
A proposal for nonabelian (0,2) mirrors

Wei Gu1, Jirui Guo2, Eric Sharpe1

1 Dep’t of Physics
Virginia Tech

850 West Campus Dr.
Blacksburg, VA 24061

2 Dep’t of Physics
Center for Field Theory & Particle Physics

Fudan University
220 Handan Road

200433 Shanghai, China

weig8@vt.edu, jrguo@fudan.edu.cn, ersharpe@vt.edu

In this paper we give a proposal for mirrors to (0,2) supersymmetric gauged linear sigma
models (GLSMs), for those (0,2) GLSMs which are deformations of (2,2) GLSMs. Specif-
ically, we propose a construction of (0,2) mirrors for (0,2) GLSMs with E terms that are
linear and diagonal, reducing to both the Hori-Vafa prescription as well as a recent (2,2) non-
abelian mirrors proposal on the (2,2) locus. For the special case of abelian (0,2) GLSMs, two
of the authors have previously proposed a systematic construction, which is both simplified
and generalized by the proposal here.
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1 Introduction

One of the outstanding problems in heterotic string compactifications is to understand non-
perturbative effects due to worldsheet instantons. For type II strings and (2,2) worldsheet
theories, these effects are well-understood, and are encoded in quantum cohomology rings
and Gromov-Witten theory. In principle, there are analogues of both for more general het-
erotic theories, but there are comparatively many open questions.

For example, in a heterotic E8 × E8 compactification on a Calabi-Yau threefold with a
rank three bundle, the low-energy theory contains states in the 27 and 27 representations
of E6, with cubic couplings appearing as spacetime superpotential terms. On the (2,2) locus
(the standard embedding, where the gauge bundle equals the tangent bundle), for the case
of the quintic threefold, those couplings have the standard form [1,2]

27
3
= 5 +

∞∑︂
k=1

nk
k3qk

1− qk
= 5 + 2875 q + 4876875 q2 + · · · , (1.1)

where the nk encode the Gromov-Witten invariants. These are computed by three-point
functions in the A model topological field theory on the worldsheet. Off the (2,2) locus,
for more general gauge bundles, these couplings have a closely analogous form: a classical
contribution plus a sum of nonperturbative contributions, without any perturbative loop
corrections [3–8]. As a result, we know that more general heterotic versions of the Gromov-
Witten invariants exist, and from general holomorphy arguments, must be nontrivial.

In principle, off the (2,2) locus, heterotic Yukawa couplings such as those in equation (1.1)
are computed by the A/2 and B/2 models, which on the (2,2) locus reduce to the ordi-
nary A and B model topological field theories. For e.g. Fano spaces, both these heterotic
Gromov-Witten invariants1 as well as heterotic versions of quantum cohomology rings (here,
a quantum-corrected ring of sheaf cohomology groups [9] of the form H•(X,∧•E∗), intro-
duced in [10–13]) are known for toric varieties [14–18], Grassmannians G(k, n) [19, 20], and
flag manifolds [21], all for the case that the gauge bundle is a deformation of the tangent
bundle. (Cases involving more general gauge bundles are not currently understood.) See for
example [22–25] for reviews.

For Calabi-Yau spaces, one can compute many correlation functions; however, it is not
yet known how to extract the precise analogues of Gromov-Witten invariants from these
computations, as one needs, for example, a heterotic analogue of the Picard-Fuchs equations
to get a precise mirror map and vacuum normalization. Similarly, more recent methods
applying supersymmetric localization [26] are also not applicable.

1For three-point functions on S2, only. More precisely, correlation function computations are understood
in (analogues of) topological field theories, but correlation function computations in analogues of topological
string theories – with the exception of those that reduce to topological field theory computations – are still
unknown.

4



Historically, Gromov-Witten invariants in (2,2) supersymmetric theories were first com-
puted using mirror symmetry, and so one might hope that a (0,2) supersymmetric version
of mirror symmetry might aid in such developments. This is one of the motivations to
understand (0,2) mirrors (see e.g. [27, 28] for some early work).

To date, there has been significant progress on understanding (0,2) mirror symmetry,
but many results are still limited (and certainly heterotic Gromov-Witten invariants for
Calabi-Yau’s are not yet known). For example, for the case of reflexively-plain polytopes,
and bundles that are deformations of the tangent bundle, a generalization of the Batyrev
construction of ordinary Calabi-Yau mirrors exists, see [29–31].

In this paper, we shall propose what is ultimately a (0,2) analogue of the Hori-Vafa con-
struction [32, 33], which is to say, a mirror construction for two-dimensional gauge theories,
resulting in a Landau-Ginzburg model, which in our case will be defined for a special class of
(0,2) deformations off of the (2,2) locus. For abelian theories, there has been nontrivial work
in this area in the past [34–37]. This work has included ansatzes for various special cases of
toric varieties [35, 36], as well as a more systematic proposal for abelian theories [37]. The
proposal in this paper will both extend such constructions to nonabelian2 (0,2) GLSMs, as
well as give a simpler, more straightforward, presentation in abelian cases than that in [37].
We do not claim to have a proof of the construction, but we do show that the proposal
satisfies a number of general consistency tests consistent with (2,2)-supersymmetric gauge
theory mirrors, for example:

• axial anomalies of the original theory are realized by classically-broken symmetries of
the mirror, and can be restored by a shift of the mirror to the theta angle,

• quantum sheaf cohomology ring relations of the original gauge theory are realized
classically in the mirror by critical locus relations,

• correlation functions match,

• integrating out matter fields from the mirror returns the one-loop effective superpo-
tential of the original gauge theory on the Coulomb branch,

all just as happens in (2,2)-supersymmetric gauge theory mirrors [32,38]. We also check the
mirror construction in several concrete examples.

We begin in section 2 by reviewing mirrors to (2,2)-supersymmetric gauge theories, both
abelian [32] and nonabelian [38]. We discuss the mirror constructions themselves and ex-
pected properties of mirrors to two-dimensional gauge theories.

2Specifically, on the (2,2) locus, this will reduce to the nonabelian mirrors proposal described in [38–40].
Other proposals have appeared in the math community in e.g. [41, 42], as reviewed in [38][section 4.9,
appendix A].
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In section 3 we describe our proposal for (0,2) mirrors for a special class of (0,2) de-
formations off the (2,2) locus. As many subtleties of nonabelian mirrors have already been
extensively discussed in [38–40], here we focus solely on the novel aspects introduced by (0,2)
supersymmetry. We also discuss mirrors to symmetries and their anomalies, and check that
the quantum sheaf cohomology ring relations of the original theory are correctly reproduced
in the mirror by classical critical locus relations.

In section 4, we give further general arguments checking this proposal. Specifically, we
check that correlation functions match, and we demonstrate that integrating-out matter
fields correctly reproduces the one-loop effective superpotential on the Coulomb branch,
exactly as happens in (2,2)-supersymmetric gauge theory mirrors. (We do not, however,
claim to have a proof.)

In section 5, we specialize to abelian theories. In particular, the ansatz here simplifies
and generalizes the ansatz two of the authors previously discussed in [37].

In section 6 we compare to the previous systematic proposal for (0,2) mirrors to abelian
theories by two of the authors [37]. The ansatz presented here is both more general and
rather simpler, and we also argue that when we restrict to (0,2) deformations of the form
considered in [37], our current proposal gives the same results as [37].

In the next several sections, we discuss concrete examples. We begin in section 7 by
giving a detailed analysis of mirrors to Pn × Pm. We verify correlation functions in the
original theory, construct lower-energy Landau-Ginzburg theories in the style of (2,2) Toda
duals to projective spaces, discussing subtleties that arise in their construction, explicitly
verify correlation functions in those lower-energy theories, and also compare to previous (0,2)
mirrors for these spaces in [35].

In section 8 we perform analogous analyses for (0,2) mirrors to Hirzebruch surfaces,
constructing lower-energy theories and comparing to results in [36].

In section 9, we discuss our first nonabelian examples, GLSMs for (0,2) deformations of
Grassmannians G(k,N). These are two-dimensional U(k) gauge theory with matter in copies
of the fundamental representation. We construct lower-energy Landau-Ginzburg models,
analogues of (2,2) Toda duals, that generalize the Grassmannian mirrors discussed in [38],
and explicitly verify that quantum sheaf cohomology rings [19, 20] are reproduced. We
also explicitly verify that correlation functions are correctly reproduced in a few tractable
examples.

In section 10 we briefly discuss (0,2) deformations of flag manifolds, generalizations of
Grassmannians that are also described by two-dimensional nonabelian gauge theories. We
verify that quantum sheaf cohomology rings [21] are reproduced.

Finally, in section 11, we briefly discuss (0,2) mirrors to theories with hypersurfaces. The
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rest of the paper is concerned with mirrors to theories without a (0,2) superpotential; in this
section, we discuss how the result is modified to take into account a (0,2) superpotential,
and also discuss how the mirror ansatz reproduces some conjectures regarding hypersurface
mirrors in [15].

2 Review of mirrors to (2,2) supersymmetric gauge

theories

In this section we shall review results of [32, 38] on mirror symmetry for two-dimensional
(2,2) supersymmetric gauge theories.

Briefly, in these papers, the mirror to a two-dimensional gauge theory is given as a
Landau-Ginzburg model, whose classical physics encodes the quantum physics of the original
gauge theory.

For abelian two-dimensional (2,2) supersymmetric gauge theories, mirrors were described
in [32]. For a U(1)k gauge theory with n chiral superfields with charges encoded in charge
matrix ρai (a ∈ {1, · · · , k}, i ∈ {1, · · ·n}, and Fayet-Iliopoulos parameters ta, the mirror
Landau-Ginzburg model is described by twisted chiral multiplets σa, Yi, and the superpo-
tential

W =
k∑︂

a=1

σa

(︄
n∑︂

i=1

ρai Yi − ta

)︄
+

n∑︂
i=1

exp (−Yi) . (2.1)

Operators in the mirror and the original gauge theory are related by the operator mirror
map

exp (−Yi) ↔
∑︂
a

ρai σa, (2.2)

derived from the superpotential above (see e.g. [37,38] for details).

