®

Check for
updates

Linear Temporal Logic — From Infinite
to Finite Horizon

Lucas M. Tabajara and Moshe Y. Vardi®

Rice University, Houston, USA
vardi@rice.edu

Abstract. Linear Temporal Logic (LTL), proposed by Pnueli in 1977
for reasoning about ongoing programs, was defined over infinite traces.
The motivation for this was the desire to model arbitrarily long compu-
tations. While this approach has been highly successful in the context of
model checking, it has been less successful in the context of reactive syn-
thesis, due to the challenging algorithmics of infinite-horizon temporal
synthesis. In this paper we show that focusing on finite-horizon tempo-
ral synthesis offers enough algorithmic advantages to compensate for the
loss in expressiveness. In fact, finite-horizon reasonings is useful even in
the context of infinite-horizon applications.

1 Reactive Systems and Reactive Synthesis

Reactive systems are widespread in modern society, from our personal comput-
ers to traffic control systems and factory robots, and we can expect them to
become even more ubiquitous with the recent advent of new technologies such
as autonomous vehicles and Internet of Things. A reactive system is any kind of
computer system that operates in a continuous loop interacting with an external
environment. This environment can be the physical world, another component
of a larger system, or other systems connected in a network [25].

Because reactive systems interact with other systems and the real world,
it is especially important to guarantee that such systems operate safely and
correctly, since errors in their operation can have far reaching and often serious
consequences. But designing such systems correctly can be especially challenging,
since they can run for an unbounded amount of time, and their internal state
at any given moment depends on the entire history of inputs received since they
started operation. Therefore, the designer has to make sure that they respond
correctly to a potentially infinite set of possible environment behaviors [25].

This challenge motivates the problem of reactive synthesis [40], which pro-
poses an alternative to the manual design of reactive systems. Instead, reactive
synthesis aims to automatically and algorithmically generate a reactive system
from a specification of its desired behavior. This specification is usually given as

Work supported in part by NSF grants 11S-1527668, CCF-1704883,11S-1830549, DoD
MURI grant N00014-20-1-2787, and an award from the Maryland Procurement Office.
© Springer Nature Switzerland AG 2021

Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 3-12, 2021.
https://doi.org/10.1007/978-3-030-88885-5_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_1

4 L. M. Tabajara and M. Y. Vardi

a formula in some type of temporal logic expressing the set of acceptable execu-
tion traces of the system. A reactive system is said to realize this specification
if every execution trace produced by the system satisfies the formula, regard-
less of the inputs received from the environment. A reactive synthesis algorithm
should be able to determine if the specification is realizable and, if so, synthesize
a system realizing it.

Possibly the most common specification language for reactive synthesis is
Linear Temporal Logic (LTL) [39], an extension of propositional logic with tem-
poral operators such as “next”, “until”, “eventually” and “globally”. The classic
approach for reactive synthesis from an LTL specification is based on reducing
the problem to a game played over a deterministic w-automaton [42], a class of
automata that accept languages over infinite words. This approach proceeds as
follows:

1. Convert the LTL formula into some type of deterministic w-automaton, such
as a deterministic Rabin [42,43] or parity [20] automaton, that accepts exactly
the language of traces that satisfy the formula.

2. Use the automaton as the arena for a two-player game between the system
and the environment, where the system wins if it satisfies the acceptance
condition of the automaton [40].

3. Solve the game to find out which player has a winning strategy (such games
are always determined) [24]. If the system wins, the specification is realizable
and the winning strategy can be used as a model for the reactive system.

Over the years, reactive synthesis has been extensively studied in the field of
formal methods. Yet, not much of the progress in the area has translated into
making reactive synthesis significantly more practical for real-world applications
[31]. Techniques like bounded synthesis [19,21-23], symbolic algorithms [7,19]
and on-the-fly game construction [35] have made implementation of synthesis
algorithms more feasible, but tools for reactive synthesis still have limited scal-
ability, which has largely prevented this problem from gaining traction for prac-
tical applications. Furthermore, many generalizations of reactive synthesis that
would be of interest in real-world scenarios, such as quantitative synthesis [1,2]
and synthesis with incomplete information [32], have not been able to be fully
explored in practice so far, since they layer additional complexity on top of a
problem that is already challenging to solve efficiently.

