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Knowledge of crustacean vision is lacking compared to the more well-
studied vertebrates and insects. While crustacean visual systems are typi-
cally conserved morphologically, the molecular components (i.e. opsins)
remain understudied. This review aims to characterize opsin diversity
across crustacean lineages for an integrated view of visual system evolution.
Using publicly available data from 95 species, we identified opsin sequences
and classified them by clade. Our analysis produced 485 putative visual
opsins and 141 non-visual opsins. The visual opsins were separated into
six clades: long wavelength sensitive (LWS), middle wavelength sensitive
(MWS) 1 and 2, short wavelength or ultraviolet sensitive (SWS/UVS) and
a clade of thecostracan opsins, with multiple LWS and MWS opsin copies
observed. The SWS/UVS opsins were relatively conserved in most species.
The crustacean classes Cephalocarida, Remipedia and Hexanauplia exhib-
ited reduced visual opsin diversity compared to others, with the
malacostracan decapods having the highest opsin diversity. Non-visual
opsins were identified from all investigated classes except Cephalocarida.
Additionally, a novel clade of non-visual crustacean-specific, R-type opsins
(Rc) was discovered. This review aims to provide a framework for future
research on crustacean vision, with an emphasis on the need for more
work in spectral characterization and molecular analysis.

This article is part of the theme issue ‘Understanding colour vision:
molecular, physiological, neuronal and behavioural studies in Arthropods’.
1. Introduction
The crustaceans are a paraphyletic group that is comprised of all members of
the clade Pancrustacea excluding hexapods. Although approximately 75% of
the 67 000+ described extant species inhabit marine environments [1], crus-
taceans are an ecologically diverse group, occupying nearly every habitat
from abyssal ocean depths to snowy mountain peaks. The variation in light
environments across these habitats, along with the morphological and behav-
ioural diversity found across lineages, have produced an extreme degree of
visual system diversity within the group, yet studies of the molecules involved
in crustacean vision are still taxonomically limited.

As in all animal eyes, the molecular foundation of vision in crustaceans is
the opsin protein. Opsins, when bound to a vitamin A-derived chromophore,
form a visual pigment that can absorb photons of light and initiate a cellular
signalling cascade. Depending on the amino acid sequence of the opsin and
the particular vitamin A derivative used as the chromophore, a visual pigment
may have peak sensitivity ranging anywhere from the ultraviolet (UV) through
the visible (violet to red) spectrum of light. Most animal visual pigments use the
same form of chromophore, making the variation in light sensitivity primarily
due to variation in the opsin sequence.

The first opsin sequence fully characterized was bovine rhodopsin [2,3],
which has served as a template for those that followed. As more arthropod
visual opsins were characterized, it became clear that they were evolutionarily
distinct from vertebrate ciliary (C-type) opsins, and were termed R-type opsins
based on the rhabdomeric photoreceptor cells found in arthropod visual
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systems [4–6]. Although the physiological function of crus-
tacean visual pigments has been studied for over 60 years
[7–11], the first crustacean opsin sequence was not character-
ized until 1993 from the crayfish Procambarus clarkii [12].
Following this breakthrough, molecular studies of crustacean
opsins remained scarce compared to those focused on insect
species [13–15]. It was not until the advent of next-generation
sequencing (NGS) that studies of opsin evolution from a
diversity of crustacean species became more common [16–19].

Based on studies of visual anatomy and physiology (see
below) crustacean eyes have typically been characterized
with one or two spectrally distinct types of photoreceptors
[20–22]. Until studies of crustacean visual opsins became
more commonplace, it was assumed that visual opsin diversity
mirrored the measured photoreceptor spectral diversity (simi-
lar to the pattern observed in many insects). Most species were
predicted to express two opsins forming visual pigments, each
with a distinct spectral sensitivity—one to blue or blue-green
light, the second to violet or UV light. However, the second
crustacean in which the visual opsin sequences were character-
ized belied this hypothesis. In 1996, two opsins were
sequenced from the crab Hemigrapsus sanguineus, but the
opsins were co-expressed in the same set of cells sensitive to
blue light (480 nm) rather than in separate sets of cells with
different sensitivities [13]. The next group of crustaceans inves-
tigated deviated even further from initial expectations.
Oakley & Huber [15] found that two ostracod species
expressed up to eight opsins in their eyes, launching the idea
that unlike well-studied insect species, crustaceans expressed
multitudes of recently duplicated opsins. As more species
were studied, it became apparent that higher opsin diversity
than photoreceptor physiology was the norm, rather than the
exception in crustaceans [23].

With increased ability to detect expressed opsins using
NGS approaches, studies of the evolutionary history of crus-
tacean opsins became possible. By combining spectrally
characterized visual pigments with opsin sequence phyloge-
netic analyses, crustacean visual opsins have been broadly
characterized into three major evolutionary clades: long
wavelength-sensitive (LWS: greater than 500 nm), middle
wavelength-sensitive (MWS: approx. 400–500 nm) and
short- or ultraviolet-sensitive (SWS/UVS: less than 400 nm)
[16,17]. In the SWS/UVS clade, despite a shared history
with blue-sensitive (SWS) insect opsins, spectral [20,24–26]
and molecular [23,27,28] characterizations indicate that crus-
tacean opsins form violet- or UV-sensitive visual pigments. In
terms of predicted sensitivity, the ancestral pancrustacean
lineage is suggested to have four spectral clades of visual
opsins: one LWS, two MWS and one SWS [18].

