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Abstract. We consider the high-dimensional linear regression model and assume that a fraction of the measurements are

altered by an adversary with complete knowledge of the data and the underlying distribution. We are interested

in a scenario where dense additive noise is heavy-tailed while the measurement vectors follow a sub-Gaussian

distribution. Within this framework, we establish minimax lower bounds for the performance of an arbitrary

estimator that depend on the the fraction of corrupted observations as well as the tail behavior of the additive

noise. Moreover, we design a modification of the so-called Square-Root Slope estimator with several desirable

features: (a) it is provably robust to adversarial contamination, and satisfies performance guarantees in the

form of sub-Gaussian deviation inequalities that match the lower error bounds, up to logarithmic factors; (b)

it is fully adaptive with respect to the unknown sparsity level and the variance of the additive noise, and (c)

it is computationally tractable as a solution of a convex optimization problem. To analyze performance of the

proposed estimator, we prove several properties of matrices with sub-Gaussian rows that may be of independent

interest.
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1. Introduction. Robust statistics, broadly speaking, is an arsenal of estimation and inference

techniques that are resistant to model perturbations. Data generated from a perturbed model will

often contain atypical observations, commonly referred to as outliers. This paper is devoted to robust

estimation in the context of high-dimensional sparse linear regression. Assume that a sequence of

random pairs (X1,y1), . . . ,(Xn,yn) is generated according to the model

yi = XT
i β ∗+

√
nθ ∗

i +σξi, i = 1, . . . ,n.

Here, each yi ∈ R is a linear measurements of an unknown vector β ∗ ∈ R
p that has s non-zero coordi-

nates. The measurement vectors Xi ∈ R
p, j = 1, . . . ,n are independently sampled from a distribution

with unknown covariance matrix Σ. We assume that the measurements yi are contaminated by the

noise σξi where σ > 0 and ξ1, . . . ,ξn are i.i.d. random variables with unit variance, independent

from X1, . . . ,Xn. Finally, the adversarial noise is modeled by the additive term
√

nθ ∗
i

1, where the se-

quence θ ∗
1 , . . . ,θ

∗
n has o < n non-zero elements and is generated by an adversary who has access to

{(yi,Xi,ξi)}n
i=1,β

∗, σ , as well as the joint distribution of all random variables involved. We are inter-

ested in the situation when (a) when p is possibly much larger than n but s is smaller than n, and (b) the

random variables {ξi}n
i=1 are possibly heavy-tailed, distributed according to a law with polynomially

decaying tails.

The well-known Lasso estimator [30], as well as its sibling, the Dantzig selector [5], provably

achieve strong performance guarantees in the sparse prediction and estimation tasks. For example, the
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Lasso estimator is the solution to the following optimization problem:

β̃ = argmin
β∈Rp

[
1

n

n

∑
j=1

(y j −XT
j β )2 +λ∥β∥1

]

where λ > 0 is the regularization parameter and ∥ · ∥p stands for the ℓp norm of a vector, p ≥ 1. It

is known that theoretically optimal value of the parameter λ is proportional to σ

√
log(ep/s)

n
[1, 22], in

particular, it depends on the unknown variance of the noise as well as the unknown sparsity level s. In

addition, the Lasso estimator β̃ is not robust to the presence of gross outliers, i.e. the norm ∥β ∗− β̃∥2

can be arbitrarily large if θ ∗ has just 1 non-zero element that can take arbitrary values. In this paper,

we propose robust version of the pivotal Slope (“Sorted ℓ-One Penalized Estimation”) algorithm [10]

that is provably robust to the heavy-tailed additive noise and the adversarial corruption; moreover, it

is tuning-free. The proposed estimator combines the ideas behind the original Slope algorithm [4]

that eliminates dependence of the optimal choice of λ on the sparsity level s, the square-root Lasso

[2] that allows to set λ independently of the noise variance σ2, and moreover takes advantage of the

robustness stemming from connections between the Huber’s loss and the ℓ1 - penalized squared loss

[25, 14]. Specifically, we prove that the estimator β̂ produced by robust pivotal Slope and formally

defined via (2) below admits the following performance guarantees under suitable assumptions on the

covariance matrix Σ of the design vectors:

(a) If both the design vectors X j and the noise variables ξ j, j = 1, . . . ,n have sub-Gaussian distri-

butions, then

∥β̂ −β ∗∥2
Σ ≲ σ2

(
s log(ep/s)

n
+

(
o log(n/o)

n

)2

+
log(1/δ )

n

)

with probability at least 1−δ , where ≲ denotes the inequality up to an absolute constant and

∥x∥2
Σ := ⟨Σx,x⟩. In particular, the upper bound is minimax optimal with respect to sparsity

level s and the number of outliers o.

(b) If X j’s are sub-Gaussian but ξ j’s are heavy tailed, meaning that E(|ξ |τ) < ∞ for some τ ≥ 4,

and in the absence of adversarial contamination (i.e. θ ∗ ≡ 0),

∥β̂ −β ∗∥2
Σ ≲ σ2

(
s log(ep/s)

n
+

log(1/δ )

n

)

with probability at least 1− δ . In other words, ∥β̂ − β ∗∥Σ admits sub-Gaussian deviation

guarantees despite the fact that the noise is allowed to be heavy-tailed.

(c) Finally, if E(|ξ |τ) < ∞ for some τ ≥ 2 and s log(p/s)+ log(1/δ )+ o ≲ n, a version of the

proposed estimator satisfies

∥β̂ −β ∗∥2
Σ ≲ σ2

(
s log(ep/s)

n

+
(o

n

)2−2/τ
log
(n

o

)(
1+

(
o

log(1/δ )

)2/τ
)
+

log(1/δ )

n

)
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with probability at least 1− δ . It implies that whenever log(1/δ ) ≳ o, the upper bound de-

pends optimally (up to a logarithmic factor) on the number of adversarial outliers, as well as

on the sparsity level s. Note that ∥β̂ −β ∗∥Σ admits sub-Gaussian deviation guarantees in this

case as well.

1.1. Structure of the paper. The rest of the exposition is organized as follows: notation and

key definitions are summarized in section 1.2. In section 2, we explain the main ideas leading to the

definition of the pivotal Slope estimator and state the theoretical guarantees related to its performance,

along with the information-theoretic lower bounds. This is followed by a discussion and comparison

to existing results in section 3. Finally, the proofs of the main results are presented in the appendix.

1.2. Notation. Absolute constants that do not depend on any parameters of the problem are

going to be denoted by C,C′,C1, etc as well as c,c′,c1, with the convention that capital C stands for

“a sufficiently large absolute constant” while the lower case c is a synonym of “a sufficiently small

absolute constant”. It is assumed that C and c can denote different absolute constants in different parts

of the expression. For a,b ∈ R, let a∨b := max{a,b} and a∧b := min{a,b}.

Given a vector v∈R
p, we denote its ℓ1 and ℓ2- norms via ∥v∥1 :=∑

p
i=1 |vi| and ∥v∥2 :=

√
∑

p
i=1 |vi|2

respectively. If Σ ∈ R
p×p is a symmetric positive-definite matrix, we define ∥v∥Σ := ⟨Σv,v⟩1/2

. Given

two vectors u ∈ R
n and v ∈ R

p, let [u;v] ∈ R
n ×R

p be the (p+ n)-dimensional vector created by the

vertical concatenation of u and v. Let γ1 ≥ γ2 ≥ . . . ≥ γp ≥ 0 be a non-increasing sequence. The

corresponding sorted ℓ1 norm is defined as

∥v∥γ :=
p

∑
i=1

γi|v|(i),

where |v|(i) is the i-th largest coordinate of the vector (|v|1, . . . , |v|p); the fact that this is indeed a norm

is established in [4, Proposition 1.2].

Capital S and O will be reserved for the supports of vectors β ∗ and θ ∗, the subsets of {1, . . . , p}
and {1, . . . ,n} respectively that contain the indices of non-zero coordinates of these vectors. We will

also set s = |S| := Card(S) and o = |O| := Card(O).

