RetinoSim: an Event-based Data Synthesis Tool for Neuromorphic
Vision Architecture Exploration

Jonah P. Sengupta
jsengupl@jhu.edu
Johns Hopkins University
Baltimore, Maryland, USA

ABSTRACT

Neuromorphic vision sensors (NVS), also known as silicon retina,
capture aspects of the biological functionality of the mammalian
retina by transducing incident photocurrent into an asynchronous
stream of spikes that denote positive and negative changes in in-
tensity. Current state-of-the-art devices are effectively leveraged in
a variety of settings, but still suffer from distinct disadvantages as
they are transitioned into high performance environments, such as
space and autonomy. This paper provides an outline and demon-
stration of a data synthesis tool that gleans characteristics from the
retina and allows the user to not only convert traditional video into
neuromorphic data, but characterize design tradeoffs and inform
future endeavors. Our retinomorphic model, RetinoSim, incorpo-
rates aspects of current NVS to allow for accurate data conversion
while providing biologically-inspired features to improve upon this
baseline. RetinoSim was implemented in MATLAB with a Graphical
User Interface frontend to allow for expeditious video conversion
and architecture exploration. We demonstrate that the tool can
be used for real-time conversion for sparse event streams, explo-
ration of frontend configurations, and duplication of existing event
datasets.
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1 INTRODUCTION

The mammalian retina’s ability to compress analog information,
process visual signals in parallel, and consume channel bandwidth
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in an energy efficient manner serves as the model for robust, energy
aware sensing. Retinomorphic engineering, coined by Kwabena
Boahen in 1996 [5], has sought to duplicate a vast array of the
retina’s characteristics and processing capabilites in silicon-based
sensor arrays. The results of such efforts are known as silicon retina.
First iterations of silicon translation included chips that emulated
outer plexiform layer transfer characteristics and photoreceptor
dynamics [18], [6]. Zaghloul and Boahen realized a silicon retina
that replicated signaling seen in the cat’s optic nerve. This com-
plete, spike-accurate, inner and outer plexiform interconnections
and behaviors were realized on the sensing array [28]. Lichtsteiner
and Delbruck emulated behavior seen in photoreceptor, bipolar,
and ganglion cells within the retina [16], [7]. This latter, event-
based, biologically inspired camera, named the Dynamic Vision
Sensor (DVS), encodes the temporal contrast of the logarathimi-
cally compressed photocurrent into an anisochronous stream of
spikes. The DVS and cameras similar in functionality [23] have
become appealing to the robotics, machine learning and computer
vision community for their low-latency, energy-efficiency, and data
compression characteristics.

Due to the relative recency of the event-based sensing para-
digm, many researchers do not have access to these devices or have
large scale event-based datasets that can be used for downstream
algorithms. In addition, many effective deep learning techniques
for high-resolution require deep learning techniques that make
tradtional frame and corresponding event data essential. Thus, sim-
ulators modeling the key characteristics have been devised to aid
these efforts. These models have been used to develop graph-based
object detectors [20], reconstruct high dynamic range video from
event streams [26], and compensate for egomotion on autonomous
platforms [27].

1.1 Related Work

Numerous silicon retina software models have been reported and
vary in complexity, speed, and capability. A first model of the DVS
camera produced pseudo-asynchronous in address event represen-
tation (AER) format from video using frame differencing and global
thresholds [13]. Improved versions of a DVS model, named Event
Camera Simulator and ESIM by Rebecq et al., were constructed to
synthesize spiking data from simulated graphic environments and
interpolated video frames [25]. These platforms linearly interpolate
between video frames to produces precise spike timings that are
proportional to log intensity differences. Despite the usefulness and
breadth of use within machine vision applications, the software
model does not model non-idealities within the silicon retina nor
demonstrates the retina’s ability to adapt to low-ligh conditions.
In an effort to ameliorate these issues, He and Delbruck developed
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Figure 1: Block Diagram of the RetinoSim Programmable Pixel model with layer output inset- event synthesis is decomposed
into three distinct submodules: the Outer Plexiform Layer (OPL-purple), Inner Plexiform Layer (IPL-blue), and Ganglion
Cells (GC - gray). Shot noise is injected into the video signal before processed through a programmable compression and
spatiotemporal filter step. A discrete-time high pass filter produces an output proportional to frame differences. IPL output
signal is recifited and integrated onto a Leaky, Integrate-and-Fire neuron. Parameters were generated from a normal distribution
(N(-)) to model fixed pattern noise seen in sensor arrays [22]. Address events (AEs) were then from the GC if membrane potential

exceeds the local threshold.