NextGen Sequencing also aided in discovery of opsins
that detect light in non-visual contexts [18,29–32]. Based
mostly on data from insects and chelicerates, arthropod
non-visual opsins form five clades: Rh7, arthropsins, pterop-
sins, peropsins and neuropsins. Although non-visual opsins
had been characterized from arthropods for several decades
[33–37], finding them in crustaceans has been exceedin-
gly rare, and none have been spectrally or functionally
characterized.

To date, no reviews have included opsin data from the
full taxonomic diversity of crustaceans encompassing
the known diversity of eye types in the subphylum. Given
the preponderance of data for arthropods and relative paucity
of data for crustaceans, we focused on crustacean opsin
diversity within all classes with publicly available data,
encompassing more than half (30 of 58; figure 1) of the cur-
rently described extant orders. To place this expanded view
of crustacean opsin diversity in context, we start with brief
reviews of crustacean visual systems and visually mediated
behaviours. Although this comprehensive approach signifi-
cantly expands our knowledge, it also highlights how much
is still unknown about the overall function and molecular
evolution of crustacean opsins.
2. Morphology of crustacean visual systems
Crustaceans have evolved a wide range of visual system
morphological diversity based on a multitude of eye types,
optical designs and structures for colour and polarization
vision [44]. All of the morphological diversity observed
stems from two basic structural arrangements: naupliar
versus compound eyes. Naupliar eyes are structurally less
complex, often formed from single chambers or small clusters
of photoreceptor cells [32,45]. Compound eyes, in contrast,
are multifaceted and complex, typically composed of numer-
ous, small, nearly identical units called ommatidia that each
contain photoreceptor cells underneath light-focusing struc-
tures [46]. There are many documented modifications to
both eye types, which allow for changes in visual acuity
and spatial resolution [47,48]. Associations between eye
types, structural modifications and opsin diversity have yet
to be extensively studied. Although ‘typical’ eye designs in
some crustaceans express little opsin diversity (e.g. crayfish
and brachyuran crabs [49,50], barnacles [51,52], some amphi-
pods and cave isopods [30,53,54]), sparse literature suggests
that in some species highly modified visual structures
equate to exponentially increased opsin diversity (e.g. stoma-
topods [55,56]), while in others even relatively simple
photoreceptor set-ups have revealed similarly high opsin
diversity (e.g. diplostracans, ostracods and copepods
[15,19,31,32,57]). This glimpse of the relationship between
visual structures and opsin diversity suggests that other fac-
tors, such as behaviour, are integral to understanding the
sometimes overwhelming diversity of visual opsins charac-
terized from crustacean eyes.
3. Visually mediated behaviours
Visually mediated behaviours come in many forms and func-
tions across habitats but would not be possible without the
use of light. Light provides a fast, high-fidelity signal
especially over relatively short distances where scattering is
not a concern. Perhaps the most impressive visual behaviour,
in terms of scale, is diel vertical migration (DVM) performed
by a taxonomically diverse set of aquatic species. DVM rep-
resents the greatest daily migration on earth in terms of
biomass, with individuals moving across depths of metres
to hundreds of metres [58], and is primarily driven by light
cues (see review [59]). As the primary animal light detector,
the role of opsin diversity and differential expression in
DVM is not yet clear. However, some evidence from verti-
cally migrating oplophorid shrimp suggests a pattern of
diel fluctuation in co-expression of opsins that may be used
to tune visual systems during the migratory process [60]. A
similar pattern of unexpectedly high opsin diversity can be
found in other vertical migrators (e.g. krill, copepods and
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Figure 1. The presence or absence of crustacean opsin clades identified from publicly available transcriptome data mapped across a phylogenetic supertree of crustacean
orders. Ordinal relationships were reconstructed from multiple recently published phylogenies [38–42]; dark grey dashed-line boxes group orders by either class or super-
class (Rem, Remipedia; Ceph, Cephalocarida). The numbers in parentheses after each order indicate the number of species included in represented opsin data; * = data from
a published PCR-based study only [43]. For each order, the dominant eye morphology in adults is indicated (compound eye, grey hexagon; simple eye, white hexagon; no
eyes, X), as well as which visual and non-visual clades contained at least one opsin sequence within the order. Visual opsin clades: L, red circles: long wavelength-sensitive;
M1, light blue circles: middle wavelength-sensitive 1; Th, medium blue circles: thecostracan-specific; M2, dark blue circles: middle wavelength-sensitive 2; S, dark purple
circles: short-wavelength/ultraviolet-sensitive. Non-visual opsin clades: Rc, light purple circles: non-visual crustacean opsin; R7, dark magenta circles: Rh7 clade; Ar, pink
circles: arthropsin clade; Pr, green circles: peropsin clade; Ne, lime green circles: neuropsin clade; Pt, yellow circles: pteropsin clade.
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ostracods), potentially allowing for broadened spectral sensi-
tivity to aid in visual function in different light environments
at depths [18,29,57,60].
Expanded opsin diversity is also likely to play a role in
communication for many crustaceans. Perhaps most notable
are the stomatopods with more than 33 visual opsins [56],
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which use both colour and polarization cues to guide beha-
viours such as mate recognition and aggressive interactions
[61–63]. In areas of low light, some crustacean species even
have the ability to produce their own light for means of com-
munication. Male ostracods (Vargula annecohenae) perform
intricate bioluminescent displays to attract females and
have also been found to possess a high degree of opsin dupli-
cations [15,64]. These behaviours are not limited to the
aquatic realm, as terrestrial and semi-terrestrial crabs often
use visual signals in the form of reflective carapace to com-
municate aggression or signal to potential mates [65–67].