2. Main results. Recall that we observe n random pairs of predictor-response values(
X1,y1

)
, . . . ,

(
Xn,yn

)
∈ R

p ×R that are assumed to be generated according to the model

yi = XT
i β ∗+

√
nθ ∗

i +σξi, i = 1, . . . ,n.

Alternatively,

Y = Xβ ∗+
√

nθ ∗+σξ ,

where X = [X1, . . . ,Xn]
T is the n × p design matrix, Y = (y1, . . . ,yn)

T
is the response vector, ξ =

(ξ1, . . . ,ξn)
T

is the additive noise vector and θ ∗ = (θ ∗
1 , . . . ,θ

∗
n )

T
is the vector of adversarial outliers.

Remark 2.1. The
√

n factor in front of θ ∗ is introduced for technical convenience: with this scal-

ing, the columns of the augmented design matrix [X |√nIn], where In is n× n identity matrix, are of

similar length.
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Let us now define the robust pivotal Slope estimator. To this end, set

Q(β ,θ) :=
1

2n

n

∑
j=1

(y j −XT
j β −

√
nθ j)

2 =
1

2n

∥∥Y −Xβ −
√

nθ
∥∥2

2
,

and let

L(β ,θ) = Q(β ,θ)
1
2 +∥β∥λ +∥θ∥µ

for some positive non-increasing sequences {λ j}p
j=1, {µ}p

j=1. The pivotal Slope estimator β̂ of β ∗ is

then defined via the solution of a convex minimization problem

(β̂ , θ̂) = argmin
β∈Rp,θ∈Rn

L(β ,θ).

The estimator in (2) can be seen as a generalization of the square-root Slope estimator (see [28, 10]).

The idea of introducing the square root of the quadratic term
√

Q(β ,θ), as opposed to Q(β ,θ) itself,

was originally developed in [2] for the Lasso estimator with the goal of removing the dependence of

the regularization parameters on unknown σ , while retaining the convexity of the loss function. Note

that estimator (2) is equivalent to the argmin over β ∈ R
p, θ ∈ R

n and σ > 0 of the loss function

L̃(β ,θ ,σ) =
Q(β ,θ)

σ
+σ +∥β∥λ +∥θ∥µ ,

provided that the minimum is attained at a positive value of σ (see [31, Chapter 3]). Indeed, the term

Q(β ,θ)
1
2 in (2) appears when one performs minimization of L̃(β ,θ ,σ) with respect to σ > 0 first,

and the optimal value of σ can be viewed as an estimator of the unknown standard deviation of the

noise. The couple (β̂ , θ̂) can in turn be viewed as the usual square root Slope estimator for the vector

[β ∗;θ ∗] of unknown regression coefficients corresponding the augmented design matrix [X ; In]. This

is a natural approach since both β ∗ and θ ∗ are sparse vectors.

In the following subsections, we will show that the estimator defined in (2) achieves the optimal

error bound under suitable choices of the sequences (λ )p and (µ)n. To this end, we will need the

following assumptions:

Assumption 1. ξi’s are i.i.d. random variables with distribution Pξ in Pτ,a for some τ ≥ 2 with

E(ξi) = 0 and Var(ξi) = 1, where

Pτ,a = {Pξ such that E(|ξ |τ)≤ aτ}.

When τ = ∞, we instead impose the condition Pr(|ξ | ≥ t)≤ 2exp(−(t/a)2). We will also assume that

τ or its lower bound is known and that a is bounded by a sufficiently large numerical constant.

Assumption 2. Assume that ξ satisfies a “small ball-type” condition, namely

E(ξ 2
1{|ξ | ≤ 1/2})≥ 1/4.

The “small ball” property and related conditions essentially state that the distribution of ξ assigns suf-

ficient probability to the neighborhood of 0. It turns out to be a convenient and rather mild assumption
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that allows one to control lower tails of sums of independent random variables. The specific choice

of the constants 1/2 and 1/4 is not of essence, as any other choice of absolute constants would yield

similar results. It is well known [for example, see section 4 in 20] that ξ satisfies this type of bounds

for some positive constants in place if 1/2 and 1/4 if for some τ > 2 and c(τ),

(E|ξ |τ)1/τ ≤ c(τ)
(
Eξ 2

)1/2
.

More specifically, to deduce the “small ball-type” bound, it suffices to write that Eξ 2 = E(ξ 2
1{|ξ | ≤

C})+E(ξ 2
1{|ξ |>C}), followed by the application of Hölder’s inequality and the relation (2).

Assumption 3. For i = 1, . . . ,n Xi = Σ1/2Yi for some (unknown) matrix Σ satisfying Σii ≤ 1 and

Y1, . . . ,Yn are i.i.d. centered 1-sub-Gaussian random vectors such that E(Y1Y⊤
1 ) = In . Here, “1-sub-

Gaussian” means that Eeλ ⟨Y1,v⟩ ≤ eλ 2 ∥v∥2
2

2 for any v ∈ R
p.

We will also need to introduce the following objects:

• Define the cone

C (s,c0) =

{
u ∈ R

p : ∥u∥λ ≤ c0

√
s

∑
i=1

λ 2
i ∥u∥2

}
.

This is a set of vectors with s largest coordinates that “dominate” the remaining ones, in a

sense made precise above. We will assume that the covariance matrix Σ satisfies the following

version of the restricted eigenvalue condition: for any u ∈ C (s,4),

∥u∥2
Σ ≥ κ(s)∥u∥2

2.

In particular, if Σ is non-degenerate, then it is always true that

κ(s)≥ λmin(Σ)> 0.

• We will also be interested in a similar cone in the augmented space Rp×R
n that is defined via

C (s,c0,o,δ ,Σ) =
{
(u,v) ∈ R

p ×R
n : ∥u∥λ +∥v∥µ

≤ c0



√

∑
s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
∥u∥Σ +

√
o

∑
i=1

µ2
i ∥v∥2





 .

• Finally, define the sequence

λi =C

√
log(ep/i)

n
, i = 1, . . . , p,

where C is a sufficiently large absolute constant. We will use the ordered ∥ · ∥λ norm corre-

sponding to this sequence.
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2.1. Upper error bounds. Depending on the value of the parameter τ controlling the tails of the

additive noise ξ , we will need to set the sequence (µn)n differently (recall that τ , or its lower bound,

is assumed to be known). Specifically, let

µi =
C√

n

(n

i

)1/τ
, i = 1, . . . ,n

and

µi =C

√
log(en/i)

n
, i = 1, . . . ,n

for τ = ∞. Solution of the minimization problem (2) corresponding to this choice of penalization will

be denoted via β̂sorted. Similarly, given 0 < δ < 1, we denote by β̂fixed the solution of (2) corresponding

to

µi =
C√

n

(
n

log(1/δ )

)1/τ

, i = 1, . . . ,n.

Observe that both estimators β̂sorted and β̂fixed are fully adaptive, the only requirement being the prior

knowledge of τ . In addition, notice that β̂fixed requires the desired confidence level δ as an input while

β̂sorted does not.

Theorem 2.1. Assume that τ ≥ 2 and that assumptions 1, 2 and 3 hold. There exist abso-

lute positive constants c,C′ with the following properties: let 0 < δ < 1 be fixed, and assume that

s log(p/s)/κ(s)+ log(1/δ )+o ≤ cn. Then with probability at least 1−δ ,

∥β̂fixed −β ∗∥2
Σ ≤C′σ2

(
s log(ep/s)

κ(s)n
+
(o

n

)2−2/τ
log(n/o)

(
1+

(
o

log(1/δ )

)2/τ
)
+

log(1/δ )

n

)
.

It follows from Theorem 2.3 stated below that the bound (2.1) is minimax optimal with respect to the

contamination proportion o
n
, up to the logarithmic factors, as long as log(1/δ ) ≥ o. Note that similar

types of conditions have appeared in the context of robust regression for methods based on the median

of means estimator [17]. In general, the condition log(1/δ ) ≥ o is also required for robust mean

estimation for instance using the trimmed mean [19] or self-normalized sums [21]. Finally, observe

that (2.1) is meaningful, although sub-optimal, even when o ≫ log(1/δ ).

