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Abstract 
Molecular docking is one of the most popular computational tools for the hit discovery step in drug 
design. However, there is ample room for improvement of docking’s ability to identify correct 
binding modes and discriminate active from decoy compounds. Molecular dynamics (MD) 
simulations of protein-ligand docking structures have been shown to be effective in improving 
docking results. Here, we present CHARMM-GUI High-Throughput Simulator (HTS) that prepares 
MD simulation systems and inputs for multiple protein-ligand complex structures in a high-
throughput manner. HTS supports commonly used MD programs (NAMD, GROMACS, AMBER, 
OpenMM, GENESIS, Desmond, LAMMPS, and Tinker) along with various force field 
combinations for protein and ligand, including CHARMM36m, Amber (ff19SB/ff14SB), OPLS-
AA/M, CGenFF, GAFF2, and OpenFF. Validation tests using Miller and the directory of useful 
decoys-enhanced (DUD-E) datasets demonstrate that short MD simulations using HTS-
generated systems and simple ligand RMSD calculations consistently outperform docking results. 
Specifically, MD simulations can better identify correct ligand binding modes among top 10 
binding poses as compared to docking scores. In addition, MD simulations can better discriminate 
active from decoy compounds in the DUD-E dataset than docking scores for both soluble and 
membrane proteins. We expect that HTS can be a useful tool to facilitate the hit discovery process 
in drug design by improving docking results.  
Keywords: molecular dynamics, docking, protein-ligand interactions, force field 
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1. Introduction  
Over the past three decades, molecular docking has been one of the most widely used 
computational tools to predict protein-ligand binding interactions and binding energy due to its 
ease-of-use, high-speed, and scalability.1, 2 Recently, Luttens et al discovered novel and effective 
inhibitors of SARS-CoV-2 main protease using ultra-large virtual screening docking strategies.3 
Docking calculates ligand-binding modes in a binding pocket and estimates their binding affinities. 
Many previous studies have shown that the correct ligand-binding modes are present in the 
docking results, but they are not ranked in the top scores according to their estimated binding 
affinities.4-6 Therefore, additional tools are needed to identify the correct binding modes more 
accurately among the docking results.  
Several successfully benchmarked tools to improve docking results and identify the correct ligand 
binding modes have been proposed over the past few years. Some of the most popular tools are 
machine learning (ML)-based methods, including Pafnucy and DvinaRF20.7, 8  Pafnucy is a method 
that uses deep neural network (DNN) to estimate binding affinity of protein-ligand complexes. 
Pafnucy had been tested on a few benchmark sets, including the Astex diverse set, CASF-2013 
(comparative assessment of scoring functions), and PDBbind 2016 set, where it consistently 
outperformed docking scoring functions. DvinaRF20 is a method that utilizes random forest 
algorithm to improve the classical docking scoring functions. DvinaRF20 achieved top performances 
in several competitions, including CASF-2007, CASF-2013 and CASF-2016. Despite their 
successful performances, recent evaluations have shown that ML-based methods tend to overfit 
to the mean values of samples used for training. As a result, when tested against different 
datasets, ML-based methods have shown poor performances.9, 10  
Physics-based methods have also been shown by many groups to be effective in improving 
docking scoring functions.11 Miller and colleagues recently presented the Schrödinger induced fit 
docking-molecular dynamics (IFD-MD) method, a reliable docking workflow that accurately 
identified the correct binding modes in over 90% of their test cases.12 Their workflow includes 
ligand-based pharmacophore docking, rigid receptor docking, and explicit solvent MD simulations 
to solve the induced fit problem of protein-ligand binding. Rastelli and colleagues proposed a 
similar workflow called binding estimation after refinement (BEAR) that also included MM-
PBSA/MM-GBSA (molecular mechanics with the Poisson-Boltzmann or generalized Born surface 
area continuum solvation) to refine and rescore the protein-ligand complex structures obtained 
from docking.4 They demonstrated a significant improvement of docking results with more 
accurate prediction of the active compound binding modes. Recently, we showed results 
supporting the role of MD simulations in improving docking results.13 Using a large set of 56 
diverse protein targets and 560 ligands from the directory of useful decoys-enhanced (DUD-E), 
we demonstrated that MD simulations discriminated active from decoy ligands more accurately 
compared to docking scores.  
The Schrödinger IFD-MD is not widely available to researchers in academia and the BEAR tool 
does not seem suitable for high-throughput processing of multiple protein-ligand complex 
structures. CHARMM-GUI is a user-friendly web-based tool that facilitates the preparation of 
various complex molecular simulation systems.14-32 CHARMM-GUI has been widely available to 
researchers in academia and prevalently used for more than a decade. Here, we present 
CHARMM-GUI High-Throughput Simulator (HTS, https://www.charmm-gui.org/input/hts), an 
intuitive module that automatically generates multiple protein-ligand MD input files at the same 
time through a simple drag and drop file upload process. Through its interactive features, HTS 
offers ligand parameterization using 3 different force field (FF) options, including CGenFF, GAFF2, 
and OpenFF.33-35 Protein FFs can be selected from CHARMM36m, Amber ff14SB, Amber ff19SB, 
and OPLS-AA/M.36-39 In addition, HTS supports various MD programs, including NAMD, 
GROMACS, AMBER, OpenMM, GENESIS, Desmond, LAMMPS, and Tinker.40-47 Through 
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several validation tests using various protein/ligand/water FF combinations, we show that MD 
simulations effectively discriminate correct ligand-binding modes from the incorrect ones. In 
addition, MD simulations can better distinguish active from decoy compounds through simple 
ligand RMSD calculations for both soluble and membrane proteins. These results show that 
CHARMM-GUI HTS is a reliable tool that can help evaluate and improve protein-ligand 
interactions using different FFs in a high-throughput manner.  
 