v2e [9]. This provides the most accurate model of the DVS as it
incorporates phenomena commonly seen in this version of the sili-
con retina, namely: temporal noise, mismatch, and light-dependent
bandwidth. Even though a accurate model of sensor performance
is desirable for users without available technology and large scale
dataset synthesis, little insight is offered into pathways towards
improved silicon retina and possible biological processes that can
be further translated to current designs.

1.2 Contributions

Modeling of biological and embedded systems allows for deeper
understanding of underlying interactions, accurate representation
of target systems, and analysis of future improvements. Current
software platforms afford engineers and designers the former two
capabilites, but forgo the ability to forecast what improvements
can be made to future silicon retina. By revisiting the functionality
and structure of the biological retina, the RetinoSim tool has been
cultivated. This software tool not only improves upon existing
methodologies but also adds features to inform future design of
future vision chips. Section 2 provides an overview of the overall
model implemented in the platform and details the retinormorphic
submodules. Section 3 outlines the backend software details used
to expedite data synthesis and integration into a frontend user
interface. Various model use cases are demonstrated in Section 4
before concluding in Section 5.

2 PROGRAMMABLE RETINOMORPHIC
MODEL

Core functionality of the RetinoSim tool is derived from the pro-
grammable pixel model. A block diagram of this pipeline is seen in

Figure 1. Input video frames are first processed through the Outer
Plexiform Layer (OPL) which injects shot noise and programmati-
cally compresses intensity data before applying a spatiotemporal fil-
ter. OPL output is then processed in the Inner Plexiform Layer (IPL)
using a temporal highpass filter and rectified into two channels.
Each channel is subsequently integrated in within the Ganglion Cell
(GC) layer using a Leaky-Integrate and Fire (LIF) which outputs
address event spike trains. Formally, the model, M performs the
transformation:

M(v) : V — E |V e RMXm3xf | ¢ pdx4 (1)

where m and n are the dimensions of a video frame, f is the number
of frames, and d is the number of events returned by the model
over the stream. Further, E can be decomposed into individual AEs
which have form

E={e1...eq} | ei = [xi, pi, tsi] (2)

As seen above, the AEs are described the spatial (xj = x;,y;) and
temporal (t;) extent along with the polarity (p;). Each submodule
within the programmable pixel model will be discussed in subse-
quent subsections.

2.1 Outer Plexiform Layer

In the mammalian retina and within the RetinoSim pipeline, the
Outer Plexiform Layer consists of elements that compress light in-
tensity and perform spatiotemporal filtering. If the input video con-
sist of three channels, input video frames are first compressed into
a single grayscale luminance measures based on the bio-inspired
BT.601 standard. Formally, output frames, I;;;, can be expressed as

lin = 0.2991If , +0.587I¢ ;, + 0.114If 4 (3)



RetinoSim: an Event-based Data Synthesis Tool for Neuromorphic Vision Architecture Exploration

Photoreceptor dynamics and solid state devices are influenced by
shot noise, the temporally stochastic discrete movement of particles,
such as photons or electrons [1]. This mechanism is particularly
influential on image sensor performance in low-light situations [9].
Coupling this latter relationship and the root mean square of shot
noise current fluctuations:

\/qutransImag ( l/ts)

A= (max(Iin) — Iin) ©
Imag

where A represents the normalized, Poisson rate, N¢,qns is the num-
ber of devices in the photoreceptor frontend (set to 2 using [16] as
reference), 1/ts is the inverse of the video frame rate while serving
as the bandwidth to extract the root mean square, and Ipmqq is a
physical quantity to map into the modeling domain. For sufficiently
large values of A, the Poisson distribution can be approximated
using a Gaussian distribution with o0, = VA.

