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Motivated by experimental studies of graphene in the quantum Hall regime, we revisit the phase diagram
of a single sheet of graphene at charge neutrality. Because of spin and valley degeneracies, interactions play
a crucial role in determining the nature of the ground state. We show that, generically within the Hartree-
Fock approximation, in the regime of interest there is a region of coexistence between magnetic and bond
orders in the phase diagram. We demonstrate this result both in continuum and lattice models, and argue
that the coexistence phase naturally provides a possible explanation for unreconciled experimental
observations on the quantum Hall effect in graphene.
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Introduction.—The quantum Hall effect is a fundamental
manifestation of topology, quantum mechanics, and many-
particle physics in two dimensions [1,2]. Discovered
originally in semiconductor heterostructures, it found a
new realization in graphene two decades later [3–6].
Graphene brings several tantalizing twists to the original
quantum Hall problems that arise due to its honeycomb
lattice [6–9]. At low energies graphene has a relativistic
linear dispersion leading to an effective Dirac equation near
charge neutrality, which leads to a distinct Landau spectrum
[10,11]. Additionally, there are two copies of the Landau
levels due to valley degeneracy, causing electron-electron
interactions to play a crucial role in selecting the ground
state even for integer fillings [12–14].
Here we focus on the ground state at charge neutrality

(ν ¼ 0), which corresponds to an electron count that fills
precisely two of the four (almost) degenerate n ¼ 0 Landau
levels (LLs). We will call this manifold of states the zero-
energy LLs (ZLLs). At the noninteracting level, the
Zeeman energy splits the four degenerate n ¼ 0 LLs into
pairs of twofold degenerate ones, picking a fully polarized
ground state [15]. Since the ZLLs have equal contributions
from particlelike and holelike states, at the edge one linear
combination of the valleys has a particlelike dispersion,
while the orthogonal linear combination has a holelike
dispersion. The edge of a fully polarized bulk state
develops a pair of counterpropagating charged chiral modes
protected by spin-rotation symmetry, manifesting the
quantum spin Hall effect [15]. The addition of Coulomb
interactions gaps the single-particle electron spectrum
everywhere, but preserves the two gapless counterpropa-
gating charge modes (protected by Sz conservation),
promoting them into a helical Luttinger liquid [16].
From pioneering experiments [12,17–19], we now know

that the ground state depends on the balance between the
orbital magnetic field, B⊥ (perpendicular to the graphene

sheet) and the total field, Btot (which enters via the Zeeman
energy EZ and can be tuned by applying an in-plane field).
For EZ less than a critical value E"

Z all charge excitations in
the bulk and the edges are completely gapped. However, for
EZ>E"

Z, one obtains a gapped bulk with a two-terminal
edge conductance of (almost) 2e2=h [20], which is expected
of the helical Luttinger liquid. While the nature of the phase
for EZ<E"

Z has not been conclusively identified in experi-
ment, a continuous phase transition to it from the fully
polarized state is observed [20]. Based on a Hartree-Fock
(HF) treatment of a continuummodel [21] which keeps only
the ZLLs with ultra-short-range interactions [22,23], it is
believed that theEZ < E"

Z phase is a canted antiferromagnet
[24]. While this proposal is consistent with recent magnon
transmission experiments [25–27] that imply that the state is
magnetic, it is in tension with STM studies [28–30] which
find evidence for bond order in the EZ < E"

Z insulating
phase at ν ¼ 0. Note that in a sister material (Bernal-stacked
bilayer graphene) bulk Goldstone modes of the CAF phase
have recently been observed [31].
In this Letter we offer a possible resolution to this

paradox. We propose that the seemingly contradictory
observations arise from the coexistence of magnetism
and bond order at charge neutrality, which was absent in
previous theoretical phase diagrams. Our results are based
on the Hartree-Fock approximation, which has been shown
to be reliable for broken-symmetry states in the integer
quantum Hall effect (IQHE) [1,2,32–39]. We show, both in
the continuum and on the lattice, that coexistence is a
generic feature in the regime of interest. In the continuum
model, justified at weak B⊥ relevant to experiment, we first
show that a general HF analysis in the ZLLs depends only
on six coupling constants that parametrize the electron-
electron interactions. We then show that generic choices of
these couplings lead to coexistence. In a complementary,
more microscopic, HF analysis on the lattice in a magnetic