2. Results and Discussion 

 
2.1 Workflow of High-Throughput Simulator 

The overall workflow of CHARMM-GUI HTS is shown in Figure 1. On the front page of HTS, a 
box is provided where users can drag and drop a set of protein-ligand complex structures for the 
same protein. HTS supports both protein in solution and membrane environments, where users 
can select a system type from a drop-down menu. To facilitate ligand parameterization, HTS 
provides 3 options. Option 1 is to upload a combination of PDB and SDF files for each protein-
ligand complex file, where the SDF file corresponds to the ligand. This option provides additional 
information for the ligands, including protonation states and connectivity that can be valuable for 
ligand parameterization. Option 2 is to use ligand SMILES files from the RCSB. For this option to 
work properly, the associated ligand must exist in the RCSB. Option 3 is to resort to using the 
ligand’s 3-dimensional (3D) PDB coordinates. This choice can be problematic during ligand 
parameterization due to the absence of connectivity, bond order, and charge information. 
Therefore, one needs to make sure that the resulting ligand FF parameters match their ligands. 
 

 
Figure 1. Workflow of CHARMM-GUI High-Throughput Simulator. Multiple protein-ligand 
complex structures can be submitted to HTS to generate MD systems and inputs simultaneously. 
The steps outlined in red are submitted to our computer server, where the jobs run in parallel.  
 
The following page offers various PDB manipulation options, including adding missing residues 
and various post-translational modifications (such as disulfide bonds, phosphorylation, 
ubiquitination, and glycosylation).17 To handle a large number of uploaded protein-ligand 
structures efficiently, ligand parameterizations are submitted to our computer server. To quickly 
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retrieve any HTS job, users can use the associated unique job ID number through the Job 
Retriever tab. To help users with practical applications of HTS jobs, we provide a video 
demonstration in the CHARMM-GUI website along with example sets of protein-ligand structures 
for solution and membrane system buildings (https://www.charmm-gui.org/demo/hts). 
 
