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Phoretic self-propulsion of helical active particles
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Chemically active colloids self-propel by catalysing the decomposition of molecular
‘fuel’ available in the surrounding solution. If the various molecular species involved
in the reaction have distinct interactions with the colloid surface, and if the colloid has
some intrinsic asymmetry in its surface chemistry or geometry, there will be phoretic
flows in an interfacial layer surrounding the particle, leading to directed motion. Most
studies of chemically active colloids have focused on spherical, axisymmetric ‘Janus’
particles, which (in the bulk, and in absence of fluctuations) simply move in a straight
line. For particles with a complex (non-spherical and non-axisymmetric) geometry, the
dynamics can be much richer. Here, we consider chemically active helices. Via numerical
calculations and slender body theory, we study how the translational and rotational
velocities of the particle depend on geometry and the distribution of catalytic activity over
the particle surface. We confirm the recent finding of Katsamba et al. (J. Fluid Mech.,
vol. 898, 2020, p. A24) that both tangential and circumferential concentration gradients
contribute to the particle velocity. The relative importance of these contributions has a
strong impact on the motion of the particle. We show that, by a judicious choice of the
particle design parameters, one can suppress components of angular velocity that are
perpendicular to the screw axis, or even select for purely ‘sideways’ translation of the
helix.

Key words: boundary integral methods, slender-body theory, active matter

1. Introduction

Many micro-organisms self-propel through liquid by continuously rotating a helical or
screw-like filament. A prime example is Escherichia coli. In order to swim, it bundles
its flagella in a single helical tail and rotates the bundle to propel itself forward. The
prominence of this swimming strategy in the microscopic realm derives from the unique
properties of highly viscous flows: owing to the linearity and time reversibility of the
Stokes equation, a time-reversible sequence of mechanical deformations of a swimmer’s
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body cannot induce a net displacement (Purcell 1977). Continuous rotation of a helical
tail evades this so-called ‘scallop theorem’. In terms of mechanical forces, this swimming
strategy exploits the anisotropy of the Stokes drag force on a moving rod; the entire tail
can be regard as made up of rod-like segments, and the anisotropic drag, when integrated
over the helix contour, yields a net propulsive force, i.e. thrust (Lauga & Powers 2009).
Recently, inspired by nature, and facilitated by advances in colloid fabrication methods,

a wide range of artificial microswimmers has been developed. Initially, manufacturing
capabilities limited those to simple shapes, e.g. spheres, spheroids and rods. However,
more recently, complex and non-axisymmetric shapes have come into focus (Gibbs 2020).
For instance, Gibbs and Fischer showcase helical microdrills that consist of a spherical
‘head’ and helical ‘tail’ (Gibbs & Fischer 2015). On the surface, the design resembles
the aforementioned E. coli. However, this design is a self-phoretic particle: it is covered
by a catalyst, and when immersed in a solution containing molecular ‘fuel’, induces and
sustains gradients of the various molecular species involved in the reaction. The chemical
gradients, in conjunction with the molecular forces of interaction between the molecules
and the particle surface, drive fluid flow in the vicinity of the particle surface, leading
to directed motion (Anderson 1989). Accordingly, the superficial similarity between
E. coli, a mechanical swimmer, and self-phoretic helical swimmers may not hold up upon
more detailed investigation. For instance, it is not obvious whether self-phoretic helices
would exhibit any significant rotation around the helix axis, or display circular trajectories
when in the vicinity of a solid boundary, a well-known behaviour of E. coli (Lauga et al.
2006; Berke et al. 2008). Furthermore, the optimal geometry of a helical self-phoretic
swimmer for self-propulsion is of obvious interest, and may not be identical to that of a
mechanical swimmer. As another example, we note that enhancing the screw axis rotation
of a self-phoretic helix would enhance its function as a microdrill. However, rotations
with respect to the other body axes would hinder this function. More generally, rotary
micromotors and nanomotors are envisioned as key elements of future active colloidal
machines (Kim et al. 2016; Aubret et al. 2018); being able to control their motion (e.g.
by restricting rotation to only one body-fixed axis) by design would boost development of
these applications.
The aim of this work is develop a framework to study implications of the helical

geometry for self-phoretic swimmers, and their possibilities for a wide range of
applications, e.g. in lab-on-a-chip devices or for targeted drug delivery. We start by
introducing the mathematical description of the particle shape in § 2.1. We then outline the
physical model and governing equations in § 2.2. In § 2.3, we specify activity profiles, i.e.
distributions of catalytic activity over the particle surface. We detail three model activity
profiles that are relevant to current experiments. Before presenting our results, we outline
our numerical method in § 2.5. In the results (§ 3), we discuss the hydrodynamic resistance
tensor in § 3.1, and then the concentration field and the particle velocities for three different
activity profiles in §§ 3.2–3.4. Finally, we provide a novel and detailed development of
slender body theory (SBT) for the concentration in § 3.5.
On this path, the hydrodynamic resistance tensor turns out to be a highly important

quantity. Calculation of the hydrodynamic resistance tensor for a helix is a classical
problem in low Reynolds number hydrodynamics that sparks interest in its own right
(Gray & Handcock 1955; Johnson 1980; Purcell 1997; Rodenborn et al. 2013; Palusa
et al. 2018; du Roure et al. 2019). Moreover, it has additional relevance for application to
magnetically driven helical swimmers (Ghosh & Fischer 2009; Man & Lauga 2013; Peyer
et al. 2013; Bianchi et al. 2020; Mirzae et al. 2020). With our numerical implementation
of the boundary element method (BEM), we obtain good agreement with the experimental
estimates of resistance tensor components obtained by Purcell (1997) and corresponding
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numerical calculations from Cortez, Fauci & Medovikov (2005), validating our approach.
Moreover, we find that SBT, which resolves hydrodynamic interactions between particle
segments – but not the finite thickness of the particle – exhibits excellent agreement with
detailed calculations obtained with the BEM. In contrast, resistive force theory, which
neglects hydrodynamic interactions, performs poorly (Rodenborn et al. 2013). These
findings have implications for the study of helix sedimentation dynamics (Palusa et al.
2018).
Regarding the concentration, our numerical calculations and extended SBT show that,

in general, there will be circumferential spatial variations (i.e. variations circling around
the contour tangent vector) in the vicinity of the particle surface. Notably, these variations
are absent for simple geometries, e.g. spheres and spheroids with axisymmetric patterning,
and they contribute to particle motion. Depending on the helix parameters (pitch, catalyst
coverage, etc.), these variations can become negligible compared with, or dominate
over, the tangential variations. In the latter case, one can observe significant motion
perpendicular to the helix screw axis. This qualitative dependence on the helix parameters
allows one to choose between a wide range of possible trajectories by changing only one
or two aspects of the helix.

2. Theory

2.1. Particle geometry
We consider a solid particle that has the shape of a cylindrical tube bent into a helical
contour (figure 1). The tube radius is r0, the radius of the tube centreline around the helix
axis is R, the helix pitch is λ, the end-to-end distance is L and the total contour length of
the helix is L. The two ends of the particle are terminated by hemispherical caps with
radius r0. The centreline of the tube (between the two caps) is described by a space curve
xh(t) parameterized by t

xh = R cos t
yh = R sin t
zh = bt

⎫⎬
⎭ , (2.1)

where 2πb = λ. The helix has N turns, so that L = Nλ, L = N
√
λ2 + (2πR)2 and t ∈

{0, 2πN}. The surface of the tube (between the end caps) is described by

xs = R cos t − r0 cos t cosφ + r0b√
R2 + b2

sin t sinφ

ys = R sin t − r0 sin t cosφ − r0b√
R2 + b2

cos t cosφ

zs = bt + r0b√
R2 + b2

cosφ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2.2)

where φ ∈ {0, 2π} is an angle that describes position on the circular cross-section
of the tube surface centred at position t on the centreline. At any point t on the
helix, the tangent vector t̂h ≡ ∂xh/∂t/|∂xh/∂t|, normal vector n̂h ≡ ∂ t̂h/∂t/|∂ t̂h/∂t|
and binormal vector b̂h ≡ t̂h × n̂h define three orthogonal vectors, where t̂h =
(−R sin t/

√
R2 + b2,R cos t/

√
R2 + b2, b/

√
R2 + b2), n̂h = (− cos t, − sin t, 0) and b̂h =

(b sin t/
√
R2 + b2, −b cos t/

√
R2 + b2,R/

√
R2 + b2). Accordingly, for a point on the

surface of the tube, φ = 0◦ if the point is displaced from the tube centreline along the local

927 A46-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.801


R. Poehnl and W. Uspal

2R

2r0

λ = 2πb

ẑ

b̂h

n̂h

t̂h
Inactive

Uniformly
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φ

Figure 1. Schematic illustration of the particle geometry. The particle consists of a solid ‘tube’ with a helical
contour and circular cross-section, plus two solid hemispherical endcaps. Here, we label the contour radius R,
the helix pitch λ, the tube radius r0, the local tangent vector t̂h, the local surface normal n̂h and the local surface
binormal b̂h. For a given point on the tube centreline, the angle φ defines a point on the tube surface. In this
example, the particle has a ‘lengthwise Janus’ catalytic activity profile.

normal n̂h, and φ = 90◦ if it is displaced from the centreline along the local binormal b̂h.
Note that the local surface normal n̂h always points towards the axis of the helix, entailing
that a point on the particle surface with φ = 0◦ is in the interior space.
For the following analysis, we also find it useful to define the tangential position

s ∈ [−1, 1] along the centreline of the cylindrical tube, where s = −1 corresponds to the
centre of the base of one hemispherical endcap, s = 1 to the centre of the base of the other
hemispherical endcap and s = 0 to the midpoint of the contour. Additionally, all geometric
quantities will be specified in terms of a characteristic length scale L0 ∼ R.

