
A������: Assembly Synthesis Using A Guided Exploration
Jingmei Hu

Harvard University
Cambridge, MA, USA

Priyan Vaithilingam
Harvard University
Cambridge, MA, USA

Stephen Chong
Harvard University
Cambridge, MA, USA

Margo Seltzer
The University of British Columbia

Vancouver, BC, Canada

Elena L. Glassman
Harvard University
Cambridge, MA, USA

ABSTRACT
Assembly programming is challenging, even for experts. Program
synthesis, as an alternative to manual implementation, has the
potential to enable both expert and non-expert users to generate
programs in an automated fashion. However, current tools and
techniques are unable to synthesize assembly programs larger than
a few instructions. We present A������: ASsembly Synthesis Using
A Guided Exploration, which is a parallel interactive assembly syn-
thesizer that engages the user as an active collaborator, enabling
synthesis to scale beyond current limits. Using A������, users
can provide two types of semantically meaningful hints that ex-
pedite synthesis and allow for exploration of multiple possibilities
simultaneously. A������ exposes information about the underly-
ing synthesis process using multiple representations to help users
guide synthesis. We conducted a within-subjects study with twenty-
one participants working on assembly programming tasks. With
A������, participants with a wide range of expertise were able to
achieve signi�cantly higher success rates, perceived less subjective
workload, and preferred the usefulness and usability of A������
over a state of the art synthesis tool.

CCS CONCEPTS
•Human-centered computing! Interactive systems and tools;
• Software and its engineering! Automatic programming.

KEYWORDS
Program synthesis; interactive synthesis; assembly programming

ACM Reference Format:
Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena
L. Glassman. 2021. A������: Assembly Synthesis Using A Guided Explo-
ration. In The 34th Annual ACM Symposium on User Interface Software and
Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3472749.3474740

1 INTRODUCTION
Although most software is written in higher level languages, there
is still a large body of mission critical software that must be written
in assembly, and assembly language, by comparison, is di�cult
and tedious to write. People write assembly code in many situa-
tions: when developing low level, machine-dependent parts of an
operating system, when working on resource-constrained embed-
ded platforms, when programming low-level device drivers, and

UIST ’21, October 10–14, 2021, Virtual Event, USA
2021. ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00
https://doi.org/10.1145/3472749.3474740

while optimzing code that requires speci�c instructions that the
compiler cannot produce. However, most programmers are neither
professional assembly programmers nor familiar with the myriad
assembly languages emerging with the end of Moore’s law [23].
Most programmers never write assembly programs. It takes time
and e�ort for people to learn di�erent assembly languages and
then to debug programs written in them. A������ is designed for
users who are familiar with the high-level concepts of assembly lan-
guages, but do not know the syntax for a given assembly language
or the details of what each instruction does.

Assembly program synthesis has been proposed as an alternative
to manual implementation [20, 28, 48]. The existing assembly syn-
thesis systems [25, 28] leverage CounterExample Guided Inductive
Synthesis (CEGIS) [46], which is a technique that iteratively gener-
ates candidate programs, i.e., sequences of assembly instructions,
and then checks whether they satisfy a given speci�cation. If the
candidate violates the speci�cation, CEGIS provides a counterex-
ample demonstrating the violation. However, the major barrier to
the adoption of assembly synthesis is the limitation of its scalability
to unrestricted real-world problems; speci�cally, the search space
of possible programs is combinatorial in the number of machine
states and exponential in the number of instructions. This limits
the feasibility of assembly synthesis to sequences of only a few
instructions [2, 48, 49]. Current strategies for exploiting parallelism
to speed up the search in this domain are limited.

Interactive synthesis techniques have been shown to improve
synthesis scalability in other programming contexts [2, 10, 13, 21,
32, 41, 44, 54, 55]. Though this is a promising direction, there are two
major concerns when applying interactive synthesis to assembly
programming: First, assembly programs are hard to understand and
tedious to write, possibly impairing users’ ability to provide guid-
ance, especially when they are unfamiliar with the speci�c assembly
language being used. Second, for users to help guide the synthesis
process, they need to understand details about the synthesis process
as it unfolds [54]; however, relative to other synthesis methods, such
as exhaustive enumeration, CEGIS has a complex structure, with
candidates and counterexamples as intermediates. Moreover, for as-
sembly synthesis, these intermediates contain sophisticated syntax
and semantic information that dramatically increases complexity.

To address these concerns, we introduce A������ (Figure 1), a
novel interaction technique for CEGIS-based assembly synthesis
that (1) allows users to provide multiple types of guidance during
synthesis, (2) provides users with di�erent representations of syn-
thesizer feedback, and (3) enables parallel synthesis to decrease the
penalty for users whose guidance is, at times, counterproductive.
A������ supports two types of interventions, i.e., user guidance: (1)

1

https://doi.org/10.1145/3472749.3474740
https://doi.org/10.1145/3472749.3474740

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

constraints enable users to explicitly constrain the instructions and
elements of the machine model that programs reference, and (2)
decompositions, where the user can opt to accept a system-proposed
decomposition of the original speci�cation into a set of smaller
speci�cations that might be easier to solve. To help users gain more
insight and provide better guidance, A������ displays the on-going
synthesis process with representations of synthesizer feedback, in-
cluding a synthesis candidate ranking list, frequency analysis of
di�erent instructions explored during synthesis, debug information,
and satisfaction analysis about the correct and incorrect parts of a
candidate’s behavior. Finally, in contrast to traditional synthesis,
A������ supports parallel synthesis, which spawns new synthe-
sis instances whenever users apply interventions, while allowing
previous instances to continue executing. All these instances run
simultaneously and users can choose to apply interventions to any
of them. This allows users to try interventions that may not work,
without penalty. This design encourages exploration in the presence
of uncertainty.

Though parallel synthesis should help users explore more in-
terventions, we were concerned that the complexity of tracking
multiple instances would overwhelm users and negatively e�ect us-
ability. To better understand the e�ectiveness of A������’s features,
we conducted a within-subjects user study with 21 participants with
various levels of expertise. When interacting with all of A������’s
features (including parallel synthesis), participants achieved a sig-
ni�cantly higher success rate than when using a state-of-the-art
non-parallel synthesis toolchain that provided only instruction
constraints and synthesizer feedback. Furthermore, when using
A������, participants found parallel synthesis intuitive and easy to
use; many participants reported that parallel synthesis, combined
with multiple types of intervention support, reduced the subjec-
tive workload of giving interventions and made A������ more
approachable. By removing the penalty of adding potentially incor-
rect interventions, we enabled the users to freely explore multiple
ideas simultaneously.

In summary, this paper contributes the following:
• An interactive assembly synthesizer, A������, that allows
the user and the synthesizer to collaboratively search a larger
space of assembly programs

• A parallel synthesis approach that reduces the penalty of
adding incorrect interventions and allows users to explore
multiple ideas simultaneously

• Awithin-subjects study showing the usefulness and usability
of A������ compared to a interactive synthesis tool that
implements the current state of the art.

2 RELATEDWORK
Program synthesis is used to automatically generate target pro-
grams that satisfy a given speci�cation [3, 6, 12, 34, 40]. There are
two major categories of program synthesis: those with complete
speci�cations and those without.

Synthesizing with partial speci�cations. Partial speci�ca-
tion approaches include programming-by-example (PBE) and program-
ming-by-demonstration (PBD) systems, which allow users to demon-
strate desired program behavior with speci�cations consisting of
input-output examples or desirable trace demonstrations [8, 37].

Gulwani et al. [17] show that PBE is an e�ective paradigm for
industrial applications, such as string transformations [15], table
transformations [16] and data extraction [31]. One of the drawbacks
of PBE systems is the incompleteness of their speci�cations. These
systems can provide a synthesized result quickly, but the result
might exhibit incorrect behavior due to a case not covered by the
incomplete speci�cation [9]. Recent work [45] reveals a counter-
intuitive disconnect between the e�ciency of PBE systems and
users’ perceived utility of them.

Synthesizingwith complete speci�cations. This area of pro-
gram synthesis began in 2006 with the introduction of Sketch [47],
in which a programmer provides an incomplete program with holes
and synthesizes code to complete the holes. Following this work,
syntax-guided synthesis generalizes the partial program with in-
complete details yielding a syntactic template [1], and counterex-
ample guided inductive synthesis (CEGIS) [46] generalizes this for
in�nite state programs. CEGIS uses an iterative process to perform
inductive generalization for all possible inputs. The approach in
this paper uses CEGIS, where speci�cations consist of two logical
expressions: a precondition and a postcondition. The precondition
is a predicate that holds for the initial state (before the assembly
code executes), while the postcondition must hold for the �nal state
(after the assembly code executes).

