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A novel class of polymers and oligomers of chiral folding chirality has been designed and synthesized, showing structurally
compacted triple-column/multiple-layer frameworks. Both uniformed and differentiated aromatic chromophoric units were
successfully constructed between naphthyl piers of this framework. Screening monomers, catalysts, and catalytic systems led to
the success of asymmetric catalytic Suzuki-Miyaura polycouplings. Enantio- and diastereochemistry were unambiguously
determined by X-ray structural analysis and concurrently by comparison with a similar asymmetric induction by the same
catalyst in the asymmetric synthesis of a chiral three-layered product. The resulting chiral polymers exhibit intense
fluorescence activity in a solid form and solution under specific wavelength irradiation.

1. Introduction

The search for desired and challenging properties of mate-
rials heavily depends on the molecular design and synthesis
of monomers and polymers [1–10]. The discovery and
development of new polymers, especially conductive poly-
mers, have become one of the most active topics in modern
materials science in the past several decades [11–17]. The
properties of conductive polymers are mainly attributed to
the electronic flexibility conjugated through their carbon-
carbon double and triple bonds of the backbones of their
frameworks [18–20]. In addition to electronic delocalization,
through-space conjugation has emerged as an alternative
pathway for energy and charge transfers in polymers [16,

17, 21–23]. For example, a five-layered congener of decked
naphthalene-diimides (NDIs) anchored by 1,8-diethynylan-
thracene spacers displayed a ten-electron reversible reduc-
tion process in a small working potential window (~0.8V),
which is abnormal electronic behavior in organic conductive
frameworks. Meanwhile, multiple-layered polymers, such as
poly-(dibenzofulvene)s, [2.2]paracyclophane-layered, and
2D multilayered π-stacked conjugated polymers, have been
established and displayed various attractive properties [24].

Recently, our lab has designed and synthesized novel mul-
tilayer 3D racemic polymers and corresponding oligomers via
the Suzuki-Miyaura catalytic coupling (Figure 1(a)). In these
polymers, nearly parallel uniformed aromatic bridges (red seg-
ment, Figure 1(a)) exist between two columns of naphthalene-
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Figure 1: (a) Polymerization of racemic polymers. (b) Asymmetric catalytic polymerization.
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Figure 2: Retrosynthetic analysis of chiral polymers.
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Scheme 1: Monomer synthesis. Conditions: (a) Pd(dppf)Cl2, 1,4-dioxane, 108
°C, 12 h, 65%; (b) NaBH4, CoCl2∙6H2O, THF/EtOH, r.t., 4 h;

SeO2, EtOH/H2O, reflux, 8 h; (c) MeI, Acetone, 0°C/EtBr, DMF, 70°C; and (d) NBS, pyridine, CHCl3, reflux.
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holding skeletons. X-ray analysis and computational studies
have unambiguously confirmed the structurally condensed
and regularly stacked patterns. These polymers displayed
strong luminescence in the solid-state under UV irradiation
and photoluminescence (PL). So far, the work on enantio-
merically enriched polymers tightly compacted with folded-
stacking has been left behind. In fact, an asymmetric catalytic
approach to multiple-columned and multiple-layered poly-
mers has not appeared in literature, yet this is probably due
to extreme difficulties in finding suitable catalysts and condi-
tions for the synthesis. However, the research on chiral poly-
mers has become increasingly important as more potential
applications in materials [11–17], such as chiral switches,
chemical and biological sensors/probes, and liquid crystals
for three-dimensional displays, circularly polarized lumines-
cence (CPL) to complement, or even to replace, classical lumi-
nescent materials, etc.
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Scheme 2: The catalytic coupling assembly of multilayer 3D polymers 1A-2C; conditions: Pd(S-BINAP) Cl2, THF/H2O, K2CO3, 85
°C, 6

days.

Table 1: Results of synthetic polymers.