This Landau-Ginzburg model is mirror in the sense that classical computations in the
B-twisted Landau-Ginzburg model reproduce quantum computations in the A-twist of the
gauge theory. For one example, the axial U(1)A anomaly of the original gauge theory appears
as a classical obstruction to the existence of the corresponding symmetry in the mirror theory,
specifically

Yi ↦→ Yi − 2iα, σa ↦→ σa exp (+2iα) , (2.3)

where α parametrizes the symmetry, at the same time that the superspace coordinates
θ get phase factors. This symmetry has a classical obstruction which can be resolved if
one shifts the θ angle. For another example, the quantum cohomology ring relations of
the original gauge theory are encoded in the classical critical locus of the mirror Landau-
Ginzburg model. For a third example, integrating out the Y fields returns the twisted one-
loop effective superpotential of the original A-twisted gauge theory. More systematically, all
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correlation functions of the original gauge theory, including quantum effects, are reproduced
from classical contributions to correlation functions in the mirror B-twisted Landau-Ginzburg
model. In fact, more can be said – for example, open string sectors mirror in the expected
fashion – but in this paper we focus on computations that have heterotic analogues.

We have only described the mirror in the case that the original gauge theory has no
superpotential, but this description is straightforward to modify in the presence of a super-
potential. Specifically, if the original theory has a superpotential, then some of the chiral
superfields in the original gauge theory have nonzero R-charges. In such a case, we take the
corresponding fundamental field in the mirror to be not Y but instead exp(−(r/2)Y ), where
r denotes the r charge, and the mirror also has a Z2/r orbifold acting by phases on that field.
(Twistability of the original theory restricts allowed R-charges to r ∈ {0, 1, 2}, as discussed
in [38, section 2].)

The nonabelian extension proposed in [38] followed the same pattern, proposing a (B-
twisted) Landau-Ginzburg mirror to (nonabelian) A-twisted two-dimensional (2,2) super-
symmetric gauge theories, in which quantum effects in the A-twisted theory are realized clas-
sically in the B-twisted mirror, which reduces to [32] for abelian gauge theories. Briefly, for
a G-gauge theory with n chiral superfields in some (typically reducible) representation of G,
and Fayet-Iliopoulos parameters ta, a ∈ {1, · · · , rankG}, the mirror Landau-Ginzburg model
is defined by (a Weyl-group orbifold of) twisted chiral superfields σa, Yi (i ∈ {1, · · · , n}),
and Xµ̃, the latter corresponding to nonzero roots of the Lie algebra g of the gauge group
G, and a superpotential

W =
rankG∑︂
a=1

σa

(︄
n∑︂

i=1

ρai Yi −
∑︂
µ̃

αa
µ̃ lnXµ̃ − ta

)︄
+

n∑︂
i=1

exp (−Yi) +
∑︂
µ̃

Xµ̃. (2.4)

Operators in the mirror and the original gauge theory are related by the operator mirror
map

exp (−Yi) ↔
∑︂
a

ρai σa, Xµ̃ ↔
∑︂
a

αa
µ̃σa, (2.5)

derived from the superpotential above (see e.g. [37, 38] for details). The new ingredients,
relative to the abelian case, are the fields Xµ̃, corresponding to nonzero roots of the Lie
algebra g of G, and the Weyl orbifold.

This proposal necessarily possesses all the same properties as the Hori-Vafa proposal, as
well as some new ones. For one example, the axial anomaly of the original gauge theory is
realized in the mirror again as an obstruction to a classical symmetry, specifically

Yi ↦→ Yi − 2iα, Xµ̃ ↦→ Xµ̃ exp (+2iα) , σa ↦→ σa exp (+2iα) , (2.6)

where α parametrizes the symmetry, and the superspace coordinates θ get phase factors. The
classical obstruction to this symmetry can be cured with a theta angle shift, just as in the
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abelian case. For another example, quantum cohomology ring relations as well as Coulomb
branch relations (analogues of quantum cohomology relations in cases where the Higgs branch
has no weak-coupling limit, because of no continuously-variable Fayet-Iliopoulos parameter)
arising from quantum corrections in the original gauge theory are realized classically in the
mirror as critical locus relations. For a third example, integrating out the X and Y fields
in the mirror reproduces the twisted one-loop effective superpotential of the original gauge
theory. More systematically, all correlation functions of the original gauge theory, including
quantum effects, are reproduced from classical contributions to correlation functions in the
mirror B-twisted Landau-Ginzburg model.

Nonabelian cases also possess a few additional properties. For one example, Coulomb
branch vacua in a nonabelian two-dimensional gauge theory are partly defined by ‘excluded
loci,’ constraining the σ fields. For example, in a U(k) gauge theory with fundamental-
valued matter, for a ̸= b, σa ̸= σb. (One way to understand this is from supersymmetric
localization, where the integration measure has a factor proportional to (σa − σb)

2, which
removes contributions from coincident pairs of σ’s.) One of the challenges in finding a
nonabelian mirror, one of the constraints on a possible mirror, is to reproduce that excluded
locus in the classical physics of the B-twisted Landau-Ginzburg model. Now, realizing a
closed condition, such as a restriction to a subvariety, is relatively straightforward, following
the pattern described in [43]. The excluded locus condition above, however, is an open
condition, defining an open subset of the Coulomb branch. In the mirror proposal in [38],
the excluded locus condition is mirror to poles in the mirror superpotential. For example,
in the case of a U(k) gauge theory with fundamentals, the mirror theory has a field Xµν

which is mirror to the difference σµ − σν , and the superpotential has a pole where Xµν = 0,
implying that σµ must be distinct from σν . In more general cases, the excluded loci can be
considerably more intricate, and one of the checks performed in [38] was to verify that the
classical physics of the mirror did correctly reproduce those excluded loci.

Numerous other consistency tests have also been performed. For example, in the case of
the two-dimensional gauge theory describing Grassmannians G(k, n), integrating out the X
fields reproduces a proposal of [32] for the mirror to a Grassmannian. In [32], the proposal
had factors of the form ∏︂

a<b

(σa − σb)
2 (2.7)

in the integration measure, whose possible origin in a local field theory was rather unclear,
but becomes much more clear in the mirror of [38].
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3 Proposal for (0,2) supersymmetric gauge theories

In this section, we will describe our ansatz for mirrors to (0,2) supersymmetric3 GLSMs
which are deformations of (2,2) supersymmetric GLSMs, relating the (0,2) supersymmetric
analogue of the A-twist of the original gauge theory (known4 as the A/2-twist) to the (0,2)
supersymmetric analogue of the B-twist (known as the B/2-twist) of the mirror Landau-
Ginzburg model. Our ansatz will apply to both abelian and nonabelian theories obtained
as deformations of (2,2) supersymmetric theories, but with a restriction on the allowed
deformations, a restriction on the form of the functions E = D+Ψ, which we shall describe
in a moment.

Our ansatz will follow the same pattern and have the same basic properties as the other
gauge theory mirrors discussed in the previous section. For example, it will have the same
symmetries, realizing classically any anomalies of the original theory, as we shall see later
in this section. For another example, quantum sheaf cohomology ring relations arising from
quantum corrections in the original (0,2) supersymmetric gauge theory are realized classically
in the mirror as critical locus relations, just as in the (2,2) supersymmetric models, as we
shall see explicitly later in this section. For a third example, integrating out the X and Y
fields in the mirror reproduces the twisted one-loop effective superpotential of the original
gauge theory, just as in (2,2) supersymmetric theories, as we discuss in section 4.1. More
systematically, all (topological) correlation functions of the original gauge theory, including
quantum effects, are reproduced from classical contributions to correlation functions in the
mirror B/2-twisted Landau-Ginzburg model, just as in (2,2) supersymmetric theories, as we
discuss in section 4.2.

For simplicity, in this section we will assume the original gauge theory has no superpo-
tential, and will discuss mirrors to theories with (0,2) superpotentials in section 11. We do
not claim a physical proof of this proposal, though in later sections we will provide numerous
consistency tests.

We will consider (0,2) theories that are deformations of (2,2) theories. Now, (2,2) su-
persymmetric multiplets are equivalent to pairs of (0,2) supersymmetric multiplets. For
example, a (2,2) supersymmetric chiral superfield Φ is equivalent to a pair of (0,2) super-
symmetric multiplets:

• a (0,2) supersymmetric chiral multiplet Φ,

• a (0,2) supersymmetric Fermi multiplet Ψ, with D+Ψ a holomorphic function of chiral
superfields.

On the (2,2) locus, D+Ψ is uniquely specified.

3For introductions to (0,2) GLSMs and (0,2) Landau-Ginzburg models, we recommend [44,45].
4For an introduction to the A/2 and B/2 twists, we refer the reader to e.g. [10, 24,25].
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We will consider (0,2) deformations encoded in D+Ψ, deforming this function to a more
general holomorphic function of the chiral superfields (and breaking (2,2) supersymmetry to
(0,2)). Specifically, we consider deformations obeying the following two constraints:

• We assume that D+Ψ is linear in chiral superfields, rather than a more general holo-
morphic function of chiral superfields. This may sound very restrictive, but in fact, it
has been argued that only linear terms contribute to A/2-twisted GLSMs5 – nonlinear
terms are irrelevant. (This was conjectured in [15][section 3.5], [46][section A.3], and
rigorously proven in [16,17] for abelian GLSMs. It also is a consequence of supersym-
metric localization [18], and see in addition [47][appendix A].)

• We assume that D+Ψ is also diagonal, meaning, for theories which are deformations
of (2,2) theories, that for any Fermi superfield Ψ, D+Ψ is proportional to the chiral
superfield with which it is partnered on the (2,2) locus.

On the (2,2) locus, the D+Ψ are both linear and diagonal, and there exist nontrivial (0,2)
deformations which are also linear and diagonal. The constraints above, that D+Ψ be both
linear and diagonal, imply the form

D+Ψi = Ei(σ)Φi. (3.1)

This form is not the most general possible (0,2) deformation, but nevertheless still allows for
nontrivial deformations, and in any event is the most general possible deformation for which
we have been able to find a mirror construction that obeys all consistency constraints.