Compared to PBE systems, a CEGIS speci�cation is complete and
precise. However, the search space is large, and these techniques
do not scale well for unrestricted real-world problems [9]. While
Bornholt and Torlak [5] developed symbolic pro�ling techniques
to identify symbolic execution performance bottlenecks, in syn-
thesis, SMT solving is the performance bottleneck, not symbolic
execution. Synthesizing assembly code is signi�cantly harder than
synthesizing high-level languages. Assembly programs manipulate
untyped memory and global states, leading to enormous search
spaces that are exponential in program length and combinatorial
in the number of instructions, registers, memory locations, and
immediate values [28]. State-of-the-art assembly synthesis tools,
such as McSynth, can generate sequences of only about three to �ve
instructions (i.e., 3–5-instruction programs) within a reasonable
time period [28, 48, 50], while many assembly code blocks needed
for essential operating system services require hundreds or thou-
sands of lines of code (e.g., more than 500 lines for OS/161 [26], a
simpli�ed teaching operating system). Srinivasan et al. explored
optimizations for synthesizing machine code from semantic speci-
�cations with a divide-and-conquer scheme [49, 50], but scalability
is still limited. Prior work [24] requires other special tools to handle
large cases; A������ is an alternative, which can synthesize large
programs using human guidance.

Trust and performance when interacting with synthesiz-
ers. In addition to scalability challenges, modern user studies on
program synthesis systems reveal several major usability issues
and challenges [9, 18, 33, 39]. General black-box program synthesis
leads to a lack of con�dence and trust in synthesized programs
due to the opaqueness of the synthesis process, even though this
approach avoids overloading users with details [39, 54]. The am-
biguity of incomplete user-given speci�cations, such as examples,
also misleads the synthesizer to generate plausible, but incorrect
programs [33]. Since writing the speci�cation in a general purpose

2

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

speci�cation language is sometimes harder than writing a program,
the assistant approach with di�erent levels of programming au-
tomation has been explored [43].

To the best of our knowledge, interactive CEGIS-based synthesis
has not been investigated in the literature. Prior work has shown
that for interactive PBE/PBD systems, annotating input-output ex-
amples [55] or synthesized program components [41] with include
and exclude sets performed well, and participants achieved better
performance when they had access to more actionable information
about the on-going enumerative synthesis process [54]. Similarly,
in the domain of CEGIS-based synthesis, A������ both supports
constraints that allow users to de�ne include/exclude sets on both
instructions and portions of the machine state used in a program
and reveals actionable information about the underlying parallel
CEGIS synthesis processes.

Techniques to clarify user intent. Many methods have been
proposed to clarify user intent during program synthesis when
the user-provided speci�cation is incomplete. Most PBD and PBE
systems allow users to actively provide additional examples to dis-
ambiguate their intent. There are several approaches that automate
this process by generating examples that distinguish multiple plau-
sible candidate programs [30, 35, 51]. REGAE [55] extends this work
by supplementing user-provided examples with many additional
strategically generated inputs that show the outputs of user-selected
synthesized program(s) on the input space nearby user-provided
examples as well as possible unanticipated corner cases far away.
By looking at the outputs of synthesized programs on these many
additional inputs, users can clarify their intent by selectively pulling
input-output pairs into the set of user-provided examples describ-
ing their intent, preserving or changing their desired output for that
input in the process. Unlike PBE/PBD, CEGIS-based assembly syn-
thesis requires a complete speci�cation of what the user wants in
terms of pre-conditions and post-conditions that must be satis�ed;
therefore, instead of asking the user to provide additional examples
or demonstrations to clarify what they want, the user provides
additional constraints to reduce the synthesis search space.

Techniques to communicate synthesis progress. There have
been many attempts to present synthesized program candidates
to the user after the synthesizer �nishes its given synthesis task.
Topaz [38] generalized the cursor movement capabilities from text
editors to a graphical domain for graphical program synthesis,
while Rousillon [7] demonstrates synthesized scripts with a graph-
ical interface showing hierarchical information for web scraping.
FlashProg [35] introduced program navigation that allows user to
navigate between all programs synthesized by the underlying PBE
engine and pick the desired one. Zhang et al. [54] trace and visualize
various views of all the programs enumerated during the synthe-
sis process as the synthesis process is running, before the synthesis
task is complete. For example, they show a line chart of how many
examples each candidate satis�es and a tree view representing the
space of programs explored so far. A������ extends this work to
CEGIS-based assembly synthesis. Analogous to Zhang et al.’s line
chart, A������ has a chart of how many test cases satisfy the spec-
i�cation after executing candidates from each of multiple parallel
synthesis instances. Analogous to their tree view of enumerated
programs, A������ shows the top candidates generated by the

CEGIS synthesizer along with their execution trace, which can help
the user recognize additional, potentially helpful interventions to
add.

Parallel synthesis. Jeon et al. [29] propose a synthesis tech-
nique to combine symbolic search and explicit search by partially
concretizing a randomly chosen subset of unknowns. These ran-
dom trials of the algorithm can be run in parallel—solving problems
that were otherwise intractable. Instead of exploiting an inherently
parallel algorithm, A������ enables users to explore multiple pos-
sibilities under various interventions in parallel.

Mixed-initiative systems. Horovitz [27] introduced the prin-
ciples of mixed-initiative user interfaces, which seek synergies
between intelligent services and users. With mixed-initiative inter-
action, the intelligent services and users collaborate e�ciently to
achieve the user’s goal.A������ leverages this interaction approach
using the best of human and computer abilities enabling both the
computer and the human to take initiative and make decisions,
i.e., the synthesizer does the computational work of producing
candidate programs and automatically suggesting some interven-
tions, while the human applies interventions that re�ect higher-
level insight into the �nal program structure and content. A������
supports both multiple types of interventions to let users guide
and expedite synthesis and multiple visualizations of synthesizer
feedback about the proposed candidates and the counterexamples
generated during synthesis.

3 PRELIMINARIES
We adopt a CEGIS-based assembly language synthesis toolchain
from existing work [25, 28]. The goal of general assembly synthesis
is to automatically produce assembly code from two inputs: a ma-
chine model and a speci�cation. The machine model is the machine
description, which provides an executable model of an instruction
set architecture. It declares machine states, such as registers and
memory locations, and de�nes the semantics of assembly instruc-
tions. The speci�cation describes the intended functionality of the
target program with pre- and postconditions. We refer the reader to
prior work [25] for a detailed description of the synthesis algorithm.

The synthesizer uses a CEGIS technique, which iteratively pro-
duces assembly programs as candidates that are tested against an
accumulated set of counterexamples (i.e., a set of initial machine
states that satisfy the precondition and violate the postcondition).
The conventional CEGIS-based synthesizer starts with 0-instruction
program synthesis (called stage 0) and proceeds to stage = + 1 when
synthesis at stage = fails, iterating until synthesis succeeds. In each
stage, the synthesizer iteratively suggests a candidate program that
might satisfy the given speci�cation, i.e., satis�es the speci�cation
in the presence of the current counterexample set, provides addi-
tional counterexamples that make the candidate program violate
the speci�cation (i.e., the postcondition), and adds them to the ac-
cumulated set. This procedure continues until the synthesizer fails
to �nd either an appropriate candidate or more counterexamples.

Since we assume that our target user is familiar only with the
high-level concepts of assembly language but not the exact syn-
tax or behavior details, we categorize assembly instructions into
type groups that make sense to users, shown in Table 1. These

3

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

Coarse-grained types Fine-grained types
ARITH

General Arithmetic
ADD

Addition
CMP

Comparison
LOGIC

General Logical
BIT

Bitwise Logic
SHIFT

Shift/Rotate
MEMOP

Memory Handling
LOAD

Load from
STORE

Store into
DATAOP

Data Transfer
MOV

Data Move
JMP

General Branch
COPROC

Coprocessor Handling
Table 1: Assembly Instruction Types. We categorize into
coarse-grained and �ne-grained types. Users can refer to
both in A������.

type groups can, however, overlap. For example, an instruction
that performs subtraction, e.g., a sub instruction, is both a general
arithmetic instruction with type ARITH and an addition operation
with type ADD. When specifying type information, users can both
use coarse-grained categories (left column in Table 1) and more
�ne-grained categories (right columns in Table 1). Type groups
provide high-level primitives that abstract away low-level syntax
and semantics for assembly languages. These type groups cover all
instructions declared in the machine model.

4 USER SCENARIO
The following scenario illustrates how an engineer, Alex, can use
A������ (Figure 1) to synthesize ARMv7 code that implements
some exception handling code in the Barrel�sh operating system [4].
Speci�cally, Alex wants to write assembly code that satis�es the
following speci�cation, expressed in pseudocode (shown in the left
sidebar in Figure 1):
1. Mem: memory region with 4 slots

([Mem, 0], [Mem, 4], [Mem, 8], [Mem, 12])
2. cond: boolean = *R3 < load_from([Mem, 8])
3. precondition: *R2 == [Mem, 0]
4. postcondition: if cond then *R1 == 0x1 else *R1 == 0x0

Line 1 indicates that the code can use four locations (called slots)
in memory Mem. The precondition (Line 3) requires that before
the code implementing this speci�cation executes, register R2 must
contain a pointer to the speci�c memory location ([Mem, 0]), while
the postcondition (Line 4) requires that when the code �nishes
executing, register R1 contains 0x1 if the variable cond, which is
de�ned in Line 2, is true or 0x0 if cond is false. The variable
cond (Line 2) is a boolean condition that stores the comparison
result between the contents of a register (R3) and a value stored
in a particular location in memory ([Mem, 8]). Alex has some
basic understanding of MIPS assembly language but has never
written ARM assembly programs, so she decides to use an assembly
synthesizer instead.