2.2 Ligand parameterization with 3 different FF options, including CGenFF, GAFF2, and OpenFF  

The ligand parameterization page is shown in Figure 2. The example case includes 9 different 
ligands (697, 244, 041, 338, 797, 272, 4NA, 196, and I0G) bound to protein estrogen receptor-b 
(PDB 1U3R). These complex structures are the top binding pose results from cross docking of 
the ligands into the binding pocket of the receptor using AutoDock vina.48 In the first column, each 
structure is renamed model_1 to model_9 and their corresponding file names are shown in 
column 2. The ligand names are listed on column 3, where one can display the 3D visualization 
of any ligand using NGL viewer by clicking the ligand’s name (Figure 2).49 Upon inspection, if a 
ligand is incorrectly parameterized, one can modify and correct structural errors using the 
structure modification button. This feature opens a 2D sketchpad editor window that is powered 
by MarvinJS (Figure 2).24 The next 3 columns contain 3 different FFs (CGenFF, GAFF2, and 
OpenFF) that are used to parameterize each ligand. If a ligand is successfully parameterized, a 
green check mark is displayed. Otherwise, a red x-mark indicates that a specific ligand 
parameterization step fails. One way to solve this issue is to modify the ligand using the structure 
modification button and regenerate parameters for a specific FF using the drop-down menu above 
the table (Figure 2). One can select one of the FF options in the last column for MD system 
preparation.  
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Figure 2. CHARMM-GUI High-Throughput Simulator ligand FF parameterization page. The table 
contains systems of protein-ligand complex structures, where the ligand IDs are shown in column 
3. By clicking the ligand ID, a pop-up window (shown on the lower left side) appears, displaying 
the 3D structure of the ligand in sticks representation. To modify a ligand with any incorrect bond 
order or charges, one can select the open button from the structure modification column. It brings 
up a 2D sketchpad window (shown on the lower right side) that can be used for modification and 
redrawing of the existing ligand. When the ligand is successfully parameterized, a green check 
mark is displayed under the specific FF names (CGenFF, GAFF2, and OpenFF).  
 
2.3 Input generation supports various protein FFs and MD simulation programs 

Upon selecting a specific ligand FF, the protein-ligand systems are prepared following the 
standard procedures in Solution Builder or Membrane Builder.14, 15, 18, 19, 21, 50 For solution systems, 
users have the options to select the system box size using TIP3P water, specify the types of ions, 
and select an ion placing method for explicit solvent simulations. For membrane bilayer systems, 
options to orient the protein in the membrane and choices of membrane components are provided. 
Our workflow generates one system using the protein-ligand complex structure with the biggest 
ligand and the system is replicated for all other protein-ligand structures (Figure 1). Water 
molecules that overlap with the protein, ligand, and ions are removed. Because ligands can have 
different charges, each system is then neutralized by deleting ions depending on specific ligand 
charges in the system. When replacing the biggest ligand with the smaller ones, a small empty 
space without water might be created in the binding pocket. In most solvent-exposed binding 
pockets, this space will be hydrated during minimization and equilibration steps of MD simulations. 
However, users should be careful in cases with buried binding pockets. There are a few different 
methods to place waters around ligands in buried binding pockets, including Placevent, Rosetta-
ECO, grand canonical Monte Carlo (MC) simulation, MC/MD, and Hamiltonian simulated 
annealing of solvent (HSAS).51-55 In the near future, we plan to implement one of these methods 
to properly hydrate the ligands in buried binding pockets. The next step is to generate simulation 
input files, where this job is submitted to our compute server to handle an expected large number 
of system preparations efficiently. The result page contains drop-down menu options for protein 
FFs (CHARMM36m, Amber ff14SB, Amber ff19SB, and OPLS-AA/M) and various simulation 
programs, including NAMD, GROMACS, AMBER, OpenMM, GENESIS, Desmond, LAMMPS, 
and Tinker.36-47 In addition, the hydrogen mass repartitioning (HMR) option is available to further 
accelerate MD simulations with 4 fs timestep.27, 56 Note that CHARMM-GUI HTS prepares all the 
necessary input files to run MD simulations for multiple protein-ligand complex structures, but it 
does not perform actual MD simulations for users.   
 