At first glance, it is easy to attribute this lack of practical impact to the worst-
case complexity of reactive synthesis: the problem is 2EXPTIME-complete,
meaning that deciding whether a specification is realizable may take doubly-
exponential time in the size of the formula [41]. But this complexity analysis
can be deceptive. First, it considers only the worst case, which rarely occurs in
practice. In fact, many useful classes of specification can be synthesized in expo-
nential or even polynomial time [4,6,12]. Second, the doubly-exponential upper
bound speaks more of the succinctness of LTL as a specification language than
anything else: some classes of LTL formulas specify properties that can only be
realized by a system of doubly-exponential size [41].



Linear Temporal Logic — From Infinite to Finite Horizon 5

Instead of the worst-case complexity, it might make more sense to attribute
the poor practical performance of reactive-synthesis algorithms to the lack of effi-
cient algorithms for w-automata. Other applications of such automata in formal
methods, like LTL model checking, tend to use nondeterministic Biichi automata
(NBA) [48]. The classic approach to reactive synthesis, however, requires a deter-
ministic automaton [40], which leads to a number of complications. Unlike NBAs,
deterministic Biichi automata are not expressive enough to represent all LTL for-
mulas [30], forcing determinization to produce an automaton with a more com-
plex acceptance condition, such as a parity automaton. The classic algorithm for
performing this procedure is Safra’s algorithm [38,42,43], which is notoriously
complex and difficult to understand, let alone implement efficiently [3,47]. Fur-
thermore, it is still an open problem whether games over parity automata can
be solved in polynomial time [9], an issue that is compounded by the complexity
of the state space generated by Safra’s construction.

These observations suggest that in order for reactive synthesis to be efficiently
implementable in practice, it is necessary to overcome the algorithmic barriers
imposed by w-automata. One of the most successful attempts to do this has been
Generalized Reactivity(1) (GR(1)) synthesis [6], which has become maybe the
only variant of reactive synthesis that has achieved widespread use in applica-
tion domains, particularly robotics [29,36]. Despite GR(1) being a more limited
specification format, GR(1) synthesis has a number of advantages over synthesis
from LTL specifications [6]:

e The state space of the game is directly encoded in the GR(1) specification,
thus entirely avoiding having to use automaton construction and determiniza-
tion.

e The winning condition of the game is a GR(1) condition, which is more general
than a Biichi condition, but simpler than a parity condition. Unlike parity
games, games with a GR(1) condition can be solved in polynomial (cubic)
time.

e The game can be naturally represented symbolically, as states correspond to
assignments to Boolean variables and the transition relation can be repre-
sented as a Boolean formula. This enables the use of efficient symbolic algo-
rithms. In contrast, the games produced by Safra’s construction have very
complex state spaces which are not amenable to a symbolic encoding.

The success story of GR(1) demonstrates how, by trying to do less, we can
accomplish more: by imposing limits on what types of problems can be specified
and how, it becomes possible to attain a synthesis procedure that has hopes
of being useful in practice. GR(1) achieves this by entirely avoiding the use
of automata, but a more recently-proposed variant of reactive synthesis brings
to light an alternative option: replacing w-automata by the simpler and more
tractable automata over finite words.



6 L. M. Tabajara and M. Y. Vardi

2 LTL Synthesis over Finite Traces

Classically, LTL is interpreted over infinite traces, which is consistent with the
idea that a reactive system might operate continuously for an indeterminate
amount of time [25]. Many applications, however, use LTL to specify finite-
horizon behaviors, especially in areas such as robotics and planning in AI, where
systems more often than not have a finite-horizon task to complete [11,26,37].
This has led to the formalization of LTL with finite-trace semantics, or LTL [16].