2.2. Physical model and governing equations
We consider a stationary reference frame in which the instantaneous position of the
geometric centroid of the helix is xp = (xp, yp, zp). The helix is immersed in a liquid
solution containing reactant (‘fuel’) molecules, and part of the surface of the helix
catalyses the decomposition of the reactant, producing a reaction product that has a number
density field c(x) (hereafter called the concentration field), where x is a position in the
solution. We assume that the characteristic time scale for diffusion of the reactant is much
smaller than the characteristic time scale for particle motion. Therefore, the concentration
field can be regarded as quasi-static, and it satisfies the Laplace equation ∇2c = 0. The
concentration field is subject to the boundary conditions c(|x| → ∞) = 0 and −D[n̂ ·
∇c] = κj(xs) on the particle surface. Here, D is the diffusion coefficient of the product
molecules, κ is a characteristic rate of solute production per unit area, xs is a position on
the particle surface and n̂ is a unit vector locally normal to the particle surface. The normal
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is defined to point into the fluid. (Note that the surface normal n̂ is distinct from the space
curve normal n̂h introduced in the previous section. In particular, n̂ = cosφn̂h + sinφb̂h
over the tube surface.) The function j(xs) is dimensionless, and describes the distribution
of catalytic activity over the particle surface. For simplicity, we have assumed zeroth-order
kinetics, i.e. the activity has no dependence on the product concentration c(x).
The above problem for c(x) can be solved numerically, using the BEM. Once c(x) is

known, one can obtain the surface gradient ∇sc, where ∇s ≡ (1 − n̂n̂) · ∇. Since ∇sc
is defined on the surface of the particle, it lies within a plane that is locally tangent
to the tube surface and has normal n̂. Conceptually, we can decompose ∇sc into a
tangential component, (t̂h · ∇sc)t̂h, and a circumferential component (1 − t̂ht̂h) · ∇sc =
(n̂h · ∇sc)n̂h + (b̂h · ∇sc)b̂h. This decomposition will be useful in the subsequent analysis.
The suspending fluid is assumed to be Newtonian and governed by the Stokes equation

− ∇P + μ∇2u = 0, (2.3)

and incompressibility condition ∇ · u = 0, where u(x) is the velocity of the fluid, P(x)
is the fluid pressure, and μ is the viscosity. The fluid velocity is subject to the boundary
conditions

u(xs) = U + Ω × (xs − xp) + vs(xs), (2.4)

on the surface of the helical particle, where U and Ω are the (unknown) translational
and angular velocities of the particle, as well as u(|x| → ∞) = 0. The quantity vs, the
so-called phoretic slip velocity, is obtained as vs = −b(xs)∇sc, where b(xs), the so-called
surface mobility, is a material dependent quantity that encodes interactions between the
reactant and the particle surface (Anderson 1989). Finally, to close the system of equations,
we specify that the particle is force free,∫

S
σ · n̂ dS = 0, (2.5)

and torque free, ∫
S
(xs − xp) × σ · n̂ dS = 0, (2.6)

where S indicates an integral over the particle surface.
In order to solve this problem forU and Ω , we use the Lorentz reciprocal theorem. This

theorem relates two solutions to the Stokes equation with the same geometry but different
boundary conditions. For an auxiliary problem (j), we write∫

S
u · σ (j) · n̂ dS =

∫
S
u(j) · σ · n̂ dS, (2.7)

where auxiliary problem (j) has the boundary conditions

u(j)(xs) = U (j) + Ω(j) × (xs − xp), (2.8)

and u(j)(|x| → ∞) = 0, i.e. the particle moves as a rigid body with no slip on the surface.
We specify six auxiliary problems j ∈ {1, 2, . . . , 6}, with the boundary conditions for each
(j) given in table 1.
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(j) U (j) Ω(j)

1 Vax̂ 0
2 Vaŷ 0
3 Vaẑ 0
4 0 Ωax̂
5 0 Ωaŷ
6 0 Ωaẑ

Table 1. Boundary conditions for the auxiliary problem (j).

Combining (2.4), (2.7) and (2.8), we obtain

U ·
∫
S
σ (j) · n̂ dS + Ω ·

∫
S
(xs − xp) × σ (j) · n̂ dS +

∫
S
vs(xs) · σ (j) · n̂ dS

= U (j) ·
∫
S
σ · n̂ dS + Ω(j) ·

∫
S
(xs − xp) × σ · n̂ dS. (2.9)

According to (2.5) and (2.6), the two integrals on the right-hand side vanish. Moreover,
on the left-hand side, we recognize that the integrals represent components of the
hydrodynamic resistance matrix R (with a negative sign). Accordingly, the equation can
be represented as a linear system

6πμR ·
(
U
Ω

)
= b, (2.10)

where the six-component right-hand side vector b is

bj =
∫
S
vs(xs) · σ (j) · n̂ dS/V(j), (2.11)

where V(j) = Va for j ∈ {1, 2, 3}, and V(j) = Ωa for j ∈ {4, 5, 6}. Note the factor of 6πμ

appears in (2.10) because of how we choose to define R. The various components of R are
proportional to, and have the same units as, L0, L20 or L30. Equation (2.10) can be solved
by standard methods to determine U and Ω . Interestingly, the right-hand side vector b can
be regarded as a generalized effective swimming force; the first three rows have units of
force, and last three rows have units of torque.
Finally, from consideration of the governing equations, we determine a characteristic

concentration c0 ≡ κL0/D and a characteristic velocity U0 = |b0|κ/D, where |b0| is
a characteristic surface mobility coefficient. A characteristic force can be defined as
F0 ≡ μU0L0. In the following, we will present quantitative results in terms of these
characteristic quantities, except where noted.

2.3. Specification of catalytic activity and surface chemistry
In this work, we consider three choices of j(xs). For all choices, we present results for
uniform surface mobility, i.e. b(xs) = b0, where b0 < 0. The sign of b0 ensures that
the solute/surface interaction is repulsive, such that the particle tends to propel away
from regions of high solute concentration. Although we examined the effect of a surface
mobility contrast between the catalytic and inert regions, we did not find it to qualitatively
change the results presented below.
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2.3.1. Lengthwise Janus particle
For the ‘lengthwise Janus’ particle, like the one shown in figure 1, we choose j(xs) =
Θ(−s) for a position on the surface of the cylindrical tube, where Θ(s) is the Heaviside
step function. Additionally, the hemispherical endcap with its base at the point s = −1 has
j(xs) = 1, and the endcap with its base at the point s = 1 has j(xs) = 0. In other words, half
of the particle is uniformly catalytic, and the other half is inert.

2.3.2. The z-wise Janus particle
For the ‘z-wise Janus’ particle, we choose j(xs) = −(n̂ · ẑ)Θ(−n̂ · ẑ). For this particle,
the region of the surface with a negative z-component of the local surface normal n̂ is
catalytically active. Additionally, over this region, the catalytic activity is proportional to
the z-component of the local surface normal. This activity profile is shown in figure 8(a)
for a particular choice of helix geometry. Note that this particle has an inherent polarity in
the activity profile, so that one expects translational motion in the z-direction and rotation
around the z-axis.
There are several motivations for examining this activity profile. First, it is similar to

the experimentally relevant case of a Janus particle with a coating of catalytic material
whose thickness smoothly varies, with position on the surface, from zero thickness to
some maximum (Campbell & Ebbens 2013; Popescu et al. 2018b). This spatially varying
thickness is often obtained in coating deposition processes. It is also similar to the case
of a light-activated Janus particle, for which the catalytic activity on the surface is locally
proportional to the flux of incident light (Uspal 2019b). As a further motivation, to be
developed below, one can expect phoretic motion of these particles to be dominated by
circumferential concentration gradients.