2.4 MD simulations using various FF combinations can effectively discriminate good from bad 

ligand-binding modes  

Many studies have shown that although molecular docking can generate ligand-binding modes 
found in experimental protein-ligand complex structures, the correct binding mode is not often 
top-scored among a list of predicted binding modes.4-6 Therefore, additional evaluation method to 
efficiently select a correct binding mode is still needed. For our first benchmark test, 208 predicted 
protein-ligand complex structures from docking (based on the Miller dataset in Table S1) were 
evaluated using short MD simulations. Docking results were separated into two categories 
according to their ligand RMSD relative to the corresponding crystal structure: good ligand-binding 
modes having ligand RMSD ≤ 5 Å and bad modes having ligand RMSD > 5 Å. This is based on 
our previous work, where we showed that only the good ligand-binding modes could improve 
toward crystal structure poses during short MD simulations.13 Out of 208 protein-ligand structures, 
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147 fall into the category of bad ligand-binding modes and 61 structures are good binding modes 
(Table S1).   
The capability to discriminate good from bad ligand-binding modes among its predicted protein-
ligand structures can be evaluated by a receiver operating curve, area under the curve (ROC 
AUC) (Figure S1). Our benchmark tests using HTS-based MD simulations show that, compared 
to the AutoDock vina docking scoring function, this ROC AUC value is consistently improved with 
various protein/ligand/water FF combinations (Table 1). Our assessment using different FF 
combinations can inform researchers on best practices that can be applied quickly in running MD 
simulations of protein-ligand complex structures. The different FFs contain various mathematical 
approximations to reproduce molecular geometry and properties of biomolecular structures. 
Therefore, their MD simulation results can vary depending on which FF combination is used. Our 
results show that CHARMM36m/GAFF2/TIP3P FF combination show the best performance in 
discriminating bad protein-ligand interactions from the good ones with an ROC AUC of 0.84. Other 
combinations with the CHARMM protein FF show similar results (0.80 with CGenFF and 0.81 with 
OpenFF), indicating that the GAFF2 ligand FF shows a slightly better discrimination power than 
CGenFF and OpenFF FFs. Using the Amber FF combinations, we find that ff19SB shows slightly 
a better performance than ff14SB. Overall, all the different FF combinations can improve the ROC 
AUC of docking scores from 0.61 to up to 0.84.  
Docking scores are rough estimates of binding energies in kcal/mol that are commonly used by 
researchers for the predicted protein-ligand structures. Similarly, MD simulation trajectories of 
protein-ligand complex structures can be used to obtain binding energy estimates using 
MMGBSA/MMPBSA. These binding energies in kcal/mol were calculated for all of our Amber 
simulation trajectories. The values are used to rescore the docking results. MMGBSA/MMPBSA 
binding affinity results were evaluated using the ROC AUC to assess their ability in discriminating 
good from bad docking poses. In Table 1, we show that MMGBSA/MMPBSA have higher 
discriminating power than docking scores, based on their AUC values. MMGBSA/MMPBSA 
binding affinities show similar AUC values compared to ligand RMSD, where more stable binding 
poses with lower ligand RMSD consistently have better binding affinity values than unstable poses 
with high ligand RMSD. Using 6 different FF combinations, our results show that MMPBSA has 
an average AUC of 0.79, which is slightly better than 0.77 using MMGBSA calculations.   
A representative example is shown in Figure 3 with top 10 ligand-binding modes from docking of 
ligand Y27 to the receptor Rho kinase. Docking scores incorrectly sorts the top 10 binding poses 
by highly scoring binding modes with the pyridine moiety (yellow in Figure 3) outside of the 
binding pocket and facing the solvent. The correct binding mode with a ligand RMSD of 2.1 Å 
from the crystal structure is ranked as pose 9 with a docking score of -6.1 kcal/mol. Interestingly, 
this binding mode shows the most stable binding throughout MD simulation with an average ligand 
RMSD of 1.6 Å. It also has the best MMGBSA and MMPBSA binding energy values of -25 and -
19.4 kcal/mol, respectively. Consistent with ligand-binding stability during MD simulation, 
MMGBSA and MMPBSA show the highest binding energies of -15.1 and -8.6 kcal/mol, 
respectively, for pose 2 that has the highest ligand RMSD of 7.2 Å during MD simulation.  
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Table 1. Summary of AUC ROC for 208 protein-ligand structures in the Miller dataset showing 
docking scores from AutoDock vina, ligand RMSD and MMGBSA/ MMPBSA results from MD 
simulation with various FF combinations 