Reactive synthesis from LTL specifications has found promising applications
in planning and robotics, where it is closely related to fully-observable nondeter-
ministic (FOND) planning [10,15]. In this context, LTL synthesis can be used
to synthesize a policy for an autonomous agent to complete a task within an
unpredictable environment. An example is when a robot needs to complete a
task in the presence of humans, who can both aid and interfere in the comple-
tion of the task [26,49]. Synthesis can be used to generate a policy that considers
all possible behaviors of the humans and other components of the environment
(within a set of assumptions) and chooses how to respond to each in order to
fulfill the task. Using synthesis thus avoids the need for re-planning in the case
of an uncooperative environment [33].

What makes LTL; promising in the context of reactive synthesis is that it
opens up the possibility of algorithms based on automata over finite, rather
than infinite, words. LTL; has the same expressive power as first-order logic
(FOL) over finite sequences [16]. Both are strictly less expressive than monadic
second-order logic (MSO) over finite sequences, which is equivalent to finite
automata [8]. This means that every LTL; formula can be converted into a
deterministic finite automaton (DFA) that accepts exactly those finite traces
that satisfy the formula.

As a consequence, when the specification can be expressed as an LTL; for-
mula, reactive synthesis can be solved using an algorithm based on DFAs instead
than w-automata: the LTL; formula is converted into an equivalent DFA, and
the system is synthesized by solving a reachability game over this DFA [17].
Although LTL; synthesis has the same 2EXPTIME-complete complexity as LTL
synthesis, this DFA-based algorithm has a number of advantages in relation to
the classic algorithms for LTL synthesis [53]:

1. Determinization of automata over finite words can use the classic subset con-
struction algorithm, which despite still being exponential is much simpler and
more efficient than Safra’s construction, as well as being very amenable to
symbolic representation.

2. DFA minimization is much more viable than for w-automata. While mini-
mization of w-automata is NP-complete [44], DFAs have a minimal canonical
form, which can be computed efficiently in time O(nlogn) [28].

3. Reachability games are much simpler than parity games, being solvable in
linear time [34].



Linear Temporal Logic — From Infinite to Finite Horizon 7

We have used this theoretical algorithm as the basis for SYFT, the first frame-
work for performing LTL; synthesis in practice [53], which takes advantage of
the benefits of DFAs outlined above. SYFT works in the following way:

1. The LTLy specification is converted into an equivalent formula in FOL over
finite traces.

2. The FOL formula is given as input to the tool MONA [27], which constructs
the minimal DFA for the language of the formula.

3. The DFA is converted to a compact symbolic representation, using Binary
Decision Diagrams (BDDs) to represent the state sets and the transition
function.

4. A reachability game is solved over this DFA using a symbolic fixpoint algo-
rithm that constructs a BDD representing the set of winning states. If the
game is winning for the system, a winning strategy is constructed using BDDs
as well.

Our empirical results showed that, despite LTL; synthesis having the same
2EXPTIME complexity as LTL synthesis, SYFT performed far better in practice
than converting the LTL specification to an equivalent LTL formula and giving
it as input to existing tools for LTL synthesis [53]. This difference in performance
can be attributed to the benefits of DFAs previously mentioned:

e The reachability game played on the DFA can be solved in linear time, and
the symbolic implementation further improves the performance.

e Thanks to the ease of DFA minimization, MONA is able to output a fully-
minimized DFA, decreasing the state space of the reachability game and mak-
ing it easier to solve.

e MONA furthermore constructs the DFA in stages, minimizing intermediate
DFAs. This leads to better performance in terms of both time and memory
for the DFA construction [51].

Despite the differences between the two approaches, LTL synthesis is able to
benefit from the same strategy as GR(1) synthesis: by limiting the scope of the
problem (in this case, to finite-horizon tasks) it becomes possible to achieve suc-
cess where classic reactive synthesis failed. The advantages are similar to those
for GR(1): avoiding the expensive determinization of w-automata, reducing the
problem to a game that can be solved in polynomial time, and producing a sim-
pler and more compact state space that is amenable to a symbolic representation.
LTL synthesis was able to achieve this by replacing the classic algorithms based
on w-automata with DFA-based methods, and the initial experiments using SYFT
have demonstrated the potential of this approach.