Now that we have stated the restrictions, we give the proposal. Let us consider a (0,2)
GLSM with connected6 gauge group G of dimension n and rank r, chiral fields Φi and Fermi
fields Ψi in a (possibly reducible) representation R for i = 1, · · · , N = dimR. If W is the
Weyl group of G, then the proposed mirror theory is aW-orbifold of a (0,2) Landau-Ginzburg
model given by the following matter fields:

• r chiral fields σa and r Fermi fields Υa, a = 1, · · · , r,

• chiral fields Yi and Fermi fields Fi where i = 1, · · · , N ,

• n− r chiral fields Xµ̃ and n− r Fermi fields Λµ̃,

following the same pattern as the (2,2) nonabelian mirror proposal [38].

5For A/2-twisted nonlinear sigma models, this story is not settled, not least because we know of no simple
way to distinguish the UV linear from UV nonlinear deformations in the IR.

6It is very straightforward to extend this proposal to O(k) gauge theories in the same fashion as the (2,2)
case, discussed in [40], but we shall not discuss any examples of O(k) (0,2) mirrors in this paper.
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For linear and diagonal D+Ψ as above, the proposed (0,2) superpotential of the mirror
Landau-Ginzburg orbifold is

W =
r∑︂

a=1

Υa

(︄
N∑︂
i=1

ρai Yi −
n−r∑︂
µ̃=1

αa
µ̃ lnXµ̃ − ta

)︄

+
N∑︂
i=1

Fi (Ei(σ)− exp(−Yi)) +
n−r∑︂
µ̃=1

Λµ̃

(︄
1 −

r∑︂
a=1

σaα
a
µ̃X

−1
µ̃

)︄
,

(3.2)

where ρai is the a-th component of the weight ρi of representation R, and αµ̃, µ̃ = 1, · · · , n−r
are the roots of G.

In later sections, we will slightly modify the index structure above, to be more convenient
in each case, just as in [38–40]. For example, if the matter representation R consists of
multiple fundamentals, we will break i into separate color and flavor indices.

The Weyl orbifold group acts on the superpotential above in essentially the same form as
discussed in detail in [38–40], so we will be brief. In broad brushstrokes, the orbifold group
acts by a combination of exchanging fields and multiplying by signs. In the present case,
such actions happen on pairs (Yi, Fi), (Xµ̃,Λµ̃), (σa,Υa) simultaneously. For example, if Yi

is swapped with Yj, then simultaneously Fi is swapped with Fj. If Yi is multiplied by a sign,
then simultaneously Fi is multiplied by a sign. It is then straightforward to show that the
superpotential above is invariant under the orbifold group, following the same arguments as
in [38–40].

Furthermore, because the Λµ̃ terms have the same form as on the (2,2) locus, the part
of the excluded locus corresponding to Xµ̃ poles is the same as on the (2,2) locus, and so,
for mirrors to connected gauge groups, the fixed points of the Weyl orbifold do not intersect
non-excluded critical loci. In passing, another part of the excluded locus is defined by the
fact that exp(−Y ) is nonzero for finite Y , and that part of the excluded locus will change as
the exp(−Y )’s are now determined by the E’s.

Most of the superpotential above is simply the (0,2) version of the (2,2) mirrors of [32,
38–40], with the exception of the FE terms in the second line. For a (2,2) supersymmetric
mirror, each of those E’s would be

Ei(σ) =
r∑︂

a=1

ρai σa. (3.3)

Allowing for more general E’s encodes the (0,2) deformation. We should also observe that
in the original (0,2) gauge theory, those E’s are not in the superpotential; the fact that they
appear in the mirror (0,2) superpotential is as one expects for mirror symmetry.

Just as in [38], we omit the Kähler potential from our ansatz, partly because it is not
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pertinent to the tests we will perform. For abelian (0,2) GLSMs, detailed discussions of
dualities and corresponding Kähler potentials can be found in [34].

The constraints implied by the Fermi fields imply the operator mirror map

exp(−Yi) = Ei(σ), (3.4)

Xµ̃ =
r∑︂

a=1

αa
µ̃σa, (3.5)

a precise analogue of the operator mirror map (2.5) in the (2,2) case, as well as the constraints

N∑︂
i=1

ρai Yi −
n−r∑︂
µ̃=1

αa
µ̃ lnXµ̃ = ta. (3.6)

Exponentiating the constraints and applying the operator mirror map, we get the relations[︄∏︂
i

Ei(σ)
ρai

]︄[︄∏︂
µ̃

X
αa
µ̃

µ̃

]︄
= qa. (3.7)

Just as in the (2,2) case [38, section 3.3], and as we will see in more detail in section 4, the
factor [︄∏︂

µ̃

X
αa
µ̃

µ̃

]︄
(3.8)

just contributes a phase, so that these relations reduce to∏︂
i

Ei(σ)
ρai = q̃a, (3.9)

for suitably phase-shifted q̃a ∝ qa, which are precisely the quantum sheaf cohomology rela-
tions for these theories (see e.g. [18]). Thus, as expected, the quantum sheaf cohomology
ring relations of the original theory are realized classically in the mirror, just as in (2,2)
supersymmetric mirrors.

The right-chiral U(1)R symmetry of the original gauge theory is realized in the mirror as

Yi ↦→ Yi − iα, Fi ↦→ Fi (invariant) ,
Xµ̃ ↦→ Xµ̃ exp (+iα) , Λµ̃ ↦→ Λµ̃ exp (+iα) ,
σa ↦→ σa exp (+iα) , Υa ↦→ Υa exp (+iα) ,

(3.10)

and with a corresponding phase rotation of the superspace coordinates, where α parametrizes
the symmetry, following exactly the same pattern as equation (2.6) for the (2,2) mirror, and
with the same result: the axial anomaly of the original gauge theory is mirror to a classical
obstruction that can be cured by a shift of the (mirror to the) theta angle.
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The left-chiral U(1) symmetry (an R-symmetry on the (2,2) locus) of the original gauge
theory is realized in the mirror as

Yi ↦→ Yi − iα, Fi ↦→ Fi exp (−iα) ,
Xµ̃ ↦→ Xµ̃ exp (+iα) , Λµ̃ ↦→ Λµ̃ (invariant) ,
σa ↦→ σa exp (+iα) , Υa ↦→ Υa (invariant) ,

(3.11)

where α parametrizes the symmetry, and with no phase rotation of the superspace coordi-
nates. As in the right-chiral case, the anomaly of the original theory is realized in the mirror
by a classical obstruction that can be cured by a shift of the (mirror to the) theta angle.

4 Justification

We saw in the previous section that the proposed (0,2) mirror possesses many of the desired
properties of a mirror: it realizes classically the quantum sheaf cohomology ring relations
of the original theory, and it has the same symmetries, realizing anomalies classically in the
mirror.

In this section, we will provide further general tests of the (0,2) mirror proposal of the
previous section. Specifically, we will reproduce the one-loop effective (0,2) superpotential
of [15] and also argue how correlation functions in these theories reproduce those of the
original gauge theories, in cases in which vacua are isolated. Our arguments in this section
will be somewhat formal, but in concrete examples in later sections we will verify these
properties explicitly.

4.1 Integrate out fields

In this section, we will integrate out fields and recover the one-loop effective superpotential
of the original gauge theory, a standard property of (2,2) gauge theory mirrors that also
holds in this (0,2) supersymmetric mirror proposal.

First, following [38], to better understand the properties of this theory, we integrate out
the fields Xµ̃ and Λµ̃. This is an option because they have nonzero masses; phrased simply,

∂2W

∂Λµ̃∂Xν̃

=
∑︂
a

σaα
a
µ̃

X2
µ̃

δµ̃ν̃ , (4.1)

whose zero locus defines part of the excluded locus, as explained in [38]. The Hessian of Xµ̃

is

HX =
∏︂
µ̃

(︄
r∑︂

a=1

σaα
a
µ

)︄−1

, (4.2)
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which, when integrating out Xµ̃, Λµ̃, generates a factor in the path integral measure which
vanishes along the excluded locus, exactly the same as in (2,2) mirrors [38]. The equations
of motion of Xµ̃ are

Xµ̃ =
r∑︂

a=1

σaα
a
µ̃. (4.3)

Therefore, integrating out Xµ̃ and Λµ̃ amounts to eliminating the terms proportional to Λµ̃

and lnXµ̃ in (3.2) and shifting the FI parameters ta to t̃a, just as happens in (2,2) mirrors [38],
reproducing a phase discussed in [48, section 10]. For example, for each U(k) factor of the
gauge group,

αa
µ̃ = αa

bc = δac − δab (4.4)

for a, b, c = 1, · · · , k and b ̸= c and thus∑︂
µ̃

αa
µ̃ lnXµ̃ =

∑︂
b ̸=c

αa
bc ln (σc − σb) =

∑︂
b ̸=a

ln

(︃
σa − σb

σb − σa

)︃
= (k − 1)πi (4.5)

from the equation of motion.

Therefore, after integrating out Xµ̃ and Λµ̃, the superpotential (3.2) reduces to

W̃ =
r∑︂

a=1

Υa

(︄
N∑︂
i=1

ρai Yi − t̃a

)︄
+

N∑︂
i=1

Fi (Ei(σ)− exp(−Yi)) (4.6)

through a redefinition t̃a of ta. The equations of motion of σa and Yi derived from (4.6) then
gives the mirror map (3.4) and the expected quantum sheaf cohomology relations (3.9).

Let us now also integrate out (Yi, Fi). We will recover the one-loop effective superpotential
of the original gauge theory on the Coulomb branch, just as happens in (2,2) supersymmetric
mirrors. As before, it is legitimate to do so because these fields have nonzero mass:

∂2W

∂Yi∂Fj

= δij exp (−Yi) , (4.7)

whose zero locus defines part of the excluded locus, as explained in [38]. From the superpo-
tential above, we find

exp (−Yi) = Ei(σ), (4.8)

or simply
Yi = − lnEi(σ), (4.9)

and plugging back in we recover

W̃ =
r∑︂

a=1

Υa

(︄
−

N∑︂
i=1

ρai lnEi(σ)− t̃a

)︄
. (4.10)

This matches [15, equ’ns (3.22)-(3.23)]. Thus, we see that integrating out fields recovers
the one-loop effective superpotential along the Coulomb branch, exactly as happens in (2,2)
supersymmetric gauge theory mirrors.
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4.2 Correlation functions

In this section, we will compare correlation functions in the B/2-twisted Landau-Ginzburg
model just defined (3.2) with corresponding A/2 model correlation functions, in cases with
isolated Coulomb branch vacua, and along the way, recover the one-loop effective (0,2)
superpotential of [15] along the Coulomb branch.

