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Abstract—Microelectrode arrays (MEAs) are physical devices
widely used in various science and engineering fields. One
common computational challenge when applying a high-density
MEA (i.e., a larger number of wires, more accurate locations of
abnormal cells) is how to efficiently compute those resistance
values provided the nonlinearity of the system of equations
with the unknown resistance values per the Kirchhoff law.
This paper proposes an algebraic-topological model for MEAs
such that we can identify the intrinsic parallelism that cannot
be identified by conventional approaches. We implement
a system prototype called Parma based on the proposed
topological methodology. Experimental results show that Parma
outperforms the state-of-the-practice in time, scalability and
memory usage: the computation time is two orders of magnitude
faster on up to 1,024 cores with almost linear scalability and
the memory is much better utilized with proportionally less
warm-up time with respect to the number of concurrent threads.

Index Terms—multidimensional data, parallel processing, sci-
entific computing, applied topology

I. INTRODUCTION

Microelectrode arrays (MEAs) are physical devices widely
used in various science and engineering fields. For example in
the pandemic of COVID-19, electrode arrays were involved in
both vaccine development [1] and fast testing methods [2, 3].
More conventionally: (i) in biomedical engineering [4], an
MEA can be applied to a patient’s wound surface and report
the anomalies of the skin; (ii) in biological sciences [5],
an MEA can be placed on a cell medium to electronically
detect the potential cancer regions; and (iii) in electronic
engineering [6, 7], similar techniques are applied for the trade-
offs between currents and signals in the very-large-scale inte-
gration (VLSI) design of CPU chips. These applications utilize
multidimensional arrays as the default format for storing and
managing large volumes of measurement data.

One of the most notable limitations of applying MEAs lies
in its scalabilty: an MEA cannot be efficiently parametrized
due to the complicated, nonlinear equations. Formally, the
parameterization of an MEA aims to quantify the physical
resistance of the devices given four inputs: (i) the topology
of the MEA, (ii) the context where the MEA is placed, e.g.,
cell medium, patient skin; (iii) a provided voltage, e.g., 5
volts, and (iv) measured current values in the MEA. While in
the real-world applications we can easily control the voltage,
accurately measure the currents, and discreetly choose the ob-
ject/context, the main challenge lies in the arbitrary topology

exhibited by MEAs: the complexity of an MEA topology can
lead to considerable computational time that is considered
impractical for applications. For instance, it takes hours to
parameterize a two-dimensional 64×64 MEA [8]. Specifically,
the electrical resistance values in the complex circuit cannot be
efficiently computed due to a large number of circuits at a very
fine granularity and the nonlinearity of the system of equations
with the unknown resistance values per the Kirchhoff law [9].
Kirchhoff law is one of the most fundamental laws governing
the physical characteristics of electrode arrays. In practice,
the law is applied repeatedly to every entity in the electronic
device and more importantly, the equations are correlated
and thus hard to be parallelized. To make it worse, if the
internal resistors are unknown, the system of equations be-
comes nonlinear, making the problem prohibitively expensive
to solve analytically. Conventional computational approaches
include Landweber method [10], linear back projection [11],
and Tikhonov regularization methods [12], all of which exhibit
an ill-posed computational problem [13, 14]: the solution is
largely dependent on the input and results in an unacceptable
variance, which hinders its adoption in practice.

From a computational point of view, researchers have re-
cently started to seek non-analytic paradigms such as machine
learning to estimate the solution, e.g., training a convolutional
neural network to approximate the unknown resistor distribu-
tion in an electrode array [9]. This approach is demonstrated as
an effective means to “learn” the nonlinear function between
inputs and outputs: the error rate is as low as 0.49%. In [15],
the authors demonstrated a 20×20 microelectrode array device
manufactured in a wet lab, and showed that a graph-theoretical
conversion from the original MEA data allowed them to
efficiently utilize storage space for the expensive computation.
Later, Wang et al. [8] presented a forward labeling technique
for effectively training an artificial neural network (ANN) to
predict the unknown variables in the 64 × 64 MEA, which
was more than two orders of magnitude larger than the one
shown in [9]. While the ANN can be efficiently trained, how to
collect the training data, i.e., parameterizing the MEAs, at such
scales pose unprecedented challenges in terms of computation
cost. The problem is further exacerbated by the fact that the
intrinsic parallelism, if any, does not appear observational.

While aforementioned work focuses on adopting machine
learning for an estimated parametrization of MEAs, this paper
tackles the MEA-parametrization problem from an orthogonal
viewpoint enlightened by algebraic topology, which allows
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us to algebraically parametrize MEAs whose structure and
intrinsic parallelism are hard to identify otherwise. Firstly,
the seemingly complex, interconnected circuit flows among
MEA nodes can be abstracted and simplified as a series of
abstract complex, a well-studied object in algebraic topology
that we will detail shortly. Secondly, we can apply homological
analysis of the abstract complex and extract the indepen-
dent high-dimensional circles for parallelization. We show
that the algebraic objects represented by the MEA data are
well defined and further, form the highly-desired topological
invariant, namely homology groups, under rigorous group-
theoretical analysis. The algebraic invariant, such as Betti
numbers, allows us to employ a fine-grained parallelization
technique for applying Kirchhoff’s laws concurrently, each of
which works by itself on a k-dimensional cycle.

To demonstrate the effectiveness of the proposed approach,
we implement a new paradigm, namely Parma. Preliminary
results show that the proposed approach outperforms the
state-of-the-practice in various metrics: (i) the computation
time is three orders of magnitude faster; (ii) the I/O time is
proportionally reduced with multithreading; (iii) the memory
is better utilized with proportionally less warm-up time with
respect to the number of concurrent processes/threads.