Theorem 2.2. Assume that τ > 2 and that assumptions 1,2 and 3 hold. There exist absolute

positive constants c,C′ with the following properties: for any δ such that s log(p/s)/κ(s)+ log(1/δ )+
o ≤ cn, the inequality

∥β̂sorted −β ∗∥2
Σ ≤C′σ2

(
s log(ep/s)

κ(s)n
+
(o

n

)2−4/τ
+

(
log(1/δ )

n

)2−4/τ

+
log(1/δ )

n

)

holds with probability at least 1−δ . In particular, when the noise ξ has sub-Gaussian distribution,

∥β̂sorted −β ∗∥2
Σ ≤C′σ2

(
s log(ep/s)

κ(s)n
+

(
o log(n/o)

n

)2

+
log(1/δ )

n

)
.
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For τ = ∞, the bound implied by the inequality (2.2) is minimax optimal up to the logarithmic

factors. However, it is sub-optimal for τ < ∞. Interestingly, the bound holds uniformly over the range

confidence levels e−cn < δ < 1 for the fixed choice of the regularization sequences {λi} and {µi}.

In the special case where o = 0 (no adversarial corruption) and τ ≥ 4, inequality (2.2) yields a sub-

Gaussian deviation bound with optimal dependence on the sparsity level s, despite the fact that the

noise can be heavy-tailed.

2.2. Lower error bounds. It is well known [e.g. see 1] that in the absence of adversarial

contamination and with Σ = Ip,

inf
β̂

sup
|β |0≤s

Pr

(
∥X(β̂ −β )∥2

2/n ≥C′σ2 s log(ep/s)

n

)
≥ c

for some positive constants c,C′. In the Huber’s contamination framework coupled with the assump-

tion that the additive noise ξ is Gaussian, results in [7] yield that no estimator can achieve the error

smaller than C′σ2
(

s log(ep/s)
n

+
(

o
n

)2
)

; of course, this lower bound is also valid for the adversarial

contamination model. However, we could not find readily available lower bounds for the noise distri-

butions beyond Gaussian. The following result gives an answer in this case.

Theorem 2.3. Assume that at least one of the columns of X belongs to {−1,1}n. Then

inf
β̂

sup
|β |0≤s

sup
|θ |0≤o

sup
σ>0

sup
Pξ∈Pτ,1

Pr(β ,θ ,σ ,Pξ )

(
∥X(β̂ −β )∥2/n ≥Cσ2

(o

n

)2−2/τ
)
≥ c,

for some C,c > 0 where the infimum is taken over all measurable estimators. For sub-Gaussian noise

the inequality takes the form

inf
β̂

sup
|β |0≤s

sup
|θ |0≤o

sup
σ>0

sup
Pξ∈P∞,1

Pr(β ,θ ,σ ,Pξ )

(
∥X(β̂ −β )∥2/n ≥Cσ2

(o

n

)2

log(n/o)

)
≥ c.

The assumption on the design is very mild: indeed, it suffices that 1n is a column of X , which is

equivalent to including the intercept term in the regression. Another special case is the Rademacher

design, implying that the lower bound holds for the class of sub-Gaussian design matrices.

2.3. Main ideas of the proofs. In this section, we give a brief summary of the key ideas used

in the proofs of Theorems 2.1 and 2.2. We start by discussing several useful properties of sub-Gaussian

design vectors.

• We show that the design matrix X acts as a near-isometry on approximately sparse vectors:

indeed, conditions of these type are crucial to guarantee success of sparse recovery. A detailed

overview of similar assumptions that appear in the literature can be found in [32]. The specific

form of the inequality that we prove is the following: with high probability, for all u ∈ R
p

simultaneously

∥Xu∥2
2

n
≥ 1

2
∥u∥2

Σ −∥u∥2
λ/4.
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• The columns of the design matrix X need to be “nearly uncorrelated” with the columns of the

identity matrix In. Indeed, consider a particular case where n = p and X =
√

nIn. In such a

case, the model (2) becomes

yi =
√

n(β ∗+θ ∗)+σξi,

whence the only identifiable vector is β ∗+θ ∗, making it impossible to consistently estimate

β ∗ itself. Assumptions of this type are commonly referred to as the incoherence conditions.

The incoherence employed in our proof takes the following form: with probability at least

1−δ , for all u,v ∈ R
p simultaneously and some absolute constant C′,

1√
n
|v⊤Xu| ≤ ∥u∥λ∥v∥2/10+∥v∥λ∥u∥Σ/10+C′

√
log(1/δ )+1

n
∥u∥Σ∥v∥2.

Similarly, for any fixed v ∈ R
n, the following inequality holds with probability at least 1− δ

uniformly over all u ∈ R
p:

1√
n
|v⊤Xu| ≤ ∥u∥λ∥v∥2/10+C′

√
log(1/δ )+1

n
∥u∥Σ∥v∥2.

In [9], authors establish very similar conditions for Gaussian design matrices.

We summarize the important properties of sub-Gaussian design matrices in the following result.

Theorem 2.4. Assume that X = Y Σ1/2, where Y has independent 1-sub-Gaussian rows. Then,

with probability at least 1−e−cn, X satisfies (2.3), and with probability at least 1−δ , X satisfies (2.3)

and (2.3).

We note that properties (2.3), (2.3) and (2.3) are the only conditions we require from the design. Next,

we explain the way we deal with heavy-tailed noise. Fix an integer o′ ≤ n: we can then treat the largest,

in absolute value, o′ coordinates of the noise vector ξ as “outliers” that we merge with the vector θ ∗,

while the remaining coordinates of ξ are sufficiently well-behaved and “light-tailed.” Therefore, we

can replace ξ(i) by ξ(i)1{i≥ o′} and
√

nθ(i) by
√

nθ(i)+ξ(i)1{i≤ o′}, where ξ(i) denotes the i-th largest,

in absolute value, element of the vector ξ . Note that this new noise vector is no longer centered, and

that o+o′ becomes a new upper bound of the number of outliers. We then define the “good” event E

via

E =

{
n/10 ≤ ∑

j≥o′
|ξ |2( j) ≤ 2n and ∀ j ≥ o′, |ξ |( j) ≤

√
nµ j/20

}
,

and show that E holds with high probability (see Lemmas A.2 and A.1). The following inequality is

our main result which in turn implies the bounds of Theorems 2.1 and 2.2 under various assumptions

on ξ .

Theorem 2.5. Fix any o′ ≥ o. There exist absolute positive constants c,C′ with the following

properties: assume that ∑
s
i=1 λ 2

i /κ(s)+ log(1/δ )/n+∑
o′
i=1 µ2

i ≤ c and that event E occurs. If more-

over properties (2.3), (2.3) and (2.3) of the design matrix hold, the following bound is valid whenever

λi ≤ µi:

∥β̂ −β ∗∥2
Σ ≤C′σ2


∑

s
i=1 λ 2

i

κ(s)
+max

j≥o′
(λ 2

j /µ2
j )

(
o′

∑
j=1

µ2
j

)2

+
log(1/δ )

n


 .
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3. Discussion and comparison to existing results. Below, we give a brief overview of ex-

isting literature and results that are most closely related to the problem considered in this work. For an

extended overview of the classical and modern approaches to robust regression, we refer the reader to

the excellent discussions in [27, section 2] and [9, section 4].