Now, for a (0,2) superpotential of the form W = F iJi with isolated vacua, correlation
functions are schematically of the form [49]

⟨f⟩ =
∑︂
vacua

f

det ∂iJj
, (4.11)

closely related to formulas for correlation functions in (2,2) Landau-Ginzburg models involv-
ing determinants of matrices of second derivatives of the superpotential. Thus, we need to
compute some analogues of Hessians.

The Hessian of Yi is
HY =

∏︂
i

exp(−Yi) =
∏︂
i

Ei(σ),

which is nonzero at generic points on the Coulomb branch. From (3.4), integrating out Yi

and Fi reduces (4.6) to

Weff =
r∑︂

a=1

ΥaJ
a
eff =

r∑︂
a=1

Υa

(︄
−

N∑︂
i=1

ρai lnEi(σ)− t̃a

)︄
, (4.12)

which is the same as the effective superpotential on the Coulomb branch of the original
GLSM. Consequently, assuming isolated vacua, for any operator O(σ), the B/2 correlation
functions of our proposed Landau-Ginzburg mirror are [49]

⟨O(σ)⟩ =
1

|W|
∑︂
Ja
eff=0

O(σ)

(deta,b ∂bJa
eff)HXHY

, (4.13)

=
1

|W|
∑︂
Ja
eff=0

O(σ)
∏︁

µ̃

(︁∑︁r
a=1 σaα

a
µ̃

)︁
(deta,b ∂bJa

eff) (
∏︁

i Ei(σ))
, (4.14)

which is the same as the A/2 correlation function computed from the original GLSM [18,
equ’n (3.63)]. (The factor of 1/|W| reflects the Weyl orbifold, which acts freely on the critical
locus, as in [38], so that twisted sectors do not enter this computation, at least for mirrors
to theories with connected gauge groups.)
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5 Specialization to abelian theories

Let’s consider a GLSM with gauge group U(1)r. The chiral field Φi and Fermi field Ψi

have charge Qa
i under the a-th U(1), for i = 1, · · · , N . Assuming linear and diagonal (0,2)

deformations, as discussed before, these fields satisfy

D+Ψi =
r∑︂

a=1

Ea
i σaΦi, (5.1)

where Ea
i = Qa

i on the (2,2) locus.

In the abelian case, the fields Xµ and Λµ are absent in the mirror theory. The matter
content of the mirror Landau-Ginzburg model thus consists of chiral fields σa, Yi and Fermi
fields Υa, Fi, a = 1, · · · , r, i = 1, · · · , N . The superpotential is

W =
r∑︂

a=1

Υa

(︄
N∑︂
i=1

Qa
i Yi − ta

)︄
+

N∑︂
i=1

Fi

(︄
r∑︂

a=1

Ea
i σa − exp(−Yi)

)︄
. (5.2)

Specializing equation (3.4), the operator mirror map in this case is

exp(−Yi) =
r∑︂

a=1

Ea
i σa (5.3)

and the effective superpotential is

Weff =
r∑︂

a=1

ΥaJ
a
eff =

r∑︂
a=1

Υa

(︄
−

N∑︂
i=1

Qa
i ln

(︄
r∑︂

b=1

Eb
iσb

)︄
− ta

)︄
, (5.4)

which reproduces the expected correlation functions

⟨O(σ)⟩ =
∑︂
Ja
eff=0

O(σ)

(deta,b ∂bJa
eff)HY

, (5.5)

where

HY =
N∏︂
i=1

(︄
r∑︂

a=1

Ea
i σa

)︄
. (5.6)

6 Comparison to previous abelian proposal

A proposal was made for a systematic mirror construction in abelian (0,2) GLSMs in [37].
The proposal of this paper both generalizes and simplifies the proposal given there. In this
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section, we will explicitly relate our ansatz to that discussed there. (Special cases have
already been discussed, in sections 7.5 and 8.)

Briefly, the proposal in [37] considered abelian (0,2) GLSMs with E’s that are both linear
and diagonal, as here, but with two additional restrictions:

• To compute the mirror, one picked an invertible submatrix S of the charge matrix,

• and the (0,2) deformations vanished for E’s corresponding to rows of S.

The physics of the resulting mirror was independent of choices, but nevertheless this was a
more restrictive mirror than that given in this paper.

We will outline a derivation of the construction in [37] from the mirror in this paper, but
first, with the benefit of hindsight, let us outline in general terms how they are related.

• In the proposal of this paper, to generate a lower-energy Landau-Ginzburg model, we
may for example integrate out a subset of the F Fermi fields, and solve for the σa.
This procedure only works if the corresponding submatrix of the E’s is invertible, and
so, broadly speaking, corresponds to a choice of invertible submatrix.

• Assuming that the E submatrix chosen above is the same as on the (2,2) locus re-
moves the necessity of keeping track of overall numerical factors multiplying partition
functions and correlation functions, the subtlety discussed in e.g. subsection 7.3.1.

Next, we shall outline a derivation of the ansatz of [37] from the proposal of this paper.
First, they wrote their linear diagonal D+Ψi in terms of deformations Bij off the (2,2) locus,
as

Ei =
∑︂
j

∑︂
a

(δij +Bij)Q
a
i σa. (6.1)

For these Ei, our ansatz (3.2) can be written as

W =
r∑︂

a=1

Υa

(︄
N∑︂
i=1

Qa
i σa − ta

)︄

+
N∑︂
i=1

Fi

(︄∑︂
a

Qa
i σa +

∑︂
j

BijQ
a
jσa − exp (−Yi)

)︄
. (6.2)

Now, in the ansatz of [37], one picks an invertible submatrix S of the charge matrix, and for
i corresponding to a column of S, Bij = 0. As a result, for those i, the Fi terms are simply

Fi

(︄∑︂
a

Qa
i σa − exp (−Yi)

)︄
, (6.3)
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and so we have a constraint that relates, for those i,∑︂
a

Qa
i σa = exp (−Yi) , (6.4)

or equivalently, in the notation of [37],∑︂
a

Sa
iS
σa = exp (−Yi) . (6.5)

Solving for σa, we have

σa =
∑︂
iS

(︁
S−1

)︁
aiS

exp (−YiS) , (6.6)

and plugging back in, our (0,2) superpotential becomes

W =
r∑︂

a=1

Υa

(︄
N∑︂
i=1

Qa
i σa − ta

)︄

+
N∑︂
i=1

Fi

(︄∑︂
a

Qa
i σa +

∑︂
a,j,iS

BijQ
a
j

(︁
S−1

)︁
aiS

exp (−YiS) − exp (−Yi)

)︄
, (6.7)

which is precisely the (0,2) superpotential of [37].

7 Example: Pn × Pm

So far we have given general arguments that expected properties of the mirror always hold for
this proposal: anomalies of the original theory are realized classically in the mirror, quantum
sheaf cohomology ring relations arise from classical critical locus constraints, correlation
functions match, and integrating out fields returns the one-loop twisted effective action of
the original theory, all as expected for a gauge theory mirror ala [32,38].

Now, general arguments are well and good, but to make the discussion more concrete,
working through examples can also be helpful. To that end, in this section we work through
the first of several examples, to see concretely how the mirror works in special cases.

7.1 Setup

In this section we will compare to proposals for (0,2) mirrors to Pn×Pm with a deformation
of the tangent bundle, as discussed in [35].
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In this case, a general deformation of the tangent bundle is described as the cokernel

0 −→ O2 E−→ O(1, 0)n+1 ⊕O(0, 1)m+1 −→ E −→ 0, (7.1)

where

E =

[︃
Ax Bx
Cy Dy

]︃
, (7.2)

where x, y are vectors of homogeneous coordinates on Pn, Pm, respectively, and where A, B
are constant (n+1)× (n+1) matrices, and C, D are constant (m+1)× (m+1) matrices. In
this language, the (2,2) locus corresponds for example to the case that A and D are identity
matrices, and B = 0 = C.

Physically, in the corresponding (0,2) GLSM, we can write

D+Λi = (Aijσ +Bijσ̃) xj, D+Λ̃j = (Cjkσ +Djkσ̃) yk, (7.3)

and so we have

Eij(σ, σ̃) = (Aσ +Bσ̃)ij, Ẽjk(σ, σ̃) = (Cσ +Dσ̃)jk. (7.4)

The (0,2) mirror ansatz of this paper is only defined for diagonal E’s, so we shall assume
the matrices A, B, C, D are diagonal:

A = diag (a0, · · · , an) , (7.5)

B = diag (b0, · · · , bn) , (7.6)

C = diag (c0, · · · , cm) , (7.7)

D = diag (d0, · · · , dm) . (7.8)

We also define
Ei(σ, σ̃) = aiσ + biσ̃, Ẽi(σ, σ̃) = ciσ + diσ̃. (7.9)

Following the (0,2) mirror ansatz given earlier, we take the (0,2) mirror to be defined by
the superpotential

W = Υ1

(︄
n∑︂

i=1

Yi − t1

)︄
+ Υ2

(︄
m∑︂
j=0

Ỹ j − t2

)︄

+
n∑︂

i=0

Fi (Ei(σ, σ̃) − exp (−Yi)) +
m∑︂
j=0

F̃ j

(︂
Ẽj(σ, σ̃) − exp

(︂
−Ỹ j

)︂)︂
. (7.10)

As a first consistency test, let us verify that this produces the quantum sheaf cohomology
ring of Pn × Pm. First, we integrate out the Υi, which gives the usual constraints

n∏︂
i=0

exp (−Yi) = q1,
m∏︂
j=0

exp
(︂
−Ỹ j

)︂
= q2. (7.11)
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Integrating out the Fi, F̃ j gives the operator mirror maps

exp (−Yi) = Ei(σ, σ̃), exp
(︂
−Ỹ j

)︂
= Ẽj(σ, σ̃), (7.12)

and combining these with the constraints (7.11), one immediately has

det(Aσ +Bσ̃) =
∏︂
i

Ei(σ, σ̃) = q1, det(Cσ +Dσ̃) =
∏︂
j

Ẽj(σ, σ̃) = q2, (7.13)

which are precisely the quantum sheaf cohomology ring relations for this model [14–18].