Alex starts the synthesizer. In real time,A������ generates candi-
date implementations of the speci�cation and displays information

on each candidate generated (shown in the middle in Figure 1).
Using the speci�cation, A������ generates 20 test cases consisting
of initial states that satisfy the precondition. For each candidate, it
presents the user with a score, indicating the number of test cases
for which the candidate satis�es the postcondition. In other words,
the higher the score a candidate achieves, the closer it is to a correct
implementation.

The synthesizer �rst starts trying single-instruction candidate
programs. It quickly determines that no one-instruction program
can satisfy the speci�cation, so it moves on to two-instruction
programs. Within about a minute, it starts generating candidates
consisting of three instructions, after determining that there is no
two-instruction solution. As this synthesis process proceeds, Alex
watches the live-updated score chart (Figure 2A), which shows the
highest score that any candidate has achieved so far, and examines
the top candidates table (Figure 2B), which shows the �ve candidates
with the highest scores.

While impressed that the best candidate so far is a two-instruction
program, Alex suspects the synthesizer has wasted time evaluating
poor candidates. Therefore, she decides to inspect patterns across
high-scoring candidates for inspiration. To do so, Alex clicks the
occurrence table (Figure 2C), which shows the frequency of each
assembly instruction type that appeared in previous candidates and
the average scores of those candidates. Although the synthesizer
struggled with low-scoring candidates, Alex �nds it helpful to see
what kinds of instruction types produced consistently better aver-
age scores. She notices that LOAD and MOV have occurred frequently
and that candidates with those instructions have higher scores than
others. She also �nds in the speci�cation that the variable cond
(Line 2) uses the load_from function to read a value from mem-
ory. These observations give Alex some clues, e.g., LOAD should be
present in the program. She then clicks on promising candidates
from the candidate table (Figure 2B) to get a detailed execution
trace and the speci�cation analysis for each candidate. Using the
execution trace, she knows which parts of the speci�cation were
satis�ed or unsatis�ed by each candidate (Figure 2D). She notices
that whenever there is a LOAD, part of the speci�cation is satis�ed.

Base on these observations, she decides that the program must
read from memory before it does anything else. Though she is not
quite sure whether MOV is necessary for the program, she decides to
explore two ideas in parallel: one where MOV is included in the pro-
gram and one where MOV is excluded from the program. A������
allows the user to explore multiple ideas in parallel instead of com-
mitting to just one. Alex adds two interventions: �rst, she selects
the radio button for the �rst instruction and clicks the “Include”
button. In a pop-up window for “Include”, she selects LOAD from
a list of instruction types (shown in Table 1) to indicate that LOAD
should be the �rst instruction of the program. She also selects the
whole program radio button and marks MOV as included, indicating
that MOV should appear somewhere in the program (Figure 3A); this
kicks o� a new synthesis instance running in parallel with the �rst,
i.e., the original instance. Second, she selects the original synthesis
instance and then adds a di�erent intervention: she again marks
that LOAD should be the �rst instruction in the program and instead
clicks on “Exclude” and selects MOV from the pop-up window to
indicate that MOV should not be used anywhere in the program (not
pictured), kicking o� a third synthesis instance running in parallel.

4

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 1: A������ Interface. The side bar on the left shows the task speci�cation, the middle panel contains visualizations
of the synthesis process, and the right panel presents the user with interventions that can be used to guide synthesis. In this
snapshot of A������, there are �ve instances running in parallel (described in Section 4); the currently selected instance is
using a decomposition intervention inwhich the �rst part of the decomposed speci�cation (part A) has succeeded, as indicated
by the green highlighting.

Figure 2: Pre-intervention synthesizer feedback. (A) displays the highest score among all generated candidates, (B) shows a
list of the candidates with the top �ve highest scores, (C) indicates how frequently each instruction type appears across all
candidates synthesized so far. Alex has selected the third candidate in B, which looks promising and (D) indicates which parts
of that selected speci�cation have been satis�ed (blue) and which have not (red), and provides the values of multiple machine
states at di�erent program points.

This means that A������ will not use MOV instructions in any fu-
ture candidates for this third instance. In summary, when Alex adds
each intervention, A������ creates a new synthesis instance using
the union of the currently selected instance’s interventions and the
newly added one. The live-updated score chart (originally shown
in Figure 2A) now shows multiple lines, each representing one of

the parallel instances labeled with the user-added interventions
that caused their creation (gray, orange, and gold-colored lines in
Figure 3D).

So far, Alex has only considered restricting the types of instruc-
tions that A������ will use, but she is eager to try more types

5

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

Figure 3: Parallel synthesis and user interventions in A������. To guide synthesis, Alex can either (A) constrain programs
with instruction-level details, i.e., directly mark partial programs as desired or undesired in the �nal results, (B) eliminate
irrelevant and unused registers and memory locations, or (C) ask the synthesizer to decompose the speci�cation into a set
of smaller, easier-to-solve sub-problems. With each of these user actions, new synthesis instance are initiated, running in
parallel. A������ is running with �ve synthesis instances with di�erent interventions, shown by the �ve lines in D and the
�ve nodes in the tree view E. Solid lines in D represent the synthesis instance without decomposition, while dashed lines
represent multiple sub-instances under decomposition.

of interventions. With three synthesis instances running in par-
allel, Alex notices that some arbitrary registers (such as R5 and
R6) appear in candidates but not in the speci�cation; she thinks
these other registers might be irrelevant for this code sequence. To
guide A������ towards her intuition, Figure 3B shows how she
removes all the registers that do not appear in the speci�cation,
except for some �ag registers that she thinks might a�ect control
�ow. Alex applies this intervention on top of one of her previous
interventions (the one with LOAD and MOV both marked for inclu-
sion), because after inspecting the progress of di�erent synthesis
instances by clicking on di�erent lines in Figure 3D, she thinks that
this synthesis instance looks most promising. At this point, all four
instances are shown with solid lines in Figure 3D with di�erent
color annotations (gray, orange, gold, and green lines).

With Alex’s guidance, the synthesizer starts to synthesize pro-
grams of four instructions. While waiting, Alex notices that the
postcondition has an if-then-else structure, suggesting the possi-
bility of breaking this synthesis problem into small pieces to be
synthesized separately.A������ proposes a possible decomposition
(Figure 3C). Alex con�rms that it seems reasonable and decides to
give it a try. She adds this decomposition as a new intervention,
shown as the blue dashed line in Figure 3D. At this point, �ve syn-
thesis instances are running in parallel as shown in Figure 3E, and
Alex can sit back and continue to watch the best scores associated
with each instance rise or inspect any individual instance to better
understand why its best candidates are not yet full solutions. Fig-
ure 1 shows a screenshot of A������ with all �ve interventions
applied by Alex.

Before any of the other instances are able to reach a full solution,
the blue dashed line representing the instance with the decompo-
sition intervention climbs up to a full score once for each smaller
synthesis challenge that makes up the full decomposition. That
means that all components of the decomposition have been synthe-
sized completely, and together they satisfy the original speci�cation.
A������ returns this sequence of assembly instructions to Alex for
�nal inspection. Alex is surprised that this interactive synthesizer
A������ took about 15 minutes to produce an assembly program
that satis�ed the given speci�cation, because without her guidance,
a traditional synthesizer takes hours to �nish.

5 DESIGN AND IMPLEMENTATION
Developing a collaborative system that seamlessly combines hu-
man intuition and expertise with automated CEGIS-based assembly
synthesis requires an interaction model: we �rst describe how users
can intervene to guide synthesis, then how A������ gives feedback
to users for better understanding, and �nally how A������ exposes
parallelism.

5.1 User Interventions
A������ provides two types of interventions that allow users to
provide information to the synthesizer: Constraints and Decomposi-
tion. Constraints include instruction constraints, which allow users
to constrain speci�c instructions, and location constraints, which
allow users to eliminate irrelevant registers and memory locations
to expedite synthesis. Decomposition breaks the speci�cation into
smaller problems. A������ automatically provides suggestions for
location constraints and decomposition based on the speci�cation;

6

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

if the user likes these suggestions, she can create a new instance
including the new intervention, either by adding it to the set of
interventions present in an already running instance or by creating
an instance with only the suggested interventions.

Constraints. A������ allows users to introduce constraints on
instructions for the target program and the machine model that are
used for assembly synthesis.

Instruction Constraints enable users to place constraints on in-
struction choice and ordering as shown in Figure 3A. We refer to
both coarse-grained and �ne-grained instruction types in Table 1
as C1, C2, . . . , C= , and their corresponding grouped instruction sets as
⌧C1 ,⌧C2 , . . . ,⌧C= for convenience. Given a candidate assembly pro-
gram % withG instructions, i.e., 5 8=0; (%) = �G (�G�1 (. . . (8=8C (%)) . . .)),
where 8=8C (%) and 5 8=0; (%) represent the initial and �nal machine
states, respectively, and �8 represents the 8-th instruction in the
program % , we introduce the following constraints, which impose
restrictions on either parts of the program or the entire program
behavior.