Programmable compression and spatial filtering is used within
the model to allow users to explore the effect of different front-
end methodologies on event synthesis output and algorithm per-
formance. Logarithmic compression can be selected to model
transconductance transfer function implemented in the subthresh-
old regime[16, 23]. Alternatively, a linear encoding forgoes the
extended dynamic range afforded by the log compression but al-
lows for increased sensitivity. Such a scheme is adopted by silicon
retina that integrate photocurrent [17] or operate in the current-
mode regime [24]. Next, the user has the ability to choose between
three variants of spatial filters: low-pass, normalized band-pass, or
all-pass.

Spatial low-pass filtering models electrical coupling of photore-
ceptor or horizontal cells in the retina [4, 12]. These are imple-
mented in silicon using diffusive networks composed of resistive
elements that connect adjacent pixels in rectangular and hexagonal
morphologies [5, 6, 18]. Within the model, this low-pass filtering is
approximated using a Gaussian filter

G(x) = el (5

2mo
where o7 is standard deviation of the filter and synonymous to the
space constant, y, p,, realized by the photoreceptor or horizontal
cell networks. However, the outer plexiform layer in the retina does
not realize a simple low-pass filter, but instead outputs a contrast
enhanced signal via normalized band-pass filter. Horizontal cells
have larger gap junctions and a long space constant y. Thus, these
cells pool average response and construct an antagonistic center-
surround receptive field that, through lateral inhibition, subtracts
this average from rod or cone potential [4]. When implemented in
silicon, the impulse response of such a feedback system takes the
shape of the Ricker wavelet, also known as the Mexican Hat kernel
[6]. Such a kernel is commonly used in computer vision to extract
edges and can be constructed by using a Difference of Gaussians
(DoG) [10].

Within RetinoSim, the kernel is composed of two Gaussian filters
which standard deviations o1 and o2 which reflect the cone y. and
horizontal cell yj, space constants respectively. As in the retina and
in silicon implementations of the outer plexiform layer [6, 28], filter
output is normalized with respect to average photocurrent which
allows the retina to respond uniformly across many decades of
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Figure 2: Outer Plexform Layer - programmable spatial re-
sponse with respect to layer space constants. The bottom
chart depicts slices of the 2D Filter FFT seen in the top. First
column corresponds to sweeping y;, from 2 to 10 while fixing
Ye = 1.9.

input. The normalized band-pass response at time t and location
xi = (x4, y;) is expressed as:

127(KpoG (Xi) * Iin(Xi))

Logr(xi) = I (6)
av
—x;2 7xi2
p 1 2y2
Kpog (xi) . e — We Vi (7)
Ty v,

where Kpog(xi) realizes the band-pass filter and 127 maps the
average value to midrange intensity with 8-bit encoding. Figure 2
exhibits how the filter spatial response can be programmed using
RetinoSim. One methodology is to is to maintain y. = 1.9 while
scaling yy,. Peak spatial frequency shifts allows RetinoSim end users
to analyze the frequency content of their scene and program an
optimized filter profile, with respect to bandwidth, cutoff, or rolloff.
An allpass filter, without phase distortion, can be used if no spatial
processing is desired.
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After the compression and spatial filtering steps, a discrete-time,
infinite impulse response temporal filter is implemented and used
to model OPL temporal dynamics. Filter time constant is configured
to be linearly proportional to incident intensity I;;, which models
the light-dependent input impendance and bandwidth seen in many
silicon retina [6, 16, 23]. Pixel-specific, filter delay is computed as
the normalized deviation from mean intensity and output I, s¢r
is found by

Il (xi) — pr,,

Ty (xi) = GTH{”) ®)
Topl(xi) = min(fopl,in + le(xi)’ H-p )
L (xi) = (1= top1(xi)o5/ (%) + Top1 (0T, (xi)  (10)

where o and § are programmed constants chosen to be 0.0625 and
0.025 respectively, 7,p,ip, is the user specified target time constant,
and Iosr (x3))? 71 is the spatiotemporal OPL pixel response from the
prior time sample.