2.3.3. Inside–outside Janus particle
For the third model activity profile, we designate j(xs) = Θ(φ + π/2)Θ(−φ − π/2). In
this case, the activity varies only with the circumferential angle φ. The surfaces pointing
towards the interior space of the helix are inert, and the chemical reaction is limited to the
outside facing surfaces.
Helical fibres with this activity profile could be obtained using a coaxial capillary

microfluidic system, as shown by Yu et al. (2017). Additionally, one can imagine obtaining
it in a deposition process. The particle is first formed out of an inert material, and in
a second step, the catalyst is deposited onto it. For this activity profile, we assume the
catalyst only covers the easier to reach outside of the helix and leaves the inside inert.

2.4. Three-dimensional trajectories
In general, for a chemically active helical particle, all six components of the translational
and rotational velocity will be non-zero, except when components vanish by symmetry
(e.g. for a particle with uniform activity and uniform surface mobility). Therefore, one
expects active helices to generally exhibit helical trajectories (Wittkowski & Löwen 2012).
The radius rtraj of the helical trajectory is given as

rtraj = |U × Ω|
|Ω|2 , (2.12)

and the pitch as

λtraj = 2π
|U · Ω|
|Ω|2 , (2.13)
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where U and Ω are evaluated in a body-fixed coordinate system. Although we do
not further consider particle trajectories in this work, we note that they can be
straightforwardly calculated from (2.12), (2.13) and the velocities calculated below.

2.5. Numerical method for solution of PDEs
In order to solve the Laplace and Stokes equations numerically, we use the BEM
(Pozrikidis 1992, 2002; Uspal 2019a). Briefly, in this method, the partial differential
equation (PDE) of interest is recast as an integral equation over the surface of the
particle. For instance, for Laplace’s equation, one can obtain the following equation via
manipulation of Green’s identities (Uspal 2019a):∫

V
c(x)∇2G(x, x0) dV = −

∫
S
[c(x)∇G(x, x0) − G(x, x0)∇c(x)] · n̂ dS. (2.14)

Here, V is the fluid domain (i.e. the domain exterior to the particle), S is the particle
surface and x0 is an observation point, which may be placed anywhere (i.e. in V , inside
the particle, or on the particle surface S). The integrals are taken with respect to x. The
Green’s function G(x, x0) solves the Poisson equation

∇2G(x, x0) + δ(x − x0) = 0, (2.15)

and is given by

G(x, x0) = 1
4π|x − x0| . (2.16)

For x0 on the particle surface, the single-layer term in (2.14) has a singularity. Taking the
Cauchy principal value, we obtain the following boundary integral equation:

1
2
c(x0) =

∫
S
[c(x)∇G(x, x0) − G(x, x0)∇c(x)] · n̂ dS, x0 ∈ S. (2.17)

In the problem considered in this work, (2.17) relates the unknown surface concentration
c to the given n̂ · ∇c.
For the Stokes equation, one can obtain the following single-layer formulation of the

boundary integral equation, given in index notation (Pozrikidis 1992; Ishikawa, Simmonds
& Pedley 2006; Ishimoto & Gaffney 2013):

uk(x0) = −
∫
S
[Gik(x0, x)qi] dS, x0 ∈ S, (2.18)

where x0 is on the particle surface. Here, the Green’s function G for the Stokes equation
is

Gij(x, x0) = 1
8πμr

(
δij + x̃ix̃j

r2

)
, (2.19)

where x̃j = xj − x0,j and r ≡ |x − x0|. Concerning the quantity q, we define it as the
difference in traction exerted on the particle surface S by the fluid exterior to the particle
f and a fictitious interior fluid f in. The interior fluid is subject to the same boundary
conditions on S as the exterior fluid. The quantity q is given as

q = f − f in = σ · n̂ − σin · n̂, (2.20)

and the unknown distribution of q is related to a prescribed surface distribution of u (e.g.
rigid body motion in the six auxiliary problems) by (2.18). The quantity q is defined up to

927 A46-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.801


Phoretic self-propulsion of helical active particles

a constant multiple of the surface normal n̂, as incompressibility implies
∫
S G · n̂ dS = 0.

One can choose for this constant to be zero by imposing
∫
S q · n̂ dS = 0. For the case of

rigid body motion, f in is simply a constant multiple of n̂, and q can simply be replaced
with f .
Each boundary integral equation can be discretized by meshing the surface of the

particle, yielding a dense linear system that can be solved numerically. To implement the
BEM for active colloids, we adapt the open source numerical library BEMLIB (Pozrikidis
2002). For the helical filaments considered here, the large variation in length scales can
make this geometry numerically challenging. Furthermore, the interface between catalytic
and inert regions of the particle surface must be resolved carefully. For all data points
obtained with the BEM and presented below, we confirm numerical convergence with
respect to mesh refinement. Specifically, as a rule of thumb, we consider numerical
convergence to be obtained when we obtain no more than 3% change in all quantities
of interest upon addition of 10 000 or more surface elements. Where possible, we compare
our numerical data against SBT for further validation. For the ‘lengthwise Janus’ catalytic
activity profile, it is potentially difficult to capture the abrupt change in activity with a
discrete number of meshed points. Accordingly, we have considered both a ‘hard’ step
function activity profile and a ‘soft’ hyperbolic tangent activity profile with a length
scale l0 ∼ r0, and found good quantitative agreement between them for ∼ 50 000 surface
elements.
To obtain insight into the conditions for numerical convergence, we visually inspected

the activity profiles by plotting j(xs). We found that numerical convergence is associated
with having a sufficiently smooth interface between the active and inert sides of the
particle. An illustrative example of this smoothness is provided in figure 2. The BEM code
solves for the concentration at nodes of the particle mesh (coloured points). The red points
represent catalytically active nodes of the mesh, while the green points represent inert
nodes. The area elements of the mesh are coloured by interpolation from the surrounding
nodes; blue represents inert and yellow represents active. The interface between the
inert and active sides shows that the active and inert nodes are separated. Moreover,
the interface between the two sides is smooth and approximately lies within a plane
containing a circular cross-section of the article. The slight roughness observed is due to
slight differences/non-uniformity between the local density of nodes (which are distributed
during the meshing process on the two sides). For future work, we suggest that refinement
of the mesh near the interface could lead to gains in computational efficiency (requiring
fewer nodes and elements for the same level of accuracy).
With regard to computational efficiency, we note that application of the Lorentz

reciprocal theorem can save significant computational time in that, for a given helix
geometry, the six auxiliary problems for the Stokes equation only need to be solved once.
Solving these problems yields the resistance matrix and tractions that can be used for
any distribution of surface slip. Therefore, one can examine different distributions of
catalytic coverage, surface mobility parameters, etc. without having to perform additional
hydrodynamic calculations.
Solution of the system in (2.10) yields the particle velocity, but not the flow field u(x).

When desired, the flow field can be obtained by subsequent additional numerical solution
of (2.18), subject to the (now completely known) boundary condition (2.4). One can then
obtain the velocity field using the boundary integral equation

uk(x0) = −
∫
S
[Gik(x0, x)qi] dS, x0 ∈ V . (2.21)
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Figure 2. Close-up of a meshed interface for a lengthwise Janus particle under conditions of numerical
convergence. The red points represent catalytically active nodes of the mesh, while the green points represent
inert nodes. The area elements of the mesh are coloured by interpolation from the surrounding nodes; blue
represents inert and yellow represents active.

3. Results

3.1. Hydrodynamic resistance tensor
As our starting point, we consider the hydrodynamic resistance tensor R of a helical
filament, as it is a key quantity entering into (2.10). Each row j of R can be obtained by
solving auxiliary problem (j) for rigid body motion of the helix and, from the solution for
u(j), calculating the force and torque on the particle. We can solve each auxiliary problem
numerically, using the BEM.
In figure 3, we consider an example problem in order to both validate our numerical

scheme and to shed some light on how the hydrodynamic resistance of a helix depends
on its shape. Specifically, we obtain the components of R as a function of pitch λ for
a helix with fixed contour length L, fixed tube radius r0, and fixed contour radius R.
This variation of λ can be regarded as ‘stretching out’ an initially tightly coiled helix,
as shown schematically in figure 3(a). Of particular interest are R33, R36 = R63 and R66.
The quantity R33 represents the coefficient for hydrodynamic drag (in the ẑ direction) on
a helix translating along its screw axis, i.e. in the ẑ direction. Likewise, R66 represents
the rotational drag coefficient for rotation around the helix axis. Finally, R63 represents
translational–rotational coupling, i.e. the torque in the ẑ direction that results when a helix
translates in the ẑ direction, or the force in the ẑ direction that results when a helix rotates
around the ẑ axis.
Interestingly, we obtain non-monotonic behaviour for all three quantities shown in

figure 3, with a minimum in R63 and maxima in R33 and R66 appearing around λ/L0 ≈ 20.
In order to cross-check our results, we also performed calculations with SBT, as described
in the work of Koens & Lauga (2014). The BEM and SBT broadly agree, except that with
the BEM we obtain a slight oscillation in R66 as a function of λ (figure 3d). The minor
discrepancies between SBT and BEM could be due to the fact the SBT does not account
for the circumferential variation of hydrodynamic stress (i.e. variation with φ) over the
surface of the particle. Moreover, the SBT equations in Koens & Lauga (2014) assume that
the cross-sectional radius of the particle varies as rb

