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Chromatin is a polymer subject to a varied set of active forces. It exhibits complex, out of
equilibrium dynamics, which have yet to be explained by analytical theory. Here, we expand
upon a previously developed two-fluid model of chromatin by considering three types of driving
force dipoles – two with both forces of the dipole acting on the same fluid (either polymer or
nucleoplasm) and a third, with two forces pushing chromatin and solvent in opposite directions.
We find that this latter type results in the most significant flows, dominating over most length
scales of interest. Due to the friction between the fluids and their viscosity, we observe emergent
screening length scales in the active flows of this system. We predict that the presence of different
activity types and their relative strengths can be inferred from observing the power spectra of
hydrodynamic fluctuations in the chromatin and the nucleoplasm.

I. Introduction

The genome resides inside the eukaryotic cell nucleus,
and carries the information needed for the cell’s life
[1]. The nuclear interior is filled with nucleoplasm, the
solvent, within which the genome is tightly packed: 2
meters of DNA in a nucleus about 10 microns in diam-
eter [2]. In this state, the genome takes on a polymeric
form composed of DNA and associated proteins, known
as chromatin [3]. Chromatin is subject to a variety of
ATP-dependent active processes such as transcription,
replication and DNA repair [4]. This activity therefore
affects chromatin’s motions and organization [5].

The dynamics of chromatin were initially measured
through the tracking of specific genomic structures such
as telomeres [6] or single genes [7–9]. The single-gene
studies found that chromatin moved in a constrained,
subdiffusive manner at short times, but occasionally
exhibited directed motion on longer time scales [7–9].
More recently, the development of Displacement Corre-
lation Spectroscopy (DCS) has allowed for simultaneous
nucleus-wide measurements of chromatin dynamics [10].
DCS uncovered that chromatin displays two regimes of
motion: fast, uncorrelated motion at short times, and
slow correlated motion at long times. The long-time
motion is coherent on scales of about 3 − 5 µm [10].
These correlations disappear upon the depletion of ATP,
as well as inhibition of nuclear enzymes such as RNA
polymerase II, DNA polymerase and topoisomerase II,
while being unaffected by cytoskeletal perturbations
[10, 11]. This demonstrates that enzymes in the cell
nucleus produce coherent motion of chromatin.

Motivated by the DCS measurements, the first theory
of active chromatin hydrodynamics was developed [12].
This study introduced two types of events, scalar and
vector, and identified the vector events as those driving
the large-wavelength fluctuations leading to micron-scale
coherent motions observed in experiments [10]. It was
soon followed by a numerical study, modeling chro-
matin as a coarse-grained polymer with hydrodynamic
interactions, driven by active force dipoles [11]. This

model investigates the hydrodynamics of the vector
events. Specifically, it studies the effects of contractile
and extensile dipoles, revealing that extensile dipolar
forces are needed for large-scale chromatin motions to
occur [11]. The main difference in approaches of these
two works [11, 12] is how the driving forces are modeled.
In [12], each (vector) active source was presented as a
force dipole with two equal and opposing forces acting
on two locations in the polymer. In [11], one of the
forces of the dipole was exerted on a polymer and the
other on the solvent (albeit in the location point of the
neighboring monomer). This seemingly subtle difference
turned out to be very important: as we will show in
this paper, the choice to organize the force dipoles in
such a way leads to dramatic differences in the resulting
active flows. On a more technical level, the numerical
algorithm implemented in [11] treated hydrodynamics
of the solvent under this point-like force in terms of
a Stokeslet appropriately modified to meet the no-slip
condition at the nuclear boundary. Such an approach
chooses to neglect the hydrodynamic screening due to
the polymer matrix.

Several hydrodynamics-free models of chromatin
dynamics have been developed since then. A first group
of them have focused on developing effective polymer
models, homopolymers or heteropolymers, whose in-
teraction parameters are extracted from experimental
data of chromatin conformations from chromosome
conformation capture (Hi-C) experiments [13]. These
studies predicted the effect of confinement and tight
packing of chromatin [14], reproduced experimental
dynamical results such as coherent motion [15, 16]
and found glassy, heterogeneous dynamics in model
chromosomes [16]. Such models have also reproduced
general features of Hi-C contact maps and nuclear-scale
chromosome architecture, such as reproducing contact
probabilities from select chromosomes [17]. In contrast,
other models consider chromatin as a simple chain
with few free parameters, allowing for the study of the
effects of athermal noise on chromosomal loci [18] or the
effects of chromatin’s fractal structure on its dynamics
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[19, 20]. Simulations of such simple chains have allowed
for studying the relationship between dynamics and
the establishment of epigenetic domains [21]. Finally,
continuum approaches have also been developed to
model the process of phase separation of chromatin
compartments in the nucleus [22], showing that much of
the organization of chromatin can be accounted for by
the process of liquid-liquid phase separation.