Predation and predator avoidance are another set of
visually guided behaviours. Some crustaceans use transpar-
ency as camouflage both to avoid visual predators and as a
means to disguise themselves from potential prey [68,69].
However, the use of transparent tissues for defense is less
effective against predators sensitive to UV light [70],
suggesting a role for increased UV visual sensitivity in pela-
gic, predatory crustaceans. Conversely, some species light
up to avoid detection by using bioluminescent photo-
phores positioned ventrally to disrupt the visible shadow
that they would otherwise produce, a phenomenon known
as counter-illumination [71]. Although the mechanisms
by which bioluminescent crustaceans are able to match
downwelling irradiance are not known, it has been suggested
that photosensitivity in the photophores of these animals
may play a role [72]. More work in this area is needed to
elucidate the potential use of extraocular opsin expression
in bioluminescent camouflage.

These are far from the only visually mediated behaviours
described from crustaceans, and it is likely that vision plays
an important role in behaviours that have yet to be investi-
gated. In order to understand how visual stimuli influence
behaviour, a better understanding of crustacean vision is
needed and there is still much to learn about how opsin
diversity may influence behaviour in crustaceans.
4. Crustacean opsin diversity
Establishing the evolutionary relationships among these suc-
cessful arthropods continues to be a work in progress, with
regular modifications to taxonomic classifications [70]. Using
previously published crustacean opsin studies, along with
searches of publicly available transcriptomic data generated
primarily from eye, nervous system and whole-body tissue
(electronic supplementary material, table S1), we present the
most complete view of crustacean opsin diversity to date.
Transcriptomic data were gathered from 29 of the 30 extant
crustacean orders included here and from all major crustacean
habitat types (e.g. marine, brackish, freshwater and terrestrial).
The use of transcriptomic data allows us to focus on opsins
that are expressed and may be translated to functional pro-
teins, rather than the full repertoire of opsins that a species
may use in its lifetime (see electronic supplementary material,
data for methods). Spectral sensitivity, labelling or targeted
PCR studies were collected for opsins from 17 species in 6
orders (electronic supplementary material, table S1). For the
majority of crustacean opsins, additional data on sensitivity,
tissue localization or associated behaviours are lacking,
highlighting the need for further research in this area.

Visual opsins from these data formed five clades—LWS,
MWS 1 and 2, SWS, and the thecostracan opsins, a clade
that is composed exclusively of opsins from barnacles. Non-
visual opsins included Rh7, arthropsins, peropsins, neurop-
sins, pteropsins and a new putatively crustacean-specific,
non-visual rhodopsin group abbreviated here as ‘Rc’. Evi-
dence for lineage-specific opsin duplication was noted
when a species possessed multiple opsin copies within a
defined spectral clade. Potential opsin duplications at the
species level were also summarized (figure 2). We outline
what is known about opsin diversity relative to characterized
visual systems for each order with available data below.

(a) Superclass Oligostraca
(i) Arguloida
The order Arguloida consists of over 200 aquatic, primarily
fish ectoparasites. This group has prominent compound
eyes that are used in selecting fish hosts and foraging [73].
From two freshwater species of Argulus up to nine visual
opsins were identified: five and seven LWS opsins for Argulus
siamensis and Argulus foliaceus, respectively, and two SWS/
UVS opsins were identified in each species. Non-visual
opsins were also identified from the Rh7, pteropsin and per-
opsin clades, adding Rh7 and pteropsin to the known
repertoire of this group.

(ii) Mystacocaridida
This order is represented by a handful of mesopsammic
species, which are not expected to be highly visual due to
their lack of eyes and light-sensitive frontal organs [74].
Though a prominent organ of Bellonci has been observed in
Derocheilocaris remanei, light reception of this organ has been
ruled out as immunohistological studies found no innervation
to the central nervous system [75]. From a single transcriptome
assembled for D. remanei, only one predicted LWS visual opsin
was identified and was reduced in size (approx. 7% reduction),
suggesting functional degradation.

(iii) Halocyprida
The order Halocyprida is a group of anchialine cave-adapted
ostracods that lack eyes. Unsurprisingly, no opsins were
found in the transcriptome of Obtusoecia obtusa analysed here.

(iv) Myodocopida
There are approximately 800 described members of this order
that subsist in marine and brackish environments, with some
species known to use bioluminescence in complex mating
rituals [76,77]. Within the class Ostracoda, the Myodocopida
are easily identified by their large compound eyes. Eye-
specific RT-PCR expression in two species, Skogsbergia lerneri
and Vargula hilgendorfii, found at least 8 orthologs of pre-
dicted R-type opsins [15]. Although the sequences from S.
lerneri were mostly too short to include here, seven full
length visual opsins identified from transcriptomic data for
V. hilgendorfii confirmed the original PCR data. All opsins
found were in the MWS2 group of visual opsins and no
non-visual opsins were identified.