The idea of taking advantage of sparsity of the sequence of outliers and applying Lasso or Dantzig

selector-type algorithms has been previously suggested in [6, 16, 27, 23, 12], among other works. In

particular, in [12] authors note that the solution β̃ of the convex problem

(
β̃ , θ̃

)
= argmin

β∈Rp,θ∈Rn

[
1

2n

n

∑
j=1

(y j −XT
j β −θ)2 +λ1∥β∥1 +λ2∥θ∥1

]

can be equivalently written, after carrying out minimization over θ explicitly, as

β̃ = argmin
β∈Rp

[
λ 2

2

n

∑
j=1

H

(
y j −XT

j β

λ2

√
n

)
+λ1∥β∥1

]
,

where

H(x) =

{
x2/2, |x| ≤ 1,

|x|−1/2, |x|> 1

is the Huber’s loss function; similar connection has been used in several earlier works, including

[25, 14]. More recently, in [9, 29] authors improved the bounds proven in [23] and showed that for the

Gaussian design and Gaussian additive noise, ∥β̃ −β ∗∥2
Σ = OP

(
s log(p)

n
+
(

o log(n)
n

)2
)

which is nearly

minimax optimal in the ratio o
n

(note that the additional log(n) factor makes the bound suboptimal

[7]). At the same time, estimators that achieve minimax optimality, such as the methods based on

regression depth [15], are not computationally feasible, Our work has been partially motivated by

the question raised by the authors of [9], namely, whether the penalized ERM-type methods can also

handle the case of heavy-tailed additive noise variables {ξi}n
i=1 and yield optimal or near-optimal rates.

Results of the present paper give a generally affirmative answer and make an extra step by proving that

it is possible to be computationally efficient and minimax optimal with respect to the sparsity level

and contamination level, while being completely adaptive and achieve strong concentration of the

resulting estimators simultaneously. Related results in the literature, such as the work [13], establish

strong theoretical guarantees for the estimators that are not efficiently computable.

Very recently, a model with adversarially contaminated design and response was considered in

[26], however, the resulting bounds are only valid for very sparse signals such that s ≲
√

n. A similar

setup was also considered in [11] and [24] without the sparsity assumptions. For example, in [24] the

authors used a black-box “filtering” algorithm to eliminate outliers from the design matrix provided

that the covariance matrix Σ is known. Our goal was to show that similar results hold for a simple pro-

cedure and without additional knowledge about the parameters of the problem. Finally, let us remark

that in the low-dimensional case p < n, there exist estimators capable of approximating β ∗ regardless

of the number of outliers o as long the following conditions hold: (i) o < cn, (ii) the contamination

is oblivious and (iii) the design matrix X is sufficiently nice (e.g., has normally distributed rows); this

fact was proven in [3].
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Appendix A. Technical results.

Recall that E(|ξi|τ) ≤ aτ for some τ ≥ 2 and a ≥ 1, implying that Pr(|ξ | ≥ t) ≤ (a/t)τ for all t.

Without loss of generality, we will assume that a = 1, otherwise we can simply replace ξi by ξi/a and

σ by σ ·a.

Lemma A.1. For any 1 ≤ i ≤ n, set µi =
C√

n

(
n
i

)1/τ
for τ ≥ 2 and C ≥ 80. Then for any k ≥ 1, the

following inequality holds:

Pr

(
max
i≥k

|ξ |(i)√
nµi

≥ 1/20

)
≤ 2e−k.

Moreover, for all i such that log(n)≤ i ≤ n,

E

( |ξ |(i)√
nµi

)
≤ 1.

The result holds for sub-Gaussian noise as well with the choice µi = λi.
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Proof. For any fixed i ≥ k,

Pr

( |ξ |(i)√
nµi

≥ 1/20

)
= Pr

(
∃|I|= i,∀ j ∈ I

|ξ j|√
nµi

≥ 1/20

)
.

Therefore, applying the inequality
(

n
i

)
≤ ei log(en/i) and the assumption C ≥ 80, we deduce that

Pr

( |ξ |(i)√
nµi

≥ 1/20

)
≤ ei log(en/i)Pr

( |ξ1|√
nµi

≥ 1/20

)i

≤ e−i.

We conclude using the union bound over i ≥ k and the fact that ∑
n
i=k e−i ≤ 2e−k.

To get the result in expectation, let us denote γ :=
|ξ |(i)√

nµi
. Observe that

E(γ)≤ E(γ1{γ ≤ 1/20})+E(γ1{γ ≥ 1/20}).

Using Cauchy-Schwarz inequality, we get that

E

( |ξ |(i)√
nµi

)
≤ 1/20+

√√√√
E

(
|ξ |2(i)
nµ2

i

)
Pr

( |ξ |(i)√
nµi

≥ 1/20

)
.

Since nµ2
i ≥ 8 and E(|ξ |2(i))≤ E

(
∑

n
i=1 ξ 2

i

)
≤ n we conclude using (1) that

E

( |ξ |(i)√
nµi

)
≤ 1/20+

√
n

2
e−i/2 ≤ 1,

as long as i ≥ log(n).

Lemma A.2. Assume that E(ξ 2
i 1{|ξi| ≤ 1/2})≥ 1/4 and that o ≤ n/1000. Then

Pr

(
n/10 ≤

n

∑
i=o

|ξ |2(i) ≤ 2n

)
≥ 1−3e−co,

for an absolute constant c > 0.

Proof. For the upper bound, we only need to control the random variables bounded by C
√

n/o, in

view of Lemma A.1 applied with k = o. Set

R =C
(n

o

)1/2

.

Observe that, as long as |ξ |(o) ≤ R, we have

n

∑
i=o

|ξ |2(i) ≤
n

∑
i=1

ξ 2
i 1{|ξi| ≤ R}.

Since ξ 2
i 1{|ξi| ≤ R} ≤ R2 and E(ξ 2

i 1{|ξi| ≤ R})≤ 1, Hoeffding’s inequality yields that

Pr

({
n

∑
i=o

|ξ |2(i) ≥ 2n

}
∩
{
|ξ |(o) ≤ R

}
)

≤ exp(−n/R2).
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Noticing that n/R2 = o/C2, the upper bound follows for c = 1/C2 from the inequality (1), since

Pr

(
n

∑
i=o

|ξ |2(i) ≥ 2n

)
≤ Pr

({
n

∑
i=o

|ξ |2(i) ≥ 2n

}
∩
{
|ξ |(o) ≤ R

}
)
+Pr

(
|ξ |(o) ≥ R

)
≤ 2exp(−co).

For the lower bound, observe that

Pr

(
n/10 ≥

n

∑
i=o

|ξ |2(i)

)
= Pr

(
n/10 ≥ min

|I|=n−o+1
∑
i∈I

|ξi|2
)

≤ eo log( en
o−1

)Pr

(
n/10 ≥

n−o+1

∑
i=1

|ξi|2
)
,

where we use the union bound together with the relations
(

n
n−o+1

)
=
(

n
o−1

)
≤ eo log( en

o−1
). Since

E(|ξi|21{|ξi| ≤ 1/2})≥ 1/4,

Pr

(
n/10 ≥

n

∑
i=o

|ξ |2(i)

)

≤ eo log(en/(o−1))Pr

(
−n/10 ≥

n−o+1

∑
i=1

|ξi|21{|ξi| ≤ 1/2}−E(|ξi|21{|ξi| ≤ 1/2})
)
.

We conclude, using Hoeffding’s inequality, that

Pr

(
n/10 ≥

n

∑
i=o

|ξ |2(i)

)
≤ eo log(en/(o−1))−n/100 ≤ exp(−cn),

for c small enough.

Lemma A.3. Assume that ξ is a centered Gaussian vector such that E(ξ 2
i )≤ 1 for all 1 ≤ i ≤ n.

Then

E

(
max

i=1,...,n

|ξ |(i)√
log(en/i)

)
≤ 20.

Proof. Set λ 2
i = 4log(en/i). Let î be an index such that max

i=1,...,n

|ξ |(i)
λi

=
|ξ |(î)

λî
. Then

E

(
max

i=1,...,n

|ξ |(i)
λi

)
≤ 1+E

(
|ξ |(î)

λî

1

(
|ξ |(î)

λî

≥ 1

))

≤ 1+
∫ ∞

1
Pr
(
|ξ |(î) ≥ tλî

)
dt

≤ 1+
∫ ∞

1
Pr
(

îexp
(

ξ 2
(î)
/4
)
≥ îexp

(
t2λ 2

î
/4
))

dt.