It is only natural to now ask what other doors DFA algorithms have opened
for reactive synthesis. For instance, can DFAs be used also for synthesis over
infinite traces? Can we design better algorithms for constructing and manipu-
lating DFAs in order to improve synthesis performance? And now that DFAs
have allowed us to reach an algorithm with more practical potential, can we
generalize it to extensions of reactive synthesis like synthesis with incomplete
information, which were previously infeasible to explore in practice? These are
some of the questions that our work seeks to answer.



8 L. M. Tabajara and M. Y. Vardi

3 Synthesis Using Finite-Word Automata

Over the last few years we have focused on several research directions on the
topic of DFA-based approaches for reactive synthesis.

One such line of research is exploring how DFA algorithms can be extended
beyond synthesis over finite traces into synthesis of infinite traces, by identifying
classes of specifications involving infinite-trace semantics for which the synthesis
problem can similarly be reduced to a game over a DFA. In this way, the algo-
rithmic benefits of DFAs can be exploited also for these types of specifications.
One such setting is synthesis of Safety LTL [52], a fragment of LTL that can only
express safety properties, meaning properties where every violation occurs in a
finite time. As a consequence, the synthesis problem for this fragment can be
reduced to a safety game, the dual of a reachability game, which likewise can be
solved in linear time. Furthermore, the arena for this game can be constructed as
a DFA for the language of finite prefixes that violate the specification, allowing
us to take advantage of MONA and the efficient algorithms for DFA construction.
Another example is LTL; augmented with infinite-trace assumptions, including
LTL and GR(1) assumptions [13,14,50]. In this line of work, the task the system
has to complete is finite, but its satisfaction might depend on an assumption of
infinite behavior on the part of the environment. This means that the system
might need to wait an unbounded amount of time for the right conditions to
complete its task. Similarly to Safety LTL, this class of specifications can lead
to games that are simpler than parity games, for example, GR(1) games, and
where the arena can also be constructed as a DFA. For both Safety LTL and
infinitary-assumption LTL¢, the DFA-based algorithms outperform the use of
tools for LTL synthesis.

Another direction focuses on attempting to improve DFA construction in a
way that can lead to better performance of synthesis algorithms, based on the
fact that early experiments indicated that DFA construction was the bottleneck
of the SYFT pipeline [53]. In [46] we presented a solution that avoids the cost
of constructing the full DFA explicitly by instead representing the reachability
game by the implicit product of smaller DFAs. The experimental results showed,
however, that although the construction of this partitioned game is more effi-
cient, it does not compensate for the overhead incurred for solving the game
over this representation. A deeper analysis identified the root cause of the issue
to be the fact that, although the partitioned game is a more compact repre-
sentation, it prevents taking full advantage of DFA minimization, leading to an
enlarged implicit state space that makes the reachability game harder to solve.
The insights obtained from the results and analysis in that work later allowed
the design an improved algorithm that achieves a balance between partitioning
and minimization [5].

Finally, in [45] we investigated how the properties of automata over finite
words affect the performance in practice of LTLy synthesis under partial observ-
ability, a generalization of standard LTL; synthesis where the system must sat-
isfy the specification even in the presence of unobservable inputs [18]. Our work
presented the first practical implementation of synthesis under partial observabil-



Linear Temporal Logic — From Infinite to Finite Horizon 9

ity, making use of MONA and symbolic techniques to integrate two previously-
proposed algorithms for partial observability [18] into the SYFT framework. In
addition, a third algorithm was introduced that emerges naturally from the use
of MoNA for DFA construction. The empirical evaluation showed that the practi-
cal performance of the algorithms differs significantly from what the theoretical
complexity analysis predicts, due to the absence in practice of the worst-case
exponential gap between deterministic and nondeterministic finite automata.
These results demonstrated that, especially when dealing with finite automata,
worst-case complexity is not necessarily a good predictor of practical perfor-
mance, highlighting the importance of complementing theoretical analysis with
an experimental evaluation.