(v) Podocopida
The order Podocopida consists of over 1500 marine, fresh-
water and semi-terrestrial species of ostracods that have
only a single naupliar eye [78]. One transcriptome from the
freshwater pool-dwelling species Heterocypris incongruens
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contained exclusively LWS visual opsins (five transcripts) as
well as two Rh7 opsins and one neuropsin. Greater sampling
across species from different habitat types is necessary to
further understand the visual capabilities of this order.
(b) Class Remipedia
(i) Nectiopoda
The eyeless order Nectiopoda contains only 28 species of
anchialine cave-adapted crustaceans. One of these species,
Xibalbanus tulumensis, had been investigated for opsin diver-
sity by Henze & Oakley [18], and none were identified. Here,
we have added the analysis of a transcriptome from Lasio-
nectes entrichoma, and identified a single LWS opsin, as well
as one non-visual neuropsin. The tissue of this specimen
included half a head and some body segments, and due to
the lack of eyes, it is likely that neither of these opsins is
used in image-forming processes.
(c) Class Cephalocarida
(i) Brachypoda
The order Brachypoda consists of only 12 species, which live in
sediment-rich intertidal habitats. We recovered three LWS
opsins from a transcriptome of the species Lightiella incisia,
although members of this order are eyeless, and previous
work by Elofsson & Hessler [79] found no vestigial eye struc-
tures. Because only portions of the sequences were recovered,
we were not able to verify the existence of the terminal lysine
residue in the seventh transmembrane helix necessary for
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retinal binding. Further investigation is needed to determine if
these opsins could be functional in vision. No non-visual opsins
were found.
 lsocietypublishing.org/journal/rstb
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(d) Class Branchiopoda
(i) Anostraca
Members of the order Anostraca have stalked compound eyes
and live in hypersaline lakes and temporary vernal pools.
MWS and SWS/UVS opsins from this group have been pre-
viously characterized using PCR [23]. From this and three
additional transcriptomic datasets, we identified three to
nine LWS, two to five MWS2, and up to four SWS/UVS
opsins, with the highest numbers coming from the species
Eubranchipus grubii. We saw evidence of duplication in the
LWS and MWS clades (3–9 copies) as well as the SWS/
UVS (1–4 copies). All non-visual opsin groups (except neu-
ropsins) were identified, with evidence of species-specific
duplication in the Rh7 and pteropsins.
377:20210289
(ii) Notostraca
The order Notostraca contains fewer than 20 species that live
in the benthos of shallow lakes and vernal pools [80] and
possess sessile, dorsally oriented, compound eyes [81].
Kashiyama et al. [23] found evidence of MWS and SWS/
UVS opsins in this order. Our analysis, including three
additional transcriptomic datasets, resulted in one (Triops
longicaudatus) to four LWS opsins; one MWS1 opsin in all
species, except Triops newberryi (none) and Lepidurus cryptus
(two); and up to two SWS/UVS opsins (L. cryptus). Non-
visual Rh7 and neuropsins were identified, although the
former was only found in one species, T. newberryi. No
non-visual opsins were identified from eye- and ocelli-only
transcriptomes.
(iii) Subclass Diplostraca; Orders Anomopoda, Cyclestherida and
Spinicaudata

Species in the subclass Diplostraca are found in freshwater,
brackish and marine habitats. Members of this subclass pos-
sess a sessile compound eye [82]. Early work by Smith &
Baylor [83] showed behavioural responses to different wave-
lengths of light in several species of Diplostraca and further
work has shown evidence for short, middle and long wave-
length spectral classes of photoreceptors in the eye of
Daphnia magna (Anomopoda) [25]. The previously published
genome of Daphnia pulex (Anomopoda) showed evidence of
all classes of opsins aside from peropsins [31,84]. From this
and three transcriptomic datasets, we identified one to eight
LWS opsins across orders as well as three to five MWS1
opsins from the order Anomopoda. No MWS opsins were
found in the other orders surveyed, each represented by a
single species. One or two SWS/UVS opsins were found in
all species analysed with the exception of Cyclestheria hislopi,
a member of the order Cyclestherida, which lacked an SWS/
UVS opsin. Non-visual opsin diversity was highest in the
Anomopoda with two Rh7, seven arthropsins, eight pterop-
sins and one neuropsin identified from D. pulex. A Rh7 and
an arthropsin were identified from Eoleptestheria cf. ticinensis
(Spinicaudata) and no non-visual opsins were found in
Cyclestherida.
(e) Class Hexanauplia
(i) Subclass Thecostraca; Orders Lepadiformes, Scalpelliformes

and Sessilia
The subclass Thecostraca consists of the barnacles; here we
analysed data from three orders: Sessilia, Lepadiformes and
Scalpelliformes. All six species analysed are marine and ses-
sile with simple eyes as adults, though the larvae of these
species are motile and free-living. Microspectrophotometry
data of Amphibalanus sp. (Sessilia) indicated the presence of
a single bistable blue visual opsin (492–495 nm and 510–
532 nm) [52]. One commonality shared by the marine barna-
cles analysed here was the conservation of two types of visual
opsins: one thecostracan visual opsin and one SWS/UVS. The
thecostracan clade of visual opsins may have been duplicated
in the order Sessilia, with two copies identified both from a
transcriptome (Semibalanus balanoides) and a genome (Amphi-
balanus amphitrite). All types of non-visual opsins were
identified, except for pteropsins. The highest non-visual
opsin diversity in one species was expressed from the sessile
barnacle S. balanoides. Three neuropsins and one of each non-
visual opsin (except pteropsin) were found. Both genome pre-
dictions and transcriptomes were analysed for this group,
though the genomes did not contain the extensive non-visual
opsin diversity of S. balanoides, possibly due to limitations in
454 pyrosequencing throughput as compared to Illumina.
(ii) Subclass Copepoda; Orders Calanoida, Cyclopoida,
Harpacticoida and Siphonostomatoida