On the one hand, we have that

îexp
(

ξ 2
(î)
/4
)
≤

i

∑
j=1

exp
(

ξ 2
( j)/4

)
≤

n

∑
j=1

exp
(
ξ 2

j /4
)
.
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On the other hand, for t2 ≥ 1

îexp
(
t2λ 2

î
/4
)
= î
(
en/î

)t2

≥ net2

.

Therefore,

E

(
max

i=1,...,n

|ξ |(i)
λi

)
≤ 1+

∫ ∞

1
Pr

(
n

∑
j=1

exp
(
ξ 2

j /4
)
≥ net2

)
dt.

Since E

(
exp
(

ξ 2
j /4
))

≤ 5, we conclude using Markov’s inequality that

E

(
max

i=1,...,n

|ξ |(i)
λi

)
≤ 1+5

∫ ∞

1
e−t2

dt ≤ 10.

Re-scaling λi by 2 yields the result.

Appendix B. Proofs of the main results.

The proof of the lower bound in inspired by results in [8] where the goal was to estimate the

nuisance parameter θ rather than the signal β itself.

B.1. Proof of Theorem 2.3. Assume that the first column v of X is such that v∈ {±1}n. Let us

choose β proportional to the canonical basis vector e1 (recall that β is sparse) such that Xβ = ∥Xβ∥2√
n

v.

Moreover, let ξ be a vector of i.i.d. Rademacher random variables. Clearly, Pξ ∈ Pτ,1 for all values

of τ . The vector θ will be chosen to be random with i.i.d entries such that θi = σ
(

o
n

)−1/τ
αivi, where

αi are i.i.d. Bernoulli random variables with parameter o/n. Therefore,

E(θi) = σ
(o

n

)1−1/τ
vi and Var(θi) = σ2

(o

n

)1−2/τ
(

1−
(o

n

)1−2/τ
)
≤ σ2

(o

n

)1−2/τ
.

Notice that θ is not exactly of sparsity less than o but we will deal with this technicality exactly as in

[8]. Finally, set
∥Xβ∥2√

n
= σ

(o

n

)1−1/τ
.

Notice that

Yi = (Xβ −θ +σξ )i =−(θi −E(θ)i)vi +σξi.

Hence, the distributions of Y defined by the model corresponding to (β ,−θ ,σ ,Pξ ) and (0,0, σ̃ , P̃ξ )

are identical. Here, σ̃2 = σ2(1+
(

o
n

)1−2/τ
(1−

(
o
n

)1−2/τ
)) ∼ σ2 and P̃ξ is the distribution of ζ =

σ
(

o
n

)−1/τ
((αi−

(
o
n

)
)vi+

(
o
n

)τ
ξi)/σ̃ . Notice that |ζ | ≥ 2 only if αi = 1, hence for all 2≤ t ≤ (o/n)−1/τ

we have that

Pr(|ζ | ≥ t) = o/n ≤
(

1

t

)τ

,

and for t >
(

o
n

)−1/τ
,

Pr(|ζ | ≥ t) = 0 ≤
(

1

t

)τ

.
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Therefore, P̃ξ ∈ Pτ,1. Let us denote

R
∗ = inf

β̂
sup
|β |0≤s

sup
|θ |0≤o

sup
σ>0

sup
Pξ∈Pτ,1

Pr(β ,θ ,σ ,Pξ )

(
∥X(β̂ −β )∥2/n ≥ σ2/16

(o

n

)2−2/τ
)
.

It is easy to notice that

R
∗ ≥ inf

T̂

(
Pr(0,0,σ̃ ,P̃ξ )

(
|T̂ | ≥ σ̃/4

(o

n

)1−1/τ
)

∨
Pr(β ,−θ ,σ ,Pξ )

(∣∣∣∣T̂ − ∥Xβ∥2√
n

∣∣∣∣≥ σ/4
(o

n

)1−1/τ
))

,

where T̂ is an estimator of
∥Xβ∥2√

n
. Since σ̃ ≥ σ and the distributions Pr(0,0,σ̃ ,P̃ξ )

, Pr(β ,−θ ,σ ,Pξ )
are equal,

we deduce that

R
∗ ≥ inf

T̂

(
Pr

(
|T̂ | ≥ σ̃/4

(o

n

)1−1/τ
)
∨Pr

(
|T̂ | ≤ σ̃/4

(o

n

)1−1/τ
))

,

as long as
∥Xβ∥√

n
≥ σ̃( o

n)
1−1/τ

2
. The last condition is satisfied since σ̃ ≤ 2σ . We conclude that

R
∗ ≥ 1/2.

In the case of sub-Gaussian noise, we choose θi = σ
√

log
(

o
n

)
αivi and follow the same argument.

B.2. Proof of Theorem 2.4. We start with the property given by the inequality (2.3). We will

show first that for all vectors u,
∥Xu∥2

2

n
≥ 1

2
∥u∥2

Σ −∥u∥2
λ/4,

where ∥u∥2
Σ = u⊤Σu. Define X̃such that X = X̃Σ1/2, let A be the set

A =
{

u : ∥u∥2
Σ ≥ ∥u∥2

λ/2
}
,

and K = {Σ1/2u, u ∈ A}. Moreover, we will denote the sphere of radius 1 in R
p via Sp−1. Since X̃ is

isotropic, Corollary 1.5 in [18] implies that for any h ≥ 0 and for all v ∈ K ∩Sp−1

∥X̃v∥2√
n

≥ 1−C′
(

ω(K ∩Sp−1)+h√
n

)
,

with probability at least 1− e−ch2

. Here, C′ is a positive absolute constant and ω(T ) corresponds to

the Gaussian mean width of T ⊆ R
p defined via

ω(T ) = E sup
u,v∈T

⟨ξ ,u− v⟩

where ξ has standard normal law. It is clear that

ω(K ∩Sp−1) = E

(
sup

v∈K∩Sp−1

ξ⊤v

)
= E

(
sup
u∈A

ξ⊤
Σ u/∥u∥Σ

)
,
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where ξΣ is a centered Gaussian random vector with covariance Σ. Therefore,

ω(K ∩Sp−1)≤ E

(
max

i

|ξΣ|(i)
λi

)
sup
u∈A

∥u∥λ/∥u∥Σ.

Since diagonal elements of Σ do not exceed 1 and λi =C

√
log(ep/i)

n
, i = 1, . . . , p, we deduce from the

bound of Lemma A.3 that whenever C in the definition of λ is large enough,

ω(K ∩Sp−1)≤ 1

10C′ .

Hence, for all u ∈ A
∥Xu∥2√

n
≥ ∥u∥Σ/

√
2,

with probability at least 1− e−cn. This concludes the first part of the proof, since the inequality is

always true for u ̸∈ A. We will now prove inequality (2.3). Fix v ∈ R
p. We want to show that for all

u ∈ R
p,

1√
n
|v⊤Xu| ≤ ∥u∥λ∥v∥2/10+C

√
1+ log(1/δ )

n
∥u∥Σ∥v∥2.

This is equivalent to establishing that for all u ∈ R
p,

1√
n

ξ⊤Σ1/2u ≤ ∥u∥λ/10+C

√
1+ log(1/δ )

n
∥u∥Σ,

where ξ is an isotropic sub-Gaussian vector. For α > 0, let Aα be the set

Aα = {u : ∥u∥Σ = 1, ∥u∥λ ≤ α},

and let Kα be the set Kα = {Σ1/2u, u ∈ Aα}. Notice that Kα ⊂ Sp−1 and that

sup
u∈Aα

1√
n

ξ⊤Σ1/2u = sup
v∈Kα

1√
n

ξ⊤v.