In summary, this paper makes the following contributions:
• We take an algebraic-topological approach to model the

parametrization of MEAs that involves computationally-
intensive Kirchhoff laws; (§III)

• We propose a new parallelization paradigm, which iden-
tifies the high-dimensional “holes” that can be computed
in parallel; (§IV)

• We implement a prototype system called Parma that is
extensively evaluated on various test beds at large scales
of up to 1,024 cores. (§V)

II. BACKGROUND AND PROBLEM FORMULATION

A. Kirchhoff Laws and Maxwell Cyclomatic Numbers

In Kirchhoff’s 1847 paper, he proved that the currents of
a direct circuit could be uniquely determined by two sets of
linear equations given fixed source voltage and wire resistance.
The two systems of linear equations are also called the first and
second Kirchhoff’s laws. The first law (L1) states that overall
flow at a specific vertex is zero, and the second law (L2)
states that the overall voltage change along a loop of edges
stays the same. If we model a circuit as a graph G(V,E), then
there are |V | equations of L1, and there are |E| unknown
currents. It can be shown that the |V | equations of L1 are
not independent, while any |V | − 1 equations are indeed
independent. Consequently, we need to have |E| − |V | + 1
or more equations from L2 to find the |E| unknown currents.
It can be further shown that these |E| − |V | + 1 equations
from L2 are all independent of |V | equations in L1, indicating
that both L1 and L2 equations can collectively determine the
current values. While Kirchhoff proved this for the physical
case where resistances are positive real numbers, a more
general case can be proven using algebraic topology, i.e., the

Figure 1. Abstract architecture of a three-dimensional 3 × 3 electrode
array, in a physical device. Three horizontal wires (A, B, and C) and
three vertical wires (I, II and III) are interconnected through the 18 joints
{0, · · · , 17} and nine resistors (Rij , 1 ≤ i, j ≤ 3).

introduction of cochain and coboundary, see [16] for more
details.

The number of independent loops represented by |E|−|V |+
1 is historically called the cyclomatic number by Maxwell
in the context of the circuit and is an important topological
property in graph theory. It should be noted, however, in
many engineering applications, Kirchhoff’s laws are applied
indirectly: the currents are sometimes easy to measure, and it
is the resistance that is of interest and yet unknown, making
the systems of equations nonlinear.

B. Electrode Array and Graph Abstraction

Electrode Arrays are widely used in biomedical engineering,
electrical engineering, and mechanical engineering. A typical
n×n dimensional electrode array consists of a set of horizontal
and vertical wires, joined through point-wise resistors. The n’s
scale or size highly depends on the application under consid-
eration. For example, a continuous-flow device [5] used for
the geometric screening of core/shell hydrogel microcapsules
consists of 15 electrode pairs (i.e., n = 15), whereas a device
designed for 2D electrical imaging surveys can consist of more
than 20 electrode pairs [17]. Overall, a n×n array comprises
2n2 joints/junctions and n2 resistors.

An example of such physical system is shown in Figure 1
with a size of n = 3. It consists of three horizontal wires (A, B,
and C) and three vertical wires (I, II and III) connected with
nine resistors resulting into a total of 18 joints {0, · · · , 17}.

In general, a n× n electrode array can be abstracted into a
two-dimensional graph where each vertex represents a resistor,
as shown in Figure 2. In practice, the physical device of an
electrode array is usually in a square shape, although the
following discussion can be trivially extended to arbitrary
shapes m× n (m 6= n).
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Figure 2. Abstraction of a general electrode array in two-dimensional space.

C. Anomaly Detection through Electrode Arrays

To put it in the real-world context, the electrode device
is used for (almost) real-time anomaly detection such as the
wound surface of an injured athlete. A common workload of
such a n×n electrode array system is to find out the unknown
resistances Rij’s (1 ≤ i, j ≤ n) given the pair-wise measured
resistance Zij’s between the end-points of n horizontal and
n vertical wires. These Rij’s are usually equal and negligible
in values from the device. When the tested medium exhibits
anomaly areas (e.g., cancer cells), the local resistance (i.e., R)
will significantly increase. Therefore, we have n2 unknowns
(R’s) and also n2 measured values (Z’s), namely ZA,I , ZB,I ,
ZC,I , ZA,II , ZB,II , ZC,II , ZA,III , ZB,III , and ZC,III in the
example shown in Figure 1.

The challenge here lies in that the measured resistance
between two endpoints is a nonlinear function of all the n2

unknowns through many possible paths; To see this, take
ZB,III for example, the most straightforward circuit is through
R32 (between endpoints 14 and 15). And yet, there are other
circuits flowing through, one possible path being:

B → 8
R22−−→ 9→ 7

R21−−→ 6→ 12
R33−−→ 13→ III

More examples from other pairs of endpoints include (cf.
Figure 1):

C → 16
R33−−→ 17→ 15

R32−−→ 14→ 2
R12−−→ 3→ I

A→ 12
R31−−→ 13→ III

C → 10
R23−−→ 11→ 9

R22−−→ 8→ 14
R32−−→ 15→ III

B → 2
R12−−→ 3→ 5

R13−−→ 4→ 10
R23−−→ 11→ II

A→ 0
R11−−→ 1→ 3

R12−−→ 2→ 8
R22−−→ 9→ II

For a n × n array, there are overall n(n+1) possible paths.
To see this, we can start with a specific pair of endpoints.