7.2 Correlation functions in the UV

Before going on to integrate out some of the fields, let us take a moment to explicitly compute
two-point B/2-model correlation functions in the case of the mirror to P1×P1. (As we already
know the chiral ring matches that of the A/2 model, from the results of the immediately
preceding subsection, computing the two-point correlation functions suffices to determine all
of the B/2-model correlation functions.)

Correlation functions for the P1×P1 model were computed in [18][section 4.2]. We repeat
the highlights here for completeness. The two-point correlation functions have the form

⟨σσ⟩ = −Γ1

α
, ⟨σσ̃⟩ = +

∆

α
, ⟨σ̃σ̃⟩ = −Γ2

α
, (7.14)

where

γAB = det(A+B)− detA− detB, γCD = det(C +D)− detC − detD,
Γ1 = γAB detD − γCD detB, Γ2 = γCD detA− γAB detC,
∆ = (detA)(detD)− (detB)(detC), α = ∆2 − Γ1Γ2.

(7.15)

We can compute correlation functions in the present mirror B/2-twisted Landau-Ginzburg
model with superpotential (7.10 using the methods of [49]. Specializing to n = m = 1, we
have six functions Ji, corresponding to the coefficients of Υ1,2, F1,2, F̃ 1,2, and six fields σ, σ̃,
Y0,1, Ỹ 0,1. The resulting matrix of derivatives (∂iJj) has the form

(∂iJj) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0
0 0 0 0 1 1
a0 b0 exp (−Y0) 0 0 0
a1 b1 0 exp (−Y1) 0 0

c0 d0 0 0 exp
(︂
−Ỹ 0

)︂
0

c1 d1 0 0 0 exp
(︂
−Ỹ 1

)︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.16)
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and then correlation functions have the form

⟨f(σ, σ̃)⟩ =
∑︂
J=0

f(σ, σ̃)

det(∂iJj)
, (7.17)

where the sum is over the solutions of {Ji = 0}. It is straightforward to compute that
the resulting correlation functions precisely match those listed above from the A/2 model
[18][section 4.2].

7.3 More nearly standard expressions

More nearly standard expressions for Landau-Ginzburg mirrors do not involve σ fields, so
in this section, we shall integrate out these fields to derive expressions for mirrors of a more
nearly standard form. We will encounter some interesting subtleties.

Specifically, some other expressions for possible (0,2) mirrors to Pn × Pm are in [35, 37].
Those expressions have precisely n Y ’s andm Ỹ ’s, so we first integrate out the Υi, eliminating
Y0, Ỹ 0:

exp (−Y0) = q1

n∏︂
i=1

exp (+Yi) , exp
(︂
−Ỹ 0

)︂
= q2

m∏︂
j=1

exp
(︂
+Ỹ j

)︂
. (7.18)

Next, we can either integrate out some of the Fermi fields Fi, F̃ j, and then integrate
out σ’s, or we can integrate out σ’s first, and then some of the Fermi fields. This order-of-
operations ambiguity does not exist in (2,2) theories. The results are independent of choices,
as one should expect, but we illustrate both methods next, to illustrate various subtleties in
both the analysis and the normalization of the results. In later analyses in this paper, we
will be much more brief.

7.3.1 First method

Having integrating out the Υi, our strategy in this approach is to next integrate out some
F , F̃ (as many as σ’s), and then use the resulting constraints to eliminate σ’s.

The expressions in [35, 37] have as many F ’s as Y ’s, so we need to integrate out one F
and one F̃ . This will mean solving for σ and σ̃ in terms of other variables. There are a
number of ways to proceed, and indeed, one expects that there will be many equivalent but
different-looking expresions for σ, σ̃ in terms of Yi and Ỹ j. To pick one, we choose an index
i and j such that the expressions we get from integrating out the corresponding F and F̃ ,
namely

exp (−Yi) = Ei(σ, σ̃), exp
(︂
−Ỹ j

)︂
= Ẽj(σ, σ̃), (7.19)
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can be inverted to solve for σ, σ̃ in terms of Yi, Ỹ j. Put another way, using an index I to
denote either i or j, and writing, schematically,

EI(σ, σ̃) = Sα
I σα, (7.20)

we pick two indices I such that the resulting 2 × 2 matrix S is invertible. (Here we are
deliberately making contact with the notation used in [37].)

Suppose, for example, that the two equations

exp (−Y0) = E0(σ, σ̃), exp
(︂
−Ỹ 0

)︂
= Ẽ0(σ, σ̃), (7.21)

can be inverted to solve for σ, σ̃. Let us do this explicitly, and examine the result. From our
earlier discussion,

E0(σ, σ̃) = a0σ + b0σ̃, Ẽ0(σ, σ̃) = c0σ + d0σ̃. (7.22)

Assuming that

∆0 ≡ det

[︃
a0 b0
c0 d0

]︃
̸= 0, (7.23)

we first integrate out F0, F̃ 0 to get the constraints (7.21), and then these equations to find

σ =
1

∆0

(︂
d0 exp (−Y0) − b0 exp

(︂
−Ỹ 0

)︂)︂
, (7.24)

σ̃ =
1

∆0

(︂
−c0 exp (−Y0) + a0 exp

(︂
−Ỹ 0

)︂)︂
. (7.25)

Then, after finally integrating out σ and σ̃, the (0,2) superpotential reduces to

W =
n∑︂

i=1

Fi (aiσ + biσ̃ − exp (−Yi)) +
m∑︂
j=1

F̃ j

(︂
cjσ + djσ̃ − exp

(︂
−Ỹ j

)︂)︂
, (7.26)

=
n∑︂

i=1

Fi

[︄
(aid0 − bic0)

∆0

q1

n∏︂
i′=1

exp (+Yi′) +
(−aib0 + bia0)

∆0

q2

m∏︂
j′=1

exp
(︂
+Ỹ j′

)︂
− exp (−Yi)

]︄

+
m∑︂
j=1

F̃ j

[︄
(cjd0 − djc0)

∆0

q1

n∏︂
i′=1

exp (+Yi′) +
(−cjb0 + dja0)

∆0

q2

m∏︂
j′=1

exp
(︂
+Ỹ j′

)︂
− exp

(︂
−Ỹ j

)︂]︄
. (7.27)

Before going on, there is a subtlety we should discuss, that will become important when
comparing correlation functions between the UV and lower-energy theories. Specifically,
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when we integrated out σ and σ̃, one effect is to multiply the path integral by a constant.
Specifically, after integrating out F0 and F̃ 0, we had constraints which schematically appear
in the B/2 model path integral in the form∫︂

dσdσ̃ δ (a0σ + b0σ̃ − exp (−Y0)) δ
(︂
c0σ + d0σ̃ − exp

(︂
−Ỹ 0

)︂)︂
. (7.28)

Then, integrating over σ, σ̃ generates a factor of

1

a0d0 − b0c0
=

1

∆0

(7.29)

from the Jacobian. This will multiply correlation functions in the lower-energy theory, and
we will see later in subsection 7.4 that this will be required in order for the lower-energy-
theory’s correlation functions to match the UV correlation functions.

7.3.2 Second method

As a consistency test, and to illuminate the underlying methods, we will now rederive the
same result via a different approach. Having integrated out the Υi, our strategy in this
approach is to next integrate out the σa. This will generate constraints on the F , F̃ , which
we will use to write some in terms of the others. (This is the opposite order of operations
from the previous approach.)

The result of this method will be an expression for the (0,2) mirror that is not of the
form described in [35,37], and also does not respect symmetries of the parametrization.

We restrict to P1 × P1 for simplicity. Integrating out σa, we have the constraints

n∑︂
i=0

aiFi +
m∑︂
j=0

cjF̃ j = 0, (7.30)

n∑︂
i=0

biFi +
m∑︂
j=0

djF̃ j = 0. (7.31)

Solving for F0, F̃ 0, we find

F0 = − 1

∆0

[︄
n∑︂

i=1

(aid0 − bic0)Fi +
m∑︂
j=1

(cjd0 − c0dj)F̃ j

]︄
, (7.32)

F̃ 0 = − 1

∆0

[︄
n∑︂

i=1

(a0bi − b0ai)Fi +
m∑︂
j=1

(dja0 − b0cj)F̃ j

]︄
(7.33)

where
∆0 = a0d0 − b0c0. (7.34)
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Plugging this back into the (0,2) superpotential, we have

W = −
n∑︂

i=0

Fi exp (−Yi) −
m∑︂
j=0

F̃ j exp
(︂
−Ỹ j

)︂
, (7.35)

= −
n∑︂

i=1

Fi

[︄
exp (−Yi) − (aid0 − bic0)

∆0

q1

n∏︂
k=1

exp (+Yk)

− (a0bi − b0ai)

∆0

q2

m∏︂
k=1

exp
(︂
+Ỹ k

)︂]︄

−
m∑︂
j=1

F̃ j

[︄
exp

(︂
−Ỹ j

)︂
− (cjd0 − c0dj)

∆0

q1

n∏︂
k=1

exp (+Yk)

− (dja0 − b0cj
∆0

q2

m∏︂
k=1

exp
(︂
+Ỹ k

)︂]︄
. (7.36)

This precisely matches the superpotential (7.27) derived from integrating out fields in a
different order, as expected.

As in the first ordering, there is a subtlety we have glossed over, a multiplicative factor
arising when integrating out some of the fields. Here, the factor arises when integrating out
F0, F̃ 0, for the same reasons as before: schematically, the B/2 model path integral measure
contains a factor of the form∫︂

dF0dF̃ 0 δ(a0F0 + b0F̃ 0 + · · · ) δ(c0F0 + d0F̃ 0 + · · · ), (7.37)

which again generates a numerical factor7 of ∆−1
0 that multiplies correlation functions, and

which will be important in subsection 7.4.