Hence, applying Theorem 4.1 in [18] on Kα , we get that

sup
u∈Aα

1√
n

ξ⊤Σ1/2u ≤C′
(

E

(
sup
u∈Aα

1√
n

ξ⊤Σ1/2u

)
+

√
log(1/δ )

n

)

for some C′ > 0 with probability 1− δ , where ξ is a standard Gaussian random vector. Using the

bound (B.2) we deduce that the inequality

sup
u∈Aα

1√
n

ξ⊤Σ1/2u ≤ α/20+C′
√

log(1/δ )

n

holds with probability at least 1− δ . We can now conclude, using the peeling argument as in [9,

Lemma 5] that

sup
∥u∥Σ=1

1√
n

ξ⊤Σ1/2u ≤ ∥u∥λ/10+C′
√

1+ log(1/δ )

n
,
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again with probability at least 1− δ . The proof is complete by homogeneity of the norm. For the

remaining part of the proof, we need to show that for all u,v

1√
n
|v⊤X̃Σ1/2u| ≤ ∥u∥λ∥v∥2/10+∥v∥λ∥u∥Σ/10+C

√
1+ log(1/δ )

n
∥u∥Σ∥v∥2,

with probability at least 1−δ . For α,β > 0, let Aα and Bβ be the sets

Aα = {u : ∥u∥Σ = 1, ∥u∥λ ≤ α},

and

Bβ = {v : ∥v∥2 = 1, ∥v∥λ ≤ β},
and let Kα be the set Kα = {Σ1/2u, u ∈ Aα}. Notice that Kα ⊂ Sp−1 and that

sup
(u,v)∈Aα×Bβ

1√
n

v⊤X̃Σ1/2u = sup
(b,v)∈Kα×Bβ

1√
n

v⊤X̃b.

Let us denote by Zv,b the sub-Gaussian process v⊤X̃b where v,b are both of norm 1. We see that

E
(
Zv,b −Zv′,b′

)2
= 2(1−⟨v,v′⟩⟨b,b′⟩)≤ 4−2(⟨v,v′⟩+ ⟨b,b′⟩)≤ ∥v− v′∥2 +∥b−b′∥2.

Therefore,

E
(
Zv,b −Zv′,b′

)2 ≤ E

(
ξ⊤(v− v′)

)2

+E

(
ξ̃⊤(b−b′)

)2

,

where ξ and ξ̃ are both standard Gaussian vectors. Applying Theorem 4.1 in [18] on Kα ×Bβ , we

deduce that

sup
(u,v)∈Aα×Bβ

1√
n

v⊤X̃Σ1/2u ≤C′
(

E

(
sup
u∈Aα

1√
n

ξ̃⊤Σ1/2u

)
+E

(
sup
v∈Bα

1√
n

ξ̃⊤v

)
+

√
log(1/δ )

n

)

for some C′ > 0 with probability at least 1−δ . Using the inequality (B.2), we get that

sup
(u,v)∈Aα×Bβ

1√
n

v⊤X̃Σ1/2u ≤ α/20+β/20+C′
√

log(1/δ )

n
,

with probability at least 1− δ . We can now conclude, using the double-peeling argument as in [9,

Lemma 6] that

sup
∥u∥Σ=1,∥v∥2=1

1√
n

v⊤X̃Σ1/2u ≤ ∥u∥λ/10+∥v∥λ/10+C′
√

1+ log(1/δ )

n
,

with probability at least 1−δ . The desired result now follows by homogeneity of the norm.

Proposition B.1. Let X be a matrix with sub-Gaussian rows. Then for all vectors u,v

∥Xu/
√

n+ v∥2
2 ≥

1

8
∥u∥2

Σ +
1

8
∥v∥2

2 −∥u∥2
λ/2−∥v∥2

µ/2,

with probability at least 1− e−cn.
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Proof. We have

∥Xu/
√

n+ v∥2
2 ≥ ∥Xu/

√
n∥2

2 +∥v∥2
2 −

2√
n
|v⊤Xu|.

We conclude using the inequalities (2.3) and (2.3) with δ = e−cn for c small enough.

B.3. Proof of Theorem 2.5. Throughout this section, we set ∆β = β̂ −β ∗, ∆θ = θ̂ −θ ∗ and

let ∆ = [∆β ;∆θ ] ∈ R
p+n be the augmented error vector. We also introduce the following additional

notation with the goal of simplifying the expressions; recall that

Q(β ,θ) :=
1

2n

∥∥Y −Xβ −
√

nθ
∥∥2

2
,

and let

• Q̂ := Q(β̂ , θ̂) and Q∗ := Q(β ∗,θ ∗);
• A(n) := 1√

n
A, whenever A is a scalar, vector or a matrix;

• ξ̂ := Y −X β̂ −√
nθ̂ .

Moreover, note that Q̂ = 1
2n

∥∥∥ξ̂
∥∥∥

2

2
and Q∗ = 1

2n
∥ξ∥2

2. In the rest of the proof we assume that the event

E =

{
n/10 ≤ ∑

j≥o′
ξ 2
( j) ≤ 2n and ∀ j ≥ o′, |ξ |( j) ≤

√
nµ( j)/20

}

occurs and that Properties 1,2 and 3 of the design matrix hold as well.

Given o′ > o, let us replace the dense noise vector ξ by the new vector obtained from ξ by

replacing the largest o′ coordinates by 0. We will treat the largest o′ coordinates removed from ξ as

a subset of adversarial outliers, and will replace the corruption parameter o by 2o′. From now on, we

can assume that the entries of the “new” noise vector ξ are bounded by |ξ |(o′).
Let us note that several steps of the proof below follow the argument in [9]. First, recall that

S =
{

j : β ∗
j ̸= 0

}
, O =

{
j : θ ∗

j ̸= 0
}

and s = Card(S), Card(O) ≤ 2o′. The following lemma ensures

that the augmented error vector ∆ belongs to the cone defined in (2), with c0 = 4.

Lemma B.2. The following inequality holds:

∥∆β∥λ +∥∆θ∥µ ≤ 4

√
∑

s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
∥∆β∥Σ +4

√√√√ o′

∑
i=1

µ2
i ∥∆θ∥2.

Equivalently, ∆ ∈ C (4,s,o′,δ ,Σ).

Proof of Lemma B.2. By the definition of β̂ , θ̂ , we have that

Q̂
1
2 −Q∗ 1

2 ≤
(
∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ

)
+

(
∥θ ∗∥µ −

∥∥∥θ̂
∥∥∥

µ

)
.

Using Lemma A.1 in [1], we get that

(
∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ

)
≤ 2

√
s

∑
i=1

λ 2
i ∥∆β∥2 −∥∆β∥λ .
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If ∆β ∈ C (s,4), then

(
∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ

)
≤ 2

√
∑

s
i=1 λ 2

i

κ(s)
∥∆β∥Σ −∥∆β∥λ .

Otherwise, (
∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ

)
≤−∥∆β∥λ/2.

In both cases we have that

(
∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ

)
≤ 2

√
∑

s
i=1 λ 2

i

κ(s)
∥∆β∥Σ −∥∆β∥λ/2.

Similarly, we observe that

(
∥θ ∗∥µ −

∥∥∥θ̂
∥∥∥

µ

)
≤ 2

√√√√ o′

∑
i=1

µ2
i ∥∆θ∥2 −∥∆θ∥µ .

Combining the inequalities above with (5), we deduce that

Q̂
1
2 −Q∗ 1

2 ≤ 2

√
∑

s
i=1 λ 2

i

κ(s)
∥∆β∥Σ +2

√√√√ o′

∑
i=1

µ2
i ∥∆θ∥2 − (∥∆β∥λ +∥∆θ∥µ)/2.

Recall that the property (2.3) of sub-Gaussian designs together with the inequality ∥ξ∥ ≤ 2
√

n yields

the bound

1

n
|ξ⊤X∆β | ≤ ∥∆β∥λ/10+2

√
log(1/δ )

n
∥∆β∥Σ.