The crustacean subclass Copepoda is ecologically diverse,
with more than 14 000 species distributed across ten orders
found in almost every known habitat. Correspondingly, the
diversity of eye morphologies among the ten orders of cope-
pods is immense [32,45]. Based on analyses of transcriptomes
from four species representing four of the ten copepod
orders, copepods are unique among crustaceans in that
they only use MWS2 visual opsins. These results were similar
to a larger study by Steck et al. [32] that characterized the
transcriptomes from 29 species across the same four copepod
orders. Despite having comparatively simple eyes and the
expression of a single type of visual opsin, all of the species
included had evidence of duplication, with all species, even
the parasitic Lepeophtheirus salmonis, expressing three or
more copies of MWS2 opsins. Species in this group also
expressed a range of non-visual opsins, including Rh7, neu-
ropsin, peropsin and pteropsin transcripts; of these, the
pteropsins seemed to have varying degrees of duplication
across species, with anywhere from 1 transcript in L. salmonis
to 8 in Calanus finmarchicus.
( f ) Class Malacostraca
(i) Leptostraca
The Leptostraca are small, filter-feeding, epibenthic marine
crustaceans that are often placed as the most basal lineage
within the Malacostraca [85]. Studies of Nebalia characterized
scotopic apposition compound eyes that provide a round-
about view from the convex corneal facets [86]. A single
LWS visual opsin was found in the transcriptome of Nebalia
bipes and no non-visual opsins were identified.



Table 1. Decapod infraorders with associated common names, and the
range of visual opsins found in each group.

infraorder superfamily
common
name

visual
opsins

Dendrobranchiata prawn 2–19

Caridea shrimp 1–13

Achelata spiny lobster 2–9

Astacidea Astacoidea crayfish 1–3

Astacidea Nephropoidea clawed lobster 3–5

Anomura anomurid crab 0–8

Brachyura true crab 2–4
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(ii) Superorder Syncarida; Orders Anaspidacea and Bathynellacea
The two extant orders within Syncarida consist of exclusively
fresh and brackish water crustaceans, which most often live in
interstitial groundwater [87]. Previous transcriptomic analy-
sis of the subterranean, interstitial filter feeder Allobathynella
bangokenisis (Bathynellacea) found no opsins [88]. However,
we identified five visual opsins (four LWS one SWS/UVS)
from a transcriptome of the species Anaspides tasmaniae (Ana-
spidacea), which lives in moving streams, is carnivorous, and
has a caridoid escape response [89]. No non-visual opsins
were found.

(iii) Stomatopoda
The stomatopods are an order of predatory crustaceans that
have been well-studied for their unusual visual systems.
This order is globally distributed, with the majority of species
surveyed found in shallow subtropical waters. Stomatopods
have stalked compound eyes, each of which is divided into
three parts, allowing for trinocular vision and depth percep-
tion in a single eye [90]. The existence of colour vision,
including the perception of UV light, has been demonstrated
behaviourally in this order [91,92] and up to 33 visual opsin
sequences have been characterized from retinal tissues, many
with unique expression patterns [56]. The five species
included in our dataset have a large number of LWS (up to
19), one to eight MWS1, one to five MWS2 and up to three
spectrally confirmed UVS opsins [24,55,56,93,94]. There is
evidence for extensive duplication of LWS and MWS opsins
in this order, potentially to facilitate a unique form of
colour vision [92]. No non-visual opsins were found in sto-
matopods, possibly due to all data coming from retinal
tissues.