PHYSICAL REVIEW LETTERS 128, 106803 (2022)

0031-9007=22=128(10)=106803(6) 106803-1 © 2022 American Physical Society

https://orcid.org/0000-0002-8289-9915
https://orcid.org/0000-0003-1301-7744
https://orcid.org/0000-0001-8047-6241
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.106803&domain=pdf&date_stamp=2022-03-11
https://doi.org/10.1103/PhysRevLett.128.106803
https://doi.org/10.1103/PhysRevLett.128.106803
https://doi.org/10.1103/PhysRevLett.128.106803
https://doi.org/10.1103/PhysRevLett.128.106803


field with 1=q quanta of flux penetrating each unit cell, we
find ubiquitous evidence for coexistence for small and
moderate values of q up to 36. Careful extrapolation to
large q of our numerical data demonstrates that the
coexistence survives in the B⊥ regime relevant to experi-
ments (for reference, B⊥ ¼ 10 T gives q ≃ 10 000). Since
coexistence is generically present in both limiting cases at
the HF level, we argue that it can explain the experimental
observations [20,28], especially since disorder, which pins
the bond order, will only enhance its presence in the
physical system. Very recent experiments have found
evidence for the coexistence of bond order with other
symmetry breaking [29,30].
A microscopic model for graphene in a magnetic field

that is expected to harbor all the phenomena discussed
takes the general form,

Hlatt ¼ −
X

hiji
tijc

†
iscjs − EZ

X

is

sc†iscis þHð4Þ
int ; ð1Þ

where cis destroys an electron on the ith site of the
honeycomb lattice with spin s ¼ &1. The Zeeman term,

EZ ¼ gμBBtot=2 and the hopping tij ¼ tei
R

j

i
A⃗:d⃗l with A⃗

chosen so ∇ × A⃗ ¼ ẑB⊥, together describe the free part of
the Hamiltonian. The magnetic field introduces the length
scale l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh=eBÞ

p
, such that an area of 2πl2 is pierced by

one flux quantum. Since for B⊥ ¼ 1T; l ¼ 25 nm, it is
clear that l ≫ a, where a is the lattice spacing. Hð4Þ

int is a
four-fermi electron-electron interaction whose precise form
is unknown—we shall discuss specific forms for it below.
Continuum.—In this limit justified for l ≫ a, one

restricts attention to low-energy states near the K, K0

points, linearizing the band structure to Dirac equations
at each valley. Momentum conservation, when applied to
two-body interactions, forces the conservation of particle
number in the two valleys independently, leading to a U(1)
symmetry in the valley space [21]. An orbital B field is
introduced by minimal coupling into the Dirac equation,
leading to four copies (spin and valley) of a relativistic
Landau level spectrum. The interacting Hamiltonian pro-
jected into the ZLLs is

Hcont ¼ −EZ

X

α;k;s

sc†αkscαks þ
X

qμ

vμðqÞ∶ρμðqÞρμð−qÞ∶
2LxLy

ρμðqÞ ¼
X

k;s;α;β

e−ð
q2

4 þiqxðk−
qy
2 ÞÞl

2
c†αk−qysτ

αβ
μ cβks; ð2Þ

where cαks destroys an electron with spin s in valley α and y
momentum k, and τμ are Pauli matrices in the valley space.
We work in the Landau gauge A⃗ ¼ ð0; B⊥xÞ on an Lx × Ly
sample with periodic boundary conditions in y. Since the
valley and sublattice indices are tied in the ZLLs, no
sublattice index appears. The functions vμðqÞ are the

Fourier transforms of the effective interactions (in the
ZLLs) in the μ ¼ 0, x, y, and z valley channels (τ0 is
the unit matrix). The U(1) valley symmetry forces
vxðqÞ ¼ vyðqÞ. The phase diagram of Eq. (2) can be
calculated in the HF approximation with the averages
hc†αkscα0k0s0 i ¼ δkk0Δss0