On the other hand, convexity of Q(β ,θ)
1
2 implies that

Q̂
1
2 −Q∗ 1

2 ≥
〈

∂β

(
Q

1
2

)
(β ∗,θ ∗), β̂ −β ∗

〉
+
〈

∂θ

(
Q

1
2

)
(β ∗,θ ∗), θ̂ −θ ∗

〉
,

where ∂β

(
Q

1
2

)
(β ∗,θ ∗)

(
or ∂θ

(
Q

1
2

)
(β ∗,θ ∗)

)
represents the subgradient of Q

1
2 with respect to β (or

θ ), evaluated at the point (β ∗,θ ∗). If Q∗ ̸= 0, we have that

∂β

(
Q

1
2

)
(β ∗,θ ∗) =−1

2
Q∗− 1

2 · 1

n
XT
(
Y −Xβ ∗−

√
nθ ∗)

and

∂θ

(
Q

1
2

)
(β ∗,θ ∗) =−1

2
Q∗− 1

2 · 1√
n

(
Y −Xβ ∗−

√
nθ ∗) .

Therefore,
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Q̂
1
2 −Q∗ 1

2 ≥−
1
n ∑

n
j=1(y j −XT

j β ∗−√
nθ ∗

j )X
T
j (β̂ −β ∗)

2Q∗ 1
2

−
1√
n ∑

n
j=1(y j −XT

j β ∗−√
nθ ∗

j )(θ̂ j −θ ∗
j )

2Q∗ 1
2

≥−σ
|ξ⊤X∆β |/n

2Q(β ∗,θ ∗)
1
2

−σ

1√
n

max j≥o′(|ξ |( j)/µ j)
∥∥∥θ̂ −θ ∗

∥∥∥
µ

2Q∗ 1
2

≥−σ
(∥∆β∥λ +∥∆θ∥µ)/10+2

√
log(1/δ )

n
∥∆β∥Σ

2Q∗ 1
2

,

where the last inequality follows from (5) combined with that fact that

max
j≥o′

(|ξ |( j)/(
√

nµ j))≤ 1/10.

We conclude that

2Q∗ 1
2

(
Q̂

1
2 −Q∗ 1

2

)
/σ ≥−(∥∆β∥λ +∥∆θ∥µ)/10−2

√
log(1/δ )

n
∥∆β∥Σ.

Recall that ∥ξ∥2
2 ≥ n/10 on event E . Hence, in the view of the inequality (5), we see that

(
Q̂

1
2 −Q∗ 1

2

)
≥−1/8∥∆β∥λ −1/8∥∆θ∥µ −2

√
log(1/δ )

n
∥∆β∥Σ.

Combining the upper and the lower bounds above, we deduce the following result:

∥∆β∥λ +∥∆θ∥µ ≤ 4

√
∑

s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
∥∆β∥Σ +4

√√√√ o′

∑
i=1

µ2
i ∥∆θ∥2,

as claimed.

We are ready to proceed with the proof of the main result. Since the loss function L(β ,θ) defined

in (2) is convex, the first-order optimality conditions ensure the existence of v̂ ∈ ∂
∥∥∥β̂
∥∥∥

1
, û ∈ ∂

∥∥∥θ̂
∥∥∥

1

such that v̂T β̂ =
∥∥∥β̂
∥∥∥

λ
, ûT θ̂ =

∥∥∥θ̂
∥∥∥

µ
, and

0 =−
1
n
XT (Y −X β̂ −√

nθ̂)

2Q̂
1
2

+ v̂,

0 =−
1√
n
(Y −X β̂ −√

nθ̂)

2Q̂
1
2

+ û

under the assumption that Q̂ ̸= 0. The two equations above are equivalent to

[X (n), In]
T (Y (n)−X (n)β̂ − θ̂) = 2Q̂

1
2

[
(v̂)T ,(û)T

]T

.



ROBUST AND TUNING-FREE SPARSE LINEAR REGRESSION 21

Note that when Q̂ = 0, we have that ξ̂ = 0 and hence (B.3) is still valid. Next, recall that Y (n) =

X (n)β̂ + θ̂ +σξ (n), so by (B.3),

[X (n), In]
T [X (n), In]∆ = σ [X (n), In]

T ξ (n)−2Q̂
1
2

[
(v̂)T ,(û)T

]T

.

Multiplying both sides of this equation by ∆T from the left, we get

∥∥∥X (n)∆β +∆θ
∥∥∥

2

2
= σ(∆β )T (X (n))T ξ (n) + σ(∆θ )T ξ (n) − 2Q̂

1
2 (∆β )T v̂ − 2Q̂

1
2 (∆θ )T û.

Note that max
i
(|v̂|(i)/λi)≤ 1 and v̂T β̂ =

∥∥∥β̂
∥∥∥

λ
, hence

−(∆β )T v̂ = (β ∗− β̂ )T v̂ = (β ∗)T v̂−
∥∥∥β̂
∥∥∥

1
≤ ∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ
.

Similarly, we can show that

−(∆θ )T û ≤ ∥θ ∗∥µ −
∥∥∥θ̂
∥∥∥

µ
.

Combining these bounds with equation (B.3) and noticing that (Q∗)
1
2 = σ√

2n
∥ξ∥2, we deduce that on

event E ,

∥∥∥X (n)∆β +∆θ
∥∥∥

2

2
≤ σ(∥∆β∥λ +∥∆θ∥µ)/2+σ

√
log(1/δ )

n
∥∆β∥Σ

+2Q̂
1
2

(
∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ

)
+2Q̂

1
2

(
∥θ ∗∥µ −

∥∥∥θ̂
∥∥∥

µ

)
.

For brevity, set x =
∥∥X (n)∆β +∆θ

∥∥
2
. Note that

Q̂1/2 =
1√
2n

∥Y −X β̂ −
√

nθ̂∥2 =
1√
2
∥ξ ∗/

√
n−X (n)∆β −∆θ∥2.

Since (Q∗)1/2 = 1√
2n
∥ξ ∗∥2, we deduce that

Q̂1/2 ≤ (Q∗)1/2 + x/
√

2.

Therefore, we derive using the inequality (B.3) that

x2 ≤ (5σ + x)(∥∆β∥λ +∥∆θ∥µ)+σ

√
log(1/δ )

n
∥∆β∥Σ,

where in the last step we used the bound ∥u∥λ −∥v∥λ ≤ ∥u− v∥λ that holds for any vectors u and v.

Lemma B.2 implies that

∥∆β∥λ +∥∆θ∥µ ≤ 4

√
∑

s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
∥∆β∥Σ +4

√√√√ o′

∑
i=1

µ2
i ∥∆θ∥2.
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Using Proposition B.1 and the condition on the sample size n, we have that

x2 ≥ (∥∆β∥2
Σ +∥∆θ∥2

2)/16,

and that

∥∆β∥λ +∥∆θ∥µ ≤ x/2.

Combining these bounds with (B.3), we get

(∥∆β∥2
Σ + ∥∆θ∥2

2)/16 ≤ x2 ≤ 10σ



√

∑
s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
∥∆β∥Σ +

√√√√ o′

∑
i=1

µ2
i ∥∆θ∥2


 .

Therefore,
∥∥∥∆β

∥∥∥
2

Σ
+
∥∥∆θ

∥∥2

2
≤ 100σ2

(
∑

s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
+

o′

∑
i=1

µ2
i

)
.

Moreover,

∥∆β∥λ +∥∆θ∥µ ≤ 100σ

(
∑

s
i=1 λ 2

i

κ(s)
+

log(1/δ )

n
+

o′

∑
i=1

µ2
i

)

which concludes the proof.

Remark B.1. Direct computation shows that

∣∣∣(Q∗)
1
2 − (Q̂)

1
2

∣∣∣= 1√
2

∣∣∣
∥∥∥Y −X (n)β ∗−θ ∗

∥∥∥
2
−
∥∥∥Y −X (n)β̂ − θ̂

∥∥∥
2

∣∣∣≤ 1√
2

∥∥∥X (n)∆β +∆θ
∥∥∥

2
,

from which we derive that ∣∣∣(Q∗)
1
2 − (Q̂)

1
2

∣∣∣≤ (Q∗)
1
2 /20.