2.2 Inner Plexiform Layer

Event-based vision sensing is centered around the asynchronous
communication of address events that are generated upon a req-
uisite change in input intensity. Otherwise known as temporal
contrast encoding, the DVS and other similar pixels implement
a voltage mode, high-pass filter that attenuates low temporal fre-
quencies. Similar behavior is exhbited by parasol ganglion cells
in the magnocellular visual pathway [15]. Current-mode pixel de-
signs have been implemented that adopt the contrast and temporal
frequency adaptation in the inner plexiform layer of the retina
and ultimately produce a similar high-pass response [28, 29]. Such
contrast and temporal frequency adaptation seen in the IPL is not
implemented in this model. Instead, the high pass response was
modeled by computing a temporal difference between successive
Iost samples.

Bipolar cell response was modeled by recitfying the high-pass
response into two channels: ON and OFF. Such rectification is
accomplished using translinear circuits with a configurable dead-
zone where either channel does not output current [2]. This dead-
zone value, Iz, (xj), is sampled from a normal distribution with
standard deviation o4, and mean given from the user I, ;, in
order to model the transistor mismatch seen in sensor arrays [22].
Formally, bipolar rectification is expressed as

Il‘ . _Itfl .
1 { [ (ki) = I ()|

0 otw.

i1, (xi) — I8 (xi) 2 gz (xq)

(11)
I o(xq) = st (xi) = Iog/! (xi) if Iog, = Lo < ~laz (%)
of [Y"V 7 ] otw.

(12)
When I, ;,, is configured to be 0, the rectification simply checks
the sign of the high-pass response and models the behavior seen in
temporal contrast-based silicon retina designs [16, 23].

2.3 Ganglion Cells

Retinal ganglion cells are responsible for transducing incident
graded potentials from the inner plexiform layer into time-encoded
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spike trains. Many versions of ganglion cells exist in the retina,
but only the parasol variety, which are sensitive to high temporal
frequencies, are realized in this model. A modified leaky-integrate
and fire neuron (mLIF) was used to model the output comparators
behavior seen in state-of-the-art NVS. The dynamics of the mLIF
neuron is described by

Vimem i) = 1(lonjofr(xi) + Ipa(xi) = I (x1))  (13)

such that I, is the background activity current that triggers false
events [9, 14], I, represents the leakage current that supresses
spike activity, and iyp|off is the ON or OFF current that is inte-
grated onto the membrane. Constant 7 is equal to 91k+m where gy
is the leakage conductance and 7, is the associated time constant
of the neuron. Both Ij;(x) and Ij,(x) are sampled from normal
distributions in similar manner to Iz, (x). Membrane potential is
accumulated using a first-order Euler approximation of the dynam-
ical solution. Distributions for the leakage terms are seen in Figure
3a.

Action potentials are generated from the ON or OFF neuron
when Vi,em exceeds the threshold. These thresholds, 05y, 17 (%),
are also drawn from a normal distribution with mean y = Oyp |0 7 f,in
and standard deviation o;p,. Example distributions for the ON
and OFF threshold is seen in Figure 3b. The next state of the neuron
potential is computed as

Virem = 8nUonjoff +Ipa(¥) = Ik (X)) Vot < Oonjoff
rst V;;lm 2 Oon\off
(14)
where V;.¢; is the potential when the potential exceeds the neuron
threshold, 0, 7. Upon exceeding the threshold, spike generation
is formulated as

Viem (xi) = {

t .
Ne = | memO)_ (15)
gon\o ff (xi)

N, denotes the number events generated by the model unit cell.
V% o is divided by the Oonlofs to interpolate the number of events
generate in between input video samples. Thus, N, address events
are output when this result is truncated to the nearest integer and
greater than one. These spike timings are initially generated by
uniformly distributing values between sampling intervals. Formally,
the set T; contains all spike timings from pixel located at x; and
global time t; with sampling interval t;,

T = te;Vie{l,Ne} (16)
tg +ts/2 Ne =1
gt +gentotts— 5} Ne>1

(17)

Each te; € Tj was injected with additive Gaussian noise with
Ots = 1% to emulate neuronal spike jitter and the non-deterministic
nature of NVS asynchronous readouts. A programmable refractory
period was inserted to model the requisite time before another
spike can be output from the ganglion cell. An intermediate mem-
ory is used to store the timings of recent cell activations, te,, and
subsequently used to output address events with timestamps te;,

te; = tej « (tei —tep) > bpef (18)

sprev = tej «— (te; — tep) > Qref (19)
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Figure 3: (Top) BA and Neuron Leakage Distributions with
4 =1.0and o = 0.1 (Bottom) Ganglion Cell Threshold Distri-
butions with y = 2.5 and 0 = 0.25

Resulting spikes from the ganglion cell layer are collated into an
address event stream and form the basis of the synthesized output
data.