Whenever the circuit flows from one joint to the next step,
there are n possible choices. In total, there are only (n −
1) steps between the source and the destination. Therefore,
there are n(n−1) possibilities between any pair of endpoints.
Note that there are a total n2 pairs of endpoints. Consequently,
the total number of paths is n(n−1) · n2 = n(n+1). To save
all of these possible paths, the required space is even larger
than the n exponential because each path has to store all the
joint numbers as well. In [15], authors reported that the data
growth is so fast that the path-based approach is unfeasible on
mainstream computer hardware and systems when n > 6.

If we assume the paths can be stored efficiently (which
is true only for small n’s), then the question is how to
find those paths efficiently. This is a classical problem in
graph theory, which is solvable using either depth-first or
breadth-first recursive traversal algorithms. Since the number
of possible paths is exponential, any algorithm for finding them
must be at least exponential, which is indeed the case of both
depth-first and breadth-first recursive traversal algorithms. To
see this, again, in the case of breadth-first recursion, there are n
neighbors to the current position, and each of the n neighbors
might lead to a depth of (n − 1), resulting in the total of an
exponential number of recursion calls.

After finding out and storing the paths, the next step is
to solve the equations built upon the paths satisfying the
constraints, i.e., the total incoming circuit flow is equal to
the total outgoing circuit flow according to the Kirchhoff law.
In essence, all the paths are considered as the parallel circuit
flows between two endpoints and can be aggregated through
this form:

Z−1ij =

n(n−1)∑
k=1

P−1k (R)

where Pk(R) indicates the summation of resistors along the
k-th path between the i-th horizontal wire and the j-th vertical
wire in a n × n array. Therefore, the goal is to solve a
system of n2 nonlinear equations, each of which comprises
an exponential number of terms, and each term exhibits a
summation of selected unknowns as the divisor. This equation-
solving procedure itself is also compute-intensive, requiring
iterative method to find roots of the unknown resistors. The
state-of-the-art is to leverage deep learning to estimate the
unknowns, e.g., conventional neural networks [9]. Once the R
values are known (or, estimated), the anomaly can be simply
detected.

III. ALGEBRAIC-TOPOLOGICAL MODELING OF MEAS

This section will first briefly review the basics of algebraic
topology and show the natural correspondence between MEAs
and the topological objects such as simplex and simplicial
complex. We will then demonstrate that this correspondence
is mathematically sound, based on which of those topological
objects can form more sophisticated ones that exhibit strong
and otherwise unnoticeable algebraic invariant, including but
not limited to homology groups and Betti numbers. As a
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result, the proposed modeling and analysis lead to a new
parallelization paradigm that will be discussed in §IV.

A. Topology Basics

Mathematically speaking, a topology of a set S is a collec-
tion of subsets of S, denoted T , satisfying certain properties1

that distinguish a topology from the set of hyperedges in a
hypergraph [18]. One example topology of S is then the power
set of S, P(S), which consists of all the possible 2|S| subsets
of S. This is also called the discrete topology of S. The tuple
(S, T ) is called the topological space of S. Each of the subsets
U from T is called an open set, and the complement set S \U
is a closed set by definition. A function g from space X to Y is
called continuous if ∀v is an open set in Y , then g−1(v) is an
open set in X . The composition of two continuous functions
is also continuous. If both g and g−1 are continuous and
bijective (one-on-one mapping), we call g a homeomorphism.
Because a homeomorphism is defined purely on open and
closed sets, two topological spaces are considered equivalent if
such a homeomorphism exists. Usually, we expect to migrate a
complex problem in one topological space to another such that
the problem can be solved more efficiently or more intuitively.
The aforementioned concepts and techniques are also referred
to as point-set topology.

In addition to point-set topology, there is another branch
of algebraic-topological methods that study homotopy groups
and homology groups. Informally, these groups break the
complex down into the smaller pieces and map the geometrical
objects into algebraic objects, such as groups. Some of the
hardest problems were shown to be elegantly solvable through
algebraic topology [19]. Remarkably, a unique subbranch of
topology, namely combinatorial topology, specifically studied
the topological properties of distributed computing models [20,
21].

The building blocks we are interested in for topological
modeling of MEAs are called simplices (the plural form of
simplex). In this work, by simplex σ we mean an abstract
simplex, defined as a set S of vertices. Any subset of σ is also
a simplex, and is called a face of σ. The dimension of σ is
defined as the number of vertices minus 1:

dimσ = |σ| − 1.

Geometrically, a simplex σ consists of all the possible points,
edges, triangles, tetrahedrons, and higher-dimensional objects
that can be composed of the vertices in S. From a combina-
torial perspective, a collection of σ’s can be thought of as an
object representing more sophisticated relationships among the
vertices in S, which is called an abstract simplicial complex,
denoted K. The dimension of a complex is defined as the
highest dimension from any simplex in the complex:

dimK = max(dimσ), ∀σ ∈ K.

It is “simplicial” in the sense that any σ1 ∩ σ2 ∈ σ1, σ2,
meaning that the simplices (including the empty set ∅) shared

1Namely, both ∅ and S are in T , a finite number of intersections of elements
in T is in T , and any union of elements in T is in T .

a c

b

d e

f
Figure 3. A polyhedron of two sim-
plices (triangles {a, b, c} and {d, e, f}) that
is not a simplicial complex. The overlap of
two triangles is segment {b, f}, which is
not an element of the set of 1-simplices
{{a, b}, {b, c}, {a, c}, {d, e}, {d, f}, {e, f}}.

by σ1 and σ2 must also be valid simplices of both σ1 and σ2.
This requirement might sound self-evident, but actually might
be violated in practice: Figure 3 shows that the shared line
segment {b, f} is not an element of

{∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.