• Include (⌧C8) where 8  =: will hold for programs % 0 with ~
(~ � G) instructions where 9: (:  ~), �: 2 ⌧C8 .

• IncludeLoc (⌧C8 , 9)where 8  =^ 9  G : will hold for programs
% 0 with ~ (~ � G) instructions where � 9 2 ⌧C8 .

• Exclude (⌧C8) where 8  =: will hold for programs % 0 with ~
(~ � G) instructions where 8: (:  ~), �: 8 ⌧C8 .

• ExcludeLoc (⌧C8 , 9) where 8  = ^ 9  G : will hold for pro-
grams % 0 with ~ (~ � G) instructions where � 9 8 ⌧C8 .

• Seq (⌧C8 , . . . ,⌧C 9)where (8  =)^(9  =) and Length(⌧C8 , . . . ,⌧C 9) =
; : will hold for programs % 0 with~ (~ � ;) instructions where
9: (:  ~ � ;), �: 2 ⌧C8 ^ · · · ^ �:+; 2 ⌧C 9 .

• Extend (~) where (~ > G): will extend the program length to
~ instructions.

Inclusion, i.e., Include and IncludeLoc, requires that one or one spe-
ci�c group of instructions appears in the target program. In Section
4, through interacting with the A������ interface, Alex implicitly
added IncludeLoc (LOAD, 1) to force the �rst instruction to be a LOAD-
like instruction. Exclusion, i.e., Exclude and ExcludeLoc, rules out a
speci�c group of instructions for the whole program or for some
speci�c location in the program. Likewise, in Section 4, Alex implic-
itly added Exclude (MOV) to rule out any data movement instructions.
Seq de�nes a partially ordered sequence that must appear in the
target program. For example, Alex could click the “Seq” button
in Figure 3A and select LOAD and MOV in order, to implicitly add
Seq (LOAD, MOV), which requires that a partial sequence contain-
ing LOAD and MOV must appear, consecutively and in order, in the
synthesized program. Extend directly extends the program to the
user-speci�ed length.

Location Constraints enable users to eliminate use of certain reg-
isters or memory locations in the synthesized program, as shown
in Figure 3B. Machine models contain more information than is
strictly necessary to facilitate synthesis. The complete machine
model contains the descriptions of all registers, memory locations
and instructions for the entire system. Removing registers and
memory locations that are not needed to produce a correct imple-
mentation for a speci�c speci�cation will speed up synthesis and
reduce a user’s cognitive load. A������ collects all related registers
and memory locations that a speci�cation might access (explicitly

or implicitly), compares them to the complete machine model, and
recommends a shrinkable location set to the user. This shrinkable
location set includes both registers and memory entries that contain
arbitrary values without speci�cation restrictions. Removing those
arbitrary location elements should not a�ect program correctness.
For example, a speci�cation might access only a subset of the slots
inside a memory region. Eliminating the irrelevant and unused
head and tail slots in memory regions can reduce the search space
and expedite synthesis. While A������ analyzes the speci�cation
and proposes a reduced machine model, we rely on user guidance
to apply the reduction. While these reductions frequently work,
they are not guaranteed to be correct when, for example, an im-
plementation requires temporary storage (e.g., producing a swap
function). One could imagine letting A������ automatically create
new instances for these suggested location reductions, but we leave
investigation of this approach for future work.

Decomposition. Since the search space and synthesis time grows
exponentially in the number of instructions, our intuition was that
breaking the problem down and solving smaller problems would
improve synthesis performance considerably [42]. As it is over-
whelming to consider the speci�cation as a whole, we distinguish
three statement structures that might comprise the postcondition:
if-then-else (ITE), conjunction (AND), and disjunction (OR). Given
a speci�cation with precondition Pre and postcondition Post with
one of these structures, A������ proposes one of the following
decompositions:

• Post = if A then B else C: The ITE-like speci�cation can
be decomposed into three blocks as shown in Figure 3C.
Each block has its own speci�cation, referred to as sub-
speci�cation. These three blocks share the same precondition
Pre. The �rst block contains two exit points, which allow
it to branch into di�erent following blocks based on the
condition A. The second and third blocks synthesize for B
and C, respectively, and they both exit to the ultimate exit
point of the entire program. Concatenating the three blocks
produces three smaller synthesis problems that satisfy the
speci�cation Post.

• Post = A and B: The AND-like speci�cation can be decom-
posed into two blocks. Unlike the ITE format, these two
blocks are coherent and no control �ow is necessary. The
�rst block achieves the partial postcondition A, while the
second block takes the synthesized program for A as a pre�x
and synthesizes the program for the entire Post (A and B).

• Post = A or B: The OR-like speci�cation cannot simply be sep-
arated into A and B, but we can rearrange Post into the ITE
format, if A then exit else B, and decompose it into two blocks.
Similar to the ITE format, the �rst block contains two exit
points, one to the ultimate exit point of the entire program
and the other to the entry of the second block, based on the
condition A. The second block achieves the partial postcon-
dition B. Concatenating the two blocks produces two smaller
synthesis instances the satisfy the original speci�cation Post.

These proposed decompositions may be less e�cient or produce an
even more di�cult synthesis problem. We rely on user guidance
to determine of the proposed decomposition is a good avenue of

7

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

exploration. As suggested in the discussion of machine model re-
duction, this is another area where letting A������ automatically
generate instances using the proposed decompositions could prove
fruitful.

5.2 Synthesizer Feedback
Empowering users to intelligently apply all these interventions
requires that the synthesizer provides information that helps the
user understand how synthesis is progressing.A������ presents the
following dynamically updated information during the synthesis
process:

Candidate Scoring. To visualize approximately how close var-
ious candidates are to satisfying the speci�cation, A������ gen-
erates M arbitrary initial states satisfying the precondition as test
cases and evaluates the candidate programs P against them on ev-
ery synthesis iteration. If the corresponding �nal states of N of
the M initial states verify successfully after executing a program P,
i.e., they satisfy the postcondition, A������ grades the candidate
P with a score # /" (Score (P) = # /"). This scoring mechanism
introduces a trade-o� between the time overhead needed to run all
the test cases and the user’s perception of a candidate’s quality. We
discuss the selection of" = 20 in Section 6.

During synthesis, the score chart (Figure 2A) gives user real
time updates about the synthesis process. The x-axis of the score
chart shows the total number of candidates that have been tried
by the synthesizer across all parallel synthesis instances; the y-
axis shows the highest score among the generated candidates. This
view allows a user to monitor synthesis progress over time. For
example, if one line suddenly increases dramatically, it indicates
that synthesis has produced some better candidates, and the user
might want to inspect the corresponding candidates to understand
what is preventing them from fully satisfying the speci�cation; the
right information should help them translate their observations
into helpful interventions. A������ also displays a ranking list of
the candidates with the top �ve highest scores for a given synthesis
instance (Figure 2B), so the user can determine the cause of a given
instance’s higher scores.

Type Frequency. To provide a more holistic view at the instruc-
tion level, the frequency table (Figure 2C) shows, for a selected
instance, how frequently each assembly instruction type appears
across all candidates synthesized so far. For each individual syn-
thesis instance, A������ shows the type frequency for the whole
program and for di�erent instruction locations (e.g., “1st Insn” and
“2nd Insn” in Figure 2C) and the average score of candidates that
include each instruction type. For example, if the frequency of LOAD
is extremely high and its average score looks good, it suggests
that the �nal program should contain a LOAD. By default, A������
shows coarse-grained type information (left column in Table 1) and
when the user clicks on a speci�c type, it shows the frequency of
its �ne-grained types (right columns in Table 1). Compared to the
score information, type frequency indicates a more concrete view of
the target program and provides a sense of the connection between
instructions and their behaviors against the speci�cation. However,
it also requires a deeper understanding of assembly language. Our
assumption is that instructions that are frequently chosen by the

synthesizer or get high scores on average have a higher probability
of occurring in the target sequence. Type frequency information
with candidate scores gives users intuition about the potential target
sequence and the possible constraints to apply.

Speci�cation Analysis. To let users constrain programs (as
mentioned in Section 5.1), A������ applies each candidate P and its
corresponding counterexamples CE (a set of initial machine states)
to the postcondition expression and creates an execution trace by
concretizing all immediate states after each instruction with P and
CE. This is the debug information shown to the users, i.e., execution
values at every program point and a speci�cation analysis in which
A������ highlights speci�cation-satisfying and speci�cation non-
satisfying parts of P’s behavior during each iteration, i.e., the parts
that lead to postcondition violations with di�erent colors (blue
and red highlights in Figure 2D). Highlighting the unsatis�ed parts
helps a user make further suggestions. For every speci�cation non-
satisfying part, A������ also explicitly presents the way it was
generated from the initial machine states (.init post�x notations
in Figure 2), which helps the user understand why that part violates
the postcondition . The speci�cation analysis and execution trace
provide a detailed view, which requires a good understanding of
assembly language concepts to appreciate and exploit. It helps users
con�rm their guess about some speci�c candidates. Experts will
be more likely able to bene�t from this particular feature than non
experts.