3 SOFTWARE OVERVIEW

RetinoSim is the realization of the data synthesis pipeline using
the model components outlined in Section 2. The objective was
to create a platform to expeditiously convert video frames into
event-based data while allowing the user to quickly iterate different
model parameters. Backend utilization of data arrays in the pipeline
accomplishes the former task while a graphical user interface ad-
dresses the latter.

3.1 Backend Implementation Details

Data vectorization was deployed to fully utilize the computational
abilities of MATLAB. Computations associated with the Outer and
Inner Plexiform Layers were intuitive to perform on an array level as
they consist of convolutions, element-wise subtractions, and other
linear operations. However, bipolar rectification and subsequent

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

ece Retinosim v0.1

RetinoSim

RunMods! Plot Mods!

Backend Parameters

Fotactoy Paros  Dobugose
0 (o v

Load Voo |

Figure 4: Snapshot of the RetinoSim Graphical User Interface
with populated parameters.

membrane potential integration had to be translated from a two-
dimensional iterative approach into a vectorized operation that
utilized matrix logical indexing. A similar technique was further
exploited to find neurons in the array whose V. > 0p0 rf- The
following code snippet illustrates this point.

[neuronObj.spikelLocs(:,1), neuronObj.spikelLocs(:,2)] =
find(floor(neuronObj.state./params.gc_threshold) > 0);

This latter operation provides a list of neuron locations that ex-
ceed the Ganglion Cell threshold. This list is ultimately iterated
element-wise to produce event stream. However, these vectorized
pre-processing steps forgo unnecessary computational steps and
allow for processing times upwards of 30-40 fps under sparse event
conditions. Furthermore, since the spike generation algorithm only
queries spiking neurons, it also provides a means to emulate the
event-based sensing realized by silicon retina.

The model is sped-up further by initializing arrays prior to iter-
ative loops to allow for contiguous memory access and reducing
unnecessary variable assignments. Additional acceleration could be
achieved by leveraging MATLAB’s Parallel Computing Toolbox to
utilize parfor loops and gpuArray deployment for spatiotemporal
filtering steps.

3.2 User Interface Integration

RetinoSim was integrated into a graphical frontend that allows the
user to easily configure the model, interface with input/output data,
and visualize results and parameters. Figure 4 depicts the RetinoSim
GUI with an example video snapshot and model parameters inset.
Upon starting the program, the user would import a video and
customize size and number of frames. Videos can be imported
by either pressing the Load Video button which launches a file
navigator window to find the video or by entering the path manually
in the Input Video File text edit field. Upon completing the import,
the video is displayed in the Debug Frames subwindow.

Before running RetinoSim to convert the video to events, the
user has the option to customize the model frontend and backend
parameters. Frontend parameters refer to those the configure the
behavior of the Outer Plexiform Layer. The user can choose to
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enable shot noise, specify the average OPL time constant 7oy, in.
choose the spatial filter, and configure Gaussian filter variances oy
and oy. The GUI also visualizes the spatial filter impulse response
to allow the user to configure filter characteristics more effectively.

Backend parameters refer to those that configure the Ganglion
Cell layer. These paramaters include the membrane time constant
(tm) and refractory period (6, f). In addition, the user can specify
the mean and variance of the distributions from which the GC ON/
OFF neuron thresholds and background activity/neuron leakage
currents are sampled. Variances for these distribtuions are config-
ured by setting o = vpu where v, is a percentage specified by the
user. NVS contrast threshold mismatch is typically presented in
terms of percent variance thus this GUI feature allows the user to
mirror parameters seen in literature [7, 16].

Upon fully configuring the model, the user simply needs to press
the Run Model button to start the event stream synthesis. When
the button reverts back to it’s original shade, the model has com-
pleted processing and the results can be plotted. A dropdown menu,
labelled Debug Mode, was included that allows the user to observe
the different layer responses within the model. Options include
the input with shot noise injection, OPL spatial or spatiotempo-
ral response, and the ON or OFF membrane potential. Outputs
can be stored locally using the Save Video button where the user
navigates to a desired folder and specifies a file prefix. An video
containing events and blended events/frames is saved in addition
to a .mat file containing synthesized address events.

