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We study a quantum phase transition from a massless to massive Dirac fermion phase in a new two-
dimensional bipartite lattice model of electrons that is amenable to sign-free quantum Monte Carlo
simulations. Importantly, interactions in our model are not only invariant under SU(2) symmetries of spin
and charge like the Hubbard model, but they also preserve an Ising-like electron spin-charge flip symmetry.
From unbiased fermion bag Monte Carlo simulations with up to 2304 sites, we show that the massive
fermion phase spontaneously breaks this Ising symmetry, picking either antiferromagnetism or super-
conductivity, and that the transition at which both orders are simultaneously quantum critical belongs to a
new ‘chiral spin-charge symmetric” universality class. We explain our observations using effective
potential and renormalization group calculations within the framework of a continuum field theory.
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The study of graphene has triggered an avalanche of
interest in the physics of massless relativistic fermions in
two spatial dimensions, highlighting the connections
between condensed matter and high energy physics theory,
and the unity of physics across disparate energy scales
[1-5]. While the simplest models of graphene result in
massless Dirac fermions, a basic question that has been
scrutinized heavily is how and when these low energy
excitations can develop a mass gap [6-8]. Of particular
interest in this Letter is the situation when strong electron-
electron interaction drives the mass generation. The most
common mechanism is through spontaneous symmetry
breaking in which the order parameter couples to a mass
term in the Dirac equation. Examples include the formation
of Néel order [9,10] or a valence bond solid [11,12].
Typically the critical point between the massless Dirac
phase and the symmetry broken state is described by some
Gross-Neveu-Yukawa (GNY) field theory [13] (see, how-
ever, [14-16]).

The simplest route to the two-dimensional massless Dirac
equation on a lattice is through the hopping of electrons,

HO = _Ztij(cj.acja + C;acia)7 (1)
(i,j)a

with an appropriately chosen t;;, where c;, destroys an
electron on lattice site i with spin @ =1, |. In this Letter
we study the hopping matrix elements 7;; with a two-
dimensional bipartite structure that preserves particle-hole
symmetry and is independent of the electron spins. At low
energies the electronic structure of such a model is described
by spin degenerate (N, =2) four-component massless
Dirac fermions. The most celebrated example of such a
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model is nearest-neighbor hopping on a honeycomb lattice
with 7;; =1, which is a basic model for the electronic
structure of graphene [1]. Another popular example is a
square lattice with nearest-neighbor hoppings #;; = tn;;,
where the phases 7;; realize a 7 flux on each fundamental
plaquette [17]. To obtain a z flux on a square lattice, we can
choose 1, iy, = 1 and;;., = (—1)*, where ¢, and e, are
the unit vectors in the x and y direction, and i, is the x
component of i.

In addition to the usual lattice symmetries and time
reversal, H possesses certain internal symmetries that will
play a central role in our work. Most well known is the
SU(2), spin rotational symmetry, which is generated by
S 1.

S; = 3¢j,04p¢i5. The model also has what is by now a well-
known “hidden” SU(2),. charge symmetry [ 18], which is gen-
erated by Ci:%[Ci(CZTTC,-Ti“‘Ciicm),—iCi(C;TClTi—Ciwm)’
chc,-T—l—clTic,»i—l], with {; = £1 depending on the A and
B sublattices and i = v/—1. Finally, H, has an additional Z}¢
spin-charge flip symmetry under which ¢;) — ¢ l-ch,
Cip H> CjT, and the generators of spin and charge rotations
are interchanged, S; <> C;. The SU(2), x SU(2), x zy
symmetries can be combined into an O(4) symmetry (see
Supplemental Material [19]). This O(4) symmetry is most
manifest when the hopping Hamiltonian is rewritten in terms
of real “Majorana” modes y¢, with a =1, 2, 3, 4, and y¢
transforming in the vector representation of O(4), the hopping
taking the form Ho = > _; 4,(i/2)t;v{vs.

Most often electron-electron interactions are added to
Eg. (1) by the Hubbard-U term, Hy=UY_;(n;y —3)(n; —%).
This term preserves the SU(2), and SU(2), symmetries, but
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being odd under the Z5¢ acts like an Ising magnetic field that
breaks the spin-charge flip symmetry. It is well known that
repulsive-U interactions favor an antiferromagnetic “spin”

order parameter (;’;S, and attractive U favors a combined
charge-density wave (CDW)-superconducting ‘“charge”

order parameter J)C. We can understand how these orders
couple to the fermions in a simple mean-field model,
Hyr = Ho + 22 Ci(gi - Si+ i -Ci). For U>0, ¢" #0
but ¢° = 0 (and vice versa for U < 0). Since H,, realizes a
2 4 1-dimensional Dirac dispersion, long range order sets
in at a finite-|U| phase transition which is described by the
so-called “chiral-Heisenberg” GNY fixed point that has
been the subject of intense numerical [20-23] and field
theoretic studies [24—27]. In this Letter we look into the
nature of the quantum critical phenomena when we add
electron-electron interactions to Eq. (1) that preserve the
full O(4) symmetry of the hopping problem, including the
crucial Z5¢ symmetry, which is absent in the usual Hubbard
formulation.