√
1 − s2, where rb is the maximum
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Figure 3. (a) Schematic illustration of three helices with different values of pitch λ, but identical contour
length L/L0 = 57.5, contour radius R/L0 = 2.5 and filament radius r0/L0 = 0.265. (b) Variation of R33, the
dimensionless drag coefficient for translational motion along the axis, with λ. Black circles were obtained with
the boundary element method, and red circles were obtained by the SBT described in Koens & Lauga (2014).
(c) Variation of the translational–rotational coupling coefficient R63 with λ. Note that R63 = R36. (d) Variation
of R66, the dimensionless rotational drag coefficient for rotation around the helix axis, as a function of λ.

thickness; recall that our particle has uniform cross-section, except for the hemispherical
endcaps.
We have also sought to compare our results with resistive force theory (RFT), using

the expressions in Palusa et al. (2018) and Chattopadhyay et al. (2006). For calculation
of the components of the resistance tensor, RFT treats the filament as consisting
of hydrodynamically non-interacting rod-like segments. We obtained semi-quantitative
agreement of RFT with SBT and BEM for the variation of R36 with λ, semi-quantitative
agreement for the variation of R66 with λ for λ/L0 > 30, and poor agreement for R33. It has
been known since the work of Rodenborn et al. that RFT generally has poor quantitative
agreement with theories that include non-local hydrodynamic interactions, such as SBT
and BEM; therefore, we do not include the RFT results here.
As another check, we consider the helix geometries studied experimentally by Purcell

(1997) using metal wire and numerically with the regularized BEM by Cortez et al. (2005).
Specifically, both works consider a helix with fixed end-to-end distance L, number of turns
L/λ, pitch angle ψ = 2πR/λ and filament radius r0, with R determined from the fixed
parameters. The treatment of the two helix ends is not explicitly reported in Cortez et al.
(2005). The quantities A, B and D in Purcell (1997) correspond to our R33, R36 and R66,
respectively, and are tabulated in table 2. Likewise, in Cortez et al. (2005), the quantities
T 33, P33 and R33, correspond to R33, R36 and R66 in this work, and are tabulated in table 3.
However, the quantities given in Purcell (1997) and Cortez et al. (2005) are dimensional.
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Nturns ψ R33/L0 R36/L20 R66/L30

5 20◦ 16.98 −9.48 374.95
3 55◦ 5.11 −2.61 63.91
5 55◦ 7.09 −3.58 89.9

Table 2. Experimental measurements from Purcell (1997), rescaled to be dimensionless for comparison with
our BEM results in table 4.

Nturns ψ R33/L0 R36/L20 R66/L30

5 20◦ 15.16 −7.43 331.41
3 55◦ 4.64 −2.50 59.81
5 55◦ 6.45 −3.39 96.52

Table 3. Numerical calculations from Cortez et al. (2005), rescaled to be dimensionless for comparison with
our BEM results in table 4.

Nturns ψ R33/L0 R36/L20 R66/L30 Nelm % error R33 % error R36 % error R66

5 20◦ 15.37 −7.76 336.88 12 048 1.39 4.38 1.65
5 20◦ 15.37 −7.76 336.98 48 192 1.39 4.41 1.68
3 20◦ 4.66 −2.46 59.72 5808 0.59 1.78 0.16
3 20◦ 4.66 −2.46 59.72 23 232 0.59 1.78 0.14
5 55◦ 6.55 −3.48 97.71 9648 1.44 2.74 1.23
5 55◦ 6.55 −3.48 97.73 38 592 1.44 2.73 1.25

Table 4. Results of BEM numerical calculations for resistance matrix of a helix. Per cent error is calculated
with respect to the numerical data of Cortez et al. (2005).

We rescaled the quantities to be dimensionless in table 2 and table 3 by choosing the
length scale to be L0 = 2

5R. Moreover, for the coordinate system chosen in this work,
the off diagonal R36 is negative for a right-handed helix, as also noted by Purcell (Purcell
1997). The sign can be understood from the force balance on a helix segment in RFT (Poon
2013). In table 4, we show that our implementation of the BEM has good agreement with
Cortez et al. (2005) and good convergence with mesh refinement. The slight discrepancy
between our results and those of Cortez et al. (2005) may be due to the treatment of the
helix ends.

3.2. Lengthwise Janus chemically active particle
Now we consider the effect of catalytic activity for a lengthwise Janus particle, beginning
with the concentration field c. In order to validate our boundary element numerical
method, we compare the results of BEM for c against predictions of a slender body
approach that will be developed in detail in § 3.5 below. In figure 4(a), the grey area
shows the range of variation of concentration on the surface of a particle as a function
of tangential position s, determined with the BEM. Note that for each tangential position
s there is a range of values of concentration c, indicated by the vertical extent of the
grey area, due to variation of c with the circumferential angle φ. The red curve is the
prediction of SBT, for this geometry and activity profile, of the circumferentially averaged
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Figure 4. (a) Concentration with respect to the tangential position s for λ/L0 = 5 and other parameters the
same as in figure. 3. The shaded grey area shows the range of values that were obtained for c for a given s and
various circumferential angles φ (individual data points are omitted for clarity). The solid curve is a theoretical
expression for the circumferentially averaged concentration obtained with SBT. The inset shows the definition
of the angle φ with respect to the local n̂h at a position s along the centreline, as well as decomposition of the
surface concentration gradient∇sc into tangential and circumferential (i.e. in the plane of the helix cross-section
at s) components. (b) Three-dimensional plot of the concentration c on the surface of the particle. (c) Variation
of concentration c as a function of circumferential angle φ for various values of s. The dashed line indicates
φ = −π/2. (d) Schematic illustration of the modification of the SBT to obtain the circumferential variation
of concentration around the cross-section at s. To obtain the solid curves in (c), it is assumed that the local
concentration gradient created by the rest of the particle induces a dipolar variation of concentration on the
filament surface with respect to φ. In (c), the values of s are as follows: black circles, s = −0.95; blue circles,
s = −0.65; red circles, s = −0.15; magenta diamonds, s = −0.02; blue diamonds, s = 0; magenta crosses,
s = 0.05; black crosses, s = 0.15; red crosses, s = 0.35; blue crosses, s = 0.65; green crosses, s = 0.85.

concentration on the particle surface as a function of s. The red curve shows excellent
agreement with the variation of the grey region with s. In figure 4(b), we show the
concentration on the surface of the particle; the variation of c is dominated by tangential
gradients, but circumferential variation is also clearly visible.
In order to gain a better understanding of the circumferential variation, we plot c as

function of φ for different values of s in figure 4(c). The symbols were obtained with
the BEM. For each value of s, we find that c varies with φ in a sinusoidal fashion, with
the amplitude and phase depending on s. Interestingly, in the inert region of the particle
(s > 0), the curves generally have maxima that approach φ ≈ −π/2 as s approaches s = 1.
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Figure 5. (a) Components of the translational velocity U of a lengthwise Janus particle as a function of pitch
λ and parameters r, L and R the same as in figure 3. In the main figure, the dashed line shows the value of Uz
for a spheroidal particle with major axis diameter L and minor axis diameter 2r, as determined from Ibrahim,
Golestanian & Liverpool (2018). The green curve shows a stretched exponential fit to Uz. In the inset, the
dashed lines indicate values of λ for which the number of turns is a half-integer. (b) Components of the angular
velocity Ω of a lengthwise Janus particle as a function of pitch λ and other parameters the same as in figure 3.
The inset shows the peak in Ωz. (c) The contributions of circumferential and tangential concentration gradients
to Uz as a function of λ. (d) The contributions of circumferential and tangential concentration gradients to Ωz
as a function of λ.