4 MODEL DEMONSTRATION

RetinoSim v0.1.1 has been released as an open-source platform
that can be downloaded from Github (https://github.com/js3ng/
RetinoSim). Software has been verified in MATLAB 2022.a on a
laptop running MacOS Mojave (10.14.6) with a 2.8GHz Intel Core
i7 CPU and 16 GB of RAM. Two input videos have been included in
the repository to enable the user to demonstrate model capabilites.
These include a video with an individual walking across the scene
(js_1_walk_NE_SW.mp4) and another sample of a camera panning
across a room (room_pan.mp4). Debugging scripts are also included
to facilitate model usage outside of the GUL

Since quick run-time was an objective of the model, RetinoSim
was profiled with a variety of configurations, shown in Figure 5.
Because of the nature of spike queueing outlined in Section 3.1,
more time is consumed as more neurons are activated. By increasing
neuron thresholds or leakages, the number of events generated per
frame decreases and reduces run-time. For sparse (<1000) event
generation per frame, the model is able to process upwards of
33 frames-per-second. With large event generation rates (<5000),
throughput is throttled and decreased to <5 frames-per-second.
Under certain model parameterizations, this suggests that the model
can function in real-time event generation applications.

4.1 OPL Frontend Exploration

Different OPL configurations were used to demonstrate the model’s
ability as a NVS architecture exploration platform. An example of
such a comparison is seen in Figure 6. Using a bandpass spatial filter
enhances the contrast of image so subsequent temporal processing
produces events that encode negative and positive spatiotemporal
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Figure 5: Model Performance Profile- relationship between
RetinoSim processing frames per second and. synthesized
events per frame running on a laptop with 2.8GHz Intel Core
i7 CPU
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Figure 6: Simulation results from js_1_walk_NE_SW.mp4 - the
first row is an example of layer output using linear encoding
with the second leveraging a bandpass filter configuration. No
temporal noise (BA leakage or shot) was added, but a 10% FPN
for GC thresholds was configured. Other model parameters
include Honloff =10, ljeqr = 1, Toplin = 0.9, 7, = O.9,9ref = 100.

contrast. In addition, the filter reduces effects of high-frequency
fixed pattern noise while eliminating low frequency spatial detail.
The effect of OPL space constants y. and y;, were then explored
using two methods. First, y; was increased while setting y. = 1.9

and second, the y. was swept while maintaining the difference y. —

Nev —Htrial )
Htrial

from each trial was gathered and used to track filter performance,

shown in Figure 7. As seen in Figure 2, peak spatial frequency and

yn = 0.1. A normalized deviation ( of the number events
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Figure 7: Normalized deviation of synthesized events from
Jjs_1_walk_NE_SW.mp4 input while sweeping y. (top) and
vn (bottom). Other model parameters include 0,,,rf = 10,
Lok =1, Topl,in = 0.9, 7, = 0.9, Gref = 100.

bandwidth of the spatial filter shifts as the space constants are
modulated. Therefore, the number of events is reduced when the
image spatial frequencies reside outside of the filter pass band. This
allows the user to programmatically resolve what OPL parameters
optimally filter their desired input.

Beyond parameter search capabilities for a specific frontend,
RetinoSim enables the user to experiment with different OPL con-
figurations to potentially resolve which are most capable for their
desired application. Figure 8 shows the result of a comparitive ex-
periment using the five OPL configurations while tracking model
noise immunity, niy,. This latter metric conveys the model’s ability
to reject additive noise:

nipy = 100vevi = Neon (20)

Nev,i
where Ney; and Ney,, are the amount of events generated in the
cases with and without additive noise. With the given model pa-
rameters, additive noise, and video streams, Figure 8 suggests that
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Parameters used to inject noise are: Ig4 = 2, enabled shot
noise, vjeqx = vg = 0.1.

Actual Model

Figure 9: Sampled event streams from the shape_6dof sample
and from RetinoSim using the accompanying frames from
the sample. Model thresholds (0,7 ) leakages Ijg|p,, and
time constants (,,,1,i») Were optimized to match the total
amount of events between the streams.

using bandpass filter would reduce the most amount of noise events.