B. Modeling through Homology Groups

It follows that an MEA can be represented by an abstract
simplicial complex, or complex if no ambiguity arises. Before
we go on the discussion on modeling MEAs with complexes,
we need to verify that the MEA can be indeed abstracted as
a complex, per the above definition.

Proposition 1. Every microelectrode array is an abstract
simplicial complex with the set of vertices represented by the
joints between wires.

Proof. We will prove this for the two-dimensional case;
higher-dimensional cases follow similarly.

First, we show that the dimension of a 2-dimensional MEA
is one. Let P denote the polyhedron of the MEA object.
We will show that the dimensions of all simplices are (i)
larger than or equal to one and (ii) smaller than or equal to
one, both of which will collectively prove our claim. For (i),
suppose, for contradiction, that dimP < 1, that is, dimP = 0.
However, a 0-dimensional complex has only vertices without
any edges, indicating an MEA with joints without wires, which
is impossible, thus a contradiction. For (ii), suppose, again
for contradiction, that dimP > 1. We will use induction to
show that dimP cannot be any numbers larger than 1. We
first check dimP 6= k, k = 2. This is easy to verify since if
dimP = 2, there must be at least one triangle in P , whose
dimension is 2. However, in 2-dimensional MEAs, there are
only vertical and horizontal wires, and forming triangles is
not possible. Now we start checking k+1. Recall that by the
definition of simplex, any subset of a simplex (i.e., a face) is
again a simplex. It follows that if γ is a (k + 1)-dimensional
simplex, then its subset, say a k-dimensional simplex σ must
be a simplex. But we just show that a simplex cannot have
dimension k, starting k = 2, leading to a contradiction.

Second, we show that any shared portion between two
simplices in an MEA is a face of both simplices. Because
the dimension of a 2-dimensional MEA is 1, as shown above,
we only need to verify that the shared simplex is either a
common vertex or a shared edge. It is trivial to check the
shared edge, however, because that would indicate that the two
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wire-segments overlay each other. Therefore, we only need
to show that the only intersection between any two edges
is their joint (or nothing if they are parallel, which will be
covered at the end of this proof). This is indeed the case
because otherwise, the two segments would touch each other
on two endpoints, making them identical. Lastly, to complete
the proof, if two simplices do not share any simplex (e.g., they
are parallel wires along the vertical or horizontal axes), then
their intersection is ∅ and belongs to both simplices.

Having shown that an MEA is a complex allows us to
explore strong properties that have been extensively studied in
algebraic topology. Recall that Kirchhoff’s laws say that the
voltage changes over the “loop” of a circuit. This property can
be accurately and efficiently characterized by the topological
invariant called homology groups. We do not have space to
elaborate either homology or groups, introductory texts on
these topics can be found in [22, 23]. In the following, we
will give a very brief overview of the concepts when they
are absolutely necessary for our discussion. A group is a set
G along with a binary operation ? between two elements in
G such that ? is closed and associative in G, and there is a
special identity element e ∈ G such that any element has a
counterpart to which its multiplication equals e:

∀g, h, k ∈ G, g ? h ∈ G, (g ? h) ? k = g ? (h ? k), g ? e = g,

∃g−1 ∈ G such that g ? g−1 = e.

Now, think of the set C consists of all the possible subsets
of line segments in an MEA, and let us define the binary
operation between any pair of subsets as modulo-2 inclusion,
meaning that any duplicate simplices will cancel out. So, two
1-dimensional simplices (i.e., edges), say σ1 = {a, b} ∈ G
and σ2 = {b, c} ∈ G, can be calculated as

σ1 ? σ2 = {a, c}.

This group is called the complex chain group in the literature
of algebraic topology, usually denoted C. Obviously, some
elements of C are cycles and others are not; for example in
Figure 1, a sequence 0 → R11 → 1 → 3 → R12 → 2 →
8 → R22 → 9 → 7 → R21 → 6 → 0 is a cycle. We are
interested in this subset of cycles, denoted D, because they are
closely related to the Kirchhoff laws. Obviously, if we apply
the defined modulo-2 operation along the cycle, the eventual
result would be empty (i.e., the identity element in C); in fact,
there is another name to summarize the series of modulo-2
operations above, boundary2, denoted δ. It is easy to verify
that the boundary δ can map the set of k + 1-dimensional
simplices into k-dimensional simplices, which results in the
following sequence:

· · · δ−→ Ck
δ−→ Ck−1

δ−→ · · ·C1 δ−→ C0,

where Ck denotes a k-dimensional complex chain, or a k-
chain group. The result, or image, of the δ operation, is a

2There is a more formal definition of the boundary operation in algebraic
topology; we do not mention it as it has no direct implication to our discussion.

subset of simplices, called the boundary group, denoted Bk,
and is called k-boundary group at dimension k. In group
theory, the preimage of the empty image, δ−1(e), is called the
kernel of the map δ; therefore, Dk is the kernel of δ whose
result is e ∈ Ck−1. Dk is called the k-cycle group.

We can then define Hk = Dk/Bk, the quotient group at
each dimension, which also compose a series of groups, also
called the homology groups. The order, or cardinality, i.e., the
number of elements, of these quotient groups can be calculated
as:

|Hk| = |Dk|/|Bk|,

according to the Lagrange Law (in group theory). Because the
chains of groups in simplicial complexes are defined under
the modulo-2 operation, the number of involved simplices is
log |Hk|, which is defined as the rank of a group, or the
Betti number for Hk, denoted βk, which can be efficiently
calculated as:

βk = rank(Hk) = log |Hk| = log
(
|Dk|/|Bk|

)
= log |Dk| − log |Bk| = rank(Dk)− rank(Bk).