As detailed in § 3.5, we extend SBT to account for circumferential variation of
concentration. Briefly, we hypothesize that the concentration on the surface of a circular
cross-section of the filament, at a given s, is polarized by an ambient gradient in
concentration created by the rest of the particle. This hypothesis is shown schematically in
figure 4(d). By making an analogy with a cylinder in uniform potential flow, we are able
to obtain the solid curves in figure 4(c).
Now we consider the velocity of the lengthwise Janus particle as a function of pitch λ,

with other geometric parameters the same as in figure 3. In figure 5(a), we show the three
components of translational velocity. As one might expect, Uz is significantly greater in
magnitude than Ux and Uy. Moreover, is Uz everywhere positive, as the particle is repelled
from regions of high concentration. For λ/L0 � 1, Uz asymptotes to a constant value,
since the filament geometry approaches the limit of a straight cylinder with hemispherical
ends. For comparison, we plotted the velocity of a spheroidal particle with major axis
diameter L and minor axis diameter 2r (dashed line), obtained from Ibrahim et al. (2018).
The asymptotic value and the velocity of the spheroid are comparable, as expected. As a
side note, we find that the variation of Uz with λ is captured by a stretched exponential fit.
The components Ux and Uy exhibit a decaying oscillatory behaviour as a function of λ.

As expected from symmetry considerations, Ux and Uy approach zero for large λ. In the
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(b)(a)

Figure 6. Streamlines (obtained in the stationary frame) of flow in the vicinity of a helix with (a) large pitch
(λ/L0 = 60) and (b) small pitch (λ/L0 = 5).

inset of figure 5(a), we show the oscillatory behaviour in closer detail. Hypothesizing
that the oscillation is due to end effects for a finite length helix, we indicate with dashed
lines the values of λ for which the number of turns Nturns is a half-integer. These values
approximately correspond to the locations of the maxima and minima ofUx andUy, giving
credence to our hypothesis.
Now we consider the decomposition of the surface concentration gradient into

circumferential and tangential components. In figure 5(c) and 5(d), we observe that the
contributions of circumferential concentration gradients to Uz and Ωz are surprisingly
important. ConcerningUz, one expects that, for large pitch, i.e. for a geometry approaching
that of a straight rod, tangential gradients should dominate circumferential gradients, and
this is indeed the case in figure 5(c). However, we also find a cross-over at intermediate
pitch, and circumferential gradients are dominant at low pitch. Moreover, tangential and
circumferential gradients compete with regard to rotation around the helix screw axis:
tangential gradients tend to rotate the particle counter-clockwise around this axis, while
circumferential gradients drive clockwise rotation (figure 5d). As a result, the angular
velocity Ωz is small. These findings suggest designing an activity profile to deliberately
suppress one of the two contributions to particle motion.
The significance of circumferential gradients for low pitch helices additionally has

impact on the flow field in the vicinity of the particle. In figure 6, we show streamlines
(obtained in a stationary frame) in the vicinity of helices with small and large pitch. For
the large pitch helix, the flow field is only weakly perturbed from being axisymmetric. A
stagnation point is identifiable near the middle of the active side of the particle. Noting
that fluid is drawn into the poles of the particle and expelled from the sides, we expect that
the particle is a hydrodynamic ‘puller’. For the small pitch helix, in contrast, the structure
of streamlines is much more complex. Streamlines can wrap around the helix surface over
and over, owing to the strong circumferential flows. However, a stagnation point and a
puller-like structure of streamlines in the far field are still recognizable.
As an additional note, from the peak in R33 in figure 3(b), one might expect a

corresponding minimum in Uz at the same value of λ. However, in figure 5(a), we observe
monotonic decay of Uz with λ. To resolve this apparent paradox, we note that in solving
(2.10), we effectively multiply both sides of the equation by the inverse of the resistance
matrix, i.e. the mobility matrix M ≡ R−1. The extrema of the mobility matrix components

927 A46-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.801


R. Poehnl and W. Uspal

0.010

M31* L0
M32* L0

M34* L2
0

M35* L2
0

M36* L2
0

b1/F0

b4/F0L0

b5/F0L0
b6/F0L0

b3/F0

b2/F0

M
o
b
il

it
y
 m

at
ri

x
 e

n
tr

ie
s

0.005

0

–0.005

0 20 40 8060

(a)
0.35

0.30

0.25

6

4

2

0

–2

C
o
m

p
o
n
en

ts
 o

f 
b

M
3
3
*
 L

0

0 20 40 8060

0 20 40 806020 40 8060

(b)
U z/

U
0

Full calculation
b3/80F0

0.12

0.10

0.08

0.06

0.04

0.02

0

λ/L0

(c)

λ/L0

(d )

Figure 7. (a) Off-diagonal entries of the third row of the mobility tensor M as a function of pitch λ, and other
parameters as given in figure 3. (b) Mobility tensor component M33 as a function of pitch λ. Note the difference
in scale from (a); the diagonal entry dominates the third row of M . (c) Translational velocity component along
the helix axis Uz for a lengthwise Janus activity profile as a function of pitch (all other parameters are the
same as in figure 5). The full calculation that takes into account all components of M and the right-hand side
vector b shows good agreement with an approximate solution obtained as b3/80F0, where 6π/80 is chosen as
a characteristic value of the ‘flat’ part of the curve in (b). (d) Components of the right-hand side vector b as a
function of pitch λ for the lengthwise Janus particle.

may not appear at the same λ as the extrema of the resistance matrix. Moreover, the
components of the right-hand side vector b will also vary with λ. In figure 7(a,b), we
show the entries of the third row of the mobility matrix. The diagonal entry M33 clearly
dominates the third row, which determines Uz. Moreover, M33 is approximately flat over a
broad range of λ/L0, and exhibits only a very shallow minimum at λ/L0 ≈ 13. This finding
permits the approximation shown in figure 7(c). Taking 6π/80 ≈ 0.236 as a characteristic
value of the flat region of figure 7(b), we approximate Uz/U0 as b3/80F0, obtaining
good agreement with the complete calculation. Thus, translation along the axis is largely
determined by the z-component of the effective ‘force’ b, and coupling to other modes of
motion is negligible. Moreover, the variation of Uz with λ is determined, for most λ, by
the variation of b3 with λ. In figure 7(d), we show the variation of the components of b as
a function of λ for the lengthwise Janus particle. It can be observed that the dependence
of b3 on λ resembles the dependence of Uz on λ.

3.3. The ‘z-wise’ Janus particle
We now consider the ‘z-wise’ Janus particle (figure 8a). For this particle, one can expect
circumferential gradients to be strong, while tangential gradients should be weak by
symmetry of the activity profile along the contour. These expectations are borne out by
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Figure 8. (a) Dimensionless catalytic activity j(xs) on the surface of a z-wise Janus particle with λ/L0 = 5
and parameters r, L and R the same as in figure 3. (b) Three-dimensional plot of the concentration c on the
surface of the particle. (c) Concentration with respect to the tangential position s. The shaded grey area shows
the range of values that were obtained for c for a given s and various circumferential angles φ (not shown). The
solid curve is a theoretical expression for the circumferentially averaged concentration obtained with SBT.

our numerical calculations of the concentration, shown in figure 8(b) and figure 8(c).
In particular, we note that the broad width of the grey area in figure 8(c) for fixed s,
at most values of s, which indicates strong circumferential gradients. Additionally, the
circumferentially averaged concentration (red curve, obtained by SBT) is fairly flat, except
for the helix ends, indicating that tangential gradients are small.
Turning to the results for the velocity, we find that the particle has strong rotation around

the screw axis, i.e. the z-axis, while rotation around the perpendicular axes is negligible
(figure 9b). This is useful for applications – the particle will show strong directed
motion along the screw axis direction, and will not tumble haphazardly. Concerning
the decomposition into tangential and circumferential contributions, we find that our
expectations are confirmed (figure 9c,d).

3.4. ‘Inside–outside’ Janus particle
Finally, we consider the ‘inside–outside’ Janus particle. As one might expect, the
circumferential variations in the concentration field c are substantial (see figure 10a),
and dominate the tangential variations. Following the slender body approach in (3.5),
we can identify three distinct factors that contribute to the concentration profile. First,
the averaged SBT (red line) again lies very well within the variation of the concentration
field (grey area). It also matches the mean concentration field (blue line) to a high degree,
despite only accounting for the averaged catalytic activity (see § 3.5.2). As expected, it is
symmetric with respect to s. However, for this activity profile, two additional factors lead
to circumferential variation (for a given s) of the concentration profile (see figure 10b).
The second factor is the circumferential variation of the activity profile, i.e. the