In this work, we seek to identify the minimal active
ingredients needed to reproduce the ATP-dependent co-
herent motion of chromatin. To this end, we build upon
an existing continuum, two-fluid model of chromatin
dynamics which was introduced in [12]. A hydrodynamic
framework is a natural approach for studying the motion
of chromatin on length scales larger than the thickness
of the polymer. While some earlier studies were able
to reproduce coherent motions of chromatin without
explicit accounting for hydrodynamics, those models
rely on chromatin polymer conformations obtained by
Hi-C.[15, 23] These conformations are directly affected
by hydrodynamics as they formed in the presence of
the fluid (nucleoplasm) and fluid-mediated interactions
in the cell nucleus in vivo. Our approach follows the
study [11], which includes hydrodynamics explicitly and
unambiguously: they model this system as a simple
chain in a solvent with stochastically activated force
dipoles, and obtain coherent motion of the polymer as a
result.

The continuum approach allows for the inclusion
of active events and hydrodynamic interactions of the
polymer while remaining analytically tractable. A
field-theoretic approach to studying the active behavior
of chromatin allows us to explicitly harness the sym-
metries and conservation laws in this system, such as
total conservation of solvent and chromatin. Activity
can be included in a way that naturally respects such
symmetries. Finally, the onset of collective behavior
such as the emergence of coherent flows in chromatin
[10] is easily studied with continuum frameworks, since
the mathematical tools already developed in the study
of phase transitions can be applied to this system as
well.

We begin in Section II by describing the two-fluid
model, which will serve as the basis for our description
of the chromatin-nucleoplasm system. Then, we identify
three possible types of active sources which can act on
such a system in a momentum-conserving, localized way.
The three types of active sources are distinguished in
the way they couple to the two fluids. In Section III, we
proceed to calculate the expected hydrodynamic flows
that isolated sources of each activity type would generate
in our chromatin model. Finally, in Section IV, we use
these single-source flows to calculate the expected power
spectra of polymer and solvent fluctuations, assuming a
uniform and uncorrelated distribution of active events.

II. Three types of vector activity driving flows in
chromatin

A. The model and equations of motion

Following previous work [12], we describe chromatin and
its solvent, nucleoplasm, as a mixture of two fluids which
dissipate energy when moving past one another. As in
the previous work, we employ the equations of motion
derived for such a polymer and solvent mixture by Doi
and Onuki in [24]. In addition, we include two novel
aspects with regard to the system’s chromatin hydrody-
namics [12], namely, we keep account of the solvent vis-
cosity and we extend the application of the active body
forces to both the polymer and the solvent. To write
down the equations of motion for the two-fluid system,
let the polymer (i.e., chromatin) velocity field be vp(r)
and its volume fraction φ(r). The solvent velocity field is
vs(r), and its volume fraction is 1− φ(r). The equations
of motion are:

ζ(vp − vs) = ∇ · σ~

~

−∇Π− φ∇P + Fp

ζ(vs − vp) = ηs∇2vs − (1− φ)∇P + Fs

∂tφ = −∇ · (φvp) = ∇ · ((1− φ)vs)

(1)

Here, ζ is a friction coefficient of polymer against sol-
vent, per unit volume. Π, σ~

~

are the osmotic pressure and
stress tensor of the polymer, respectively. Generally, σ~

~

is
a function of vp, the specific form of which depends on
the type of fluid. For example, for a simple Newtonian
fluid we have that ∇ · σ~

~

= ηp∇2vp, where ηp is polymer
viscosity. Π is assumed to be an equilibrium function of
density φ(r) because it equilibrates quickly and locally,
P is the hydrostatic pressure, and ηs is the viscosity of
the solvent. In this paper, we include the latter in or-
der to study the effects of hydrodynamic screening (as
explained in Appendix A). Finally, Fp,s are the force
densities (forces per unit volume) acting on the polymer
and solvent, respectively, Fs being a new addition upon
previous considerations to allow for a more complete de-
scription of possible forces. The arrangement of Fp,s(r, t)
determines the activity-generated flows in the two-fluid
model.

To highlight the main features of the proposed model,
it is useful to juxtapose it with previous works [11, 12],
from which this work descends. These studies effectively
consider different types of vector activity, with [12] con-
sidering vector events acting on the polymer only, while
[11] considers events that act on the polymer and the
solvent simultaneously, in opposite directions. In the
present work, we will address the fact that upon con-
sidering both Fp and Fs, there might be multiple types
of vector sources which would couple differently to the
two fluids, and we will generalize the field theoretic con-
sideration of [12], accounting for events like the ones con-
sidered in [11]. In addition, we will consider explicitly the
solvent viscosity to account for hydrodynamic screening.
We therefore set out to expand the classification of pos-
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FIG. 1. Cartoon of the different types of activity considered,
distinguished by whether they exert force on the polymer,
the solvent, or both. Inset: Schematic representation of the
geometry and force arrangement in a single vector source. a is
the size of the motor, n̂ is a unit vector defining its orientation,
R and R− an̂ are centers where two forces f n̂ and −f n̂ are
exerted, forming a force dipole. The force dipole shown in
the inset is extensile, while a contractile dipole would have
the force vectors pointing inward instead of outward.

sible active sources based on considerations of symmetry
and conservation laws in the framework of the model de-
scribed in Eqs. (1). We will focus on vector activity
and not the scalar activity as identified in [12], since our
new symmetry considerations do not add to the discus-
sion on scalar events. Moreover, we show in Appendix
B that there is a formal connection between scalar and
vector events, where scalar events can be expressed as a
superposition of vector events, and thus the latter can be
considered as a sufficient basis for describing both types
of activity.