7.4 Correlation functions in the lower-energy theory

Next, we compute correlation functions in the new theory, for the case of P1 × P1, obtained
after integrating out fields, and compare to the results for correlation functions computed in
the UV theory, before integrating out fields. We will see an important subtlety.

7Tracing through this a bit more carefully, the numerical factor arises from the delta functions, which
arose from bosonic fields (σ’s), hence the numerical factor is δ−1

0 instead of (∆−1
0 )−1 = ∆0 as one might have

expected from a fermionic integral.
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Using the mirror (0,2) superpotential (7.36), and the operator mirror map

σ =
1

∆0

(︂
d0 exp (−Y0) − b0 exp

(︂
−Ỹ 0

)︂)︂
, (7.38)

=
1

∆0

(︂
d0q1 exp (+Y1) − b0q2 exp

(︂
+Ỹ 1

)︂)︂
, (7.39)

σ̃ =
1

∆0

(︂
a0 exp

(︂
−Ỹ 0

)︂
− c0 exp (−Y0)

)︂
, (7.40)

=
1

∆0

(︂
a0q2 exp

(︂
+Ỹ 1

)︂
− c0q1 exp (+Y1)

)︂
, (7.41)

where
∆0 = a0d0 − b0c0, (7.42)

using the methods of [49], we find that the two-point functions computed from the mirror
above are all ∆0 times the A/2 model correlation functions in [18][section 4.2], reviewed in
section 7.2, or in other words,

⟨σσ⟩mirror = −∆0
Γ1

α
, ⟨σσ̃⟩mirror = +∆0

∆

α
, ⟨σ̃σ̃⟩mirror = −∆0

Γ2

α
, (7.43)

However, we still need to take into account the subtlety discussed in subsection 7.3.
Specifically, when deriving the (0,2) Landau-Ginzburg model above from the UV presenta-
tion, we had to perform changes-of-variables when integrating out fields, with the effect that
low-energy correlation functions should be multiplied by factors of 1/∆0. Taking that sub-
tlety into account, and dividing out the extra ∆0 factors, we find that the correct two-point
functions precisely match both those of the A/2 model [18][section 4.2], as well as those of
the original (UV) theory described in subsection 7.1.

It is also straightforward to compute four-point functions. Their values in the A/2 model
are given in [35][appendix A.1]. When one computes them in the (lower-energy) Landau-
Ginzburg model above, not taking into account the subtlety discussed above, one finds that
the Landau-Ginzburg correlation functions are ∆0 times the A/2 model correlation functions.
Taking into account the subtlety above, the overall factor of 1/∆0 multiplying all correlation
functions, fixes the four-point functions also. In any event, once one knows that the two-
point functions and the quantum sheaf cohomology relations match, all of the higher-point
functions are guaranteed to match.

7.5 Comparison to other (0,2) mirrors

Now, let us compare to the (0,2) mirrors in [35, 37], for brevity just for the case of P1 × P1.
As a matter of principle, these mirrors need not necessarily match – there could be multiple
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different UV theories describing the same IR physics. Nevertheless, in special families, we
will see that there is a match.

For example, in [35][section 4.2], it was argued that one (0,2) Landau-Ginzburg model
those B/2 correlation functions correctly match those of the corresponding A/2 theory on
P1 × P1 had superpotential

W = F1J1 + F̃ 1J̃1, (7.44)

where

J1 = aX1 − q1
X1

+ b
X̃

2

1

X1

+ µX̃1, (7.45)

J̃1 = dX̃1 − q2

X̃1

+ c
X2

1

X̃1

+ νX1, (7.46)

with

µ = det(A+B)− detA− detB, ν = det(C +D)− detC − detD, (7.47)

and operator mirror map
σ = X1, σ̃ = X̃1. (7.48)

These expressions have the good property that they are in terms of determinants of
the matrices A, B, C, D, and so respect global symmetries of the original theory. For that
matter, the A/2 correlation functions only depend upon those determinants, which is explicit
in the mirrors constructed in [35].

For purposes of comparison, for P1 × P1, the superpotential (7.36) takes the form

W = −F1

[︃
exp (−Y1) − q1

(a1d0 − b1c0)

∆0

exp (+Y1) − q2
(b1a0 − a1b0)

∆0

exp
(︂
+Ỹ 1

)︂]︃
− F̃ 1

[︃
exp

(︂
−Ỹ 1

)︂
− q1

(c1d0 − d1c0)

∆0

exp (+Y1) − q2
(d1a0 − c1b0)

∆0

exp
(︂
+Ỹ 1

)︂]︃
.

(7.49)

On the face of it, this clearly does not match the mirror proposal of [35], and in fact,
is not even written in terms of global-symmetry-invariant determinants of A, B, C, D.
Nevertheless, as we have seen, it does reproduce the same correlation functions.

One could imagine using global symmetry transformations to rotate to a0 = d0 = 1, b0 =
c0 = 0, the case considered in [37][section 5.1], in which case the result above reduces to

W = −F1

[︂
exp (−Y1) − q1a1 exp (+Y1) − q2b1 exp

(︂
+Ỹ 1

)︂]︂
− F̃ 1

[︂
exp

(︂
−Ỹ 1

)︂
− q1c1 exp (+Y1) − q2d1 exp

(︂
+Ỹ 1

)︂]︂
. (7.50)
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In this case,
a = a1, b = 0 = c, d = d1, µ = b1, ν = c1, (7.51)

with operator mirror map

σ = q1 exp (+Y1) , σ̃ = q2 exp
(︂
+Ỹ 1

)︂
. (7.52)

If we change variables as

exp (−Y0) = q1 exp (+Y1) , exp
(︂
−Ỹ 0

)︂
= q2 exp

(︂
+Ỹ 1

)︂
, (7.53)

then we can rewrite the superpotential as

W = −F1

[︂
q1 exp (+Y0) − a1 exp (−Y0) − b1 exp

(︂
−Ỹ 0

)︂]︂
− F̃ 1

[︂
q2 exp

(︂
+Ỹ 0

)︂
− c1 exp (−Y0) − d1 exp

(︂
−Ỹ 0

)︂]︂
, (7.54)

which precisely matches the (0,2) mirror in [35] for the case a0 = d0 = 1, b0 = c0 = 0. We
will return to this case, which also arose in [37], in a more systematic analysis in section 6.

8 Example: Hirzebruch surfaces

In this section we will compare to proposals for (0,2) mirrors to Hirzebruch surfaces with a
deformation of the tangent bunde, as discussed in [36]. Our analysis will follow the same
form as that for the mirror to Pn × Pm, so we will be comparatively brief.

A Hirzebruch surface Fn can be described by a GLSM with gauge group U(1)2 and matter
fields

x0 x1 w s
U(1)1 1 1 n 0
U(1)2 0 0 1 1

A deformation E of the tangent bundle is described mathematically as the cokernel

0 −→ O2 ∗−→ O(1, 0)2 ⊕O(n, 1)⊕O(0, 1) −→ E −→ 0, (8.1)

where

∗ =

⎡⎣ Ax Bx
γ1w β1w
γ2s β2s

⎤⎦ , (8.2)
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and x = [x0, x1]
T . In principle, additional nonlinear deformations are also possible, but as

they do not contribute to quantum sheaf cohomology rings (see section 3), we omit them
here. The (2,2) locus corresponds to the case A = I, B = 0, γ1 = n, β1 = 1, γ2 = 0, β2 = 1.

For a general (0,2) theory (with linear diagonal deformations), the E’s take the form

D+Λx,i = ((σA+ σ̃B)x)i, D+Λw = (γ1σ + β1σ̃)w, D+Λs (γ2σ + β2σ̃)s, (8.3)

where the Λ’s are the Fermi superfield partners to the bosonic chiral fields. Our mirror
construction applies to diagonal deformations, so we only consider the case that

D+Λx,0 = (a0σ + b0σ̃)x0, D+Λx,1 = (a1σ + b1σ̃)x1,
D+Λw = (γ1σ + β1σ̃)w, D+Λs = (γ2σ + β2σ̃)s.

(8.4)

From our ansatz, the mirror Landau-Ginzburg model has fields

• σ, σ̃,

• (Y0,1, F0,1), corresponding to (x0,1,Λx,0−1) of the A/2 model,

• (Yw, Fw), corresponding to (w,Λw) of the A/2 model,

• (Ys, Fs), corresponding to (s,Λs) of the A/2 model,

and superpotential

W = Υ1 (Y0 + Y1 + nYw − t1) + Υ2 (Yw + Ys − t2)

+ F0 (a0σ + b0σ̃ − exp (−Y0)) + F1 (a1σ + b1σ̃ − exp (−Y1))

+ Fw (γ1σ + β1σ̃ − exp (−Yw)) + Fs (γ2σ + β2σ̃ − exp (−Ys)) . (8.5)

The operator mirror map is defined by the constraints imposed by the F ’s:

exp (−Y0) = a0σ + b0σ̃, (8.6)

exp (−Y1) = a1σ + b1σ̃, (8.7)

exp (−Yw) = γ1σ + β1σ̃, (8.8)

exp (−Ys) = γ2σ + β2σ̃, (8.9)

and using the mirror D-term relations imposed by the Υ’s, namely

exp (−Y0 − Y1 − nYw) = q1, exp (−Yw − Ys) = q2, (8.10)

we quickly derive the quantum sheaf cohomology (chiral ring) relations

(a0σ + b0σ̃) (a1σ + b1σ̃) (γ1σ + β1σ̃)
n = q1, (γ1σ + β1σ̃) (γ2σ + β2σ̃) = q2, (8.11)
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or equivalently

det (Aσ +Bσ̃) (γ1σ + β1σ̃)
n = q1, (γ1σ + β1σ̃) (γ2σ + β2σ̃) = q2, (8.12)

which precisely match the known quantum sheaf cohomology ring relations for this case
[14–17].