dependence of j(xs) on φ. In the slender body approach, this factor can be accounted
for in the construction of the inner solution. Specifically, we solve for the concentration
field around an infinite, half-covered cylinder with translational symmetry via a series
expansion. Therefore, this factor can be reduced to and solved in two dimensions. The third
factor is, as before, polarization of the surface concentration at s induced by the ambient
concentration gradient created by the rest of the particle. Concerning these second and
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Figure 9. (a) Components of the translational velocity U of a z-wise Janus particle as a function of pitch
λ, with parameters r, L and R the same as in figure 3. (b) Components of the angular velocity Ω . (c) The
z-component Uz of the particle translational velocity as a function of pitch, as well as the contributions of
circumferential and tangential concentration gradients to Uz. (d) The z-component Ωz of the particle angular
velocity as a function of pitch, as well as the contributions of circumferential and tangential concentration
gradients.
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Figure 10. (a) Concentration with respect to the tangential position s for an ‘inside–outside’ Janus helix. The
shaded grey area shows the range of values that were obtained for c for a given s and various circumferential
angles φ (not shown), and the blue line shows the mean value as a function of s. The solid curve is a theoretical
expression for the circumferentially averaged concentration obtained with SBT. (b) Variation of concentration
c as a function of circumferential angle φ for various values of s. The values of s are as follows: blue circles,
s = −0.85; blue crosses, s = 0.85; red circles, s = −0.65; red crosses, s = 0.65; green circles, s = −0.35;
green crosses, s = 0.35; black diamonds, s = 0.
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Phoretic self-propulsion of helical active particles

third factors, the contribution from the local catalytic activity (i.e. the second factor) is
dominant, and ensures that the minimal concentration is always close to the centre of the
inert region (φ ≈ 0) and the maximum on the opposite side (φ ≈ ±π). Away from the
centre (s = 0) of the helix (represented by black diamonds in figure 10b), the average
concentration drops, and a circumferential asymmetry develops. This circumferential
asymmetry is due to the third factor, i.e. the dipolar polarization introduced by the rest of
the particle. Due to the symmetry of the activity profile along the contour, the disturbances
at locations s and −s are mirror symmetric with respect to s = 0. The asymmetry becomes
more significant further away from the centre.
Analysing the velocity components for ‘inside–outside’ Janus helices (see figure 11) we

immediately see that, due to their symmetric design, both the Uz and Ωz components
vanish. All other components exhibit a decaying oscillation with respect to the total
number of turns N in the helix. These particles have completely different trajectories
compared with the first two examples and are not propelled in the direction of the screw
axis. For both the translation and the rotational velocity, the minima and maxima in the
x-component lead the corresponding maxima and minima in the y-component by a quarter
turn. This can again be understood by our hypothesis that the movement in xy plane is
mainly due to end effects. In order to illustrate this, we will take a closer look at the Uy
component. Recall that our helices are constructed by fixing the bottom end to point in the
y direction; the tangential direction of top end depends on the number of turns N and other
parameters. For an integer number of turns, the ends point in opposite (y and−y) directions
and balance each other. Upon increasing N, the top (s = 1) rotates by an angle γ = 2π
mod (N, 1) and increases its y- component t̂h(s = 1) · ŷ ∝ − cos(γ ), while the bottom
end stays in place. At the next half-integer turn, the top and the bottom end are pointing in
the same direction, i.e. y, and the overall velocity Uy reaches a maximum. Further growth
of the helix causes the top contribution to shrink, until the two balance each other again at
the next full turn. Note that Uy is never negative because of the construction of the helix.
For the other three non-zero velocities, Ux, Ωx and Ωy, the periodicity can be explained
similarly. When inspecting Ux more closely, we see that these end effects do not entirely
account for the variation of the velocity, e.g. Ux is not exactly 0 at N = 1, 2, 3, 4, 5. This
offset is caused by the finite size of the body and can be understood best by examining
the details of the N = 1 helix. The centre of this helix (s = 0) lies on the x-axis, and
circumferential variations in the concentration field at s = 0 can only induce movement
in the x-direction. For any off-centre values s0 /= 0, the helix can have y-contributions.
However, due to the symmetry in the concentration field, the y-contribution at s = −s0
has to be of equal magnitude and opposite sign. Thus, the two cancel each other out,
and there is no movement in the y- direction for helices with an integer number of turns.
This is not true for the x-component. The s = 0 contribution to Ux is counteracted by the
points ±s0 = ±1/4N half a turn up and down the helix axis, which have normal vectors
n̂h(s0) = n̂h(−s0) in the opposite direction, i.e. n̂h(s0) = −n̂h(0). However, the finite size
of the helix causes the concentration field to decrease away from the helix centre towards
the ends. The two contributions at ±s0 do not add up to the same magnitude as at the
centre, and the particle has a net velocity in the x-direction. In summary, we consider that
a finite size effect is responsible for the slight shift of the zeros of Ux, as a function of N,
away from integer values of N (figure 11c).

3.5. SBT for helix surface concentration
In this section, we introduce an analytical approximation that relies on the ‘slenderness’
parameter ε ≡ 2r0/L being very small, i.e. ε 
 1. We neglect the role of the
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Figure 11. (a) Three-dimensional plot of the concentration c on the surface of the ‘inside–outside’ Janus helix.
(b) Components of the transitional velocity U as a function of the number of turns N and pitch λ/L0 = 5,
contour radius R/L0 = 2.5 and filament radius r0/L0 = 0.265. (c) Components of the and angular velocity Ω

as a function of the number of turns N.

hemispherical caps. Our treatment is influenced by the work in Ibrahim et al. (2018)
and Schnitzer & Yariv (2015) on slender, axisymmetric self-phoretic particles, as well as
Keller & Rubinow (1976) on the hydrodynamic resistance of slender bodies. In particular,
our presentation in § 3.5.1 closely follows the formal manipulations and asymptotic
mathematics of Keller & Rubinow (1976). It can be regarded as transposing some of their
results to the context of Laplace’s equation and active colloids. Our presentation in the
subsequent section, in contrast, is intended as a phenomenological, physically motivated
attempt to model circumferential variations of concentration. It is developed on the basis of
a physical hypothesis and a physical analogy to potential flow. Specifically, the connection
with potential flow is possible because the concentration field in steady-state diffusion and
the velocity potential in potential flow are both governed by Laplace’s equation.
We note that, recently, a systematic and rigorous derivation of SBT for a chemically

active filament was published by Katsamba, Michelin & Montenegro-Johnson (2020),
who work from the alternative basis provided by Koens & Lauga (2018). One advantage
of working from that basis is that it facilitates consideration of circumferential variation
of the surface stress. Thus, Katsamba et al. (2020) are able to (numerically) calculate
particle velocities in the framework of SBT; in that sense, their formulation of SBT
is complete. Here, we restrict our attention to calculation of the concentration field.
Additionally, we make no pretence to the level of formal rigor and systematic mathematical
development provided in Katsamba et al. (2020). However, our brief treatment may
provide an accessible point of entry into SBT for some readers. Additionally, by being
grounded in a physical model, it sheds light on underlying physical mechanisms.
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Phoretic self-propulsion of helical active particles

For the slender body analysis, the governing equations for the concentration will be
non-dimensionalized using a characteristic length L0 ≡ L/2 (i.e. the half-length of the
particle) and characteristic concentrationC0 ≡ κr0/D, distinct from the previously defined
c0. Accordingly, the equations become

∇2c = 0, (3.1)

and
n̂ · ∇c = −j(s)/ε, (3.2)

with c(|x| → ∞) = 0, where c and the gradient operator are understood to be
dimensionless. We will use this non-dimensionalization for the rest of § 3.5.

3.5.1. Circumferentially averaged concentration
Using asymptotic expansions, the solution for c(x) can be separated into ‘inner’ and ‘outer’
regions in the limit ε → 0. The outer region is defined such that, for a position x in the
outer region, the distance r to the closest point on the helix backbone is O(1), i.e. much
larger than ε in the limit ε → 0. In this region, we can represent the concentration as being
due to a distribution of sources α(s) along an infinitesimally thin space curve

cout(x) =
∫ 1

−1

α(s′)
|x − xh(s′)| ds

′. (3.3)

In the inner region, where r is O(ε) as ε → 0, the particle resembles an infinitely long
cylinder. Here, we introduce the stretched coordinate ρ ≡ r/ε. Following the logic of
Schnitzer & Yariv (2015), we integrate (3.1) (assuming an effectively two-dimensional
problem) and impose the boundary condition in (3.2) to obtain

cin(ρ, s) = C(s; ε) − j(s) ln ρ, (3.4)

where the function C(s; ε) will be determined by matching to the outer solution.
Physically, the logarithmic term can be interpreted as the (two-dimensional) concentration
field due to an infinitely long and uniformly active cylinder. The function C(s; ε) is an
‘integration constant’ for the contour position s.
Our next task is to perform asymptotic matching between the inner region and outer

region in the limit ε → 0 to obtain C(s; ε) and α(s). Concerning the outer solution, we
consider a position x = xh(s) + r, with r · t̂(s) = 0 (i.e. the position x is in the plane
defined by the particle cross-section at s) and |r| = r. We wish to examine the limits
r → 0 as ε → 0. We expect that the concentration cout(r, s) ≡ cout(xh(s) + r) is singular
as r → 0, since the domain of the integral includes s itself, and since the evaluation point
x approaches the helix backbone as r → 0.
In the following, we closely follow the procedure in appendix A of Keller & Rubinow