5.3 Parallel Synthesis
A������ provides an integrated representation of the interventions
that users have performed so far during synthesis. When the user
adds an intervention, A������ creates a new synthesis instance
using the union of the currently selected instance’s interventions
and the new one. The tree view (Figure 3E) shows all existing
instances, where every child instance contains all the interventions
of its parent. A������ also plots multiple lines in the score chart,
as shown in Figure 3D, where each line represents the progress of
one synthesis instance. A������ highlights the currently selected
instance with a thicker border in Figure 3E and thicker lines in
Figure 3D.

Compared with traditional synthesis, A������’s support for
parallelism allows users to explore multiple possible interventions
simultaneously. By spawning new synthesis instances when users
add interventions, while continuing to run all existing instances,
parallel synthesis reduces the penalty of making mistakes.

6 USER STUDY
To validate that assembly synthesis can be scaled with user in-
terventions and to evaluate the usefulness and e�ectiveness of
A������, we conducted a within-subject study with 21 participants.
As a baseline, we implemented a CEGIS-based synthesizer that
represents the state of the art in traditional synthesis interface af-
fordances; Table 2 illustrates the comparison between the control
and experimental synthesizers’ capabilities. Instead of using a tra-
ditional CEGIS-based synthesizer, we compared against a baseline
condition where participants completed tasks using a traditional
synthesizer that provided feedback on the synthesis process and al-
lowed users to apply instruction constraints only. The experimental

8

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

Synthesizer Feedback User Interventions
Candidate
Scoring

Type
Frequency

Speci�cation
Analysis

Instruction
Constraints

Location
Constraints Decomposition Parallel

Synthesis
Control X X X X
Experiment
(A������) X X X X X X X

Table 2: Controlled user study design of the control and experimental synthesizers.

synthesizer, i.e., A������, had all the features described in Section 5
enabled. We ask the following research questions:

• RQ1: Compared to the prior state of the art, can A������ help
a user more e�ciently propose interventions and more quickly
arrive at a speci�cation-satisfying program?

• RQ2: How does A������ a�ect users’ subjective workload and
experience during assembly synthesis?

• RQ3: How do users respond to A������ holistically?
• RQ4: How do users respond to each feature of A������, in-
cluding parallel synthesis?

• RQ5: What obstacles do users encounter when using A������
for interactive (assembly) synthesis?

6.1 Participants and Settings
We recruited 21 participants (3 female and 18 male). Seventeen were
recruited through mailing lists of several research groups at two R1
universities, and four were reached through professional networks.
Of these four, three participants knew at least one author, but were
not involved in the project. Participants received a $25 Amazon
gift card as compensation for their time. Nine participants were
graduate students, �ve were undergraduate students, and the other
six were professional developers. Participants had a diverse range of
prior experience with assembly language. Ten participants said they
knew assembly basics but only used it several times, seven said they
were familiar with assembly languages and have used them many
times, and four said they were experts in assembly and remembered
most of the syntax and semantic details. Themajority of participants
(15/21) said, when writing assembly programs, they often had to
search online for the speci�c instruction set architecture. All non-
expert participants considered writing in assembly more di�cult
than writing in other familiar languages. We conducted all studies
using a Ubuntu 18.04 LTS computer with 32G of memory.

6.2 Tasks
To design realistic programming tasks for assembly programs, we
selected two tasks derived from the Barrel�sh operating system [4]
and the book Hacker’s Delight [52], which is commonly referred
to as the “Bible of bit twiddling hacks” [19]. The speci�cations of
these two tasks in pseudo code and their solutions in ARM assembly
sequence are listed below, Note that these tasks might have multiple
correct solutions. In our study, the speci�cations are written by a
domain expert and given to users, who are not allowed to alter them.
We restrict the synthesizers to searching for assembly programs of
up to 4 instructions for one speci�cation.

Task 1. This task is the same as the example mentioned in Sec-
tion 4. Without any interventions, the CEGIS-based synthesis for
this task �nishes in about 6.1 hours on the same machine used in

the user study. Using A������, an omniscient user, who knows
which interventions should be applied, i.e., the correct decomposi-
tion and constraints, can successfully synthesize a 12-instruction
program with control �ow (4 instructions for each decomposed
sub-speci�cation and 3 decomposed sub-speci�cations in total) in
about 5 minutes.
Specification:

Mem: memory region with 4 slots
([Mem, 0], [Mem, 4], [Mem, 8], [Mem, 12])

cond: boolean = *R3 < load_from([Mem, 8])
precondition: *R2 == [Mem, 0]
postcondition: if cond then *R1 == 0x1

else *R1 == 0x0

ARM assembly sequence:
ldr r1, [r2, #8]
cmp r3, r1
movlo r1, #1
movhs r1, #0

Task 2. This task is derived from two benchmark examples:
turning on the rightmost 0-bit and turning o� the rightmost 1-bit
in a 32-bit vector. Without any interventions, the CEGIS-based
synthesis for this task �nishes in about 1.2 hours. The omniscient
user using A������ can successfully synthesize a 4-instruction
program (2 decomposed sub-speci�cations) in about 3 minutes.
Specification:

val: 32 bit = *R1
precondition: true
postcondition: (*R2 == (val + 0x1) & val)

&& (*R3 == (val - 0x1) | val)

ARM assembly sequence:
add r2, r1, #1
and r2, r1, r2
sub r3, r1, #1
orr r3, r1, r3

6.3 Methodology
We conducted a 75-min study session with each participant and,
with permission, recorded the session. In each session, with a think-
aloud protocol, participants completed one of the two tasks using
the synthesizer in the control condition and the other task using the
experimental synthesizer (i.e., A������). To mitigate any learning
e�ects, both the order of tasks and of interactive synthesizers were
counterbalanced across participants through random assignment.
Before each task, participants were given a tutorial video of the
features of the synthesizer they would have access to during that

9

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

Figure 4: Subjective workload and usability measurement.
The answers for helpfulness and usability are reverse scored.
Users perceived less mental demand, felt less time pressure,
spent less e�ort, and gave themselves better performance rat-
ings with A������. Users considered A������ more helpful
and usable.

Figure 5: The preference of di�erent expertise levels. Users
with di�erent level of expertise preferred A������ for assem-
bly synthesis.

task. They were then given 20 minutes to �nish the assigned task.
The task was considered failed if participants did not guide the
synthesizer to a speci�cation-satisfying assembly sequence within
that time limit. After each task, participants �lled out a survey
about their experience using the assigned synthesizer. The survey
included questions shown in Table 3, i.e., �ve NASATask Load Index
questions [22] to rate their perceived subjective workload during
the task and two questions about the usefulness of the assigned
synthesizer. After �nishing both tasks, participants answered a �nal
survey to directly compare their experiences using each synthesizer.
We open-coded participants’ responses with themes and used them
to shed light on the underlying reasons for the quantitative results
in the following section.

7 USER STUDY RESULTS
7.1 User Performance
In the experiment condition (i.e., using A������), 20 of 21 partic-
ipants successfully guided the synthesizer to a correct assembly
solution, while only 8 participants �nished the task in the control
condition. Fisher’s exact test [11] on the performance comparison
shows that the di�erence is statistically signi�cant (? < 0.001). To
compute average task completion time, we assigned the time-out
limit of 20 minutes to those users who were unable to complete
a task. The average task completion time with A������ was 9.28

minutes, while the average task completion time in the control
condition was 17.57 minutes. Welch’s t-test [53] shows the mean
di�erence of completion time is statistically signi�cant as well
(? < 0.001). As for di�erent tasks, all eleven participants using
A������ for Task 1 �nished successfully (8.31 minutes on average)
and nine out of ten participants using A������ for Task 2 �nished
successfully (10.25 minutes on average). By contrast, in the control
condition, �ve out of ten participants �nished Task 1 (17.24 minutes
on average) and three out of eleven participants �nished Task 2
(17.89 minutes on average).

Qualitative data speaks to four main reasons why participants
performed signi�cantly better with A������ (RQ1). First, A������
a�orded participants more choices to prune the search space during
synthesis, while participants in the control interface had very few
options other than constraining instruction usage. P18 complained,
“it felt like the number and precision of constraints required to get an
answer in a reasonable time were barely su�cient.” We also noticed
that participants were more inclined to wait for some active syn-
thesis progress and analyze both the speci�cation and candidates
to add the corresponding constraints. A������ provides more in-
formation to help them analyze and apply interventions. Second,
parallel synthesis allowed participants to more freely apply inter-
ventions. P9 wrote, “the fact that you lost previous programs when
adding new constraints meant it was di�cult to decide whether to add
more.” P2 explained, “it’s really nice when you have these di�erent
kinds of experiments that you can do in parallel and you’re not forced
to directly have the perfect constraints from the beginning.” Third,
parallel synthesis created high fault tolerance. P1 mentioned, “if you
ever make a mistake, then it won’t have a hard reboot for the whole
tool.” P12 also complained about the control interface, “if I want to
change my mind about something, I would have to basically stop all
the progress. That was very punishing and a huge burden.” Fourth,
participants gained more engagement during synthesis and showed
more trust in the synthesized result. P19 explained, “the fact that
there was more information there certainly kept me engaged in the
tool.” P12 also said, “I like the tree view and the concurrent synthesis.
It felt like more stu� was happening. It was kind of reassuring.”