B. Active forces generated by different types of
motors

The arrangement of the forces in the system must
obey both linear and angular momentum conservation.
Active driving forces are produced by different types of
motors. Without making any assumptions about their
mechanism, we imagine a motor as a solid body of a size
a (∼ 10 nm, see [2]) which is completely overdamped in
the surrounding chromatin and nucleoplasm medium.
As such, it can exert only balanced forces and torques
on the fluid. In the simplest case, the resulting force
distribution on the fluid must, on length scales larger
than a, be that of a dipole (for a more detailed discus-
sion on other activity types that could be included, see
Appendix B).

Based on these conditions, we consider every source to

be as a force dipole as shown in the inset of Fig. 1. They
can be extensile (in the case f > 0) or contractile (if
f < 0). It is also worth noting that in the overdamped
scenario we consider here, the flows resulting from
extensile or contractile sources are simply time-reversed
versions of one another. Furthermore, all these driving
motors have finite processivity. We imagine that they
start at some random time and then their force decays
proportional to some function κ(t) with time scale
τf (further details regarding estimates for forces and
time scales are shown in Appendix D), for instance
κ(t) = e−t/τf . Three types of activity are then classified
based on where their forces act: Type I, when both
forces act on the polymer, Type II, when both forces
act on the solvent, and Type III, when one force acts on
each fluid.

1. Type I activity: both forces of the same dipole act on the
polymer

The first possibility we consider is for the forces to be
entirely exerted on the polymer. In this case, we approx-
imate the force dipole generated by the motor as a pair
of opposite forces exerted in points R and R − an̂ (see
Fig. 1, inset), such that the force density entering eq.
(1) has the form

Fs(r) = 0

Fp(r) = fκ(t)n̂ (δ(r−R)− δ(r−R + an̂))

' −afκ(t)n̂(n̂ · ∇)δ(r−R) ,

(2)

where the last transformation is justified by assuming
that all relevant fields change only smoothly over the
scale a. Here, f is a force magnitude. In previous work
[12], this event was referred to as ”vector activity”.

2. Type II activity: both forces of the same dipole act on
the solvent

Type II activity is analogous to Type I, except that the
dipoles exert their forces on the solvent. Thus, if the
dipole points along n̂:

Fs(r) = fκ(t)n̂ (δ(r−R)− δ(r−R + an̂))

' −afκ(t)n̂(n̂ · ∇)δ(r−R)

Fp(r) = 0

(3)

3. Type III activity: one force from the dipole acts on the
polymer, the other acts on the solvent

Finally, there is the possibility that a motor can exert a
pair of equal forces in opposite directions, in the solvent
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and polymer, respectively. As a convention, we choose
the orientation of the vector n̂ to point towards the ”poly-
mer end” of the dipole. Then, the forces are:

Fs(r) = −n̂fκ(t)δ(r−R + an̂)

Fp(r) = n̂fκ(t)δ(r−R)
(4)

All types of activity exhibit the same form for the total
force density Fp + Fs ' −af n̂(n̂ · ∇)δ(r − R), which
meets the momentum conservation condition.

III. Flows resulting from isolated events

A. Simplifications and approximations

For conceptual simplicity, in this section we consider the
flows resulting from the action of a single active dipole.
We evaluate this for all three types of active events we in-
troduced in Section II. Further, we consider a linearized
approximation, assuming that polymer density deviates
only slightly from a spatially uniform value φ0, namely
φ(r) = φ0 + δφ(r). Within this range, polymer osmotic
pressure Π can be approximated as a linear function of
density: Π = Π0 +Kδφ(r) where K is the ”osmotic rigid-
ity” of the polymer matrix. Similarly, the polymer stress
tensor is a linear function of velocities. For simplicity
we assume that this dependence, just as that of osmotic
pressure, is local in space, but it can have memory in
time:

∇ · σ~

~

= ηp(t) ∗ (∇2vp) , (5)

where * means convolution with the time-dependent
causal kernel ηp(t).

We also make the assumption of an infinite boundless
domain. In that case, we can resort to Fourier transforms
in both space and time, following standard convention

f(r, t) =

∫
dωd3q

(2π)4
fq,ωe

i(q·r−ωt)

fqω =

∫
d3rdtf(r, t)e−i(q·r−ωt) ,

(6)

which allows a separate consideration of transverse
(divergence-free) and longitudinal flows.

Finally, we introduce the ratio of the frequency-
dependent viscosity of the polymer, and the constant vis-
cosity of the solvent.

