTING COVID-
19 COAGULOPATHY, ENDOTHELIAL INJURY,
AND VWF/ADAMTS13 IMBALANCE

Based on the abovementioned evidence from literature
and our studies on VWF, ADAMTS13, and endothelial dys-
function, we propose the following working model: SARS-
CoV-2 infection to the surrounding tissues of endothelium or
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Table 1. Coagulation and endothelial injury endpoints associated with COVID-19

Endpoint Marker Physiological Function COVID-19 Association References
Coagulation
1. Prothrombin time (PT) PT is an assay that examines the effi- Modest increase in PT observed in patients 9,15, 16, 13,
ciency of the extrinsic and common with severe COVID-19. 10, 12
clotting pathways. PT is influenced by
activities of fibrinogen, prothrombin,
and factors V, VII, and X.
2. Platelet count Upon endothelial injury, platelets adhere Modest thrombocytopenia observed in a ma- 9,7,15,10,12
to exposed collagen, secrete gran- jority of patients with severe COVID-19.
ules, and aggregate, forming a plate- Greater magnitude of thrombocytopenia
let plug. observed in nonsurvivors.
3. D-dimer (XDP) D-dimer-containing compounds are Elevated D-dimer levels are observed in most 9,14, 7,15, 16,
formed by plasmin degradation of fac- patients with COVID-19. Magnitude of D- 13, 10,12, 17,
tor Xllla cross-linked fibrin. dimer elevation is closely associated with 53,52
mortality.
4. Fibrinogen Fibrinogen is the substrate of thrombin; Modestly elevated fibrinogen levels observed 18, 20, 21,13,
cleavage of fibrinopeptide A from in patients with severe COVID-19. Elevated 19,10, 12,
fibrinogen initiates fibrin fibrinogen levels on admission are associ- 17,1
polymerization. ated with poor outcomes. Rapid decrease in
fibrinogen levels observed in some patients
with COVID-19 before death.
Elevated levels associated with need for respi-
ratory support.
5. Activated partial thrombo- aPTT is an assay examining the effi- Prolonged aPTT observed in patients and posi- 16, 13
plastin time (aPTT) ciency of the intrinsic and common tively associated with mortality.
clotting pathways. aPTT can detect
deficiencies in factors VI, IX, and XI|
as well as reduced activity of fibrino-
gen, prothrombin, and factors V
and X.
6. Lactate dehydrogenase Enzyme involved in anaerobic metabo- Exceedingly elevated levels observed in 7
(LDH) lism; LDH is released during clotting. COVID-19 nonsurvivors
7. Prothrombin Precursor to thrombin, a serine prote- Decreased levels observed in patients with 10,12
ase-converting fibrinogen to fibrin COVID-19 and nonsurvivors
8. Thrombin-antithrombin Complex of thrombin and antithrombin Strongly elevated in patients with COVID-19 10, 12
complex (TAT) indicative of elevated thrombin levels
and a hypercoagulable state
9. Plasmin-antiplasmin com- PAP is responsible for dissolution of Elevated in patients with COVID-19 10,12
plex (PAP) fibrin polymers into soluble fragments.
10. Antithrombin Plasma protease inhibitor that inacti- Elevated levels observed in nonsurvivors 10,12
vates thrombin and coagulation fac-
tors in the intrinsic and common
pathways
11. Factor VII Serine protease that activates factor IX Decreased levels of activated factor VII 10
to factor X once bound to tissue observed in patients
factor
12. Factor VIII Factor VIl accelerates factor IXa-medi- Elevated in patients with COVID-19 and associ- 12,17
ated activation of factor X. ated with required respiratory support
Endothelial injury
1. Ultrastructural damage and Ultrastructural damage to and necrosis of en- 8,14
necrosis dothelial cells observed with microscopy
2. von Willebrand factor Binds subendothelial collagen under Elevated levels and activity of VWF observed 47,48, 49, 22,
blood flow and captures platelets in patients with COVID-19. 50, 51, 54,
from flowing blood. Elevated levels of VWF antigen observed in 10,12, 17,
ICU compared with non-ICU patients with 53,11, 52,
COVID-19 23
Elevated levels associated with need for respi-
ratory support
3. Soluble P-selectin Marker for platelet and endothelial cell Elevated in ICU and non-ICU patients with sig- 22,23
activation nificantly higher levels observed in ICU
patients
4.sCD40L Marker for platelet and T cell activation Significantly elevated in ICU patients 22
5. Plasminogen activator in- Principal inhibitor of tissue plasminogen Significantly elevated in ICU and non-ICU 22,10,12, 23
hibitor-1 (PAI-1) activator and urokinase; marker for patients
risk of thrombosis
6. Soluble thrombomodulin Marker for endothelial cell activation Significantly correlated with mortality in ICU 22,10,12
patients and all patients with COVID-19
7. C-reactive protein Marker of inflammation and complement Exceedingly elevated levels observed in 7
activation COVID-19 nonsurvivors
8. SARS-CoV-2 infection of Direct infection of endothelial cells has been 8, 26

endothelial cells

observed in patients with COVID-19.
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circulating proinflammatory cytokines induces endothelial
secretion of ULVWF into the bloodstream, causing an imbal-
ance in VWF/ADAMTS13. The insufficiency of ADAMTS13
cleavage of ULVWF may result in hypercoagulability, includ-
ing spontaneous thrombus formation in blood vessels and
VWF adhesion on the exposed subendothelial collagen due
to endothelial injury. Platelet adhesion to VWF may also trig-
ger a recently identified mechanotransduction pathway that
leads to platelet activation and depletion (58, 59), potentially
causing mild thrombocytopenia (Fig. 1B).

Although the model can explain the clinical observations
of COVID-19 coagulopathy and the connection among hyper-
coagulability, coagulopathy, endothelial injury, and VWEF/
ADAMTSI13 imbalance, vigorous experimental, and clinical
studies are required to test the model fully. Nonetheless,
based on the model, several therapeutic interventions could
be suggested to treat COVID-19-induced coagulopathy.

First, the imbalance of the VWF:ADAMTS13 ratio could be
adjusted by infusion of rADAMTS13 (43). Indeed, a recent
study from a cohort of 36 patients with severe COVID-19
indicated that incubation of plasma samples from these
patients with rADAMTSI13 reduced the abnormal ULVWF in
a time- and concentration-dependent manner, suggesting a
therapeutic potential of rADAMTSI3 in restoring the VWF/
ADAMTSI13 imbalance (60). VWF-induced thrombosis may
also be reduced by caplacizumab (61). In addition, N-acetyl-
cysteine has been reported to reduce intrachain disulfide
bonds in ULVWEF, thereby exerting a thrombolytic effect
(62), and has been in clinical trials as a potential therapy to
improve COVID-19 outcomes by reducing the risk of throm-
bosis (63).

SUMMARY

In conclusion, there is strong evidence from the litera-
ture that the SARS-CoV-2 infection causes endothelial
cell injury, likely due to an indirect mechanism. The
ULVWEF released from injured endothelium likely causes
an imbalance of the VWF:ADAMTSI13 ratio, leading to
thrombosis and platelet activation. Therefore, endothe-
lial injury and dysfunction account, at least partially, for
the coagulopathy and hypercoagulability observed in
patients with COVID-19. Targeting the VWF/ADAMTS13
axis may provide a new strategy to reduce COVID-19 sys-
temic complications.
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