  ROC AUC 

No 
FF combinations of 
protein/ligand/water Docking Ligand RMSD MMGBSA MMPBSA 

1 CHARMM36m/CGenFF/TIP3P 

0.61 

0.80 - - 
2 CHARMM36m/GAFF2/TIP3P 0.84 - - 
3 CHARMM36m/OpenFF/TIP3P 0.81 - - 
4 ff14SB/GAFF2/TIP3P 0.76 0.76 0.76 
5 ff19SB/GAFF2/TIP3P 0.77 0.79 0.79 
6 ff19SB/GAFF2/OPC 0.80 0.77 0.81 
7 ff14SB/OpenFF/TIP3P 0.78 0.77 0.77 
8 ff19SB/OpenFF/TIP3P 0.79 0.77 0.80 
9 ff19SB/OpenFF/OPC 0.78 0.78 0.80 
 average 0.61 0.79 0.77 0.79 

 

 
Figure 3. Ligand-binding modes from top 10 AutoDock vina cross-docking results of ligand Y27 
(PDB 2ETR) onto the receptor Rho-associated protein kinase (PDB 2ESM). The binding poses 
were ranked based on the vina docking score from pose 1 (P1) to P10. Their corresponding ligand 
RMSD from the crystal structure is shown below their docking score. In addition, the ligand RMSD 
and MMGBSA/MMPBSA binding affinity values from their MD simulations (ff19SB/GAFF2/OPC) 
are shown for each pose. P9 is highlighted in red square because it has the most similar binding 
pose compared to the crystal structure with a RMSD of 2.1 Å. In addition, it has the most stable 
binding in MD simulation with an average ligand RMSD of 1.6 Å and the lowest binding energies 
of -25.0 kcal/mol (MMGBSA) and -19.4 kcal/mol (MMPBSA).   
 
2.5 MD simulations can distinguish active from decoy binders using ligand RMSD evaluation  

In our previous work, we evaluated the performance of MD simulation in discriminating active 
from decoy ligands from the DUD-E dataset using only 56 targets having a crystal structure with 
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a resolution of 2 Å or better.13 For our second benchmark test, we performed the same tests on 
the rest of protein targets in the dataset. From 41 soluble proteins, we randomly selected 5 active 
and 5 decoy ligands (Table S2).  
Docking results from 205 active and 205 decoy ligands on 41 target proteins show an ROC AUC 
of 0.68 (Figure 4C). A lot of overlap between active and decoy ligands’ docking scores suggest 
that it is difficult to distinguish between the two classes of ligands (Figure 4A). Here, only one 
protein-ligand pair with the best docking score is selected as a starting structure for MD simulation. 
Using HTS, MD systems were prepared for all selected docking structures. MD simulations were 
conducted for 50 ns and processed by calculating their ligand RMSD to assess ligand-binding 
stability. The ligand RMSD results significantly improve the ROC AUC to 0.83 (Figure 4C). The 
ligand RMSD histogram distribution shows that active ligands have better binding stability with 
lower ligand RMSD centering around 4 Å. Whereas, decoy ligands show binding instability with 
many ligands leaving their binding pockets (Figure 4B). Improvements in ROC AUC using ligand 
RMSD from MD simulations are seen consistently across 5 different protein classes, including 
kinase, protease, other enzymes, nuclear receptor, and miscellaneous proteins (Table 2).  
 

 
Figure 4. Histogram distributions of active and decoy ligand scores obtained from (A) docking 
scores and (B) ligand RMSD. (C) ROC plot comparing docking scores with ligand RMDSs from 
MD simulations of 41 soluble proteins with randomly selected 5 active and 5 decoy ligands for 
each protein. The AUC values are 0.68 (docking score) and 0.83 (MD ligand RMSD).  
 