χω = ηpω/η
s (7)

It is noteworthy that the time-dependent kernel ηp(t)
has units of viscosity per unit time, whereas ηs has units
of viscosity. Thus, the ratio χω is unitless, since Fourier
transforming in time multiplies the units of ηp(t) by time.
If the polymer viscosity is constant, then ηp has units of
viscosity, and χ is a unitless constant. For the frequen-
cies of interest, χω is much larger than 1, allowing us to

simplify expressions below.
The physical effects left out from the framework of

our simplified treatment include non-linear rheological
response of the polymer, such as shear-thinning and/or
-thickening effects. These effects would be important if
the shear in the system is too large, which we do not ex-
pect to be the case in the real systems driven by molecu-
lar motors, which exert forces on the order of 10 pN [25]
(more detailed estimates of the forcing from an example
molecular motor can be found in Appendix D). Another
group of neglected effects has to do with non-locality of
rheological response (see [26]), which are expected to be-
come important at sufficiently small length scales or long
time scales. For measurement times of about a second,
the non-local effects become significant when r � 1µm.
In such a regime, the scaling of the resulting velocity pro-
files would be significantly affected (for more details on
the estimation of this regime, see Appendix D). Since
the value of a micron is close to the lengthscales we are
interested in, these nonlocal rheology effects are likely
significant to the problem we are studying. Neverthe-
less, we choose to neglect them at present, leaving their
consideration for a later study. Our results would also
be affected by the presence of boundaries, both in space
and time. Finite time effects in this case should be neg-
ligible, because the time scales we are interested in are
on the order of seconds whereas the interphase of a typ-
ical cell lasts for periods of over several hours [2]. Since
the equations of motion we consider are linear, spatial
boundaries can be dealt with by considering collections
of image sources induced by the boundary conditions, in
analogy with electrostatics.

B. Transverse flows

Transverse flows are those which are perpendicular to the
wavevector q for a given Fourier mode. In real space the
resulting fields are divergence-free, meaning they are not
associated with any density variations. Indeed, applying
the transverse projection operator to the linearized equa-
tions eliminates the field δφ, and thus the variables of
motion are only vs

⊥ and vp
⊥, where ⊥ denotes the trans-

verse component of a field. This results in the equations

ζ(vp
⊥ − vs

⊥) = ∇ · σ~

~

⊥ + Fp
⊥

ζ(vs
⊥ − vp

⊥) = ηs∇2vs
⊥ + Fs

⊥ ,
(8)

where ∇ · σ~

~

is given by Eq. (5). Notice that in the
terms Fp

⊥, Fs
⊥ we are implicitly taking the transverse

part of a source, which is singular, as shown in (2-4).
This is a nontrivial matter which we discuss in Appendix
C. The equations of motion (8) can be solved by Fourier
transform in space and time (the ω dependence will be
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FIG. 2. Transverse flows showing yz components of vector fields in Eqs. (16)-(18), where n̂ = ẑ. vs is shown in the left column
and vp on the right, for χ = 10.

suppressed except where specifically relevant)

vp⊥αq =
1

ηp

[
Hαβq

(
F p
βq + F s

βq

)
+GαβqF

p
βq

]
vs⊥αq =

1

ηp

[
Hαβq

(
F p
βq + F s

βq

)
+ χGαβqF

s
βq

]
,

(9)

where the q-dependent tensors Gαβq and Hαβq are de-
fined as follows:

Gαβq =
δαβ − (qαqβ)/q2

1/l2 + q2

Hαβq =
δαβ − (qαqβ)/q2

l2q2(1/l2 + q2)

(10)

In Eqs. (9-10), repeated indices are summed over, except

for q. We define q = |q|, and l =
√
ηs/ζ. Note that the

length scale l is of the order of the polymer mesh size, as it
follows from the physical meaning of friction coefficient
ζ. Inverting the Fourier transform, one obtains in real
space

Gαβ(r) =
1

4πr

(
δαβh1(r/l) +

rαrβ
r2

h2(r/l)
)

Hαβ(r) = Oαβ(r)−Gαβ(r)

Oαβ(r) =
1

8πr

(
δαβ +

rαrβ
r2

)
,

(11)

where auxiliary functions are defined below:

h1(x) = −x−2 + e−x(1 + x−1 + x−2)

h2(x) = 3x−2 − e−x(1 + 3x−1 + 3x−2)
(12)

We included in Eq. (10) the standard Oseen tensor O
(also called Stokeslet), which is just the Green’s function
of the usual low Reynolds number hydrodynamics [27].