(1976). Our aim is to isolate the singularity, i.e. move it out of the integral, and evaluate it
analytically. First, we first change the integration variable q = s′ − s in (3.3)

cout(x) =
∫ 1+s

−(1+s)

α(s + q)
|xh(s) + r − xh(s + q)| dq. (3.5)

We define R0 ≡ xh(s) − xh(s + q), with R0 ≡ |R0|, as well as
R2 ≡ |R0 + r|2 = R2

0 + 2r · R0 + r2. (3.6)

We also define the quantity K2(R0, r) by R2 ≡ r2 + K2q2. The usefulness of K will
become apparent shortly, when discussing the limit q → 0. The integral can be
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rewritten as

cout(x) =
∫ 1+s

−(1+s)

α(s + q)
R

dq =
∫ 1+s

−(1+s)

α(s + q)√
r2 + K2q2

dq. (3.7)

For small q, we can expand R0 in powers of q, and thereby obtain the following:

R2
0 + 2r · R0 =

(
∂xh
∂s

)2

q2 −
(

∂2xh
∂s2

· r
)
q2 + O(q3). (3.8)

The vector i ≡ ∂xh/∂s is tangent to the backbone and, since length is non-dimensionalized
by L/2 in this section, has unit length. We also define is ≡ ∂2xh/∂s2, giving

R2
0 + 2r · R0 = (1 − r · is)q2 + O(q3), (3.9)

and

K2 = 1 − r · is + O(q). (3.10)

From (3.7) and (3.10), it is apparent that, for small r and q, the singularity in the integral
has the form 1/

√
r2 + q2. We attempt to isolate it from the integral as follows:

cout(x) =
∫ 1+s

−(1+s)

[
α(s + q)√
r2 + K2q2

− α(s)√
r2 + q2

]
dq +

∫ 1+s

−(1+s)

α(s)√
r2 + q2

dq. (3.11)

For r = 0, the first integral is finite. This can be shown through a Laurent expansion of
the first summand in powers of q; the singular term in the expansion, α(s)/q, is exactly
cancelled by the second summand. Interestingly, the numerator of the second integral has
no dependence on q. Thus, the second integral can be evaluated analytically

∫ t

0

dq√
r2 + q2

= [ln(
√
t2 + r2 + t) − ln r]. (3.12)

We thus obtain

lim
r→0

cout(r, s) = 2α(s) ln
(
1
r

)
+

∫ 1−s

−(1+s)

[
α(s + q)

|xh(s + q) − xh(s)| − α(s)
|q|

]
dq

+ α(s) ln[4(1 + s)(1 − s)], (3.13)

or equivalently

lim
r→0

cout(r, s) = 2α(s) ln
(
2
r

)
+

∫ 1−s

−(1+s)

[
α(s + q)

|xh(s + q) − xh(s)| − α(s)
|q|

]
dq

+ α(s) ln[(1 + s)(1 − s)], (3.14)

which exposes the logarithmic singularity. Note that (3.14) does not capture
circumferential variations of concentration. Secondly, note that the ‘non-local’ integral
contains information about the helical shape of the backbone. In asymptotic matching, we
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Phoretic self-propulsion of helical active particles

determine the unknown α(s) and C(s; ε) from

lim
r→0

cout(r, s) = lim
ρ→∞ cin(ρ, s), (3.15)

as ε → 0. Matching (3.4) and (3.14), we find

α(s) = 1
2
j(s), (3.16)

C(s; ε) = j(s) ln
(
2
ε

)
+ Co(s), (3.17)

and

Co(s) ≡ 1
2

∫ 1−s

−(1+s)

[
j(s + q)

|xh(s + q) − xh(s)| − j(s)
|q|

]
dq + 1

2
j(s) ln[(1 + s)(1 − s)]. (3.18)

Using (3.4) and associated expressions evaluated at the helix surface r = ε (recall the
non-dimensionalization of length in this section), we plot the red curve in figure 4(a)
(reverting to the previous characteristic concentration c0 in the figure). This curve runs
through the scattered data points very well; however, it cannot account for the scatter,
because (3.18) has no φ dependence. (Recall that the scatter represents the range of the
variation of concentration in the angle φ for a given value of s.)

3.5.2. Circumferential variation of concentration
The slender body analysis in § 3.5.1 gave an expression for concentration that had no
dependence on φ, and which can therefore be regarded as a circumferentially averaged
concentration. This expression is useful for considering variations of concentration with s,
i.e. the component of the surface gradient in the t̂ direction. However, the circumferential
component of the surface concentration gradient could also contribute to self-propulsion,
as discussed above.
Moreover, the numerical results clearly show a circumferential variation of

concentration. In figure 4(c), we show the concentration on the surface of the lengthwise
Janus particle, obtained via the BEM, as a function of φ for various values of s.
(Specifically, for each s, we consider values of c on the surface for numerical mesh
points within a small neighbourhood of s.) By inspection, there seems to be a sinusoidal
dependence on φ, with the phase depending on s. For s within the active region, i.e.
s < 0, the maximum in concentration is around φ = 0 and the minimum at φ = ±π,
indicating that the circumferential variation in concentration is largely variation between
the ‘inside’ and ‘outside’ of the helix. For the inert region s > 0, the maximum is shifted
to approximately −90◦. This indicates that the circumferential variation of concentration
is dominated by b̂h. Note that b̂h has a ẑ component and n̂h does not; since the maximum
is at −90◦, the high concentration region is oriented towards the active side of the particle,
i.e. towards −ẑ.
Based on these observations, we make the following hypothesis: at a point s,

the circumferential variation of concentration is due to polarization by the ‘external’
concentration gradient ∇c, i.e. the concentration gradient created by catalytic activity
on other points of the helix. For instance, this would explain why, in the inert region
of the helix, the high concentration region is oriented towards the active side of the
helix. We can make an analogy with the classical problem of an infinite cylinder in
uniform, two-dimensional potential flow, shown schematically in figure 4(d). This problem
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is also governed by Laplace’s equation, subject to a no-flux boundary condition on the
cylinder and a uniform gradient far from the cylinder. The solution can be obtained by
linear superposition of the external gradient and a source dipole oriented in the opposite
direction as the gradient. On the basis of this analogy, we expect that the amplitude of the
sinusoidal variation at s to be twice the magnitude of the component of external gradient
in the plane defined by n̂h and b̂h, i.e. (1 − t̂h t̂h) · ∇c, evaluated at the centreline position
xh(s). Secondly, the phase of sinusoidal variation will be such that, for a particular s,
the vector between the concentration minimum and concentration maximum (defined in
three-dimensional space) will be aligned with the in-plane component of ∇c. Our analogy
receives further motivation when we consider that we had regarded the tube surface as a
‘quasi-infinite cylinder’ when solving for the inner concentration in the previous section.
Based on these ideas, we proceed to consideration of ∇c for a lengthwise Janus helix.

For a point s > 0 in the inert region, we can simply write

∇c(xh) = −1
2

∫ 1

−1

j(s′)[xh(s) − xh(s′)] ds′

|xh(s) − xh(s′)|3 , (3.19)

or

∇c(xh) = −1
2

∫ 0

−1

[xh(s) − xh(s′)] ds′

|xh(s) − xh(s′)|3 . (3.20)

For the second expression, we do not have any issues with integrating through a singularity,
as s > 0 in inert region. Specifically, we are interested in the normal and binormal
components, since we need to know the orientation of the external gradient with respect
to the local value of n̂h. We obtain

∇c(xh) · n̂h = −1
2

∫ 0

−1

(xh(s) − xh(s′)) · n̂h(s) ds′
|xh(s) − xh(s′)|3 , (3.21)

∇c(xh) · b̂h = −1
2

∫ 0

−1

(xh(s) − xh(s′)) · b̂h(s) ds′
|xh(s) − xh(s′)|3 . (3.22)

We find the amplitude A of the sinusoidal variation as

A = 2|∇c(xh) · b̂h + ∇c(xh) · n̂h|, (3.23)

and the phase ψ as

ψ = arg(∇c(xh) · n̂h + i∇c(xh) · b̂h(s)). (3.24)

Numerically integrating equations (3.21) and (3.22), we obtain the theoretical curves (solid
lines) for the inert region of the particle (corresponding to the cross symbols) in figure 4(c).
For the active region of the particle (s < 0), the line integral in (3.19) has to been

handled with care, since there is a singularity at s = s′. As in § 3.5.1, we follow the
procedure in appendix A of Keller & Rubinow (1976) (see equations (A1) and (2) of that
work). Via similar manipulations, we can isolate the singularities, obtaining

∇c(xh(s)) · n̂h = −1
2

[
(n̂h · is)lnε − 1

2
(n̂h · is)ln[(1 − s)(1 + s)]

+ n̂h(s) ·
⎛
⎝∫ 1−s

−(1+s)