Next, we integrate out some of the fields to find a lower-energy effective Landau-Ginzburg
description of the same physics. If we integrate out F0, Fw, we get the constraints

a0σ + b0σ̃ = exp (−Y0) , (8.13)

γ1σ + β1σ̃ = exp (−Yw) , (8.14)

which can be solved to give

σ =
1

∆0

(β1 exp (−Y0) − b0 exp (−Yw)) , (8.15)

σ̃ =
1

∆0

(a0 exp (−Yw) − γ1 exp (−Y0)) , (8.16)

for
∆0 = a0β1 − b0γ1. (8.17)

Using the Υ constraints to eliminate Y0, Yw, we have

exp (−Yw) = q2 exp (+Ys) , (8.18)

exp (−Y0) = q1 exp (+Y1) exp (+nYw) = (q1q
−n
2 ) exp (+Y1) exp (−nYs) , (8.19)

and finally plugging in we get the lower-energy effective superpotential

W = F1 (a1σ + b1σ̃ − exp (−Y1)) + Fs (γ2σ + β2σ̃ − exp (−Ys)) , (8.20)

= F1

(︃
(a1β1 − b1γ1)

∆0

exp (−Y0) +
(−a1b0 + b1a0)

∆0

exp (−Yw) − exp (−Y1)

)︃
+ Fs

(︃
(γ2β1 − β2γ1)

∆0

exp (−Y0) +
(−γ2b0 + β2a0)

∆0

exp (−Yw) − exp (−Ys)

)︃
,

= F1

[︃
(a1β1 − b1γ1)

∆0

(q1q
−n
2 ) exp (+Y1) exp (−nYs) +

(−a1b0 + b1a0)

∆0

q2 exp (+Ys)

− exp (−Y1)

]︃
+ Fs

[︃
(γ2β1 − β2γ1)

∆0

(q1q
−n
2 ) exp (+Y1) exp (−nYs) +

(−γ2b0 + β2a0)

∆0

q2 exp (+Ys)

− exp (−Ys)

]︃
. (8.21)
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To be clear, because of the change of variables we performed in constraints above, to match
A/2 correlation functions, correlation functions in this model must be multiplied by a factor
of 1/∆0, just as in our analysis in subsection 7.3.

As a consistency check, let us quickly verify from the mirror (8.21) above, plus the
operator mirror map (8.15), (8.16), that the quantum sheaf cohomology relations are obeyed.
Briefly,

a0σ + b0σ̃ = (q1q
−n
2 ) exp (+Y1) exp (−nYs) from the operator mirror map, (8.22)

a1σ + b1σ̃ = exp (−Y1) from the F1 constraint, (8.23)

γ1σ + β1σ̃ = q2 exp (+Ys) from the operator mirror map, (8.24)

γ2σ + β2σ̃ = exp (−Ys) from the Fs constraint, (8.25)

hence

(a0σ + b0σ̃) (a1σ + b1σ̃) (γ1σ + β1σ̃)
n = q1, (8.26)

(γ1σ + β1σ̃) (γ2σ + β2σ̃) = q2, (8.27)

which are precisely the quantum sheaf cohomology ring relations (8.12) for this case.

Now, consider the mirror in the special case that a0 = 1, b0 = 0, β1 = 1, γ1 = n, in other
words, that they take their values on the (2,2) locus. In this case, ∆0 = 1, and the mirror
above becomes

W = F1

[︁
(a1 − nb1) (q1q

−n
2 ) exp (+Y1) exp (−nYs) + b1q2 exp (+Ys) − exp (−Y1)

]︁
+ Fs

[︁
(γ2 − nβ2) (q1q

−n
2 ) exp (+Y1) exp (−nYs) + β2q2 exp (+Ys) − exp (−Ys)

]︁
.

(8.28)

Using the operator mirror map, we can write this more simply as

W = F1 [a1σ + b1σ̃ − exp (−Y1)]

+ Fs [γ2σ + β2σ̃ − exp (−Ys)] . (8.29)

Now, we can perform a change of variables to relate this to the Fn mirror described in
[36][section 4.2], [37][section 5.2.1]. To relate to their notation, if we define X1, X3 by

σ = X1 = exp (−Y0) , (8.30)

σ̃ = X3 − nX1 = exp (−Yw) , (8.31)

then the (0,2) superpotential above becomes

W = F1

[︃
a1X1 + b1 (X3 − nX1) − q1

X1Xn
3

]︃
+ Fs

[︃
γ2X1 + β2 (X3 − nX1) − q2

X3

]︃
. (8.32)
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For the case we are considering (a0 = 1, b0 = 0, γ1 = n, β1 = 1),

a = detA = a1, (8.33)

b = detB = 0, (8.34)

µAB = b1, (8.35)

the coefficient of F1 can be identified with the J1 in [36][section 4.2], [37][section 5.2.1], and
their J2 is nJ1 plus the coefficient of Fs. After a trivial linear rotation of F1, Fs, we see
that this change of variables identifies, in this case, the (0,2) mirror superpotential to Fn

above, derived from our general ansatz, with that discussed in [36, 37]. This matching was
not necessary – there can be different UV representations of the same IR physics – but it is
certainly satisfying. We will discuss a more general form of this construction in section 6.

9 Example: Grassmannians

So far all of our examples have involved abelian GLSMs. We next turn to a nonabelian
example. The Grassmannian G(k,N) is described by a U(k) GLSM with chirals Φa

i and
Fermis Ψa

i in N copies of the fundamental representation, a ∈ {1, · · · , k}, i ∈ {1, · · · , N}.
For linear and diagonal (0,2) deformations off the (2,2) locus [19]

D+Ψ
a
i =

(︁
σa
b +Bj

i (Tr σ)
)︁
Φb

j, (9.1)

where B is diagonal, B = diag(b1, · · · , bN). The mirror theory consists of chiral fields
σa, Yia, Xµν and Fermi fields Υa, Fia,Λµν with a, µ, ν = 1, · · · , k, i = 1, · · · , N and µ ̸= ν, in
the notation of [38]. For the fundamental representation of U(k), the a-th component of the
weight associated with Yib is

ρaib = δab (9.2)

and the roots are given by
αa
µν = δaν − δaµ, (9.3)

therefore the superpotential reads

W =
k∑︂

a=1

Υa

(︄
N∑︂
i=1

Yia +
∑︂
µ ̸=a

(lnXaµ − lnXµa)− t

)︄

+
N∑︂
i=1

k∑︂
a=1

Fia

(︄
σa + bi

(︄∑︂
b

σb

)︄
− exp(−Yia)

)︄
+
∑︂
µ̸=ν

Λµν

(︃
1 +

σµ − σν

Xµν

)︃
,

(9.4)

which gives the operator mirror map

exp(−Yia) = σa + bi

(︄∑︂
b

σb

)︄
. (9.5)
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Next, we compute the excluded locus. From the Xµν poles, since Xµν = σν − σν along
the critical locus, we have

σa ̸= σb (9.6)

for a ̸= b. That part is the same as on the (2,2) locus. From the fact that exp(−Y ) ̸= 0, the
Fia coefficients imply that

σa + bi

(︄∑︂
c

σc

)︄
̸= 0, (9.7)

for all a and i, which is a deformation of what one gets on the (2,2) locus.

Let us take a moment to examine the second excluded locus condition further. If we sum
over σa, we get

(1 + kbi)

(︄∑︂
c

σc

)︄
̸= 0 (9.8)

for all i, hence for example
1 + kbi ̸= 0 (9.9)

for all i. This condition is closely related to a constraint that arises on the Bj
i in order for

the gauge bundle defined by the D+Ψ to be a bundle, and not some more general sheaf.
Specifically, it was shown in [20][theorem 3.3] that the B’s define a bundle, and not a sheaf,
if and only if there do not exist k eigenvalues of B that sum to −1. The excluded locus
condition we have just derived on the Coulomb branch implies that none of the B eigenvalues
equals −1/k, which is closely related.

Next, let us recover the A/2 model. Upon integrating out Xµν and Yia, we get

Weff =
k∑︂

a=1

Υa

(︄
− ln

N∏︂
i=1

(︄
σa + bi

(︄∑︂
b

σb

)︄)︄
− t

)︄
(9.10)

and
HX =

∏︂
µ ̸=ν

(σµ − σν)
−1, (9.11)

HY =
N∏︂
i=1

k∏︂
a=1

(︄
σa + bi

(︄∑︂
b

σb

)︄)︄
, (9.12)

which reproduce the A/2 correlation functions of the U(k) GLSM

⟨O(σ)⟩ =
1

k!

∑︂
Ja
eff=0

O(σ)

(deta,b ∂bJa
eff)HXHY

. (9.13)
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Next, we shall integrate out some of the fields to construct a lower-energy Landau-
Ginzburg model in the pattern of [38][section 4.1]. Beginning with the (0,2) superpoten-
tial (9.4), integrating out the Υa gives the constraints

N∑︂
i=1

Yia +
∑︂
µ̸=a

ln

(︃
Xaµ

Xµa

)︃
= t. (9.14)

Using these to eliminate YNa, we have

YNa = −
N−1∑︂
i=1

Yia −
∑︂
µ̸=a

ln

(︃
Xaµ

Xµa

)︃
= t, (9.15)

and so we define

Πa = exp (−YNa) , (9.16)

= q

[︄
N−1∏︂
i=1

exp (+Yia)

]︄[︄∏︂
µ̸=a

Xaµ

Xµa

]︄
, (9.17)

which happens to match the Πa defined in the (2,2) mirror of G(k,N) in [38][section 4.1].

Next, we integrate out FNa, which gives constraints

σa + bN

(︄∑︂
c

σc

)︄
= exp (−YNa) = Πa. (9.18)

These equations can be solved to give

σa =
1

1 + kbN

[︄
(1 + (k − 1)bN)Πa − bN

∑︂
c ̸=a

Πc

]︄
. (9.19)

Plugging this back in, we get our expression for a mirror Landau-Ginzburg theory:

W =
N−1∑︂
i=1

k∑︂
a=1

Fia

(︄
σa + bi

(︄∑︂
c

σc

)︄
− exp (−Yia)

)︄

+
∑︂
µ̸=ν

Λµν

(︃
1 +

σµ − σν

Xµν

)︃
, (9.20)

=
N−1∑︂
i=1

k∑︂
a=1

Fia

[︄
1

1 + kbN

(︄
(1 + (k − 1)bN + bi)Πa + (bi − bN)

∑︂
c ̸=a

Πc

)︄
− exp (−Yia)

]︄

+
∑︂
µ̸=ν

Λµν

(︃
1 +

Πµ − Πν

Xµν

)︃
. (9.21)
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As in earlier discussions, we have glossed over a subtlety: when integrating out the FNa,
we omitted a Jacobian factor of

det(Jac)−1 = det

⎡⎢⎢⎢⎣
1 + bN bN · · · bN
bN 1 + bN · · · bN
...