This shows that under the assumptions of the lemma,

√
Q̂ can be close to

√
Q∗. This fact will be

important in the next proof.

Finally, we present the proof of the error bound for the estimator β̂ only, as opposed to the vector

(β̂ , θ̂). The main idea of the proof, first used in [9], is to treat θ ∗ as a “nuisance parameter” and repeat

parts of the previous argument. Recall the key notation:

• Q̂ := Q(β̂ , θ̂) and Q∗ := Q(β ∗,θ ∗);
• A(n) := 1√

n
A, whenever A is a number, vector or matrix;

• ξ̂ := Y −X β̂ −√
nθ̂ ;

• Also, we note that Q̂ = 1
2n

∥∥∥ξ̂
∥∥∥

2

2
and Q∗ = 1

2n
∥ξ∥2

2.

Since

β̂ ∈ argmin
β

{
1√
2n

∥∥∥Y −Xβ −
√

nθ̂
∥∥∥

2
+∥β∥λ

}
,
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there exists v̂ ∈ ∂
∥∥∥β̂
∥∥∥

1
with v̂T β̂ =

∥∥∥β̂
∥∥∥

λ
such that

−1

n
XT (Y −X β̂ −

√
nθ̂)+2(Q̂)

1
2 v̂ = 0.

It implies, together with the identity Y (n) = X (n)β̂ + θ̂ +σξ (n), that

(X (n))T
(

X (n)∆β +∆θ −σξ (n)
)
+2(Q̂)

1
2 λsv̂ = 0.

Multiplying both sides from the left by
(
∆β
)T

, we get that

∥∥∥X (n)∆β
∥∥∥

2

2
=−

〈
X (n)∆β ,∆θ

〉
+
〈

X (n)∆β ,σξ (n)
〉
−2(Q̂)

1
2

〈
∆β , v̂

〉
.

Recall that

−
〈

∆β , v̂
〉
≤ ∥β ∗∥λ −

∥∥∥β̂
∥∥∥

λ
≤ 2

√
∑

s
i=1 λ 2

i

κ(s)
∥∆β∥Σ −∥∆β∥λ/2,

which together with remark B.1 implies that

1

2
σ ≤ (Q̂)

1
2 ≤ 3

2
σ .

Moreover, from the inequality (2.3) we see that

〈
X (n)∆β ,ξ (n)

〉
≤ ∥∆β∥λ/20+

√
log(1/δ )

n
∥∆β∥Σ.

Combining these results with the relation (B.3), we deduce that on the event E ,

∥∥∥X (n)∆β
∥∥∥

2

2
≤ −

〈
X (n)∆β ,∆θ

〉
+ σ



√

log(1/δ )

n
∥∆β∥Σ +2

√
∑

s
i=1 λ 2

i

κ(s)
∥∆β∥Σ −∥∆β∥λ/2


 .

Inequality (2.3) yields that

−
〈

X (n)∆β ,∆θ
〉
≤ ∥∆β∥λ∥∆θ∥2/10+∥∆θ∥λ∥∆β∥Σ/10+C

√
log(1/δ )

n
∥∆β∥Σ∥∆θ∥2.

Applying (2.3), we deduce the inequality

∥∥∥X (n)∆β
∥∥∥

2

2
≥ 1

2
∥∆β∥2

Σ −∥∆β∥2
λ/4.

Since ∥∆β∥λ +∥∆θ∥2 ≪ 1,

1

2
∥∆β∥2

Σ ≤ σ



√

log(1/δ )

n
+2

√
∑

s
i=1 λ 2

i

κ(s)
+∥∆θ∥λ/10


∥∆β∥Σ.
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Therefore,

∥∆β∥2
Σ ≤ 100σ2

(
log(1/δ )

n
+

∑
s
i=1 λ 2

i

κ(s)
+∥∆θ∥2

λ/2

)
.

Observe that

∥∆θ∥2
λ/2 ≤

(

∑
j≥o′

λ j|∆θ |( j)

)2

+∥∆θ∥2
2

o′

∑
j=1

λ 2
j

≤
(

∑
j≥o′

(λ j/µ j)µ j|∆θ |( j)

)2

+10
o′

∑
j=1

λ 2
j (1+

o′

∑
j=1

µ2
j )

≤ max
j≥o′

(λ 2
j /µ2

j )(∥∆θ∥2
µ +20(

o′

∑
j=1

µ2
j )

2)+10
o′

∑
j=1

λ 2
j ,

where we used the inequality ∑
o′
j=1 λ 2

j ≤ 2o′λ 2
o′ ≤ 2(λ 2

o′/µ2
o′)∑

o′
j=1 µ2

j . Since λ j ≤ µ j, we conclude that

∥∆β∥2
Σ ≤ 100σ2

(
log(1/δ )

n
+

∑
s
i=1 λ 2

i

κ(s)
+max

j≥o′
(λ 2

j /µ2
j )(

o′

∑
j=1

µ2
j )

2

)
.

B.4. Proof of Theorems 2.1 and 2.2. Recall that event E and the properties of sub-Gaussian

designs expressed via the inequalities (2.3), (2.3), (2.3) hold for a given δ with probability at least

1− 3δ − 5exp(−co′). Observe that ∑
s
i=1 λ 2

i ≤ Cs log(ep/s)/n. For the case of fixed thresholds µi =
C√

n

(
n
m

)1/τ
, where m = log(1/δ ), we get that

max
j≥o′

(
λ 2

j /µ2
j

)
(

o′

∑
j=1

µ2
j

)2

=C

(
o′

n

)2

log(n/o′)
( n

m

)2/τ
=C

(
o′

n

)2−2/τ

log(n/o′)

(
o′

m

)2/τ

.

Choosing o′ = o+m with m = log(1/δ ), we deduce that

max
j≥o′

(λ 2
j /µ2

j )(
o′

∑
j=1

µ2
j )

2 ≤C

((o

n

)2−2/τ
log(n/o)(1+(o/m)2/τ)+

log(1/δ )

n

)
.

Theorem 2.5 immediately yields that with probability at least 1−8δ ,

∥∆β∥2
Σ ≤Cσ2

(
log(1/δ )

n
+

s log(ep/s)/n

κ(s)
+
(o

n

)2−2/τ
log(n/o)(1+(o/ log(1/δ ))2/τ)

)
.

This completes the proof of Theorem 2.1.

For the case of the adaptive threshold µi =
C√

n

(
n
i

)1/τ
, for any δ we can choose o′ = o+m with

m = log(1/δ ) so that

max
j≥o′

(
λ 2

j /µ2
j

)
(

o′

∑
j=1

µ2
j

)2

≤C

(
∑

o′
i=1(n/i)2/τ

n

)2

≤C
(∑o′

i=1(1/i)2/τ)2

n2−4/τ
.
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Hence, for τ > 2 we have

max
j≥o′

(λ 2
j /µ2

j )(
o′

∑
j=1

µ2
j )

2 ≤C(o′/n)2−4/τ .

In view of Theorem 2.5,

∥∆β∥2
Σ ≤Cσ2

(
log(1/δ )

n
+

s log(ep/s)/n

κ(s)
+(o+ log(1/δ )/n)2−4/τ

)

with probability at least 1−8δ . Finally, if the noise is sub-Gaussian, then

max
j≥o′

(λ 2
j /µ2

j )(
o′

∑
j=1

µ2
j )

2 ≤C

(
o′ log(n/o′)

n

)2

,

and we get that

∥∆β∥2
Σ ≤Cσ2

(
log(1/δ )

n
+

s log(ep/s)/n

κ(s)
+

(
o log(n/o)

n

)2
)
,

again with probability at least 1−8δ . The last inequality holds since

log(1/δ )

n
≥
(

log(1/δ ) log(n/ log(1/δ ))

n

)2

whenever log(1/δ ) is smaller than n. This completes the proof of Theorem 2.2.
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