Betti number implies the number of k-dimensional “basic”
hole embedded in the topology of the MEA data; by “basic”,
we mean that the hole is not a composition of other holes.
In our MEA applications, the Betti number implies the paral-
lelism for applying Kirchhoff’s laws concurrently.

IV. PARALLEL PROCESSING OF MULTIDIMENSIONAL
ELECTRODE ARRAYS USING ALGEBRAIC INVARIANT

This section presents the potential parallelism enabled by
the algebraic invariant we developed in §III. For completeness,
we will first briefly review the baseline approach that is built
upon the vertex-correlation in graph theory [15]. Then, we de-
scribe how to apply work-stealing to improve the parallelism.
Finally, we show that the parallelism exhibited by algebraic
invariant can be naturally leveraged by popular paradigms such
as multithreading and multiprocessing across nodes.

A. Categorizing Vertex-oriented Constraints

Due to the existence of redundant or several possible sub-
paths between distinct pair of end points, we propose a new
approach that is not tightly correlated to the n(n+1) paths
between end points. Instead, we concentrate just on the n
joints and attempt to translate a set of paths into a set of joints
while preserving all topological features. To put it another
way, our aim is to reduce the number of constraints from
O(nn) to O(nc)3 without losing any information, i.e., lossless
conversion. Such conversion is only achievable if we can
somehow express the partially redundant paths as a single
joint. The key idea is inspired by the observation that many
distinct end-to-end paths take the same sub-paths for a lot of
times. Hence, we try to reconstruct a different/equivalent graph
topology for the n× n.

Figure 4 shows a concrete example of converting all feasible
paths (i.e., 9 paths) between two end points C and I in Figure 1

3We use c to denote a constant number.
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Figure 4. A corresponding topology between C and I as Figure 1. There
also exists nine paths between C and I , which are semantically equivalent to
Figure 1 but with possible loops across sub-paths.

Figure 5. A corresponding topology between the i-th horizontal axis and
the j-th vertical axis in a n×n Array, in a 2D space. There are total (n−1)
Ua’s and (n − 1) Ub’s as two sets of distinct voltage values for a specific
pair of ij end points, assuming the original voltage can be measured between
i and j. The conditions of subscripts are: k ∈ {1, · · · , j− 1, j+1, · · · , n};
m ∈ {1, · · · , i−1, i+1, · · · , n}; k′ = k if k ≤ j, k′ = (k−1) otherwise;
and m′ = m if m ≤ i, m′ = (m− 1) otherwise.

where n = 3. We identify the following nine paths from C to I
to verify that the transformed topology and the original array
are equal.

(i) C → R13 → I
(ii) C → R13 → R23 → R21 → R31 → R33 → I

(iii) C → R13 → R33 → R32 → R22 → R23 → I
(iv) C → R12 → R22 → R23 → I
(v) C → R12 → R32 → R33 → I

(vi) C → R12 → R22 → R21 → R31 → R33 → I
(vii) C → R11 → R31 → R33 → I

(viii) C → R11 → R21 → R23 → I
(ix) C → R11 → R31 → R32 → R22 → R23 → I

For an arbitrary pair of endpoints between the i-th horizontal
wire and the j-th vertical wire as shown in Figure 2, the
equivalent topology can be expressed as Figure 5. In essence,
the most straightforward path between i and j goes only
through Rij , shown as the top path (or the top main route)
in the figure. Then, there are (n−1) main routes starting with
Rik where k ∈ {1, · · · , j− 1, j+1, · · · , n}, corresponding to
the first set of voltage values called Uaijk′ where k′ = k
if k ≤ j and k′ = (k − 1) otherwise. Similarly, toward

the end of each main route, there are (n − 1) Rmj’s where
m ∈ {1, · · · , i− 1, i+1, · · · , n} and (n− 1) Ubijm′ ’s where
m′ = m if m ≤ i and m′ = (m − 1) otherwise. We do
not assign a variable to the end-to-end voltage between i and
j (i.e., Uij) because it can be easily measured in practice.
Both Ua and Ub have three subscripts, with i and j indicating
the two endpoints and the third subscript indicating the top-
down ordering of those voltage values from 1 to (n − 1).
As we will see soon, this equivalent topology would yield a
polynomial number of equations by enforcing the constraints
on those 2(n − 1) voltage points Ua’s and Ub’s, as opposed
to an exponential number of equations as discussed before.

Given the equivalent topology, we are able to enforce the
constraints on the joints (i, j, Ua’s, and Ub’s) instead of the
paths. The saving is significant: for each pair of endpoints,
there are 2n joints (1 at i, 1 at j, (n−1) at Ua’s, and (n−1)
at Ub’s) and n(n−1) paths; or for the entire system, there are a
polynomial number 2n ·n2 = O(n3) of joints and exponential
number n(n−1) · n2 = O(nn) of paths. The following of
this section explains how we generate the equations on those
2n joints for a pair of endpoints i and j. The 2n equations
(satisfying the circuit flow constraints by the Kirchhoff Law)
for each pair of endpoints (i, j) are defined as follows:

Uij

Zij
=

Uij

Rij
+
∑
k

Uij−Uijk′

Rik
, # One equation at i

Uij

Zij
=

Uij

Rij
+
∑
m

Uijm′

Rmj
, # One equation at j

Uij−Uijk′

Rik
=
∑
k

Uijk′−Uijm′

Rmk
, # n-1 eq.’s for Ua

Uijm′

Rmj
=
∑
m

Uijk′−Uijm′

Rmk
, # n-1 eq.’s for Ub

where (i) k′ = k if k ≤ j and k′ = (k−1) otherwise; and (ii)
m′ = m if m ≤ i and m′ = (m−1) otherwise. For the entire
array, there are (n−1)·n2 unknown Ua’s, (n−1)·n2 unknown
Ub’s, and n2 unknown R’s; all Uij’s and Zij’s are measured
values. The total number of nonlinear equations for the entire
n × n array is 2n3, with (2n − 1) · n2 unknowns. Although
a system of nonlinear equations does not guarantee unique or
sensible roots (for instance, resistance cannot be non-positive
values), specifying a practical and positive Uij value usually
precludes the problem, which is out of the scope of this paper.