(iv) Decapoda
The decapods are a speciose and ecologically diverse order
containing over 10 000 extant species that span all major habi-
tat types. Accordingly, decapods have a diverse range of
visual systems potentially shaped by these differing habitats
and ecologies. Compound eyes of all described optical types
are found in this order. One LWS opsin and an SWS opsin
from crayfish [12,49] as well as MWS opsins from several
species [13,50,95] have been previously confirmed using anti-
body and PCR methods. Additional localization and spectral
sensitivity work has shown opsin expression and light sensi-
tivity both in the visual system and extraocular regions
[20,38,96]. From 22 transcriptomic datasets, and additional
PCR-based published data spanning seven infraorders, we
found representatives of every type of crustacean non-
visual and visual opsin (with the exception of theocostracan
opsins) in the decapod lineage. Putative visual opsin diver-
sity within the decapods was highly variable among
species and infraorders (table 1). In general, prawns,
shrimp, lobsters and anomuran crabs had higher visual
opsin diversity (often more than 8), while crayfish and true
crabs expressed fewer opsins (fewer than 5). This could be
an indication that high opsin diversity was the ancestral
state for the decapods. Approximately one third of the
species examined had at least one copy of each visual
opsin, more than three quarters had SWS/UVS opsins, and
brachyurans lacked evidence of both LWS and MWS2
opsins. There is evidence of rampant gene duplication in dec-
apod LWS opsins, which we observed in at least one species
from every infraorder investigated here. Evidence of opsin
gene duplication is also present in the MWS clades to a
lesser degree, with species expressing up to three transcripts
of both MWS1 (Dendrobranchiata, Astacidea, Anomura and
Brachyura) and MWS2 (Achelata and Dendrobranchiata).
Decapod SWS/UVS opsins appear to duplicate at lower
rates, however we found two SWS/UVS opsin copies in
Panulirus ornatus, as well as several Dendrobranchiata and
Caridea species. Additionally, deep sea, burrowing or cave-
inhabiting decapods had decreased visual opsin diversity as
compared to other species within their infraorder, including
a lack of expressed SWS/UVS opsins. Crayfish, prawns and
shrimp mostly lacked evidence of any non-visual opsins.
The newly named non-visual Rc opsin was not identified
from the infraorder Achelata but it did occur in every other
infraorder investigated. Due to the differences in tissue
types and sequencing depth, the variation seen in non-
visual opsins is more likely due to limits in detection rather
than biological absence, as evidenced by transcriptome data
from eyestalk tissue producing the most types of non-visual
opsins.
(v) Euphausiacea
The order Euphausiacea comprises fewer than 100 species
[97] that are exclusive to ocean basins. Euphausiids have
stalked superposition compound eyes which, in some
species, display adaptations depending on their position in
the water column [98,99]. Previous work indicated that one
MWS1 opsin was expressed both in the eye and the abdomen
of Euphausia superba, suggesting a possible application in
modulating bioluminescence [29]. Based on RT-PCR data
from one species and transcriptomic data from an additional
two species, one LWS and four to eleven MWS1 visual opsins
were identified, with evidence of at least three duplication
events occurring in the MWS1 clade (with multiple dupli-
cations occurring in Meganyctiphanes norvegica). Two opsins
from the novel Rc clade as well as a non-visual pteropsin
and two peropsins were identified.
(vi) Lophogastrida
Members of the order Lophogastrida are pelagic, mostly
inhabiting deep marine waters, and often use biolumines-
cence in predator defense [100]. The only study of opsins in
the group identified two LWS opsins in both juveniles and
adults from the species Neognathophausia ingens using
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targeted PCR, although only a single visual pigment absor-
bance peak was characterized from their photoreceptors
[43]. RNAseq studies in this group are needed to generate
better estimates of opsin diversity for more detailed studies
of the relationships between opsin diversity, photoreceptor
physiology and bioluminescence in open water habitats.

(vii) Mysida
The order Mysida consists of over 1000 described species,
with more than 90% found exclusively in marine habitats
and the remaining species living in either coastal habitats
with direct marine connections or fully freshwater environ-
ments [101]. Although mysids display considerable
diversity in eye morphology, the variation is based on stalked
superposition compound eyes [102,103]. Based on transcrip-
tome data from two species distributed in brackish coastal
habitats, visual systems in the order use multiple MWS1
opsins (nine in Praunus flexuosus and four in Neomysis
awatschensis) and one SWS/UVS opsin. Additionally, two
non-visual opsins (Rh7 and peropsin) were identified.

(viii) Amphipoda
The order Amphipoda comprises an estimated 10 000
described species found in marine, freshwater and subterra-
nean environments. Amphipod visual systems generally
consist of apposition compound eyes and range from no
eyes in some deep sea species to large distributed retinas in
the mesopelagic species Paraphronima gracilis [104]. Previous
estimates indicate that amphipods typically have a low
number of visual opsins (1–5), with most duplications occur-
ring in the LWS clade [53]. Using transcriptomic data from
nine species representing six families, we found one well-sup-
ported clade of LWS visual opsins in all species with an
apparent duplication of this opsin evident in most species.
Evidence of an evolutionarily distinct LWS was also found
in Marinogammarus marinus, Gammarus pulex and Hyalella
azteca. One MWS1 opsin was identified in all marine species
(plus the freshwater species Gammarus fossarum). Non-visual
neuropsins were found in four species, as well as a pteropsin
in Talitrus saltator.

(ix) Tanaidacea
Although this cosmopolitan group of small (generally less
than 2 mm) crustaceans can be found in freshwater, brackish
and marine habitats, most of the 1200+ species are found at
depths greater than 200 m where they can be the most abun-
dant fauna present [105]. The few tanaidacean visual systems
that have been studied range from well-developed apposition
compound eyes in shallow-water species to complete eye loss
in species from deep waters [106]. In the one shallow-water
species investigated here (Leptochelia sp.), four visual opsins
(two LWS, one MWS1 and one SWS/UVS) were identified,
but no non-visual opsins were found.