Table 2. Summary of AUC ROC for 41 soluble proteins in the DUD-E dataset showing docking 
scores from AutoDock vina and ligand RMSD results from MD simulation.†  

  total ligands AUC 
protein class total proteins actives decoys docking MD 

total 41 205 205 0.68 0.83 
kinase 12 60 60 0.73 0.85 
protease 5 25 25 0.60 0.87 

other enzymes 18 90 90 0.66 0.87 
nuclear receptor 5 25 25 0.76 0.78 
miscellaneous 1 5 5 0.96 0.96 

†Improved cases of AUC values using MD simulations are highlighted in bold  
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2.6 Membrane protein MD simulations significantly improve docking results  

G protein-coupled receptors (GPCRs) are a class of drug targets with a very high pharmacological 
precedence. GPCRs make up more than one third of all United States Food and Drug 
Administration (FDA) approved drugs.57 Therefore, we chose to work with GPCR proteins as 
benchmark validation for our HTS membrane-bilayer systems. Here, 5 GPCR proteins from the 
DUD-E dataset were tested with randomly chosen 5 active and 5 decoy ligands.58 Their docking 
scores show poor results in distinguishing active from decoy compounds with an ROC AUC of 
0.57 (Figure 5C). An almost uniform distribution of active and decoy ligands is seen using the 
docking scoring functions (Figure 5A), indicating that docking scores are unable to discriminate 
real binders from nonbinders to GPCR proteins. Using the membrane-bilayer option in CHARMM-
GUI HTS, MD systems for 5 GPCR proteins were prepared. Our results show that ligand RMSD 
calculations from MD simulations significantly improve the ROC AUC value to 0.85 (Figure 5C). 
Active ligands show better binding stability with lower ligand RMSD that centers around 4 Å, 
whereas decoy ligands tend to move more with higher ligand RMSD that centers around 7 Å 
(Figure 5B). The binding pockets of GPCR proteins are narrow and partially occluded by the 
extracellular loop 2 (ECL2).59 We observed that during the short MD simulations, unstable ligands 
do not completely leave their binding pockets due to interactions with the ECL2.  
 

 
Figure 5. Histogram distributions for GPCR proteins with their active and decoy ligand scores 
obtained from (A) docking and (B) ligand RMSD. (C) ROC plot comparing docking scoring with 
ligand RMSD from MD simulations of 5 GPCR proteins in membrane bilayers with randomly 
selected 5 active and 5 decoy ligands for each protein. The AUC values are 0.57 (docking score) 
and 0.85 (ligand RMSD).  
 
3. Conclusions 
Hit discovery step in structure-based drug design has long been dominated by molecular docking-
based methods due to its low cost, high-speed, and scalability. However, docking scoring 
functions have been shown to be unreliable in distinguishing active from decoy compounds and 
identifying correct binding modes among multiple poses.4-6, 13 In this work, we have introduced 
CHARMM-GUI High-Throughput Simulator, a new functional module to facilitate high-throughput 
preparation of MD simulation systems and inputs for multiple protein-ligand structures 
simultaneously. We expect that HTS can be used to evaluate and further improve docking results 
by better discriminating active from decoy compounds and more accurately identify the correct 
binding modes of any specific active compounds. For example, top 1% of virtual screening results 
using a large 10,000 ligand library can be evaluated by performing short MD simulations using 
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CHARMM-GUI HTS to find the real binders. Furthermore, ligand binding modes can be refined 
by evaluating multiple binding poses using MD simulations. 
Our benchmark tests on the Miller and DUD-E targets demonstrate the effectiveness of short MD 
simulations to evaluate and improve docking results. In the cross-docking test cases using the 
Miller dataset, we show that MD simulations can better identify correct binding modes among top 
10 poses compared to docking scoring. In addition, we confirmed these results using 6 different 
protein/ligand/water FF combinations. Using the DUD-E dataset, we show that MD simulations 
can better discriminate active from decoy compounds for 46 targets, including 5 GPCR membrane 
proteins.  
CHARMM-GUI HTS is user-friendly and contains many interactive features to help with ligand 
parameterization, FF combination options for protein/ligand/water, as well as functionalities to 
seamlessly prepare protein-ligand systems in solutions and membrane bilayers. HTS effectively 
circumvents the redundant process of individually preparing multiple protein-ligand complex 
structures by running the process simultaneously. We expect HTS to facilitate the hit discovery 
process in drug design by properly evaluating and improving docking results.   
 