Since the field theoretic framework of this paper is valid
only on scales above the mesh size, we consider the above
solutions, in Eq. (11) in the range r � l. For this exam-
ple, we ignore the frequency dispersion of polymer vis-
cosity (i.e., assuming χω = χ constant):

Gαβ(r) ' l2

4πr3

(
3
rαrβ
r2
− δαβ

)
(13a)

Hαβ(r) ' Oαβ(r) =
1

8πr

(
δαβ +

rαrβ
r2

)
(13b)

To better understand the origin and meaning of these
two tensors, we consider the dynamics of the field w =
vp
⊥ − vs

⊥, describing the relative velocity of polymer and
solvent. w obeys the following equations:

ζ(1 + χ)w + ηp∇2w = −Fp
⊥ + χFs

⊥ (14)

The solution of this equation is directly obtained by sub-
tracting Eqs. (9) from one another:

wαq =
1

ηp
Gαβq

(
−F p

βq + χF s
βq

)
(15)

This means that Gαβq plays the role of Green’s function
for Eq. (14). In real space, Gαβ(r) (13a) falls off at large
distances as 1/r3, significantly faster than the regular
Stokeslet (or Oseen tensor) in Eq. (13b); in Fourier space,
of course, this corresponds to the factor 1/(l−2 + q2).
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This is the phenomenon of hydrodynamic screening. Ac-
cordingly, Eq. (14) is referred to as the screened Stokes
equation [28]. Thus, relative shear w of the solvent past
polymer is suppressed beyond the distance l of the order
of mesh size. Beyond this distance, polymer and solvent
move largely together, which is why at these distances
Hαβ(r) ' Oαβ(r) (note that the latter comment is valid
only for transverse components).

We now return to the velocity fields (9) resulting from
the action of one dipole motor positioned in the origin.
Plugging in the expressions of forces (2-4), we arrive at
the following expressions for velocity fields driven by a
single force dipole motor positioned at the origin, also
shown in Fig. 2:

1. Type I activity

vp⊥α(r) = −afκ(t)

ηp
∇γ(Hαβ +Gαβ)n̂βn̂γ

vs⊥α(r) = −afκ(t)

ηp
∇γHαβn̂βn̂γ

(16)

2. Type II activity

vp⊥α(r) = −afκ(t)

ηp
∇γHαβn̂βn̂γ

vs⊥α(r) = −afκ(t)

ηp
∇γ(Hαβ + χGαβ)n̂βn̂γ

(17)

3. Type III activity

vp⊥α(r) =
fκ(t)

ηp
(
Gαβ − a∇γ

(
Hαβ

)
n̂γ
)
n̂β

vs⊥α(r) = −fκ(t)

ηp

(
χGαβ + a∇γ

(
Hαβ + χGαβ

)
n̂γ

)
n̂β

(18)
The above equations are written for simplicity neglecting
the frequency dependence of polymer viscosity. In a more
realistic case, when χ is a function of frequency, then in
the above solutions all products κχ turn into convolu-
tions

∫
κ(t)χ(t − τ)dτ . The spatial dependence remains

unchanged.
Our intent is to describe flows at distances larger than

the mesh size l, where our model is applicable. In the
very far field, at r → ∞, any one of the three activity
types causes a similarly looking flow. This is because
H ∼ r−1, while tensor G, describing the relative shear
of solvent with respect to polymer, decays much faster,
G ∼ r−3. That means these relative motions are screened
out and irrelevant at sufficiently large distances, result-
ing in the flow field, in which polymer and solvent move

together as

vs⊥,α(r) = vp⊥,α(r) = −afκ(t)

ηp
∇γOαβ(r)n̂βn̂γ

=
afκ(t)

ηp
rα

8πr3
(
3 cos2 θ − 1

)
,

(19)

where cos θ = r̂ · n̂. The flow field in Eq. (19) is ex-
actly what we would expect from a force dipole af in an
incompressible fluid medium. Although formula (19) is
valid for any activity type, the range of distances where
it is applicable changes between different types, as sum-
marized in Table I.

The flows generated by Type I activity belong to the
long-range regime (19) for all r � l, since tensors G and
H are multiplied by the same coefficient, and G ∼ H
when r ∼ l, and H decays far slower (∼ r−1) than G
does (∼ r−3). For Type II, the shearing of polymer past
solvent is enhanced by a factor of χ due to the source be-
ing in the solvent (see Eq. (14)). Therefore, a crossover
in the resulting solvent flow takes place where H ∼ χG,
which is at a distance r ∼ l

√
χ. In contrast, Type III

activity generates net transport of solvent and polymer
past one another. In the flow equations, the resulting
transition in regimes takes place when χG ∼ a∇H, thus
the onset of long-range behavior occurs at a larger dis-
tance: r ∼ χl2/a.

In all cases, the near-field flows of the polymer get
screened on lengthscales larger than l due to the fric-
tion between the fluids, combined with the larger viscos-
ity of the polymer relative to the solvent, and therefore
vp takes its long-range form for all length-scales in this
model. The different scaling regimes for the behavior of
the velocity fields are outlined in Table I.

4. Extensile vs. contractile activity

It is worth asking the question of whether it makes a
difference if these force dipoles are contractile or exten-
sile. The calculations in this section are for extensile
dipoles when f > 0. As mentioned earlier, there is a
simple mapping which relates the two cases: if we take
f → −f for our sources, then they become contractile.
All of our flows are linear in f , so they simply switch sign.
This can also be understood as a result of the reversibil-
ity of transverse low-Reynolds number hydrodynamics.
Switching the sign of the source term in our equations
is equivalent to running the system backwards in time,
which implies all velocities switch sign.