Figure 4 shows participants’ responses to the questions in Table 3
(RQ2). With A������, participants perceived less mental demand,
felt less time pressure, spent less e�ort, and gave themselves better
performance ratings. Welch’s t-test on the comparisons in Figure 4
shows that the mean di�erences of mental demand, performance
and e�ort are statistically signi�cant (? = 0.045, ? = 0.039, ? =
0.008). However, there is no signi�cant improvement in participants’
response to perception of hurry and frustration (? = 0.062, ? =
0.224). The mean di�erences of helpfulness and usability are also
statistically signi�cant (? = 0.016, ? = 0.034), which indicates the
perception of usability preference is consistent across participants.

Adding up t-tests across all our experiments, we ran 8 statis-
tical tests (including �ve NASA-TLX questions, two helpfulness
and usability measurements, and completion time), giving us a
Bonferroni-corrected threshold of 0.00625 for an initial U of 0.05.
Note that those eight tests are dependent, which shows the Bonfer-
roni correction is conservative in our study setting. After correction,
the mean di�erence of completion time between two synthesizers

10

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

Q1. How mentally demanding was this task with this tool? (1—Very Low, 7—Very High)
Q2. How hurried or rushed were you during this task? (1—Very Low, 7—Very High)
Q3. How successful would you rate yourself in accomplishing this task? (1—Perfect, 7—Failure)
Q4. How hard did you have to work to accomplish your level of performance? (1—Very Low, 7—Very High)
Q5. How insecure, discouraged, irritated, stressed, and annoyed were you? (1—Very Low, 7—Very High)
Q6: How helpful was this tool for writing assembly programs? (1—Not Helpful, 7—Very Helpful)*
Q7: How likely to use this tool in the future of possible assembly programming? (1—Not Likely, 7—Very Likely)*

Table 3: Participants rated on a 7-point scale. Q1-Q5: rating the subjective workload under di�erent aspects: mental demand,
hurry, performance, e�ort, and frustration; Q6-Q7: rating the usefulness of the assigned synthesizer. Asterisks designate the
statements that are reverse scored.

Figure 6: Which interface did you prefer to use?

Figure 7: Which interface was more useful?

is still statistically signi�cant and the mean di�erence of e�ort par-
ticipants spent is marginally signi�cant. Yet there is no signi�cant
di�erence for other questions after correction.

7.2 User Preference
Figures 6 and 7 show the overall preference and usefulness ratings
(RQ3). Sixteen of 21 participants preferred or strongly preferred
synthesis with A������, and 19 of 21 participants thought A������
more useful. We also categorize di�erent kinds of users with assem-
bly expertise and investigate their performances and preferences in
the user study. Figure 5 shows that the strong preference using A��
����� did not vary much across participants with di�erent degrees
of expertise.

In the survey for each task, we asked participants to rate the use-
fulness and subjective workload of each synthesis feature available
to them during the task (RQ4). Figure 8 shows the comparison of
each type of synthesizer feedback information that was present in
both conditions. The candidate scoring was most preferred; partic-
ipants’ comments indicate that it provides a holistic view of the
back-end synthesis. For example, P10 described that “it provides a

Figure 8: How useful vs. complicated was each synthesizer
feedback information?

Figure 9: How useful was each intervention and parallel syn-
thesis in A������?

nice visualization of how the synthesis is doing.” Speci�cation analy-
sis was considered slightly more helpful than the type frequency,
while their complexities were rated similarly. Unsurprisingly, partic-
ipants with higher self-reported levels of expertise rated themselves
higher in understanding what the candidates were doing and how
close they were to satisfying the speci�cation.

Figure 9 indicates the perceived usefulness of each intervention
type as well as parallel synthesis inA������. The majority of partic-
ipants (15/20) expressed a strong preference towards both location
constraints and decomposition features. Participants hesitated to
try decomposition at the beginning as P2 explained, “the decompo-
sition interface is more intimidating than the other interfaces since
there is more going on; the other things are super easy and clear about
what’s happening.” As for parallel synthesis, all but one participant

11

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

found parallelism useful and thought that it provided more possi-
bilities to explore. We will discuss more qualitative observations in
Section 7.3.

7.3 Qualitative Observations: Obstacles and
Lessons

Having Parallel instances requires less activation energy to
add interventions and encourages simultaneous exploration.
P15 expressed the common sentiment well: “I was able to put up
new possibilities, but I didn’t have to commit all or nothing to them.
The other ones would still work and [A������] allows me to explore
the space of things that I could do.” P2 also explained, “it’s really
nice when you have these di�erent kinds of experiments that you
can do in parallel and you’re not forced to directly have the perfect
constraints from the beginning.” “The fact that you don’t have to
restart but just keep intervening in the meantime both saves time and
also saves mental energy,” P7 exclaimed. Though we were wary of
revealing the underlying parallel synthesis process and exposing
users to the associated additional complexity, users loved leveraging
parallel synthesis and were able to wield it more e�ectively to reach
their goals compared to the non-parallel (control) condition. Twelve
out of 21 participants had to restart the synthesis process in the
control condition due to incorrect interventions; some of them even
restarted the process four times in a span of 20 minutes. A������
reduced the penalty of adding incorrect interventions, so users were
less hesitant to add them. As a result, users explored multiple ideas
simultaneously. Several participants expressed that the thought
process was di�erent with parallel synthesis: P8 said, “[A������]
was much more open to experimenting, [control interface] was very
streamlined and it had a single thought process.” P6 also explained,
“In [A������], you’re able to quickly try a lot of di�erent things at the
same time, while I think [control interface] forces you to slow down a
lot and think carefully about what constraints you would [want to
add], so you want to be sure that you’re not adding constraints that
could be wrong or not optimal, because you have to restart all over
again.”

Involvement increases trust. Participants trust the synthesizer’s
result when they are involved more in the synthesis process. P4
said, “I’m involved enough in the process that I trust the results. I can
see the intermediate steps, I can look at the programs, and I can help
it along, so I feel like given seeing so much of what’s going on makes
me trust the tool more." Nine participants reported appreciation for
being involved in the synthesis process. P12 said “I like the tree view
and the concurrent synthesis. It felt like more stu� was happening. It
was kind of reassuring.” In contrast, for some elements that were
“too automatic,” users expressed concern. P7 expressed his concerns
speci�cally about decomposition: “I also wonder how much we can
trust the automatic decomposition like if there could be any errors
because that’s automatic, so I’m less likely to fully rely on it.”. On the
other hand, participants also did not like too much involvement.
P13 complained, "[control interface] is pretty easy to use, but I don’t
think it is really helpful to fully synthesize instructions automatically,
it involves a lot of user interactions."

Idle time increases doubts in interventions (RQ5). P12, P13,
P16, and P21 restarted the synthesis process in the control condition

after few minutes of idling, even though the set of constraints pro-
vided by them were correct! The think-aloud strategy revealed that
they started questioning their constraints while sitting idle as the
synthesis process progressed, eventually resulting in their decision
to restart synthesis with di�erent constraints. P16 explained, “The
score started to go down when I added [Exclude Coproc] constraint, so
I may have to restart the process” after idling for a few minutes, even
though the constraint she added and the intuition behind it were
right. This did not happen when participants were using A������.

Participants concern about solution quality (RQ5). Expert
users frequently expressed concern about solution quality. Three
participants (2 experts, 1 intermediate user) reported that there is a
trade-o� between �nding a solution quickly and synthesizing opti-
mal solutions. For example, using decomposition in A������, they
were able to produce correct solutions e�ciently, but the solutions
were di�erent than what they would have written manually. P11
explained, “this actually generated a worse solution using jump. The
optimal solution will not use jump, since ARM has conditional instruc-
tions.” Experts frequently optimize for some metric: e.g., fewest
lines of code, most performant, or most easily understood by a
person, while the synthesizer does not.

On the other side, by adding instruction constraints, P18 observed
that at one point, they were “now just guiding the synthesizer to
generate programs that I would write myself given this speci�cation;
this prevented the synthesizer from generating interesting solution.”
Some participants were interested in obtaining eccentric solutions,
like obscure bit manipulation programs for a given speci�cation.
By adding constraints they sometimes prevented the synthesizer
from generating such solutions.

Expectation violations were not rare (RQ5). There were a few
instances of expectation violation when the participant expected
the synthesizer to “understand” the speci�cation better. P5 was
confused when they remarked, “why is the synthesizer exploring
conditional instructions [when] there [are] no conditional elements
in the speci�cation?” Some participants also expected additional
“intelligence” from the synthesizer such as knowing when to use
conditional instructions, when to move data, and what registers to
use.

More information increases learning curve (RQ5). Several
participants explained that it was hard to inspect all the information
provided within a limited time. Three participants (P4, P11, P14)
explicitly mentioned they would perform better after getting more
familiar with the interface (both control and A������), showing
that there was a steep learning curve for assembly synthesis.

Participants expressed the need formore granular constraints
(RQ5). Two experts (P5, P15), as well as two intermediate users
(P2, P11) and four novices (P6, P7, P10, P12), expressed a preference
for being able to express constraints at a �ner granularity, such as
directly assigning some particular instructions or registers in the
target sequence instead of only manipulating with high-level type
abstractions. One possible explanation is that with synthesizer feed-
back, participants gained more insight about the synthesis process,
which allowed them to provide more detailed guidance to help the
synthesizer make progress. However, we are worried that enabling

12

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

�ner-grained interventions could increase the complexity of the
interface, thereby imposing more subjective workload on users.