Clearly the full O(4) symmetry of Eq. (1) will be preserved
if we add interactions that depend only on Za(cjac ja T

c;ac io) With £, j on opposite sublattices. To this end we focus
on a sign-problem-free “designer Hamiltonian™ (in natural

units) which satisfies this criterion,

He == exp 1y 3 (cecia )}

(i.j) a=1.)

Our model may be viewed as an interacting Hubbard-like
model (identical Hilbert space) but with spin-charge flip
symmetry present. Note that our model can be written as a
sum of terms defined on bonds of the lattice that consist of
fermion bilinears and four-, six- and eight-fermion inter-
actions (but no higher order terms) [19]. For x < 1 the
fermion bilinear terms reproduce Eq. (1) with 7;; = k#;;, and
since fermion interactions are perturbatively irrelevant at the
massless fixed point, the semimetal phase must emerge at
k < 1. Fork > 1, we show using numerical simulations that
the Dirac fermions acquire a mass, but because of the spin-

charge flip symmetry both ¢' and ¢° are degenerate and the
system breaks the Z3° symmetry by picking one of the two
ground states. We present numerical evidence below that the
phase transition between Dirac semimetal and spin-charge
flip broken phase is continuous and in a new universality in
which both order parameters are simultaneously quantum
critical. We note that other models preserving the spin-charge
flip symmetry include a four-fermion model [19,28] and
various fermion-boson models [29,30], although they do not
harbor the new critical point.

Our designer Hamiltonian Eq. (2) was chosen because
we can adapt a fermion bag quantum Monte Carlo (QMC)
algorithm to study it [31,32]. By renormalization group
(RG) arguments, Eq. (2) spin-charge is expected to capture
universal aspects of the new quantum critical point [33].

The fermion bag algorithm is applicable to all Hamiltonians
that are made up of only local terms whose fermionic
degrees of freedom are exponentiated bilinears. While
this is a limited family of systems, the algorithm is very
efficient within its scope of applicability [31]. We expand
the partition function Z = tre™sc/T as Z =", [[dz] x
(=1)*Tr[Hgc(7y) - - Hse(12)Hge(71)]. Here the notation
| |dz] denotes time-ordered integration for times 1/7 >
T, >--- 217y >171 >0. The expansion can be derived
from the continuous-time interaction representation where
Hy =0 and H;,; = Hyc [34-39], and also resembles the
stochastic series expansion [40,41]. The algorithm then
involves exploring a configuration space made up of the
terms in the expansion and makes use of locality to
compute transition probabilities as small determinants
[31,32]. With two spin species, it is immediately evident
that there is no sign problem in the expansion, because
every term in the sum is the square of a real number.
However, we note that even in models of the form Eq. (2)
but with an odd number of flavors there is still no sign
problem [42-45]. We compute two correlation functions of
order parameters,

CS - 2<SZ S% >,

in iy CU = <uzzouzzl>’ (3)
where Cg measures the Néel order through the antiferro-
magnetic spin order parameter S; and Cp measures the
breaking of the spin-charge symmetry through the order
parameter U; = (n;s —1)(n;, — 1), which is a four-fermion
operator that is odd under Z3°, but invariant under
SU2); xSU(2).. In Eq. (3), ip=(0,0) and i =
(L/2,0) and we assume L/2 is even. We work at a finite
inverse temperature 1/7 = L and for numerical conven-
ience we henceforth work with the tuning parameter g =
2 tanh(x/2) instead of x (see Supplemental Material [19]).

We first investigate the nature of the massive phase in our
lattice model Hgc, using the QMC method described
above. We work at a coupling g = 1.6, which is deep in
the massive phase. As shown in Fig. 1, we find a finite
value of Cy in the thermodynamic limit, which indicates
that the Ising symmetry Z5° is spontaneously broken.
Further we find that Cg also scales to a finite value in
the thermodynamic limit, which implies Néel order.
Together we interpret this to imply that the system has
to spontaneously choose between the charge and the spin
sector, breaking Z5¢, and forming either a Néel state or a
superconductor-CDW state which breaks the correspond-
ing SU(2) symmetry. Next, using QMC we study the nature
of the phase transition between the Dirac semimetal and the
massive phase. Figure 2 shows the data for Cg as a function
of system size L. For large values of L, there is clear
evidence that Cg converges to a nonzero constant at the
coupling g = 1.6 (massive phase), while it scales to zero at
the coupling g = 1.48 (Dirac semimetal). A good fit to
the power-law C, = 0.67/L>> for 12 < L <48 with a