C. Longitudinal flows

Due to the incompressibility of the system, the diver-
gences of vp, vs are both exactly described by δφ, the
local changes in the density of the polymer network. We
denote the longitudinal components of the velocity and
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l� r

Types I,II,III
vp
⊥ ∝

l2

r2
P2(cos θ)r̂(

vp⊥
2)

q
∝ ρ

(ql)2
(λ2)q

Type I
vs
⊥ ∝ l2

r2
P2(cos θ)r̂(

vs⊥
2
)
q
∝ ρ

(ql)2
(λ2)q

Type II

l� r � l
√
χ l

√
χ� r

vs
⊥ ∝ χ l

4

r4
(P1(cos θ)n̂− P2(cos θ)r̂) vs

⊥ ∝ l2

r2
P2(cos θ)r̂(

vs⊥
2
)
q
∝ ρχ2(ql)2(λ2)q

(
vs⊥

2
)
q
∝ ρ

(ql)2
(λ2)q

Type III

l� r � l2χ/a l2χ/a� r

vs
⊥ ∝ χ l4

ar3
(3P1(cos θ)r̂− n̂) vs

⊥ ∝ l2

r2
P2(cos θ)r̂(

vs⊥
2
)
q
∝ ρχ2 l2

a2
(ql)0(µ2)q

(
vs⊥

2
)
q
∝ ρ

(ql)2
(λ2)q

TABLE I. Summary of leading behaviors for the velocity fields vs
⊥, vp

⊥ and their respective power spectra, as produced from
the three source types in this study. The functions

(
λ2

)
q
,
(
µ2

)
q

are defined in Eq. (28). The different regimes are delineated

by characteristic distances from the source, which correspond to the emergent screening lengths resulting from the friction and
viscosity of the two fluids. The units of velocity in these expressions are af

ηpl2
. Numerical factors are dropped along with the

κ(t) time dependence. Pn(x) denotes the nth Legendre polynomial.

polymer flow fields vs
‖, v

p
‖ respectively. Their dynamics

are obtained by taking the divergence of Eq. (1). After
applying continuity and incompressibility, we obtain(

1− l2χ∇2
)
δφ̇ =

(1− φ0)2

ζ/φ0
∇2Π + F0

≈ D∇2δφ+ F0 ,

(20)

where D = K(1−φ0)
2

ζ/φ0
is the effective diffusion coeffi-

cient of the polymer. We have dropped a factor of
(1−φ0)2 multiplying the Laplacian on the left-hand-side
for brevity, since φ0 is expected to be of order 1/2 and
thus should not affect the magnitude significantly. F0 is
the following source term:

F0 = − (1− φ0)2

ζ/φ0
∇ · (Fp − φ0

1− φ0
Fs) (21)

The Laplacian acting on the time derivative makes this
PDE difficult to evaluate, but on length scales larger
than l

√
χ it reduces to a heat equation:

δφ̇ = D∇2δφ+ F0 (22)

Using the fact that vs
‖,v

p
‖ are potential fields, we have

(away from the singularity at the source):

vs
‖ =

D

1− φ0
∇δφ

vp
‖ = −D

φ0
∇δφ

(23)

The solution to Eq. (22) can be found by convolution

of the source with the fundamental solution to the heat
equation in 3D, which in the absence of boundaries is
known to be a Gaussian function, whose width increases
as the square root of time.

As before, we can ask what happens if we take the
sources to be contractile instead of extensile. In this case,
performing the transformation f → −f flips the sign of
the source term F0, but does not qualitatively change the
dynamics significantly. However, the dynamics are not
reversible since diffusion plays a role, so we cannot simply
map the contractile case to the time-reversed extensile
case as we did for the transverse flows.

IV. Flows resulting from ensembles of active events

In this section, we consider the flows generated by many
motors of a single type. To this end, we will now con-
sider an ensemble of events uniformly distributed in space
and time in a system of infinite volume. We assume
this ensemble to have a finite space-time density ρ. i.e.
ρ∆t∆v motors working simultaneously in a volume ele-
ment ∆v during a time interval ∆t. We imagine these ac-
tive sources to be randomly distributed in space and time.
Thus, the resulting random velocity fields will be consid-
ered statistically and we will calculate the moments of
their distribution.

Each of the active sources turns on randomly at a time,
and stays active for a period of time as described by the
earlier defined function κ(t). We examine the orientation
distribution of these events for a possible spatial order.
Such orientation ordering would be different for different
types of activity. Specifically, type III events are polar
(since their two ends are different), and therefore may ex-
hibit polar order with a non-zero average direction vector:
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FIG. 3. Power spectra of transverse solvent fluctuations for
three activity types (Type I, II and III), where velocity units
are af

ηpl2
, ρ = 1, a = l, and χ = 103.