Entry Product Mn
a½ � Mw

a½ � PDI[a][b] MALDI-TOF[c] α½ �RTD
d½ �

1 1A — — — 2439 -7.1 (c = 0:14)
2 1B 51,135 72,321 1.41 — +6.4 (c = 0:14)
3 1C — — — 1533 +5.9 (c = 0:19)
4 2A 42,126 58,570 1.39 — +4.6 (c = 0:15)
5 2B 45,143 55,199 1.22 — +11 (c = 0:08)
6 2C 40,854 53,136 1.30 — +15 (c = 0:08)
[a]Determined by GPC with a polystyrene standard. [b]PDI =Mw/Mn.

[c]Based on the analysis of crude reaction mixture. [d]Calculated by using clear solutions
in chloroform.
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Figure 3: MALDI-TOF of chiral oligomer 1A.
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In this letter, we would like to report our preliminary
results on asymmetric catalytic polymerization accessing
novel triple-columned and multiple-layered chiral polymers
by searching for efficient chiral catalytic systems under mul-
tiple Suzuki-Miyaura cross-couplings (Figure 1(b)).

2. Results

In our previous design of multiple-layered 3D polymers, the
bridges between column anchors were either symmetrically

or nonsymmetrically substituted aromatic rings on their
1,4-position [25]. In the present design, the derivatives of
1,8-dibromonaphthalene were employed as building blocks
alternatively together with benzo[c] [1, 2, 5], thiadiazole
and benzo[c] [1, 2, 5], and selenodizole scaffolds [26]. The
resulting polymers in this work displayed different arrange-
ments by layered-column anchors in which a long-distance
existed between each pair of anchor planes than that of pre-
vious ones. This phenomenon was due to an extra naphtha-
lene ring inserted between each pair of anchor planes.
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Figure 4: (a) UV-Vis absorbance of 1A-1C and 2A-2C (0.05mg/mL) in CHCl3. (b) Normalized fluorescent spectra of 1A-2C (0.05mg/mL)
in THF. Excitation wavelength for 1A-1C: 390 nm; excitation wavelength for 2A: 310 nm; excitation wavelength for 2B and 2C: 410 nm. (c)
Photoluminescence (PL) spectra of solid samples 1B, 2A-2C; excitation wavelength (λex): 532 nm. Inset: colors of solid samples 1B and 2A-
2C under 365 nm UV lamp. (d) Diastereochemistry assignment of a comonomer.
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The retrosynthetic analysis (RSA) [27] was conducted by
using 1A as a representative through disconnections into
two pairs of synthons (Figures 2(a) and 2(b)). The purpose
of selecting thiadiazole synthon for this polymerization was
based on the fact that it had been among the most frequently
employed scaffolds in polymers and materials science, espe-
cially in the field of conductive polymers. The synthesis of
the monomer of 8,8′-dibromo-1,1′-binaphthalene was very
challenging since one of the critical steps involved the
cross-coupling between 2-(8-bromonaphthalen-1-yl)-
4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 1-bromo-8-
iodonaphthalene taking about two weeks in a poor yield
[28]. Therefore, the first synthon pair was excluded tempo-
rarily. We, therefore, chose the second synthon pair for the
present asymmetric catalytic polymerization.

The comonomer 1 was synthesized starting from 4,7-
bis(8-bromonaphthalen-1-yl)benzo[c][1,2,5]thiadizole [26,
29] through the Miyaura borylation reaction in a yield of
65%. Selenodiazole derivative two served as an additional
basic skeleton which was achieved by following the reported
procedure with 47% yield (Scheme 1) [19, 23]. Methylation/
ethylation of naphthalene-1,8-diol, followed by bromination
with NBS in the presence of pyridine, afforded the target
monomers 5 and 6 with a yield of 60% and 75%, respec-
tively. The comonomers (3 and 4) were purchased from
commercial sources and directly employed for the polymer-
ization without further purification.