Each of these three research directions contributes to exploring the full poten-
tial of approaches based on automata over finite words for reactive synthesis. The
results improve on the state of the art and demonstrate the benefits of DFA-
based algorithms, such as the value of state-space minimization for synthesis
performance. The insights obtained from these works will hopefully be useful as
a guide for future research on DFA-based synthesis.

References

1. Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. J. ACM
63(3), 24:1-24:56 (2016). https://doi.org/10.1145 /2875421

2. Almagor, S., Kupferman, O.: High-quality synthesis against stochastic environ-
ments. In: Talbot, J., Regnier, L. (eds.) CSL. LIPIcs, vol. 62, pp. 28:1-28:17. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2016)

3. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of
Biichi automata. In: Farré, J., Litovsky, 1., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 262-272. Springer, Heidelberg (2006). https://doi.org/10.1007/
11605157_22

4. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments.
In: IEEE, pp. 291-300. IEEE Computer Society (2001). https://doi.org/10.1109/
LICS.2001.932505

5. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning
for reactive synthesis from finite-horizon specifications. In: AAAI, pp. 9766-9774
(2020)

6. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911-938 (2012)

7. Bohy, A., Bruyere, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652-657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
745

8. Biichi, J.R.: Weak second-order arithmetic and finite automata. In: Mac, L.S.,
Siefkes, D. (eds.) The Collected Works of J. Richard Biichi, pp. 398-424. Springer,
New York (1990). https://doi.org/10.1007/978-1-4613-8928-6_22

9. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC, pp. 252-263 (2017)

10. Camacho, A., Baier, J.A., Muise, C.J., Mcllraith, S.A.: Finite LTL synthesis as
planning. In: ICAPS, pp. 29-38 (2018)


https://doi.org/10.1145/2875421
https://doi.org/10.1007/11605157_22
https://doi.org/10.1007/11605157_22
https://doi.org/10.1109/LICS.2001.932505
https://doi.org/10.1109/LICS.2001.932505
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-1-4613-8928-6_22

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

L. M. Tabajara and M. Y. Vardi

Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., Mcllraith, S.: Non-
deterministic planning with temporally extended goals: LTL over finite and infinite
traces. In: AAAI pp. 3716-3724 (2017)

Cheng, C.-H., Hamza, Y., Ruess, H.: Structural synthesis for GXW specifications.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 95-117.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_6

De Giacomo, G., Di Stasio, A., Tabajara, L.M., Vardi, M., Zhu, S.: Finite-trace
and generalized-reactivity specifications in temporal synthesis. In: IJCAT (2021)
De Giacomo, G., Di Stasio, A., Vardi, M.Y., Zhu, S.: Two-stage technique for LTL
synthesis under LTL assumptions. In: KR (2020)

De Giacomo, G., Rubin, S.: Automata-theoretic foundations of FOND planning
for LTL;/LDLy Goals. In: IJCAI, pp. 4729-4735 (2018)

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854-860 (2013)

De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
1JCAI, pp. 1558-1564 (2015)

De Giacomo, G., Vardi, M.Y.: LTL; and LDL synthesis under partial observabil-
ity. In: IJCAI, pp. 1044-1050 (2016)

Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272-275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9_25

Emerson, E., Jutla, C.: On simultaneously determinizing and complementing w-
automata. In: Proceedings of 4th IEEE Symposium on Logic in Computer Science,
pp. 333-342 (1989)

Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354-370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
520

Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325-332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_17

Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5-6), 519-539 (2013). https://doi.org/10.1007/s10009-012-0228-2

Gréadel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].
Lecture Notes in Computer Science, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K. (ed.)
Logics and Models of Concurrent Systems, NATO Advanced Summer Institutes,
vol. 13, pp. 477-498. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-
642-82453-1_17

He, K., Wells, A.M., Kavraki, L.E., Vardi, M.Y.: Efficient symbolic reactive syn-
thesis for finite-horizon tasks. In: ICRA, pp. 8993-8999. IEEE (2019)