Obviously, all the joints4 can be categorized into four
groups: (i) source points with 1-to-n flow constraints; (ii) des-
tination points with n-to-1 flow constraints; (iii) intermediate
points close to the source, with 1-to-n flow constraints; and
(iv) intermediate points close to the destination, with n-to-
1 flow constraints. Each of these four types is independent
of the others, thanks to the resistors in-between. Therefore,
the baseline implementation for parallelization is to assign a
dedicated thread to each of the aforementioned four constraint
types. We will refer to this parallelization simply as parallel
in the following discussion and evaluation.

In Parallel, we are restricted from having more than four
threads or processes to parallelize the entire set of equations.
As we will see in §V, four threads will not saturate the

4Or, equivalently, vertices in the original array.
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optimization room in this case. Another limitation of Parallel
is that users will have to manually split the original system of
nonlinear equations into sub-systems, which might represent
a technical barrier for end-users without a deep programming
background.

B. Parallelization on MEA Manifolds

From a geometric point of view, the circuit flows in an MEA
can be thought of as in a vector field of the MEA manifold,
if we consider the MEA device is sufficiently “dense” or
“smooth” at a local region. By vector field, we mean a function
from an n-dimensional point p to a vector vp eminated from
p; by manifold, we mean an arbitrary space where each
sufficiently small region is isometric to a Euclidean space.
Then, it is a well-known result from differential geometry
that the circuit accumulation, i.e., calculus, can be efficiently
computed with the local tangent spaces (along with associated
metrics such as normal vectors) and drop the global (Eu-
clidean) coordinates. This observation has a deeper implication
than it seems: Because calculus can be applied with the
local parameters, which are collectively called a frame in
the literature of differential geometry, we can parallelize the
computation at a finer granularity.

One advantage of adopting such a differential-geometric
approach is the removal of some constraints on manufacturing
MEAs. For example, our current 2-dimensional MEA device is
an equidistant grid (see Figure 1) with orthogonal wires. With
the introduction of frames, we can adopt the Jacobian matrix
to covert any arbitrary MEA into a locally orthogonal frame
for parallel computation on the directions of partial derivatives.
That is, let Ui,j denote the voltage value at a specific node,
then elementary calculus on Euclidean space Rn tells us

∂2Ui,j
∂x∂y

=
∂2Ui,j
∂y∂x

,

where x and y represents the two orthogonal axes in R2,
and in a manifold the change of Ui,j , denoted D(U), can
be calculated as

D(U) =

[
∂Ui

∂x
∂Ui

∂y
∂Uj

∂x
∂Uj

∂y

]
·
[
dx
dy

]
,

which can then be plugged into the usual vector calculus
and possibly calculate the voltage change along the wires by
applying Stokes’ theorem to the voltages:∫

xy−boundary
U =

∫∫
xy−patch

D(U).

The above discussion shows that as long as the smoothness
assumption holds, we can efficiently parametrize MEAs with
local voltage values in parallel. In practice, although the
spatial gap among MEA nodes is not negligible, we can
repeat the measurement and consider the vector of repeated
measurements as a more realistic manifold. The practical-
ity of MEA manifolds depends on the nature of the MEA
applications. That is, if the voltage change is continuous,
meaning that there is no “abrupt” change exhibited in the

application, then U is evidently differentible and integrable. In
a microelectronic setup, it is usually assumed that the voltage
change is continuous [24].

In §IV-A, we present a method taking a polynomial time
(i.e., O(nc), c is a constant number, n is the number of end-
points in the MEA) to parametrize MEAs at joints rather than
paths. We demonstrate that c = 3 for a two-dimensional MEA;
the complexity can be trivially generalized into O(nk+1) for
an arbitrary k-dimensional MEA. With the topological paral-
lelization introduced in this section, we can further improve
the asymptotic time cost by paralleling the parameterization
for the homology groups, or visually speaking, the “holes”.
In an k-dimensional equidistant MEA, that means we could
further improve the parallelism by (n−1)k-fold. Therefore, the
overall complexity for parametrizing a k-dimensional MEA
could be theoretically reduced to

O(nk+1)

(n− 1)k
=
O(nk+1)

O(nk)
= O(n).

That is, we would be able to achieve a method linear in
time for MEA parametrization as long as the device is
“smooth” enough, by which we mean the fact that the MEA
has sufficiently dense endpoints being concurrently worked
by a sufficiently large number of processes. This will be
experimentally demonstrated in the evaluation, e.g., cf. Fig. 9
and Fig. 10.

C. System Optimization

1) Balanced Parallel: An improved parallelization can be
achieved by balancing the workload through work-stealing.
If we closely examine the four constraint categories, two of
them comprise a lot more constraints: the number of sources
and destination joints is n, while two intermediate types
are n2 · (n − 1)—roughly in the cubic order of the former.
Therefore, in this optimization, we allow threads to continue
working on other tasks instead of waiting idly. In theory, this
approach could help reduce the end-to-end execution time if
the overhead of switching threads is nicely controlled. We will
refer to this implementation as Balanced Parallel.