Taking 1A as the target, we screened a series of mono- and
bisphosphines and Pd-ligand complexes to get the desired
polymer. Most of the examined chiral catalysts were proven
to be ineffective, giving either no polymer products observed
or complex mixtures with no optical rotation, except for
Pd(S-BINAP)Cl2, which provided the best result with a chem-
ical yield of 65% and optical rotation of ½α�20D = −7:1.

As shown in Scheme 2, six pairs of comonomers were
investigated, showing a good substrate scope, albeit many other
similar substrates had not been examined. While S- and Se-

containing bridges were electron-deficient aromatics in the
middle of column anchors, their surrounding layers varied from
neutral aromatic ring (naphthalene moiety) to electron-
enriched moieties with two MeO-/EtO- groups. These
differentiated-layer arrangements would benefit the search for
challenging properties of materials, such as optoelectronics,
photovoltaics, and polarized organic electronics, etc.

The synthetic and analytical results of six types of chiral
polymers are summarized in Table 1. At the same time, 1A
and 1C showed extremely bad solubility in THF, which
made gel permeation chromatography (GPC) analysis
difficult. The other four polymers enabled GPC analysis to
be conducted smoothly and showed Mw arranging from
53,136 to 72,321, andMn from 40,854 to 51,135, respectively
(Figure. S13-S16). For cases 1A and 1C, the MALDI-TOF
analysis showed the highest molecular weights (Mw) as
2439 and 1533, indicating the existence of nine and five
layers in the structures, respectively (Figure 3 and S17).

Our attempt to obtain pure oligomers to conduct X-ray
structural analysis had not been successful due to too many
compounds coexisting in the resulting mixtures; this made
purification extremely difficult. However, major enantiomers’
absolute structure could be compared with a similar enantio-
selective induction by the same catalyst of Pd(S-BINAP)Cl2.
This catalyst generated “S”-shaped multilayer 3D enantiomers
compared with the orientation of heterocyclic ring on the
bridge in our previous work and was anticipated to give the
same asymmetric induction in this polymerization as shown
in Figure 4(d) [30]. Interestingly, this catalyst led to a new chi-
ral framework containing a pseudocenter chirality and orien-
tational/rotational chirality. The The pseudo or pro-chirality
center is generated at a phosphorus atom with two identical
aryl rings but differentiated by aromatic packing and unpack-
ing, respectively. This pseudo or pro-chiral center can be
extended to other tetrahedron or polyhedron centers (e.g., C,
Si, etc.) including those centers attached by four different
groups. The orientation/rotational chirality is realized by atro-
pisomeric rotation along axis of the P-C bond which is rein-
forced by naphthalenyl ring and three moieties of
diarylphosphine oxide scaffolds (two differentiated aromatic
rings and one P=O group).

The diastereochemistry of bridge arrangements of poly-
meric products could be readily assigned by X-ray structural
analysis of a Suzuki-Miyaura cross-coupling product con-
trolled by the same catalyst of Pd(S-BINAP)Cl2 as well
(Figure 4(d)). In this parallel structural arrangement, steric
effects between side rings of naphthalene (bridge) and
[1,2,5]thiadiazole could direct the orientation of their dia-
stereochemistry. In fact, it was the first time for us to obtain
this single crystal of asymmetric catalytic Suzuki-Miyaura
cross-couplings participated by two nonsymmetric wings
during controlling layered structures.

The UV-Vis absorptions of 1A-1C and 2A-2C in CHCl3
are displayed in Figure 4(a). 1A-1C exhibited the maximum
absorptions at 305 nm and broad absorption between
365 nm and 430nm. Compared with benzothiadiazole poly-
mers, both peaks of the benzoselenadiazole polymers 2A-2C
red-shifted slightly and exhibited two broad absorptions in
the range of 285 to 345nm and 370 to 470nm.
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Figure 5: CD spectra of 1A and 1B in methanol; c = 0:2mg/mL.