〈n̂〉 = M. By contrast, Type I and II motors are apo-
lar, for them n̂ and −n̂ are physically equivalent, such
that 〈n̂〉 = 0. Accordingly, for them, orientation order is
characterized by the nematic order parameter:

〈n̂αn̂β〉 = Qαβ +
1

3
δαβ , (24)

Since we assume the system to be translationally invari-
ant, the coarse-grained fields Qαβ and Mα can be con-
sidered constant throughout the space.

In a spatially uniform system, average velocities must
be zero, as it is clear from Eqs. (9) and (20) for transverse
and longitudinal parts, respectively. Therefore, we will
consider the power spectra of transverse and longitudinal
velocity fluctuations, which are related to the second mo-
ments of the corresponding velocities distributions. As a
reminder, the power spectrum of any field s(r, t), which
we denote as

(
s2
)
qω

is defined by the relation

〈sqωs∗q′ω′〉 = ∆t ∆v
(
s2
)
qω
δqq′δωω′ , (25)

where (s2)qω is also the Fourier transform of the real-
space correlation function 〈s(r, t)s(0, 0)〉.

A. Power spectrum of transverse fluctuations

The flows resulting from a single source at the origin, as
described in Eqs. (16-18), are linear response relations.
As such, the power spectra resulting from a uniform dis-
tribution of sources can be calculated in Fourier space by
taking the squared magnitude of the response function
and multiplying it by the power spectrum of the source.
In other words, for a general field sqω obeying the follow-
ing linear response relation with some response function
R and a stochastic source f

sqω = Rqωfqω (26)

we can obtain its power spectrum:(
s2
)
qω

=
∣∣R2

∣∣
qω

(
f2
)
qω

(27)

In our case, the tensorial structure of the response func-
tions will only enter into the final power spectrum in
the form of a transverse projection operator Pαβq =
δαβ − qαqβ

q2 acting on the source term. This results in

two possible spectra, depending on whether the response
function is linear in n̂ or has higher order dependence.

(λ2)q = 〈q̂αq̂βn̂αn̂βPγδn̂γ n̂δ〉
= 〈(q̂ · n̂)2 − (q̂ · n̂)4〉(

µ2
)
q

= 〈n̂αPαβn̂β〉

= 1− 〈(q̂ · n̂)2〉

(28)

It is worth noting that in the case of an isotropic distri-
bution of n̂, we have 〈(q̂ · n̂)

2〉 = 1/3, 〈(q̂ · n̂)
4〉 = 1/5.

The tensors H and G can be rewritten by factoring out
from them the transverse projection operator Pαβ . Then,
Hαβq = hqPαβq and Gαβq = gqPαβq. Using the defini-
tions in Eqs. (10), we obtain an expression for hq, gq:

gq =
1

1/l2 + q2

hq =
1

l2q2(1/l2 + q2)

(29)

We then write down the power spectra for the polymer
and solvent fluctuations resulting from all three source
types.

1. Type I activity

(
vp⊥

2
)
qω

=

∣∣∣∣afκωηpω

∣∣∣∣2 ρq2(hq + gq)
2(λ2)q(

vs⊥
2
)
qω

=

∣∣∣∣afκωηpω

∣∣∣∣2 ρq2h2q(λ2)q

(30)

2. Type II activity

(
vp⊥

2
)
qω

=

∣∣∣∣afκωηpω

∣∣∣∣2 ρq2h2q(λ2)q(
vs⊥

2
)
qω

=

∣∣∣∣afκωηpω

∣∣∣∣2 ρq2(hq + χωgq)
2(λ2)q

(31)
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3. Type III activity

(
vp⊥

2
)
qω

=

∣∣∣∣fκωηpω
∣∣∣∣2 ρ [g2q (µ2)q + a2q2h2q(λ

2)q
]

(
vs⊥

2
)
qω

=

∣∣∣∣fκωηpω
∣∣∣∣2 ρ [χ2

ωg
2
q (µ2)q

+ a2q2(hq + χωgq)
2(λ2)q]

(32)

It is important to note that the mean transverse flow of
polymer and solvent is 0 in the isotropic case: upon tak-
ing an ensemble average of the Eqs. (16-18) with 〈n̂〉 = 0
and the second moment defined as in (24), then the flows
are all directly proportional to Qαβ , and thus go to 0
in the isotropic limit. However, the second moment of
the velocity distribution remains nonzero since in the
isotropic case (λ2)q, (µ2)q remain nonzero. Importantly,
the same power spectrum scaling is shared for all three
types of activity in the solvent in the far field.

In the near field, the different scaling regimes for the
power spectra are delineated by the screening length
scales, which controlled the regimes for the Green’s func-
tions in Section III. Analogously to those results, we find
that the power spectrum for polymer fluctuations is the
same for all types of activity, and scales uniformly as q−2

for all length scales of interest, i.e., for r � l. In the
far field, the solvent power spectrum follows the same
scaling. However, scaling laws for velocity fluctuations
change and cross over at the length scales l

√
χ and l2χ/a.

It is possible that two or all three types of activity may
operate in the same system. In such a case, it is impor-
tant to consider how their spectral signatures contribute
to the total power spectrum of velocity fluctuations. If
all types of activity are present in comparable amounts
and with comparable power, Type III activity dominates
the power spectrum of the solvent fluctuations across all
length scales, with a transition from q−2 to q0 behav-

ior at the characteristic spatial frequency q ∼
(
l2χ/a

)−1
.