4.2 Matching Event Camera Output

RetinoSim also enables the user the ability to match the event
output from an existing dataset that contains events streams and
frame-based video. The Event Camera dataset [21], compiled by
the Robotics and Perception Group at ETH-Zurich, provides such
data as it leverages the DAVIS240 [7] camera streams events and
frames simultaneously. Of the various example scenes provided,
the shape_é6dof sample was selected to demonstrate the platform’s
ability to match an existing dataset. Original events and those
generated by RetinoSim are seen side-by-side in Figure 9. Frame-
based data was processed using RetinoSim with a time step, ;, that
matches the frame rate of the DAVIS240. Model parameters (namely
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bonlof £+ lik|ba> and Ty opt,in), Were then manually iterated in order
to match the total event output of the source event stream. To note,
the matching of model output to the source can be accomplished
using other metrics, such as event-rate or inter-spike-interval, and
in an automatic fashion using learning rules and gradient-descent
methods [8, 9].

After converging on model parameters, the user can deploy
RetinoSim to see how events would be synthesized from new video
using the dataset configuration. For example, if video frames are
captured on a UAV platform, similar to that seen in the shape_6dof
sample, but the user does not have an NVS, data can be synthesized
using the dataset configuration and used to see if an event camera
would be advantegeous for their application.

4.3 Future Steps

As the platform is open-source and in development, RetinoSim will
continue to mature and adopt new features to optimize current
capabilities and reflect emerging new directions that improve upon
current NVS architectures. For instance, the Ganglion Cell layer can
be generating spikes using a Poisson distribtution by setting Ne, =
A. This effectively models the stochastic nature of AP generation in
neurons [11] while also further capturing non-uniformity effects
observed in sensor arrays [16]. In addition, neuronal behavior can
be enhanced using a feedback configuration which realizes spike-
rate adaptation: the ability to shunt excitatory current and inhibit
output spike rates using slowly accumulated potassium currents.
Such behavior has been realized in other silicon retina [5, 28] and
is another route to realize an adaptive high-pass temporal filter.

Amacrine cells are a key component of the mammalian retina
that have been unrealized in NVS architectures. Similar to hori-
zontal cells in the outer plexiform layer of the retina, amacrine
cells laterally spread signals from their bipolar cells in the inner
plexiform layer onto ganglion neurons to allow for frequency and
contrast adaptation [29]. Specifically, wide field amacrine cells play
a key role in suppressing global, coherent motion from stimulating
ganglion cells during microsaccades [3]. Hardware modeling of this
object motion sensitive response has been modeled in hardware
and promises to be a solution to suppress event stimulation during
egomotion [19]. Integration of such behavior into RetinoSim will
provide a pathway to understanding OMS impact on NVS perfor-
mance.

5 CONCLUSION

RetinoSim, an event-based data synthesis tool for NVS architec-
ture exploration, was detailed and demonstrated. It is a MATLAB
software platform that is composed of processing states that model
the Outer Plexiform, Inner Plexiform, and Ganglion Cell layers
in the retina. The OPL injects temporal shot noise, compresses
image data, and applies a programmable spatiotemporal filter. In-
ner Plexiform layer consists of a temporal high-pass filter with
rectification into the ON and OFF channels. Spikes are ultimately
generated by a modified, leaky integrate-and-fire neuron model
within the Ganglion cell layer. Vectorized data programmaing al-
lows for expedient processing of video data while a GUI enables the
user to visualize results and rapidly configure the model. Real-time
synthesis of event data from video frames can be acheived given

Jonah P. Sengupta, Susan L. Liu, and Andreas G. Andreou

low (<1000 events/frame) conversion rates. In addition, RetinoSim
demonstrated the ability to optimize spatial filter parameters with
respect to noise immunity and output event rate. It also provides the
means to match the output from existing neuromorphic datasets.
Given the model’s current capabilities and future features detailed
in 4.3, RetinoSim hopes to not only provide a means to generate
event-based data in a robust manner, but also inform present design
efforts and allow the neuromorphic community to explore NVS
architectures that extend our current capabilities.
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