4. Methods 

 
4.1 Datasets and computational details  

For the benchmark tests, we selected representative 208 protein-ligand structures from the Miller 
cross-docking test set (Table S1) and 460 structures from the DUD-E dataset (Tables S2-S3).12, 
58 Using the Miller dataset, we evaluated the performance of MD simulations using various FF 
combinations in discriminating correct binding modes from the incorrect ones among up to top 10 
docking results. Using the DUD-E dataset, we evaluated MD simulation performance in 
discriminating active from decoy small molecule binders (for 410 soluble and 50 membrane 
protein-ligand complexes). Because most ligands in the DUD-E dataset are similar, we filtered 
the selected ligands using their Tanimoto coefficients (Tc) to avoid redundancy. Only ligands with 
Tc < 0.5 were selected and their Tc distribution is shown in Figures S2-S3.  
AutoDock vina has been shown to be one of the leading docking methods that is freely available 
to researchers in academia.48, 60 Using vina, protein receptors were treated rigid and the ligands 
were docked into each receptor’s binding pocket. Since the benchmark targets are holo protein 
structures with bound ligands, their native ligand coordinates were used to determine the search 
space for ligand docking. Each docking was performed using a cubic box search space with 22.5 
Å edges. For the Miller dataset, up to top 10 binding poses were collected for each ligand docking. 
However, 3 targets could not produce 10 binding poses due to the limited size of the binding 
pocket search space for ligand docking (Table S1). For example, target 7, nuclear receptor 
protein (PDB 1x76), only produced 3 binding poses, because it has a small and closed binding 
pocket that only allowed for up to 3 poses of the docked ligand. For the DUD-E dataset, only the 
top scored docking output was selected for each protein-ligand complex.  
Using the system and input files generated from CHARMM-GUI HTS, MD simulations were 
performed for 50 ns for each protein-ligand complex structure. For the Miller dataset, 9 different 
protein/ligand/water FF combinations were prepared: CHARMM36m/CGenFF/TIP3P, 
CHARMM36m/GAFF2/TIP3P, CHARMM36m/OpenFF/TIP3P, ff14SB/GAFF2/TIP3P, 
ff19SB/GAFF2/TIP3P, ff19SB/GAFF2/OPC, ff14SB/OpenFF/TIP3P, ff19SB/OpenFF/TIP3P, and 
ff19SB/OpenFF/OPC. For the DUD-E dataset, the CHARMM36m/CGenFF/TIP3P FF 
combination was used. Each soluble protein-ligand structure was solvated in a cubic water box 
extending at least 10 Å in each direction of the protein. Distance-based ion placements were used 
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with K+ and Cl- ions at 0.15 M to neutralize each system. The non-bonded van der Waals 
interactions were truncated between 10 and 12 Å using a force-based switching method for the 
CHARMM FF and at 10 Å for the Amber FFs.61 Particle-mesh Ewald summation was used for the 
long-range electrostatic interactions.62 All simulations were performed using hydrogen mass 
repartitioning (HMR) to increase the simulation timestep to 4 fs during the production runs.27, 56 
Each system was minimized for 5,000 steps using the steepest descent method followed by 125 
ps equilibration in the NVT (constant particle number, volume, and temperature) ensemble. The 
GPCR membrane systems (50 structures) were placed in a POPC bilayer, solvated in water, and 
neutralized using K+ and Cl- ions. These systems were minimized and underwent successive 
equilibration steps following the default CHARMM-GUI Membrane Builder equilibration protocol.15, 
50 
The production runs for all systems were performed in the NPT (constant particle number, 
pressure, and temperature) for 50 ns in 3 replicas using different initial velocities at 303.15 K and 
1 bar. Simulations with CHARMM36m protein FFs were all performed using the OpenMM 
package.43 Simulations with the Amber ff14SB and ff19SB protein FFs were performed using the 
Amber package.42  
Our simulations of proteins in solutions were conducted using 1 GTX 1080TI GPU (graphics 
processing unit) and 1 CPU (central processing unit). The simulation time for the smallest system 
with 123 residues was 8.1 hours (OpenMM) or 3.4 hours (Amber) for 50 ns (Table S4). The largest 
system with 728 residues required 27.1 hours (OpenMM) or 11.3 hours (Amber) for 50 ns. MD 
simulation of membrane systems were conducted using 1 RTX 2080TI GPU (graphics processing 
unit) and 1 CPU (core processing unit). The smallest system with 313 residues ran for 7.9 hours 
for 50 ns (OpenMM), while the largest system with 502 residues ran for 10.2 hours for 50 ns 
(OpenMM). 
 