...
bN bN · · · 1 + bN

⎤⎥⎥⎥⎦
−1

=
1

1 + kbN
, (9.22)

which should be multiplied into correlation functions in order to match against A/2 results.

As a consistency check, when all the bi = 0, the (0,2) superpotential above reduces to

W =
N−1∑︂
i=1

k∑︂
a=1

Fia (Πa − exp (−Yia)) +
∑︂
µ ̸=ν

Λµν

(︃
1 +

Πµ − Πν

Xµν

)︃
, (9.23)

which is precisely the (0,2) expansion of the (2,2) mirror superpotential

W =
N−1∑︂
i=1

k∑︂
a=1

exp (−Yia) +
∑︂
µ̸=ν

Xµν +
k∑︂

a=1

Πa (9.24)

computed in [38][section 4.1].

Next, we will derive the quantum sheaf cohomology relations from this lower-energy
Landau-Ginzburg model. The Λµν imply the constraints

Xµν = Πν − Πµ (9.25)

along the critical locus, and similarly from the Fia,

exp (−Yia) =
1

1 + kbN

(︄
(1 + (k − 1)bN + bi)Πa + (bi − bN)

∑︂
c ̸=a

Πc

)︄
, (9.26)

= σa + bi

(︄∑︂
c

σc

)︄
(9.27)

along the critical locus. Plugging into the definition of Πa, we have

Πa = q

[︄
N−1∏︂
i=1

exp (+Yia)

]︄
(−)k−1, (9.28)

hence

Πa

N−1∏︂
i=1

[︄
σa + bi

(︄∑︂
c

σc

)︄]︄
= (−)k−1q, (9.29)
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or more simply

det (Iσa +B(Tr σ)) =
N∏︂
i=1

[︄
σa + bi

(︄∑︂
c

σc

)︄]︄
= (−)k−1q, (9.30)

This is precisely the physical description of the quantum sheaf cohomology ring relation in
the A/2 model on G(k, n) with the tangent bundle deformation described above [19], as
expected. Thus, we see this mirror correctly duplicates the quantum sheaf cohomology ring.

Now, let us perform some consistency checks by computing correlation functions in the
mirror Landau-Ginzburg model above in two simple examples and comparing to known
results.

Our first example is the special case of G(1, 3) = P2. This has no mathematically
nontrivial tangent bundle deformations, but nontrivial parameters can still enter the GLSM
and appear in correlation functions, and so it will give a nontrivial test. In this case, the
(0,2) superpotential above reduces to

W =
2∑︂

i=1

Fi

[︃
1

1 + b3
(1 + bi)Π − exp (−Yi)

]︃
, (9.31)

with

Π = q
2∏︂

i=1

exp (+Yi) , σ =
1

1 + b3
Π. (9.32)

The matrix of derivatives of the superpotential terms is

(∂iJj) =
1

1 + b3

[︃
(1 + b1)Π + (1 + b3) exp (−Y1) (1 + b1)Π

(1 + b2)Π (1 + b2)Π + (1 + b3) exp (−Y2)

]︃
,

(9.33)
and using the methods of [49], we find

⟨σ2⟩ =
1

(1 + b1)(1 + b2)
, ⟨σ5⟩ =

q

(1 + b1)2(1 + b2)2(1 + b3)
. (9.34)

These are exactly (1+b3) times the A/2 correlation functions for this model given in [19][sec-
tion 4.1], which are

⟨σ2⟩ =
1

(1 + b1)(1 + b2)(1 + b3)
, ⟨σ5⟩ =

q

(1 + b1)2(1 + b2)2(1 + b3)2
. (9.35)

As predicted, we multiply the (lower-energy) Landau-Ginzburg model correlation functions
by 1/(1 + b3) to get the A/2 model correlation functions.

Next, consider the case of G(2, 3) = P2. This model, mirror to a U(2) gauge theory,
again has no mathematically nontrivial tangent bundle deformations, but will also serve as
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a test of correlation functions, as nontrivial parameters do enter the GLSM and appear in
correlation functions. Briefly, one now constructs a matrix of derivatives of the functions
multiplying F11, F12, F21, F22, Λ12, Λ21, with respect to Y11, Y12, Y21, Y22, X12, X21, and
using the methods of [49], we find

⟨σ2
1⟩ =

1 + 2b3
∆

(−1− 2I2 − 2I1) , (9.36)

⟨σ1σ2⟩ =
1 + 2b3

∆
(2 + 2I2 + 2I1) , (9.37)

⟨σ2
2⟩ =

1 + 2b3
∆

(−1− 2I2 − 2I1) , (9.38)

where, following the notation of [19],

I1 =
∑︂
i

bi, (9.39)

I2 =
∑︂
i<j

bibj, (9.40)

I3 = b1b2b3, (9.41)

∆ = 2
∏︂
i<j

(1 + bi + bj) . (9.42)

The correlation functions above are precisely (1 + 2b3) times the A/2 model correlation
functions computed in [19], precisely as expected from the normalization subtlety discussed
in section 7.3.

10 Example: Flag manifolds

In this section, we will briefly outline mirrors to flag manifolds. The GLSM describing the flag
manifold F (k1, k2, · · · , kn, N) is a quiver gauge theory with gauge group U(k1)×· · ·×U(kn)
[50]. For each s = 1, · · · , n − 1, there is a chiral multiplet Φs,s+1 and a Fermi multiplet
Ψs,s+1 transforming in the fundamental representation of U(ks) and in the antifundamental
representation of U(ks+1). There are also chiral multiplets Φi

n,n+1 and Fermi multiplets Ψi
n,n+1

transforming in the fundamental representation of U(kn) for i = 1, · · · , N . The E-terms of
this theory are given by [21]

D+Ψs,s+1 = Φs,s+1Σ
(s) − Σ(s+1)Φs,s+1 +

n∑︂
t=1

us
t

(︁
TrΣ(t)

)︁
Φs,s+1,

s = 1, · · · , n− 1,

D+Ψ
i
n,n+1 = Φn,n+1Σ

(n) +
n∑︂

t=1

(︁
TrΣ(t)

)︁
At

i
jΦ

j
n,n+1, i, j = 1, · · · , N.

(10.1)
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The matrices At are assumed to be diagonal in this paper, i.e.

At
i
j = Atiδ

i
j. (10.2)

The mirror theory is a Landau-Ginzburg model consisting of chiral fields

σ(s)
as , Y (s)as

bs , X(s)
µsνs (10.3)

and Fermi fields
Υ(s)

as , F (s)as
bs , Λ(s)

µsνs (10.4)

for s = 1, · · · , n, as = 1, · · · , ks, bs = 1, · · · , ks+1, µs, νs = 1, · · · , ks and µs ̸= νs where
kn+1 = N .

The superpotential is

W =
n∑︂

s=1

ks∑︂
as=1

Υ(s)
as

(︄
ks+1∑︂
bs=1

Y (s)as
bs −

ks−1∑︂
αs=1

Y (s−1)αs

as +
∑︂
µs ̸=as

(lnX(s)
asµs

− lnX(s)
µsas)− ts

)︄

+
n∑︂

s=1

ks∑︂
as=1

ks+1∑︂
bs=1

F (s)as
bs

(︂
E(s)as

bs (σ)− exp
(︂
−Y (s)as

bs

)︂)︂
+

n∑︂
s=1

∑︂
µs ̸=νs

Λ(s)
µsνs

(︄
1 +

σ
(s)
µs − σ

(s)
νs

X
(s)
µsνs

)︄
,

(10.5)

where k0 = 0,

E(s)as
bs (σ) = σ(s)

as − σ
(s+1)
bs

+
n∑︂

t=1

us
tTr σ

(t) (10.6)

for s = 1, · · · , n, as = 1, · · · , ks, bs = 1, · · · , ks+1 and

E(n)an
bn (σ) = σ(n)

an +
n∑︂

t=1

AtbnTr σ
(t) (10.7)

for an = 1, · · · , kn and bn = 1, · · · , N . Again, integrating out X
(s)
µsνs and Λ

(s)
µsνs shifts the FI

parameters
ts → ts + (ks − 1)πi. (10.8)

11 Hypersurfaces

So far, our examples have involved mirrors to GLSMs without a superpotential. One can add
a superpotential to the original theory, following the same prescription as [38]; namely, one
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assigns R-charges to the fields, and then takes the mirrors to fields with nonzero R charges,
following the same pattern as in [38]. For example, if a chiral field ϕ of the original theory
has R-charge r, then the fundamental field in the mirror is

X ≡ exp (−(r/2)Y ) , (11.1)

and the theory has a Z2/r orbifold.

As a result, the mirror (0,2) theory does not depend upon the details of the original
superpotential, only upon R-charges. For (2,2) theories, such statements are standard, but
in (0,2) theories, they have come to be believed only somewhat more recently [15], and only as
statements about GLSM descriptions. In any event, the point is that our mirror construction
implicitly reproduces the conjecture of [15] that A/2-twisted GLSMs are independent of
precise superpotential terms, and depend only upon R-charges.

12 Conclusions

In this paper we have described an extension of the nonabelian mirror proposal of [38] from
two-dimensional (2,2) supersymmetric theories to (0,2) supersymmetric theories. The result
is a simple systematic ansatz which both generalizes and simplifies previous approaches to
Hori-Vafa-style (0,2) abelian mirrors [34–37], and also applies to nonabelian cases [38–40]. We
have demonstrated that this mirror proposal has the desired properties of a gauge theoretic
mirror: it reproduces symmetries, correlation functions and quantum sheaf cohomology rings,
and demonstrated how one can recover the one-loop effective superpotential of the original
theory, in general cases. In addition, we have checked the proposal in specific examples of
mirrors in abelian and nonabelian theories.
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