117202-2



PHYSICAL REVIEW LETTERS 128, 117202 (2022)

.CS
.CU

0 Il Il Il Il
0.00 0.02 0.04 0.06 0.08
1/L

FIG. 1. Characterization of the massive phase from QMC and
field theory. Finite size scaling data for Cg and Cy using the
fermion bag QMC method for a coupling constant g = 1.6. Both
correlation functions scale to a finite value in the thermodynamic
limit, indicating that the system breaks the Z3° Ising symmetry as
well as the SU(2) symmetry of spin and charge. Inset: effective
potential for ¢% and ¢%, with (ZM = (0,0, ¢ .), when these order
parameters are coupled to free massless Dirac fermions using the
Yukawa coupling (4). Since the minimum of the potential is along
the x and y axes, we conclude that the system condenses either g?)s
or (7% but not both, consistent with our interpretation of the QMC
correlation functions.

x*> = 0.95 is found at the coupling g = 1.52 as expected
at a quantum critical point. A multiparameter scaling fit
of all our data except for L =12, to the form Cg=
L= f[(g=ge)L'¥] with f(x) = fo+f1x+ f2x> + f3°,
yields 7 =1.38(6), v=0.78(7), g.=1.514(8), fo=
0.96(15), f; =0.073(26), f, =0.0012(43), and f3 =
0.0026(32) with a y?> = 1.25. Interestingly, the large value
of 1 clearly establishes that this criticality is not captured by
the chiral-Heisenberg theory. We note that # > 1 although
uncommon has been observed at certain critical points
previously [26,46,47]. In the inset of Fig. 2 we show the
scaling collapse of these data using the functional form of
the multiparameter fit, providing strong evidence for a
continuous quantum critical point.

To capture this observed phenomena, we formulate a
field theory in the Euclidean space-time Lagrangian picture
[19] in terms of the continuum fields that are expected to
appear as long distance fluctuations near the critical point.
These are eight-component fermion fields v, y which are
acted upon by tensor products of 4 x 4 Dirac matrices y*
and a spin Pauli matrix . In terms of these fields, the
spin and charge order parameter densities are given by

10°2F

1.60
1.56

FIG.2. Cgasafunction of L on alog-log scale up to L = 48 for
various values of g. For large values of L we find that Cg decays
to zero when g = 1.48, while it saturates to a constant when
g = 1.60, with a phase transition around g.~ 1.52 where the
data fits to Cy =~ 0.67/L>? (straight line in the plot). The inset
shows that all of the data (after dropping L = 12) collapse to the
universal scaling function discussed in the text with 7 = 1.38(6),
v=0.78(7), and g, = 1.514(8), providing compelling evidence
for a quantum critical point.

My = W05 and M. = [w ]y s+ ] iy ]y Owy—
@170 ). oy + @y ). Then we can write down the
following Yukawa-like Lagrangian density:

EY = _l/_/(lyﬂaﬂl//{l + gs¢.\' : Ms + gc¢c : Mc’ (4)

where the first term is the free Dirac theory and the second
term describes the interactions of the fermionic fields with

critical bosonic fields Jﬁs and (;56 that describe the fluctua-
tions of the antiferromagnetic and CDW-superconducting
order parameters. In addition to these terms involving the
fermionic fields, we supplement our theory with the kinetic
terms and self-interactions of the bosonic fields,

1= = 1, - 1 - =
ﬁB = Z (§8ﬂ¢a ! 8”450 +§mg¢a '¢a +m/1a(¢a : ¢a)2>

+%A§L($V $s)((zc (ZL) (5)

The first line in the above equation is the usual O(3) ¢*
model for spin and charge sectors. The second line
describes a quartic interaction between the spin and charge
bosonic fields that is allowed by symmetry. Previous
studies of multicomponent field theories with fermions
have not considered the above model [48-52].
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The Euclidean Lagrangian density Ly + Lp is expected
to describe the critical phenomena in our model. This
theory is symmetric under SU(2), and SU(2),; to impose
the Z5° we need to require, in addition, g; = g., 4, = 4.,
and m; = m,. Then this continuum theory possesses the
full O(4) symmetry of our lattice Hamiltonian, and a
thorough analysis of all the Yukawa couplings that are
allowed by this O(4) symmetry can be found in [53]. When
my . are large, the bosons will be gapped and we expect a
fixed point with massless Dirac particles, which we identify
with the semimetal phase in our lattice model. As m . is
lowered we expect the bosons to condense, resulting in a
massive phase. Interestingly, in this phase the Dirac

fermions mediate an interaction between the ¢, . order
parameters. To obtain the effective potential, we assume the
condensed bosonic fields are constant in space-time, then

we use the O(3) symmetry to rotate (Z)S‘C fields so they point
in the z direction. In this basis, the 1 electrons feel a mass
¢t = @i + @5 and | electrons experience ¢~ = @3 — @3,
Integrating out the fermions creates an identical effective
potential for ¢*, which means in the massive phase ¢*
condense to the same magnitude but differ at most by a sign
(which is determined spontaneously). In the ¢7 ; language
this implies that, in the massive phase in the presence of
Z5°, the system spontaneously chooses to condense one of