(x) Cumacea
The order Cumacea consists of over 1500 species, all of which
inhabit soft-bottomed, mostly marine, aquatic environments.
Little is known about the visual capabilities of this order,
although lensed eyes have been observed [107]. A single
low-quality transcriptome from Cumella sp. produced one
LWS visual opsin and no non-visual opsins.
(xi) Isopoda
The isopods are an ecologically diverse order, with species
inhabiting all major habitat types. The three species included
here represent some of this ecological diversity, including the
semi-terrestrial species Ligia exotica, the marine Idotea balthica
and the freshwater species Asellus aquaticus,with both surface
and cave populations. Isopods have sessile apposition com-
pound eyes [108], although these can vary from non-
existent, to small and simple, to large composite eyes [109].
Based on the opsins identified in these species, isopods utilize
up to two LWS, MWS (MWS1 and/or MWS2) and SWS/UVS
opsins for vision. The A. aquaticus cave population, however,
has reduced eyes and correspondingly reduced numbers of
visual opsins expressed, including the absence of any MWS
opsins, compared to the other two species investigated. A
non-visual peropsin was identified from two transcriptomic
datasets.
5. Overarching themes in crustacean opsin
evolution

By taking a broad approach in our survey of crustacean opsin
diversity and including RNAseq data that was not previously
used for this purpose, we have identified common evolution-
ary features, as well as areas that merit further investigation.
Unsurprisingly, given the diversity represented within the
crustaceans, we found that the opsin repertoire expressed in
different orders, and even within orders, is highly variable.
While we can only speculate about orders for which no
data are available, we can assume that more interesting
vision-related stories will surely emerge from this group.

The results of our analysis, which represents the most
comprehensive sampling of opsin diversity in the crustaceans
at this time, align with the hypothesized visual opsin reper-
toire of the ancestral pancrustacean proposed by Henze &
Oakley [18]. Given the fact that our study focused on opsin
diversity within the crustaceans, we are not able to make
further conclusions about the diversification events that
gave rise to these major opsin clades. However, we see diver-
sification in many crustacean orders, with the number of
opsins found often exceeding expectations in both visual
and non-visual opsin clades. Some orders, such as those
within the class Hexanauplia, appear to have specialized in
one or two types of visual opsins. Others, such as orders
within the Malacostraca, possess sequences from all major
opsin clades but with large amounts of duplication in
either the LWS or MWS.

Though there are many studies that use physiological evi-
dence to deduce spectral sensitivity of crustacean
photoreceptors [20,25,110,111], the specific wavelength absor-
bances of most crustacean visual pigments, particularly
MWS, remain unknown. Thus, designations of wavelength
sensitivity for crustacean opsins remain theoretical. SWS/
UVS opsins with a lysine residue at bovine rhodopsin pos-
ition 90 are predicted to correspond to a shift from blue
(characterized by the presence of an asparagine or glutamate
residue) to ultraviolet spectral tuning in arthropods [28].
However, this lysine residue was present in all crayfish
SWS/UVS opsins despite microspectrophotomic and electro-
physiological data from P. clarkii measuring violet sensitivity
from the R8 cells (440 nm; [26]). Nearly, all SWS/UVS
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sequences included in our analysis (57 of 64) contained this
lysine residue, with the exception of six partial opsin
sequences for which the relevant portion of the sequence
was missing, and one opsin from the arguloid A. foliaceus,
which has a valine residue at this position. While traditional
wavelength sensitivity designations seem to hold true for
insect opsins, our analysis does not provide a clear desig-
nation between SW- and UV-sensitive clades in crustaceans,
suggesting the existence of additional unidentified tuning
sites in crustacean SWS/UVS opsins.

Duplication of visual opsins within LWS and MWS clades
was common in crustacean lineages. Up to 19 LWS opsins
were identified from a single species (Pseudosquilla ciliata)
and in MWS clades up to 11 MWS1 and 7 MWS2, were
found (A. siamensis and M. norvegica). Duplication was less
common in the SWS/UVS clade, with the most found in E.
grubii (four). Opsin duplication can arise from several proxi-
mal causes, including tandem, segmental or whole genome
duplications, though genomic data are often needed to deter-
mine the cause of duplication [19]. In order to learn more
about the evolutionary mechanisms that have produced
these broad patterns of opsin diversification, more crustacean
genomes are needed.

From our datasets, by far the largest single clade in our
phylogeny was the LWS clade. This is likely the result of
early work focused on LWS opsins [12,14] allowing for the
development of PCR-based methods [112,113] as well as
large amounts of duplication in some orders (e.g. within
the Malacostraca). Interestingly, the LWS clade also contained
the only Remipede visual opsin from this study, potentially
pointing to extraocular function in some groups. Several crus-
tacean classes included in this study did not show evidence of
LWS opsins, despite the addition of RNAseq data (e.g. Hex-
anauplia as well as the order Myodocopida).

Our analysis produced two distinct clades of MWS
opsins, which corresponded to Henze & Oakley’s schematic
[18], with an intermediary clade of thecostracan opsins. The
MWS1 clade contains only branchiopod and malacostracan
opsins: within this clade, spectral data from brachyuran
crabs (480–500 nm) and stomatopod midband ommatidia
(400–500 nm) have spectral sensitivities corresponding to
the predicted spectral range for the clade [20,56]. Similarly,
MWS2 is composed of sequences from a wide variety of crus-
tacean groups, with the only measured spectral data coming
from stomatopod midband rows (450–500 nm; [56]). While
the spectral sensitivities associated with MWS clades are unli-
kely to remain consistent between crustacean orders, it is
clear that some groups have specialized by using or duplicat-
ing a particular MWS opsin (i.e. MWS1 in brachyuran crabs,
crayfish, Amphipoda, Mysida, Anomopoda and Notostraca;
MWS2 in Myodocopida, Copepoda and Anostraca; and The-
costraca-specific opsins). While these data suggest that MWS
opsins are responsible for violet sensitivity in crustaceans,
SWS/UVS may also extend to the violet range in some
groups (i.e. crayfish).