5Research



The fluorescence studies of 1A-2C were performed in
THF at room temperature. In Figure 4(b), 1A-1C emitted
yellow-green fluorescence with maximum emission peaks
around 510nm. Obviously, replacing benzothiadiazole fol-
damers with benzoselenadiazole counterparts made the
maximum fluorescent emission peaks shift toward a long
wavelength to 540nm (2A-2C).

In order to gain an insight into the solid emission, four
selected solid samples were carried out the solid-state photo-
luminescence (PL) spectra (Figure 4(c)) upon excitation at
532nm. Notably, solid 1B displayed much stronger PL
intensity (10 times) than the other three samples (2A-2C),
which was consistent with the observation in the inset photo.
In addition, all samples exhibited two peaks at around
610nm and 670 nm, in which only 1B exhibited a more sub-
stantial emission peak around 610nm, while the higher
intensities of 2A-2C were shown around 670nm. Under a
365nm UV lamp, the luminescence of four solid samples
(1B, 2A-2C) were examined, whereas just 1B displayed a
light yellow emission under 365 nm excitation while the
emissions of 2A-2C were not observable (Figure 4(c)).

The optical activities of selected chiral polymers 1A and
1B were further studied by CD spectroscopies in methanol.
The only optical absorption appeared between 190nm and
260nm due to the π − π∗ transition of aromatic rings. As

exhibited in Figure 5, polymer 1A showed negative Cotton
effects in the range of 190-195nm, 197-208 nm, 210-
211 nm, 217-220 nm, and 225-238 nm, while it showed
positive Cotton effects in the range of 195-197 nm, 208-
210 nm, 211-217 nm, 220-225 nm, and >238 nm. A similar
chiral environment of the polymer backbone can be
observed on polymer 1B either, featuring negative Cotton
effects centered at about 192 nm and 240nm, and gradu-
ally turned to the positive Cotton effect, respectively. The
Cotton effects from polymers 1C, 2A, 2B, and 2C were less
intense than 1A and 2B (Figure S19). The information
from the Cotton effects indicates that all chiral polymer
products have been controlled consistently in regard to
their absolute stereochemistry.

Morphological studies of chiral polymers 1A, 1B, 2A, and
2B were performed by scanning electron microscopy (SEM).
A thin gold layer was applied to coat all the polymer samples
to increase their conductivity and decrease the signal-to-
noise ratio. Figure 6(a) (polymer 1A) and Figure 6(b) (poly-
mer 1B) revealed some homogeneous balls with lengths
around 5μm in diameters dispersedly tangled into a porous
and flat mat. On the other hand, polymer 2A (Figure 6(c))
and polymer 2B (Figure 6(d)) exhibited a more dense and
compact texture than polymers 1A and 1B. The sizes of the
gray basement in compounds shown in Figures 6(c) and
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Figure 6: SEM images of chiral folding polymers (a) 1A, (b) 1B, (c) 2A, and (d) 2B.
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6(d) are much larger than those shown in Figures 6(a) and
6(b). In addition, different from the compounds shown in
Figures 6(a) and 6(b), some semblable cauliflower-like surface
structures can be found in the compounds shown in
Figures 6(c) and 6(d).

3. Discussion

In summary, we have designed and synthesized a novel class
of structurally compacted triple-column/multiple-layer chi-
ral 3D folding polymers and oligomers. The resulting chiral
polymers contain both uniformed and differentiated aro-
matic bridges in the middle of two bridge columns, with
their structures determined by the GPC and MALDI-TOF
analyses. Corresponding multiple-layered chiral oligomers
were proven to exist during the polymerization process, as
shown in MALDI-TOF spectra. Absolute stereochemistry
(enantio- and diastereochemistry) was assigned by X-ray
structural analysis of their monomers and, concurrently, by
comparison with a similar asymmetric induction by the
same catalyst in our previous asymmetric synthesis of chiral
three-layered products. Chiral polymers in this work exhibit
fluorescence activity in solid form and solution under spe-
cific wavelength irradiation. A series of derivatives based
on present chiral polymers will be designed and synthesized,
achieving challenging properties in our labs.
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