8 DISCUSSION AND FUTUREWORK
While signi�cant e�ort has been devoted to optimizing synthesis
algorithms, there are still limits to what can be accomplished with-
out human intervention. This within-subjects study of A������, a
novel interactive synthesis tool, demonstrates how much more the
human and the synthesizer were able to accomplish together with
su�cient interface design.

We are well aware that, compared to traditional interactive syn-
thesis, A������’s parallel support reveals more code-rich informa-
tion and synthesis process details to users, increasing complexity
and potentially burdening users mentally. Surprisingly, when using
parallel synthesis, participants felt less mental demand overall. One
explanation is that although A������ showed more information
and had a more complex UI, users could gain more information
about the synthesis process, making it easier for them to give e�ec-
tive feedback. This also supports the fact that participants requested
support for more speci�c constraints. Moreover, participants typi-
cally guided the synthesis with a trial-and-error procedure, which
is more demanding when the cost of errors is high. Since the parent
instance with no intervention is always running, participants can
easily roll back and apply new interventions directly to the parent
instance, letting the current instance fail if the interventions are
counterproductive. Having multiple parallel instances at the same
time also prevents long stretches of idle time, which introduced
uncertainty in users’ interventions, as mentioned in Section 7.3.

Expectation violations were not rare in our user study; most of
them were confused about the capabilities and the scope of the
synthesizer. Grimes et al. [14] show that expectation violations lead
to mistrust and distrust in the system. In the future, we plan to
investigate ways to establish appropriate trust by improving the
communication of the synthesizer’s capabilities to users.

Myers andMcDaniel [36] point out that one major obstacle while
using PBE/PBD systems was the lack of con�dence and trust in
synthesized programs, since users were not able to inspect the
synthesis process or understand the synthesized programs. When
using A������, especially with parallel instances, users are more
involved in the synthesis process, which increased their trust in the
results. However, users also did not prefer too much involvement.
Balancing between the complexity and the usability of the interface
remains an important avenue of investigation, to identify “sweet
spots” where (1) users are involved enough to trust the outcome but
not so involved that they feel the system is not helping them at all,
and (2) without being overwhelmed by too much information, users
have enough information to take informed actions with con�dence,
or at least without fear of the consequences of messing up.

While experts who are already capable of producing correct,
highly-optimized assembly code may not be inclined to adopt a syn-
thesizer, synthesis is bene�cial to less expert programmers or those
unfamiliar with a required assembly language. The combination of
synthesis and A������ can augment or replace the assembly code
composition process, so developers can focus on other aspects of
their system. It is a happy side e�ect if a user’s interaction with A��
����� teaches them something about writing assembly programs,

much like Googling for Stack Over�ow answers to a programming
question sometimes teaches us new knowledge but usually just
helps us get a job done.

Overall, A������ is an instantiation of mixed-initiative interac-
tive synthesis, a promising class of interactive synthesizers that
may generalize to additional complex, unrestricted, real-world pro-
gramming challenges beyond assembly programming.

9 CONCLUSION
This paper presents a novel interactive assembly synthesis tool, A��
�����, that communicates the progress explored by the synthesizer
to users, so users can operate on generated candidate programs,
intervene from di�erent aspects, explore various possibilities in
parallel, and provide more valuable guidance to the synthesizer. It
allows the user and the synthesizer to work collaboratively towards
generating a program that satis�es a complete speci�cation of what
the program should do. We evaluated its usefulness and usability
in a within-subjects lab study with twenty-one participants and
showed that, compared to prior state of the art interactive synthe-
sis a�ordances, the availability of multiple types of interventions
and parallel synthesis processes enabled more users, regardless of
their level of expertise, to complete realistic assembly programming
tasks.

ACKNOWLEDGMENTS
Thank you to David A. Holland, Eric Lu, and Ming Kawaguchi
for their work on assembly language synthesis toolchain develop-
ment and their extraordinarily useful feedback and advice on this
work. Thank you to Tianyi Zhang for his useful suggestions on
the interface design of A������. We also thank the anonymous
reviewers for their useful feedback, which greatly improved this
paper. This material is based upon work supported by the National
Science Foundation under Grant No. 2123965. We acknowledge the
support of Intel and Microsoft. We also acknowledge the support of
the Natural Sciences and Engineering Research Council of Canada
(NSERC). Nous remercions le Conseil de recherches en sciences
naturelles et en génie du Canada (CRSNG) de son soutien.

REFERENCES
[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo Martin, Mukund Raghothaman,

Sanjit Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Ab-
hishek Udupa. 2013. Syntax-guided synthesis, In 2013 Formal Methods in
Computer-Aided Design. 2013 Formal Methods in Computer-Aided Design, FMCAD
2013, 1–17. https://doi.org/10.1109/FMCAD.2013.6679385

[2] Shaon Barman, Rastislav Bodik, Satish Chandra, Emina Torlak, Arka Bhat-
tacharya, and David Culler. 2015. Toward Tool Support for Interactive Syn-
thesis. In 2015 ACM International Symposium on New Ideas, New Paradigms, and
Re�ections on Programming and Software (Onward!) (Pittsburgh, PA, USA) (On-
ward! 2015). Association for Computing Machinery, New York, NY, USA, 121–136.
https://doi.org/10.1145/2814228.2814235

[3] David Basin, Yves Deville, Pierre Flener, Andreas Hamfelt, and Jørgen Fischer Nils-
son. 2004. Synthesis of Programs in Computational Logic. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 30–65. https://doi.org/10.1007/978-3-540-25951-0_2

[4] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(Big Sky, Montana, USA) (SOSP ’09). Association for Computing Machinery, New
York, NY, USA, 29–44. https://doi.org/10.1145/1629575.1629579

[5] James Bornholt and Emina Torlak. 2018. Finding Code That Explodes under
Symbolic Evaluation. Proc. ACM Program. Lang. 2, OOPSLA, Article 149 (Oct.
2018), 26 pages. https://doi.org/10.1145/3276519

13

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/2814228.2814235
https://doi.org/10.1007/978-3-540-25951-0_2
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/3276519

UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman

[6] J. Richard Buchi and LawrenceH. Landweber. 1969. Solving Sequential Conditions
by Finite-State Strategies. Trans. Amer. Math. Soc. 138 (1969), 295–311. http:
//www.jstor.org/stable/1994916

[7] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST
’18). Association for Computing Machinery, New York, NY, USA, 963–975.
https://doi.org/10.1145/3242587.3242661

[8] Allen Cypher. 1995. EAGER: PROGRAMMING REPETITIVE TASKS BY EX-
AMPLE. In Readings in Human–Computer Interaction, RONALD M. BAECKER,
JONATHAN GRUDIN, WILLIAM A.S. BUXTON, and SAUL GREENBERG (Eds.).
Morgan Kaufmann, 804–810. https://doi.org/10.1016/B978-0-08-051574-8.50083-
2

[9] Cristina David and Daniel Kroening. 2017. Program synthesis: challenges and
opportunities. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 375, 2104 (2017), 20150403.

[10] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Uni�ed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3313831.3376442

[11] R. A. Fisher. 1922. On the Interpretation of j2 from Contingency Tables, and
the Calculation of P. Journal of the Royal Statistical Society 85, 1 (1922), 87–94.
http://www.jstor.org/stable/2340521

[12] Pierre Flener and Derek Partridge. 2001. Inductive Programming. Automated Soft-
ware Engg. 8, 2 (April 2001), 131–137. https://doi.org/10.1023/A:1008797606116

[13] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets. In
Proceedings of the 36th International Conference on Software Engineering (Hyder-
abad, India) (ICSE 2014). Association for Computing Machinery, New York, NY,
USA, 653–663. https://doi.org/10.1145/2568225.2568250

[14] G Mark Grimes, Ryan M Schuetzler, and Justin Scott Giboney. 2021. Mental
models and expectation violations in conversational AI interactions. Decision
Support Systems (2021), 113515.

[15] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL
’11). Association for Computing Machinery, New York, NY, USA, 317–330. https:
//doi.org/10.1145/1926385.1926423

[16] S. Gulwani. 2012. Synthesis from Examples: Interaction Models and Algorithms.
In 2012 14th International Symposium on Symbolic and Numeric Algorithms for
Scienti�c Computing. 8–14. https://doi.org/10.1109/SYNASC.2012.69

[17] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet Data
Manipulation Using Examples. Commun. ACM 55, 8 (Aug. 2012), 97–105. https:
//doi.org/10.1145/2240236.2240260

[18] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggle-
ton, Ute Schmid, and Benjamin Zorn. 2015. Inductive ProgrammingMeets the Real
World. Commun. ACM 58, 11 (Oct. 2015), 90–99. https://doi.org/10.1145/2736282

[19] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of Loop-Free Programs. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose).
Association for Computing Machinery, New York, NY, USA, 62–73. https://doi.
org/10.1145/1993498.1993506

[20] Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program Synthesis. Vol. 4.
NOW. 1–119 pages.