Despite being relatively rare, potential duplication of
SWS/UVS opsins was observed in species of the class Bran-
chiopoda, as well as orders Arguloida, Decapoda,
Stomatopoda and one isopod species: Ligia exotica (electronic
supplementary material, table S1). The bright, relatively shal-
low aquatic or terrestrial environments that unify these
groups may be a factor in their increased number of SWS/
UVS opsins. SWS/UVS opsins appeared to have been lost
in a majority of crustacean groups, including copepods,
amphipods, brachypods, ostracods, cumaceans, mystacocar-
ids and remipedes. For classes without compound eyes
such as the Copepoda and Remipeda, this may be due to a
lack of R8 cells, where SWS/UVS opsins are expected to be
localized. More work is needed in this area to understand
the evolutionary and ecological forces that lead some
groups to diversify their SWS/UVS opsins while others
have lost them altogether.

The putative non-visual opsins identified here resulted in
six distinct opsin types in crustaceans: R-type Rh7, arthropsin,
and a novel, putatively crustacean-specific, clade (Rc); tetraop-
sins included peropsin and neuropsin; and C-type pteropsins.
Non-visual opsins were missing from some orders included in
our analysis, but we do not believe this precludes their event-
ual discovery. As their name suggests, non-visual opsins are
often expressed extraocularly and therefore could have been
missed in datasets generated from eye-specific tissue.
Additionally, non-visual opsins that are not highly expressed
were probably not detected in whole-organism RNAseq data-
sets. We saw less duplication in the non-visual opsins
compared to the more abundant visual opsins. This may be
a consequence of the detection issues discussed above but
may also suggest evolutionary mechanisms acting against pro-
liferation of certain types of opsins.

The predicted non-visual R-type opsins, Rc, Rh7 and
arthropsin, can be found in nearly all crustacean orders
(with the exception of taxa with low representation, i.e. Mys-
tacocarida, Nectiopoda and Cephalocarida). Our analysis
produced a novel clade of opsin sequences that contain a
chromophore binding site and sits at the base of the visual
opsin clade. Based on its position outside of the traditional
arthropod visual opsins, we believe that this group contains
non-visual opsins and have tentatively termed it ‘non-
visual crustacean opsins’ (Rc). Rc-type opsins were found in
four orders: Euphausiacea, Decapoda, Sessilia and Anostraca.
There is low bootstrap support (44%) for this group, indicat-
ing a need for more data and analysis to determine its
validity. The next group of predicted non-visual R-type
opsins, Rh7, are often found in photoreceptors and may be
associated with circadian maintenance [34,114]. This group
is found in nearly all crustacean lineages with very few dupli-
cations, aside from the decapod Rh7 opsins, which appeared
to be polyphyletic. The final group, arthropsins, were found
in relatively few transcriptomes, including the orders Anom-
opoda, Spinicaudata, Anostraca, Lepadiformes, Sessilia and
Decapoda (brachyuran crabs only). The low prevalence of
this opsin group is likely due to low expression, potentially
in non-eye tissue. No labelling or spectral characterization
for this group has been done, leaving its function to be
determined.

The non-visual opsins known as tetraopsins were divided
into two clades: peropsins and neuropsins, with peropsins
being expressed in non-visual cells of the eye and neuropsins
being expressed in neural tissue [18,31,115]. Our results
suggest that crustacean groups are using one or the other of
these opsins with very few duplications. Peropsins were
present in Euphausiacea, Mysida, Lepadiformes, Anostraca,
Calanoida, Arguloida and Isopoda. Neuropsins were present
in Amphipoda, Notostraca, Anomopoda, Nectiopoda, Har-
pacticoida and Podocopia. Orders where both peropsins
and neuropsins were found were Cyclopoida, Sessilia and
Decapoda. Decapods expressed both peropsins and
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neuropsins in the infraorders Brachyura, Achelata and Asta-
cidea, while Caridea and Anomura expressed only
peropsins (Dendrobranchiata tetraopsins were not found).
At this time, it is impossible to determine whether the
absence of either opsin type is biological, due to low
expression, or because of the tissue type used for generating
transcriptomes.

The final group of non-visual opsins found in crustaceans
is the C-type pteropsin. These vertebrate-like opsins have
been found in the brain of non-crustacean arthropods and
are thought to play a role in circadian rhythm entrainment
[33]. Though these opsins are not well characterized in crus-
taceans, previous work suggests that insect pteropsins have
absorption maxima ranging from blue to green wavelengths
[37]. This opsin group was identified from the orders Argu-
loida, Decapoda, Euphausiacea, Amphipoda, Anostraca and
Anomopoda as well as the class Hexanauplia, with evidence
of duplication in the latter three.

The past 50 years of research have revealed surprising
morphological and physiological diversity among crustacean
visual systems, and this review on molecular opsin diversity
offers no exception. It appears that life in an aquatic environ-
ment can sometimes result in large levels of opsin
duplication, with examples found throughout the orders
sampled; this is particularly apparent in the stomatopods
and decapods. The evolutionary mechanisms responsible
for such an overabundance of opsins in some crustacean
species remain unknown, as other species can function with
far fewer. Investigating the molecular components provides
a basis for further studies on crustacean vision, but more
work is needed to tie opsin diversity and abundance to func-
tion and ultimately inform research on crustacean ecology
and behaviour.
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