⎡
⎣ R
R3 −

−i(s)q +
[
−1

2 is(s) − js(s)i(s)
]
q2

q3

⎤
⎦ dq

⎞
⎠

⎤
⎦ , (3.25)
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and

∇c(xh(s)) · b̂h = −1
2
b̂h(s) ·

⎛
⎝∫ 1−s

−(1+s)

⎡
⎣ R
R3 −

−i(s)q +
[
−1

2 is(s) − js(s)i(s)
]
q2

q3

⎤
⎦ dq

⎞
⎠ ,

(3.26)

on the surface of the particle. Here, R ≡ xh(s) − xh(s + q); quantities with s subscripts
indicate partial differentiation with respect to s; and the quantity i ≡ ∂xh/∂s, i.e. i is
tangent to the contour and is is normal to it. The integrals can be evaluated numerically.
These expressions are valid over the whole contour of the particle, and in the inert

region return the same results as (3.21) and (3.22). In figure 4(c), we plot the theoretical
curves in the active region (circle symbols and diamond symbols). We obtain generally
good agreement with the numerical data. Note that some of the disagreement is because
the slender body expressions for the mean/circumferentially averaged concentration tend
to underestimate c (possibly because these expressions neglect the catalytic endcap); if the
theoretical curves were shifted upward, better agreement would be obtained. The greatest
disagreement is for s close to s = 0, i.e. the interface between the active and inert halves
of the particle, but the theoretical curves still capture the general shape here.

3.5.3. Including circumferential variation of the activity profile
For a particle that has an activity profile that depends on φ, like the ‘inside–outside’
Janus particle, the initial approach to obtain the circumferentially averaged concentration
does not change significantly. Using the circumferentially averaged activity profile j̄(s) ≡
(1/2π)

∫ 2π
0 j(s, φ) dφ instead of j(s) in the framework of § 3.5.1 is sufficient.

However, to obtain the circumferential variation of the concentration, additional terms
in the inner solution are needed. In particular, for the ‘inside–outside’ Janus particle the
azimuthal deviation from the average needs to be accounted for. One can achieve this by
solving Laplace’s equation in two dimensions for the boundary condition

n̂ · ∇c(x)|r=r0 = ∂c
∂r

∣∣∣∣
r=r0

= −
(

Θ(φ + π/2)Θ(−φ − π/2)−1
2

)/
ε. (3.27)

Essentially, one must solve for the concentration around a Janus cylinder with translational
symmetry in the z direction. The parameters an and bn in the multipole solution to
Laplace’s equation in two dimensions,

c(r, θ) = a0 ln
(
1
r

)
+

∞∑
n=1

an cos(nθ) + bn sin(nθ)

rn
, (3.28)

can be determined by applying the boundary conditions. One can substitute (3.28) into
3.27, substitute the step function Θ(φ) by its Fourier series

∑
n βn sin(nφ) with βn ≡

(−1/nπ)(cos(nπ) − 1), and match terms to determine an and bn.

4. Conclusions

Overall, the framework developed here provides a set of analytical and numerical tools
for modelling self-phoretic helical particles. In particular, we outline methods to solve the
two principal subproblems: diffusion of the product chemical and hydrodynamic reaction
to the resulting slip velocity.
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By including three-dimensional finite size effects, our extended SBT captures both
tangential and circumferential variations in the concentration field surrounding the
particle. We find that both the magnitude |cmax − cmin| and the phase φmax/min of these
(quasi-sinusoidal) variations depend on the geometric and chemical parameters of the
helix (see §§ 3.2 and 3.4). In both cases, our analytical results are in line with numerical
calculations done with the BEM. The BEM results for the second subproblem also
show good agreement with previously published numerical and experimental data (§ 3.1).
Although our development of SBT is limited to the chemical concentration field, the
spatial variation of concentration near a catalytically active particle is of broad interest in
active colloids, e.g. for understanding the phoretic motion of tracer particles (Aubret et al.
2018), and chemical kinetics (Piazza & Grebenkov 2019). Concerning calculation of active
particle velocities, our formulation of SBT is relatively simple and easy to implement, and
could replace BEM for the first subproblem, i.e. calculation of the chemical field. For a
given geometry, this would allow rapid consideration of many different activity profiles,
since the stresses on a rigidly translating or rotating helix in the auxiliary problems only
need to be computed once.
We recovered the intriguing recent finding of Katsamba et al. (2020) that circumferential

variations in the concentration field can lead to circumferential slip. This is not seen for
simpler geometries. A systematic analysis of contributions to particle motion revealed
a natural division of self-phoretic helices into three categories: tangentially driven,
circumferentially driven and intermediate. The first group mostly includes helices with
large pitches, which closely resemble straight rods, while the second group mostly
includes helices with very small pitches or activity profiles that vary circumferentially.
Furthermore, for the latter two groups we can obtain significant movement in the plane
orthogonal to the helix screw axis. This perpendicular motion is mainly driven by the
ends of the helix (see §§ 3.2 and 3.4). However, the decreasing concentration away from
the centre for finite-sized helices can introduce disturbances. Sections of the helix with
opposite normal vectors (defined with respect to the helix contour) do not perfectly balance
each other, allowing for net movement even if the end pieces point in opposite directions.
Overall, awareness of the groups allows selection of one of the groups by design, through
judicious choice of the catalyst coverage.
Self-phoretic helices have fewer inherent restrictions to their movement in all six degrees

of freedom than most other particles of this type, while still being a well-known and
easy to understand geometry. Furthermore, to radically change the movement patterns,
only two parameters, pitch size and catalytic coverage, need to be controlled. This makes
self-phoretic helices a prime option for many applications, such as targeted drug delivery
or chemical clean up. To fully evaluate their potential, further research is needed to answer
questions such as: How do they react to confining surfaces (Lauga et al. 2006; Berke
et al. 2008) and external fields, e.g. chemical gradients (Popescu et al. 2018a) or flows
(Marcos et al. 2009; Makino & Doi 2017; Katuri et al. 2018)? How do they interact with
each other, e.g. can they synchronize their rotations (Kim & Powers 2004; Reichert &
Stark 2005)? How do geometric perturbations, such as a slow variation of pitch λ or
radius R with s, change the behaviour (Yariv 2020)? Can the flow field in the vicinity
of a helix be engineered for cargo uptake and transport (Baker et al. 2019)? We note that
the SBT developed in § 3.5 can easily be adapted, through choice of the function xh(s), to
interacting helices or a helix with geometric perturbations. For helices with a ‘backbone’
with non-circular cross-section, conformal mapping or shape perturbation theory could be
used to solve for the multipole coefficients in (3.28), exploiting the analogy to potential
flow.
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As an outlook and stimulus for future work, we briefly speculate on motion near
surfaces. We anticipate from previous work (Uspal et al. 2015) that we may observe
‘sliding’ steady states in which the particle axis is aligned in the plane of the surface, and
‘hovering’ steady states in which the particle axis is aligned with the surface normal, i.e.
the helix is ‘standing up’ on the surface. In both scenarios, the particle could continuously
rotate around its axis. Concerning ‘sliding’, translation with continuous axial rotation
was observed in active helices by Gibbs & Fischer (2015). We anticipate that sufficient
strong rotation could lead to circular trajectories, similar to those seen for E. coli. For
‘hovering’ states, in which the helix centre has a steady position, continuous rotation
may be interesting from an applications standpoint (for development of self-powered
micromachines). In particular, the results in this manuscript suggest that ‘hovering’
may be relevant, provided that the particles are not too heavy. The flow fields for the
lengthwise Janus particle have a puller-like far-field structure. and it is known that pullers
tend to orient perpendicular to surfaces, i.e. adopt hovering states. Additionally, the
repulsive interaction with solute assumed here would tend to drive the active side of a
lengthwise Janus particle away from confining surfaces. However, both of these aspects
are dependent on the surface chemistry of a particle. For instance, changing the sign of
the surface mobility in this work, i.e. changing the particle/solute interaction to effective
attraction would reverse the streamlines and the direction of particle motion, i.e. make
the particle an active-forward ‘pusher’. Moreover, a surface mobility contrast between
the active and inert sides could change the pusher/puller character of the particle. These
considerations suggests that an immediately fruitful direction for continuing work would
be to systematically characterize the flow and concentration fields in the vicinity of a
self-phoretic helix, including the pusher/puller character, as a function of geometry and
surface mobility contrast. The pusher/puller character could be quantified via numerical
calculation of the particle’s active stresslet. We also note that in addition to ‘sliding’
and ‘hovering’, new scenarios of near-surface motion, in comparison with spheres and
spheroids, could be unlocked by the non-axisymmetric shape of helices. In particular,
the configuration space of a helix near a surface would be three-dimensional (defined by
the height above the surface and two rotational degrees of freedom), which could lead to
chaotic dynamics.
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