It should be clear that, however, our implementation takes
a deterministic approach to balance the workload rather than
making the decision at runtime, which is stochastic. Determi-
nacy, however, is a double-edged sword: it helps reduces the
runtime overhead of switching threads, and yet might hurt the
flexibility in practice, especially for large-scale applications. In
later evaluations, we will see that Balanced Parallel achieves
the highest performance at small scales and yet delivers sub-
optimal performance at larger scales. If we step back and look
at the big picture, Balanced Parallel described here still falls
into the category of coarse-grained parallelization.

2) Fine-grained Multiprocessing (PyMP-k).: Automatic
multiprocessing (e.g., OpenMP) is designed for well-structured
loops, which is, unfortunately, not the case in electrode arrays.
First, the four constraint types cannot be programmatically
expressed in the same loop. Second, the electrode data are
highly skewed with two hefty tasks compared to others.
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To leverage the OpenMP-like parallelization, we implement
the Betti-number-aware multiprocessing approach by pushing
the parallelization into each of the k-dimensional loops. That
is, in addition to the parallelization between constraint types,
we now enable the intra-type parallelism regardless of the
constraint type. The downside is, however, for small n of
lightweight constraints, the efficiency might be low due to the
small workload (compared to the overhead). If the dominant
workloads are at large scales, the performance gain might out-
weigh the low efficiency from lightweight workloads. As we
will see this in the evaluation section, Parma incorporated with
an OpenMP-like library, PyMP5, taking the aforementioned
approach delivers the highest performance at large scales up
to 100×100 arrays. PyMP utilizes its work-sharing constructs
to enable load balancing among processes. Constructs take an
amount of work and distribute it over the specified number of
processes in a parallel region.

The above approach can be extended to multiple nodes, e.g.,
being implemented with MPI. In general, the overhead across
nodes (e.g., I/O cost of message passing) is higher than the
parallelization within a physical node. Therefore, inter-node
parallelization is preferable only when the workload share per
process is significantly higher than the amortized overhead.
We will quantify the workload impact to the performance
of different scales (up to 1,024 processes) in the evaluation
section.

V. IMPLEMENTATION AND EVALUATION

Our evaluation focuses on three metrics: the computation
time (§V-C), the memory footprint (§V-D), the I/O cost (§V-E),
and the scalability (§V-F). Three baseline systems are used
when applicable: (i) Single-thread: the serialized implementa-
tion of MEA analysis as in the literature [15] , (ii) Parallel:
the naive parallel processing based on vertex-correlation [8],
and (iii) Balanced Parallel: a work-stealing approach based
on Parallel that we discuss in this paper (§IV).

A. Implementation

We have implemented the proposed parallelization methods
with Python v3.7.0, PyMP v0.4.2. Our whole framework is im-
plemented in Python because the state-of-the-art system [15]
upon which ours is built was implemented in Python. There are
about 2,600 lines of Python code and other scripts (BASH, R,
etc.) in our current implementation, which can be downloaded
from the project online repository.

The current implementation comprises two main parts:
• MEA: This component converts the original exponential

all-pair-path problems into polynomial ones.
• Parma: This component applies various optimizations

to parallelize the formation of the system of nonlinear
equations.

We have evaluated the system prototype on up to 100×100
arrays or end points. The electrode array hardware comprised
64 × 64 wires built in the wet lab of our collaborators from

5https://github.com/classner/pymp

the Department of Biomedical Engineering. The environment
can be conveniently set up using popular Python frameworks
such as Anaconda.

B. Experimental Setup

Our test bed consists of an on-premises system comprised
of a many-core server i.e., HP Z820 server and a high-
performance computing (HPC) cluster:

1) The HP Z820 server has 32 Intel Xeon E5-2670 cores,
128 GB RAM, a 500 GB SSD, and a 2 TB HDD; and

2) The high-performance computing (HPC) cluster is com-
prised of 58 nodes interconnected with FDR InfiniBand.
Each node is equipped with an Intel Core-i7 2.6 GHz
32-core CPU along with 296 GB 2400 MHz DDR4
memory. It has a remote 2.1 PB storage system managed
by GPFS [25]. We use up to 32 nodes, or 1,024 cores, in
the following experiments.

All test beds are installed with Ubuntu 16.04, Python 3.7.0,
NumPy 1.15.4, SciPy 0.17.0, PyMP v0.4.2, mpi4py v2.0.0,
and mpich2 v1.4.1.The performance results we have obtained
and illustrated graphically are an average of multiple trials.

All of the experimental data (up to 100× 100) are obtained
from a microelectrode array device measuring (unknown)
numbers of cells atop their media at a wet lab from the De-
partment of Biomedical Engineering. The data are originally
saved as Excel files and converted into text files before being
fed to the Parma system prototype. The data at the wet lab
are measured four times a day: 0 hour, 6 hour, 12 hour, and
24 hour, after the device setup is completed. The resistance
values of cells range between 2,000 and 11,000 Kilohm, while
the electrical voltage is 5 volts.

C. Computation Time

In Figure 6, we report the performance of three paral-
lelization optimizations applied to Parma. The experiments
were carried out on the on-premises system. PyMP delivers
the highest performance at scales n ≥ 20, despite of lower
performance than Balanced Parallel at n = 10 where
the parallelization overhead outweighs the speedup. Since
PyMP seems to perform best at larger scales, which is not
surprising as it offers fine-grained parallelism, the remainder of
this subsection will further investigate the properties of PyMP
in more detail unless otherwise noted.

In addition, we report the overall compute time at various
levels of parallelism k ∈ {2, · · · , 32} in PyMP without the
I/O time in Figure 7. The experiments were carried out on
the HPC cluster. It can be observed that the improvement in
performance or speedup becomes more significant at scales
n ≥ 20 for the various levels of parallelism k ∈ {2, · · · , 32}
in PyMP despite of the inconsistent performance when n = 10.