αα0 preserves translation invariance up
to an intervalley coherence. Intervalley coherence signifies
incipient bond order, though to realize a bond-ordered state
breaking lattice translation symmetries requires physics
beyond the continuum model (as we explore below).
Building on previous work [21–23] assuming ultra-short-
range interactions in real space [vμðqÞ≡ vμ constant],
Kharitonov [24] found a comprehensive HF phase diagram
exhibiting four phases: canted antiferromagnetic [CAF,
characterized by the order parameter TrðτzσxΔÞ ≠ 0 and
TrðσzΔÞ < 2], fully polarized [F, characterized by
TrðσzΔÞ ¼ 2], charge-density-wave [CDW, characterized
by TrðτzΔÞ ≠ 0], and bond ordered [BO, characterized by
TrðτxΔÞ ≠ 0]. There is no coexistence of order parameters
in this model, and all transitions except for CAF to F are
first order. Experimental graphene samples are believed to
be in the CAF regime for purely perpendicular fields, which
needs vx ¼ vy < 0, and vz > jvxj. Kharitonov found in his
model that E"

Z ¼ jvxj=πl2, leading to the conclusion that
increasing EZ while keeping B⊥ fixed will eventually lead
to a fully polarized bulk state for EZ > E"

Z via a second-
order phase transition, consistent with experiment [20].
We now show that relaxing the ultra-short-range

assumption leads generically to coexistence between the
canted antiferromagnet and bond-ordered states near
their phase boundary in the ultra-short-range model.
While the functions vμðqÞ have an infinite number
of degrees of freedom, the ground state energy of any
translation-invariant HF state depends only on six coupling
constants; two specific numbers for each vμ: The Hartree
coupling gμ;H ¼ ½vμð0Þ=2πl2( and the Fock coupling gμ;F ¼R
½dq=ð2πÞ2(vμðqÞe−q

2l2=2. The assumption in previous
work [24] that the interactions remain short range on the
lattice scale a ≪ l even in the effective theory in the ZLLs
forces gμ;H ¼ gμ;F, and leads to the lack of coexistence in
the phase diagram [24].
In the regime of coupling constants of interest in real

graphene samples, where the ground states are CAF and/or
BO, we find that three of the couplings g0;H; g0;F; gz;H play
no role in selecting the ground state. We are left with just
three independent couplings gz;F; gxy;H; gxy;F. We assume
an ansatz for the two occupied orbitals that interpolates
between the CAF and the BO states [40].

jai ¼ 1ffiffiffi
2

p ðcajK ↑i − sajK↓iþ cajK0 ↑iþ sajK0↓iÞ; ð3Þ

jbi¼ 1ffiffiffi
2

p ð−cbjK ↑iþ sbjK↓iþ cbjK0 ↑iþ sbjK0↓iÞ; ð4Þ
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where cα ¼ cosðψα=2Þ and sα ¼ sinðψα=2Þ. The CAF state
corresponds to ψa ¼ ψb ¼ θ, the canting angle, and the BO
state corresponds to ψa ¼ 0, ψb ¼ π. In a generic state,
these two angles are independently minimized. We have
verified that this ansatz correctly describes the states of
interest by numerically carrying out iterative HF starting
from random “seed” Δ matrices. We find two necessary
conditions for coexistence: jgxy;Fj > jgxy;Hj and EZ > 0.
Figure 1 shows the order parameters for the BO, CAF, and
F states as a function of EZ for a particular choice of our
parameters. With this choice, the system starts in the BO
phase at zero EZ, undergoes a phase transition to a phase
with coexistence between BO and CAF for intermediate
EZ, goes through another transition to a pure CAF phase,
and finally to the F phase. All transitions are second order.
Figure 2 is a section of the phase diagram at constant
gxy;F ¼ −1, EZ ¼ 1, clearly showing that coexistence is
absent with the usual ultra-short-range assumption gxy;H ¼
gxy;F, but appears when gxy;H − gxy;F > 0. Evidently,
gxy;H − gxy;F determines the sign of the energy-energy
coupling between the two order parameters [41] in a
Landau theory of the phase transition.
In order for gμ;H to be significantly different from gμ;F

one needs the relevant function vμðqÞ to vary on the scale of
the magnetic length l in real-space and be nonmonotonic.
The Dirac-Landau quantization of energy levels, in combi-
nation with LL-mixing induced by the Coulomb interaction
[42], naturally introduces this scale into the effective
interactions. We show an explicit model calculation of
this effect in the Supplemental Material [43].