4.2 RMSD / MMGBSA / MMPBSA calculation details 

Binding stability of each ligand in the protein binding pocket was evaluated using ligand RMSD 
by superimposing all heavy atom coordinates of the protein structure throughout MD trajectory 
and calculating ligand RMSD using CHARMM for simulations with CHARMM FF and using 
CPPTRAJ for simulations with Amber FFs.63, 64 This method was effective in capturing RMSD 
from each ligand’s translation and rotation with respect to the binding pocket during MD simulation. 
A single ligand RMSD value was obtained for each protein-ligand simulation by calculating the 
average ligand RMSD throughout the simulation time. Furthermore, an average value is obtained 
from 3 replicas of the same system.  

In MM/PBSA or MM/GBSA, the ligand binding free energy (∆G!"#$) was calculated using the 
equation: 
 
∆G!"#$ = G%&'()*+ − G,*%*(-&, − G)"./#$   
 
Here, ∆G!"#$ can be decomposed into different energy terms: 
 
∆G!"#$ = ∆E00 + ∆G1&) − T∆S 
∆E00 = ∆E"#-*,#/) + ∆E*)*% + ∆E2$3 
∆G1&) = ∆G45/75 + ∆G89,: 
 
∆E00, ∆G1&), and -T∆S are the changes in the gas phase molecular mechanics (MM) energy, 
solvation free energy, and conformational entropy upon binding, respectively. The solvation free 
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energy, ∆G1&), is the sum of the nonpolar energy (∆G89,:) and polar (∆G45/75) terms. The nonpolar 
energy was estimated using the solvent-accessible surface area (SASA), while the polar 
contribution was calculated using GB or PB model. In our PB calculations, the values of 80 and 1 
were used for the solvent dielectric constant and protein interior dielectric constant, respectively. 
The default solvent dielectric constant of 78.5 and protein interior dielectric constant of 1 were 
applied in the GB calculations. OBC model (igb=5) was applied in GB calculations.65 The 
conformational entropy change (−T∆S) was neglected in this study. The ligand binding free energy, 
therefore, was the sum of an electrostatic term (∆E*)*%), a van der Waals term (∆E2$3), a nonpolar 
solvation term, and a GB or PB polar solvation term. A total of 100 snapshots extracted from 50 
ns simulations were used to estimate ∆G!"#$. 
  
5. General statement 
Hit discovery is a vital step in drug design to find novel molecules that bind to a biological target. 
By incorporating a physics-based MD simulation using our HTS tool after molecular docking, we 
are able to show considerable improvements in docking results to identify correct ligand-binding 
modes and discriminate active from decoy compounds. Our tool to prepare MD simulation 
systems and inputs for multiple protein-ligand complex structures in a high-throughput manner is 
freely available in CHARMM-GUI (https://www.charmm-gui.org/input/hts).  
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