[21] Tihomir Gvero and Viktor Kuncak. 2015. Interactive Synthesis Using Free-
Form Queries. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 2. 689–692.

[22] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances
in Psychology, Vol. 52. North-Holland, 139–183. https://doi.org/10.1016/S0166-
4115(08)62386-9

[23] John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (Jan. 2019), 48–60. https://doi.org/10.1145/
3282307

[24] David A. Holland. 2020. Toward Automatic Operating System Ports via Code
Generation and Synthesis. Ph.D. Dissertation. Cambridge, MA, USA. Advisor(s)
Margo I. Seltzer and Stephen Chong.

[25] David A. Holland, Jingmei Hu, Ming Kawaguchi, Eric Lu, Stephen Chong,
and Margo I. Seltzer. 2020. Aquarium: Cassiopea and Alewife Languages.
arXiv:1908.00093 [cs.PL]

[26] David A. Holland, Ada T. Lim, and Margo I. Seltzer. 2002. A New Instructional
Operating System. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (Cincinnati, Kentucky) (SIGCSE ’02). Association for
Computing Machinery, New York, NY, USA, 111–115. https://doi.org/10.1145/
563340.563383

[27] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Pittsburgh,
Pennsylvania, USA) (CHI ’99). Association for Computing Machinery, New York,
NY, USA, 159–166. https://doi.org/10.1145/302979.303030

[28] Jingmei Hu, Eric Lu, David A. Holland, Ming Kawaguchi, Stephen Chong, and
Margo I. Seltzer. 2019. Trials and Tribulations in Synthesizing Operating Systems.
In Proceedings of the 10thWorkshop on Programming Languages and Operating Sys-
tems (Huntsville, ON, Canada) (PLOS’19). Association for Computing Machinery,
New York, NY, USA, 67–73. https://doi.org/10.1145/3365137.3365401

[29] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Je�rey S. Foster. 2015.
Adaptive Concretization for Parallel Program Synthesis. In Computer Aided Veri-
�cation, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International
Publishing, Cham, 377–394.

[30] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
Guided Component-Based Program Synthesis. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape
Town, South Africa) (ICSE ’10). Association for Computing Machinery, New York,
NY, USA, 215–224. https://doi.org/10.1145/1806799.1806833

[31] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction
by Examples. In Proceedings of the 35th ACM SIGPLANConference on Programming
Language Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).
Association for Computing Machinery, New York, NY, USA, 542–553. https:
//doi.org/10.1145/2594291.2594333

[32] Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Ab-
hishek Udupa, and Sumit Gulwani. 2017. Interactive Program Synthesis.
arXiv:1703.03539 [cs.PL]

[33] Tak Yeon Lee, Casey Dugan, and Benjamin B. Bederson. 2017. Towards Under-
standing Human Mistakes of Programming by Example: An Online User Study.
In Proceedings of the 22nd International Conference on Intelligent User Interfaces
(Limassol, Cyprus) (IUI ’17). Association for Computing Machinery, New York,
NY, USA, 257–261. https://doi.org/10.1145/3025171.3025203

[34] Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to Program
Synthesis. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980), 90–121. https:
//doi.org/10.1145/357084.357090

[35] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Alex
Polozov, Rishabh Singh, Ben Zorn, and Sumit Gulwani. 2015. User Interaction
Models for Disambiguation in Programming by Example. In 28th ACM User
Interface Software and Technology Symposium (UIST 2015) (28th acm user interface
software and technology symposium (uist 2015) ed.). ACM – Association for
Computing Machinery.

[36] Brad Myers and Richard McDaniel. 2001. Demonstrational interfaces: sometimes
you need a little intelligence, sometimes you need a lot. (01 2001), 45–60.

[37] Brad A. Myers. 1990. Creating User Interfaces Using Programming by Example,
Visual Programming, and Constraints. ACM Trans. Program. Lang. Syst. 12, 2
(April 1990), 143–177. https://doi.org/10.1145/78942.78943

[38] Brad A. Myers. 1998. Scripting Graphical Applications by Demonstration. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Los Angeles, California, USA) (CHI ’98). ACM Press/Addison-Wesley Publishing
Co., USA, 534–541. https://doi.org/10.1145/274644.274716

[39] Brad A. Myers and RichardMcDaniel. 2001. Demonstrational Interfaces: Sometimes
You Need a Little Intelligence, Sometimes You Need a Lot. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 45–60.

[40] D. Partridge. 1997. The case for inductive programming. Computer 30, 1 (1997),
36–41. https://doi.org/10.1109/2.562924

[41] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming Not Only by
Example. In Proceedings of the 40th International Conference on Software Engi-
neering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery,
New York, NY, USA, 1114–1124. https://doi.org/10.1145/3180155.3180189

[42] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Re�nement Types. In Proceedings of the 37th ACM
SIGPLANConference on Programming Language Design and Implementation (Santa
Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York,
NY, USA, 522–538. https://doi.org/10.1145/2908080.2908093

[43] C. Rich and R. C. Waters. 1988. The Programmer’s Apprentice: a research
overview. Computer 21, 11 (1988), 10–25. https://doi.org/10.1109/2.86782

[44] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath,
Michael Stumm, and Mona Vij. 2014. User-Guided Device Driver Synthesis.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Broom�eld, CO) (OSDI’14). USENIX Association, USA, 661–676.

[45] Mark Santolucito, Drew Goldman, Allyson Weseley, and Ruzica Piskac. 2019. Pro-
gramming by Example: E�cient, but Not "Helpful". In 9thWorkshop on Evaluation
and Usability of Programming Languages and Tools (PLATEAU 2018) (OpenAccess
Series in Informatics (OASIcs), Vol. 67), Titus Barik, Joshua Sunshine, and Sarah
Chasins (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 3:1–3:10. https://doi.org/10.4230/OASIcs.PLATEAU.2018.3

[46] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008.
Sketching Concurrent Data Structures. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Tucson, AZ,

14

http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1016/B978-0-08-051574-8.50083-2
https://doi.org/10.1016/B978-0-08-051574-8.50083-2
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
http://www.jstor.org/stable/2340521
https://doi.org/10.1023/A:1008797606116
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1109/SYNASC.2012.69
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2736282
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://arxiv.org/abs/1908.00093
https://doi.org/10.1145/563340.563383
https://doi.org/10.1145/563340.563383
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3365137.3365401
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://arxiv.org/abs/1703.03539
https://doi.org/10.1145/3025171.3025203
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/78942.78943
https://doi.org/10.1145/274644.274716
https://doi.org/10.1109/2.562924
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1109/2.86782
https://doi.org/10.4230/OASIcs.PLATEAU.2018.3

A������: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA

USA) (PLDI ’08). Association for Computing Machinery, New York, NY, USA,
136–148. https://doi.org/10.1145/1375581.1375599

[47] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. SIGARCH Comput.
Archit. News 34, 5 (Oct. 2006), 404–415. https://doi.org/10.1145/1168919.1168907

[48] Venkatesh Srinivasan and Thomas Reps. 2015. Synthesis of Machine Code from
Semantics. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Portland, OR, USA) (PLDI ’15). Association
for Computing Machinery, New York, NY, USA, 596–607. https://doi.org/10.
1145/2737924.2737960

[49] Venkatesh Srinivasan, Tushar Sharma, and Thomas Reps. 2016. Speeding up
Machine-Code Synthesis. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Amsterdam, Netherlands) (OOPSLA 2016). Association for ComputingMachinery,
New York, NY, USA, 165–180. https://doi.org/10.1145/2983990.2984006

[50] Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps. 2017. Model-Assisted
Machine-Code Synthesis. Proc. ACM Program. Lang. 1, OOPSLA, Article 61 (Oct.
2017). https://doi.org/10.1145/3133885

[51] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query
Synthesis from Input-Output Examples. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 1631–1634.
https://doi.org/10.1145/3035918.3058738

[52] Henry S. Warren. 2012. Hacker’s Delight (2nd ed.). Addison-Wesley Professional.
[53] B. L. Welch. 1938. The Signi�cance of the Di�erence Between Two Means

when the Population Variances are Unequal. Biometrika 29, 3/4 (1938), 350–362.
http://www.jstor.org/stable/2332010

[54] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu Wang, and
Elena L Glassman. 2021. Interpretable Program Synthesis. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI ’21). Association
for Computing Machinery.

[55] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 627–648. https://doi.org/10.1145/3379337.3415900

15

https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1145/2737924.2737960
https://doi.org/10.1145/2737924.2737960
https://doi.org/10.1145/2983990.2984006
https://doi.org/10.1145/3133885
https://doi.org/10.1145/3035918.3058738
http://www.jstor.org/stable/2332010
https://doi.org/10.1145/3379337.3415900

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 User Scenario
	5 Design and Implementation
	5.1 User Interventions
	5.2 Synthesizer Feedback
	5.3 Parallel Synthesis

	6 User Study
	6.1 Participants and Settings
	6.2 Tasks
	6.3 Methodology

	7 User Study Results
	7.1 User Performance
	7.2 User Preference
	7.3 Qualitative Observations: Obstacles and Lessons

	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References