D. Memory Footprint

We report the memory characterization at various scales,
as reported in Figure 8. For all the scales of n ∈ {10..100},
the peak memory usage is about the same regardless of data
parallelism. However, a higher parallelism on large scales (n ≥
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Figure 6. Various approaches for parallel formulation of Kirchhoff
law equations. The proposed joint constraints enable various parallelization
possibilities, namely Parallel, Balanced Parallel, and PyMP. PyMP delivers
the highest performance at scales n ≥ 20, despite of lower performance than
Balanced Parallel at n = 10 where the parallelization overhead outweighs
the speedup.
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Figure 7. Computation time of various parallelism in PyMP. Applying
fine-grained multiprocessing leads to a linear decrease in the overall compute
time per workload at scales n ≥ 20.

40) implies a higher utilization of the memory: for instance,
two threads (k = 2) on a 100×100 array (n = 100) incur a
low memory footprint in about 60% of time while four threads
(k = 4) incur the same memory footprint only in about 30% of
time. At small scales (n ≤ 20), little difference is observed.
The memory usage is proportional to the rank of n and is
under 20 GB for a 100× 100 array.

This experiment shows that there is negligible memory
overhead while improving temporal performance due to the
spawning of new processes for any selected number of end-
points or scales. For each selected scale, the peak memory
usage for a different number of threads remains almost the
same.

E. I/O Cost

We report the overall time taken to generate the set of
equations and write them to a file in disk with Parma. The
experiments were carried out on the HPC cluster. Figure 9
shows the results at up to n = 100. In comparison with
results reported in Figure 7, the time taken to write the set
of equations to disk exhibit noticeable differences at scales
n ≥ 20 for threads at various levels of parallelism. The
results confirm our conjecture that spawning more threads is

preferable for larger workloads such that the overhead can be
amortized.

F. Scalability

We report the scalability of Parma in terms of spawning
more processes as reported in Figure 10. Due to a maximum
number of 32 physical cores on a single server, we have
implemented the topological parallelism with MPI. We deploy
the MPI implementation on up to 1,024 cores, and observe a
linear strong scalability for practical workloads (e.g., 50×50 or
larger MEAs). For smaller workloads (e.g., 10×10 and 20×20
MEAs), the inter-node parallelism is not effective and an intra-
node parallelization (e.g., OpenMP) is recommended.

VI. RELATED WORK

Loke et al. [17] proposed techniques for the fast compu-
tation of electrode arrays for two-dimensional (2D) resistivity
surveys. An automatic graph-based method [26] was proposed
for localizing distantly-spaced cochlear implant electrode ar-
rays in clinical computed tomography with sub-voxel accuracy.
In [27], a method based on the concept of Space-Amplitude
Transform was proposed to transform time recordings from
a 2D electrode array as a one-dimensional (1D) plus time
signals in order to speed up and make simpler the data
analysis. Kiele et al. presented the principles for a robust
and precise alignment monitoring system, which allows the
detection of linear and rotational displacements of two par-
allel electrode arrays [28]. In [29], finite element method
(FEM) modeling was proposed for studying the impact of
simultaneous impedance measurement of 100 electrodes of
a Utah Electrode Array (UEA). Yassin et al. [30] proposed
an energy-efficient spike data extraction solution for a high-
density electrode array capable of reducing the data to be
transferred by over 85%. Buccino et al. [31] proposed a
semi-automatic approach involving an online implementation
of the Independent Component Analysis (ICA) algorithm for
real-time spike sorting of high-density Multi-Electrode Array
data. Also, a method to automate spike sorting in electrical
stimulation experiments using large multi-electrode arrays,
where artifacts are a concern, was proposed in [32].

While aforementioned literature proposed approaches to
alleviate existing challenges encountered with the utilization
of electrode arrays in various scenarios, this paper instead, for
the first time, focuses on a new approach to transform the
original problem from spatial domain to temporal domain and
enables unprecedented parallelization possibilities.

VII. CONCLUSION AND FUTURE WORK

This paper addresses the long-existing computational chal-
lenge of multidimensional data in one of the most widely used
engineering devices, namely microelectronic array (MEA). We
propose a new algebraic model to abstract the entities in MEA;
the new model then allows us to develop new methodology to
parallelize the computation dictated by the Kirchhoff law. We
implement a system prototype—namely Parma—with various
optimizations backed by the proposed algebraic model and
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(a) n=10 (b) n=20 (c) n=40

(d) n=60 (e) n=80 (f) n=100

Figure 8. Cummulative Distribution Functions (CDFs) of Memory Usage. For all the scales of n ∈ {10..100}, the peak memory usage is about the same
regardless of data parallelism.
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Figure 9. The end-to-end time of various degrees of parallelism in PyMP,
including disk I/Os. Utilization of more threads k ≥ 2 starting from a low
rank of n = 20 makes significant effect to the overall I/O time.

parallelization, and evaluate its performance on up to 1,024
cores. Experimental results show that the proposed approach
significantly outperforms the state-of-the-practice: the com-
putation time is orders of magnitude faster; the I/O cost is
proportionally reduced; and the memory is efficiently utilized.

Our future work along this line of research is threefold.
Firstly, we will extend the proposed approach into a cluster
of heterogeneous nodes. Secondly, we plan to develop a GPU
version of Parma so that the massive number of GPU cores
can be exploited. Finally, we are also planing to re-implement
both the baseline system and the proposed parallelization
techniques with low-level programming language like C or
C++ in order to explore more opportunities for performance
improvement.
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