<Zs,c and leave the other uncondensed. This is a remarkable

mechanism of repulsion between the (Es and 4;6 that is
generated by the interaction with fermions. The result of an
explicit calculation [19] of the effective potential from the
fermion determinant is plotted in the inset of Fig. 1,
confirming the nature of the massive phase. If g, # g,
the Ising symmetry would be broken, the minima would not
be degenerate, and the system would then favor the spin
(charge) sector as happens in the repulsive (attractive)
Hubbard model.

Since all the nonlinear couplings 4, 4., 4., g, and g,
become marginal in four dimensions, we can study the
critical region of Ly + Ly using the perturbative RG in
4 — ¢ dimensions. We have obtained identical one-loop
flow equations using both dimensional regularization with
minimal subtraction [54] and a soft cutoff method [55] for
the massless theory [19],

dg? :ng—i[@N +1)g5 + 9932,
dlogt ~ 7° 82t s e

di I /11 1
S — el ——— (=2 4+ =22 + 4N 22, — 24N g* ),
legbﬂ A 871'2 <6 S +2 sC + ng K fgs>

d 1 {5 2
= ¢l Q.2 |:_ (ﬂs + ﬂc)/lsc + _)'%c

dlog¢ % 8226 3

2
9 Ase

20

As =
- /y/ 0
SC =2
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FIG. 3. Renormalization group flows of the couplings in the
massless Ly + L theory close to four dimensions. Left: the one-
loop flow of the Yukawa coupling g, g. are independent of the 1
and are shown. In addition to the unstable Gaussian fixed point
(G) there are two chiral-Heisenberg fixed points corresponding to
the transition from semimetal to Néel (S) and semimetal to CDW-
superconductor (C). In addition there is a new fixed point (SC),
which captures the chiral spin-charge symmetric universality, the
focus of our study. In models with Z5¢ symmetry like Hgc of
Eq. (2), the flow is restricted to the diagonal g = g2 line,
ensuring the stability of the SC fixed point and the inaccessibility
of S and C in such spin-charge symmetric models. As expected,
the SC fixed point is unstable to breaking of Z5°. Right: flow of
the boson self interactions in the spin-charge symmetric sector
with g, and g, fixed at their spin-charge symmetric fixed point
values (SC). Together these graphs show that the SC fixed point is
stable in the spin-charge symmetric sector and can hence be
reached by tuning just one parameter, the mass of the boson.
Being the only such fixed point, this qualifies SC as the universal
theory of the quantum critical point found in our numerical work.

The flow equations for g2 and 1. can be obtained by
exchanging the s and ¢ subscripts using spin-charge flip
symmetry. We now study the fixed points of these flow
equations. We note that we can choose N, in different
ways: in 2 + 1 dimensions, our case of interest, N r= 2;0n
the other hand, our lattice model when extended to 3 + 1
dimensions would give Ny = 4. An ¢ expansion with either
choice can be formulated and does not affect our main
conclusions, except for quantitative estimates for the
critical exponents. We proceed with N, = 2. Since the
gs.c equation does not involve the quartic boson inter-
actions, we can solve them separately. The Yukawa flow
equations have four zeros in (gy, g.): (0,0) is the unstable
Gaussian fixed point G, (7%, 37%) is a spin-charge
symmetric fixed point (SC), and (O, %7[28) (S) and
(27%¢,0) (C) are chiral-Heisenberg fixed points, as shown
in Fig. 3. We now ask whether there is a stable spin-charge
symmetric fixed point in the bosonic sector when g, . are
evaluated at the SC values. Indeed, with this evaluation,
there are four bosonic fixed points as shown in Fig. 3, but
only one is stable, providing us with a unique fixed point
that captures the universal aspects of the quantum critical
point in our lattice model.
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By studying the renormalization of the field strength and
boson mass, we can compute the critical exponents 7 and v.
The critical exponents at leading order in € are [19], n = %e,
ny =136 1 =2—5¢e. We note that the quantitative agree-
ment for these exponents between the one-loop ¢ expansion
and the numerical data is not great. But such discrepancy
has been seen in other GNY type theories and can be
attributed in part to the large value of 7.
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