Lattice.—One logical approach to determine the effective
gμ;HðFÞ interactions in the ZLLs is through a renormaliza-
tion group calculation that starts from a microscopic model
and then taking the LL-mixing into account [42], includes
structure at all q. Carrying out this explicitly is difficult
and many simplifications have to be made: current RG
treatments [24] are restricted to the ultra-short-range
assumption (neglecting the q dependence), and do not
treat the discreteness of the Dirac-Landau levels. To capture
this crucial missing physics, we will proceed instead by
carrying out a lattice HF calculation for an explicit micro-
scopic model in the presence of an orbital flux (for the
noninteracting limit, see, for example, Refs. [44,45]) per
unit cell [46–53]. Since no projection to the low-energy
manifold is performed, all LL-mixing effects are automati-
cally included. Furthermore, lattice scale physics (C3

symmetry, reciprocal lattice vectors, etc) that plays an
important role in the bond order is kept fully, while it is
absent in the continuum.
We use

Hð4Þ
int ¼

U
2

X

i

ðniÞ2 − 2g
X

hiji
S⃗i · S⃗j; ð5Þ

where ni ¼
P

s c
†
iscis and S⃗i ¼ 1

2

P
s;s0 c

†
isσ⃗ss0cis0 . The first

term is the Hubbard interaction, and the second is a nearest-
neighbor Heisenberg spin exchange. We treat this model
in HF approximation allowing for translation symmetry
breaking [43].
As expected, the phase diagram we find is much richer

than that found in the continuum, with several different
types of magnetic order and bond order making their
appearance in different ranges of parameters. The full
phase diagram appears in the Supplemental Material
[43]. Here, we focus on the issue of interest, coexistence

FIG. 1. Order parameters obtained from our generalized HF
study of the continuum theory, Eq. (2) plotted as a function of the
Zeeman energy, EZ. We have chosen the interaction parameters
gz;F ¼ 0.1, gxy;H ¼ −0.75, and gxy;F ¼ −1. The bar at the bottom
shows the phase the system is in based on which orders have
condensed. For Ez ¼ 0 the system is in the BO (bond ordered)
phase. For Ez very large the system is in the (F) ferromagnetic
phase. Varying EZ between these limits, the system goes through
two intermediate phases, a canted antiferromagnet (CAF) without
and with bond order coexistent (CAFþ BO) (all three order
parameters are non-zero). All the transitions are continuous in our
HF theory.

FIG. 2. A section of the HF phase diagram obtained from our
continuum theory, Eq. (2). Coexistence between CAF and BO at
fixed EZ can be seen in a robust region. The plots are made for
gxy;F ¼ −1, Ez ¼ 1.0. Two necessary conditions for coexistence
are 0 > gxy;H > gxy;H and EZ > 0. The ultra-short-range result is
the dotted vertical line at gxy;H ¼ −1.
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of BO and CAF orders. Computational resources limit us to
a maximum q of 36, which corresponds to B⊥ much larger
than experimentally accessible fields. We circumvent this
shortcoming by extrapolating our data to the large-q limit,
which corresponds to experimentally realizable fields. The
extrapolated order parameters are shown in Fig. 3(a) for a
particular choice of couplings U, g. There are two distinct
phase transitions at EZ1 and EZ2 as EZ is increased. The
other two panels show how the extrapolation is done for
representative points in the CAF/BO coexistent phase (b),
and for the pure CAF phase (c). For EZ < EZ1, as shown in
Fig. 3(b), the order parameters of the CAF and BO both
saturate to nonzero values in the limit q → ∞. However,
for EZ1 < EZ < EZ2 [Fig. 3(c)] the bond order vanishes in
the continuum limit, while the CAF saturates to a non-
zero value.
Strikingly, this is the same sequence of phases with