Henriksen, J.G., et al.: MONA: monadic second-order logic in practice. In: TACAS,
pp. 89-110 (1995)

Hopcroft, J.: An nlogn algorithm for minimizing states in a finite automaton. In:
Theory of machines and computations, pp. 189-196. Elsevier (1971)

Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Rob. 25(6), 1370-1381 (2009)


https://doi.org/10.1007/978-3-319-41528-4_6
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

Linear Temporal Logic — From Infinite to Finite Horizon 11

Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic w automata vis-a-vis deter-
ministic Buchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS,
vol. 834, pp. 378-386. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58325-4_202

Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bielikova,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turdn, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88-98. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6_8

Kupferman, O., Vardi, M.: Synthesis with incomplete informatio. In: ICTL, pp.
1044-1050 (1997)

Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.:
Iterative temporal planning in uncertain environments with partial satisfaction
guarantees. IEEE Trans. Robot. 32(3), 583-599 (2016)

Mazala, R.: Infinite games. In: Gradel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23-38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4_2

Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578-586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31
Moarref, S., Kress-Gazit, H.: Automated synthesis of decentralized controllers for
robot swarms from high-level temporal logic specifications. Auton. Robot. 44(3-4),
585-600 (2020). https://doi.org/10.1007/s10514-019-09861-4

Pesi¢, M., Bosnacki, D., van der Aalst, W.M.P.: Enacting declarative languages
using LTL: avoiding errors and improving performance. In: van de Pol, J., Weber,
M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 146-161. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16164-3_11

Piterman, N.: From nondeterministic Biichi and streett automata to deterministic
parity automata. Log. Methods Comput. Sci. 3(3) (2007)

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46-57 (1977)

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179—
190 (1989)

Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, The Weizmann
Institute of Science (1991)

Safra, S.: On the complexity of w-automata. In: FOCS, pp. 319-327 (1988)

Safra, S.: Exponential determinization for w-automata with a strong fairness accep-
tance condition. SIAM J. Comput. 36(3), 803-814 (2006)

Schewe, S.: Beyond hyper-minimisation—minimising DBAs and DPAs is NP-
complete. In: Proceedings of IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science. LIPIcs, vol. 8, pp. 400-411. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2010)

Tabajara, L.M., Vardi, M.Y.: LTL; synthesis under partial observability: from
theory to practice. In: Raskin, J., Bresolin, D. (eds.) GandALF. EPTCS, vol. 326,
pp. 1-17 (2020). https://doi.org/10.4204/EPTCS.326.1

Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTL; synthesis. In: IJCAI,
pp- 5599-5606. AAAT Press (2019)

TaSiran, S., Hojati, R., Brayton, R.K.: Language containment of non-deterministic
w-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol.
987, pp. 261-277. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60385-9_16


https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/s10514-019-09861-4
https://doi.org/10.1007/978-3-642-16164-3_11
https://doi.org/10.4204/EPTCS.326.1
https://doi.org/10.1007/3-540-60385-9_16
https://doi.org/10.1007/3-540-60385-9_16

12

48.

49.

50.

51.

52.

53.

L. M. Tabajara and M. Y. Vardi

Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137-150. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1_10

Wells, A.M., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: LTL synthesis on prob-
abilistic systems. In: Raskin, J., Bresolin, D. (eds.) GandALF. EPTCS, vol. 326,
pp. 166-181 (2020). https://doi.org/10.4204/EPTCS.326.11

Zhu, S., De Giacomo, G., Pu, G., Vardi, M.Y.: LTL; synthesis with fairness and
stability assumptions. In: AAAI pp. 3088-3095 (2020)

Zhu, S., Pu, G., Vardi, M.Y.: First-order vs. second-order encodings for LTL ;-to-
automata translation. In: TAMC, pp. 684-705 (2019)

Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety LTL synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147-162. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70389-3_10

Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTL; synthesis. In:
IJCAI, pp. 1362-1369 (2017)


https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.4204/EPTCS.326.11
https://doi.org/10.1007/978-3-319-70389-3_10