increasing EZ as in the continuum. Even though the two
calculations approach the problem from opposite limits
they converge on the same generic nature of the coexistence
between CAF and BO. As anticipated, even thoughU and J
are ultra-short-range interactions, the LL-mixing inherent
in the full lattice calculation has succeeded in generating
structure in the effective vμðqÞ on the scale of l.
Discussion.—The coexistence of magnetism and bond

order we propose can reconcile disparate experiments
[26,28–30]. We theoretically find coexistence in two
independent ways: First, we find that HF studies on a
generic lattice model with short-range interactions Eq. (5)
finds evidence for a coexistence phase even when extrapo-
lated to the experimentally relevant weak field limit.
Second, in a HF study of the symmetry-allowed continuum
model restricted to the ZLLs, if the ultra-short-range
assumption of previous studies [22–24] is relaxed, the
same coexistence phase arises. One of the central ideas of
our Letter is that even if the microscopic interactions (other
than Coulomb) are short range on the lattice scale [such as
Eq. (5)], the effective interactions generated by RG in the
ZLLs will have nontrivial structure on the length scale l.

While such a computation is too complicated to implement,
we substantiate this argument by an RG calculation on a toy
model [43].
An important aspect of the experiment not in our study is

disorder. We generically expect disorder to enhance bond
order, though it will have other effects as well [54]. While
bond order breaks translational invariance spontaneously,
disorder breaks this symmetry explicitly, favoring the bond-
ordered state over the translation-invariant CAF state. Thus,
we can expect STM experiments to see bond order over a
wider range of EZ than we found theoretically. While
technically, based on the mapping to a random-field Ising
model [55–57], one may conclude that long-range bond
order is destroyed by disorder, this clearly does not have
implications for STM experiments, which measure the
local strength of bond-order.
The HF calculations we have used here are based on the

single Slater-determinant mean-field approximation. How
much are these results affected by quantum and thermal
fluctuations? At T ¼ 0, based on past experience in the
IQHE, deep within a phase, we expect quantum fluctua-
tions to reduce the order parameter but not destroy it
completely [24,32–35,37]. The nature of quantum phase
transitions can depend profoundly on fluctuation effects; a
study of these is exciting but beyond the scope of this work.
For T > 0 any order parameter that breaks a discrete
symmetry, such as CDW or BO, will continue to have
long-range order up to some critical temperature. The CAF
order parameter breaks a continuous symmetry at T ¼ 0,
and is forbidden from having long-range order for T > 0 by
the Mermin-Wagner theorem [58]. Instead, it will have a
phase with correlations decaying as a power law at low T,
with a Kosterlitz-Thouless transition [59,60] to a phase
with exponentially decaying correlations at a critical
temperature.
In summary, we have presented a possible resolution to a

seeming contradiction in the nature of the low-Zeeman
charge-neutral state of graphene in the quantum Hall
regime. By two complementary methods we find that

FIG. 3. Illustrative HF results for the lattice model defined by Eqs. (1) and (5). The numerical results are obtained on lattices with a
flux of 1=q quanta per unit cell and then extrapolated to the weak field regime (q → ∞). (a) The extrapolated order parameters for
g ¼ 0.3, U ¼ 3.5 as a function of EZ. Note that there are two phase transitions from zero to large Zeeman coupling, consistent with our
continuum result. The phases are labeled in the bottom bar. (b),(c) Examples of the extrapolations of the AFxy and BO order parameters
to the q → ∞ limit used to produce (a). For finite-q coexistence between magnetism and BO is ubiquitous, but the BO vanishes at
intermediate Zeeman as q → ∞, resulting in a pure CAF phase for EZ > 0.6.
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coexistence between CAF and BO orders is generic. From
the theoretical side, the neighborhood of the phase tran-
sition between the CAF and the BO phases in ν ¼ 0
graphene is interesting, because it may host an approximate
SO(5) symmetry [61,62] and field theories for this tran-
sition contain topological terms [63] which allow certain
excitations in either phase to carry the quantum numbers of
the other. These intriguing ideas provide further motivation
for future experimental and theoretical work on bond order
in ν ¼ 0 graphene.
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