If Type III dipoles are absent, weak, or present in far
smaller quantities than Types I and II, then the power
spectrum of the solvent is dominated by Type II ac-
tivity, with a transition from q−2 to q2 dependence at

around q ∼
(
l
√
χ
)−1

. The polymer power spectrum is
monotonous over the frequencies q of interest, scaling as
q−2 with the prefactor characterizing an overall power

scale
(
afκω
ηpω

)2
ρ.

The power spectra, being proportional to f2, are unaf-
fected by whether we choose the sources to be contractile
or extensile. This remains true as long as the individual
dipoles are non-interacting.

B. Power spectrum of longitudinal fluctuations

As in the case of longitudinal flows from a single source,
the longitudinal power spectra of both vs‖, vp‖ will be

determined from the fluctuation spectrum of δφ, due to
incompressibility:(

vp‖
2
)
q

=
ω2

q2φ20

(
δφ2
)
qω(

vs‖
2
)
q

=
ω2

q2(1− φ0)2
(
δφ2
)
qω

(33)

Since Eq. (20) is linear, the spectrum of density fluctua-
tions is readily obtained:

(δφ2s)qω =
(F 2

0 )qω
|iω(1 + χωl2q2)−Dq2|2

(34)

The power spectra of the Type I and II sources are very
similar to one another, but since Type III sources pull
apart the two fluids in opposite directions, they have a
more pronounced effect on the longitudinal dynamics.
Similarly to before, the angular distribution of sources
determines the quantities

(
Γ2
)
q

and
(
Ω2
)
q
:(

Γ2
)
q

= 〈(q̂ · n̂)
4〉(

Ω2
)
q

= 〈(q̂ · n̂)
2〉

(35)

Equipped with these expressions, we write the longitudi-
nal power spectra for all three source types:

Type I activity

(F 2
0 )qω = |νω|2(1− φ0)2q4

(
Γ2
)
q (36)

Type II activity

(F 2
0 )qω = |νω|2q4

(
Γ2
)
q (37)

Type III activity

(F 2
0 )qω =

|νω|2

a2
q2
(

(aq)2
(
Γ2
)
q

+
(
Ω2
)
q

)
' |νω|

2

a2
q2
(
Ω2
)
q
, q−1 � a

(38)

Here, we have defined |ν|2ω = ρ
∣∣∣afκωζ ∣∣∣2 (1− φ0)2φ20. It is

clear that the longitudinal spectrum resulting from Type
I and II activity is identical up to a factor of (1 − φ0)2.
Evidently, those two types of activity do not affect the
density distribution in very contrasting ways. However,
the third type of activity is dominated by a q2 depen-
dence for all length scales of interest (since we assume
that a and l are both smaller than the coarse-graining
scale of this theory). This is simply due to the fact that
these types of sources shear the two fluids apart, and thus
result in a much stronger spectrum of density fluctuations
at long range (small q), compared to their counterparts.

Finally, just like in the transverse case, the longitudi-
nal flow power spectra are unaffected by the contractile
or extensile nature of the sources generating them.
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V. Discussion

In this work, we have developed a classification scheme
for the active forces that could act on a two-fluid system
such as chromatin solution. We enforce conservation of
linear and angular momentum, and know that the long-
range effects of a force distribution are dominated by its
lowest order multipole. Thus, we find that the dominant
contribution to the flows comes from force dipoles. These
force dipoles can then be of three different types, depend-
ing on which fluid each end acts upon. We have shown
the effects of these three types of vector activity acting
in a chromatin-nucleoplasm system: pairs of forces act-
ing either both on the polymer (Type I ), or both on the
solvent (Type II ), or one on the polymer and the other
on the solvent (Type III ). Their effects on the two fluids
can be read out through the following dynamical fields:
the solvent flow velocity field vs, the polymer flow veloc-
ity field vp, and the polymer density field φ.

We find that the flows generated by single active
dipoles, and the power spectra resulting from collections
of active events, do not change significantly if we consider
contractile instead of extensile dipoles. This remains true
as long as one neglects hydrodynamic interactions be-
tween the active bodies generating the force dipoles. As
soon as such interactions are relevant, the difference be-
tween extensile and contractile dipoles becomes very sig-
nificant, as was emphasized in [11].

We found that the friction between the two fluids in
our model leads to hydrodynamic screening in the flows
resulting from active sources. Two length scales are
produced by this screening, dictated by the mesh size

of the polymer l =
√

ηs

ζ and the (generally frequency-

dependent) ratio between the viscosities of polymer and
solvent, χω. The different types of activity generate dif-
ferent magnitudes of flows, which leads to screening oc-
curring on different scales. Specifically, Type III activity
does not conserve momentum in any one fluid, since it
pushes both fluids in opposite directions, thus it results
in the largest screening length scale. Type I and II ac-
tivity, in contrast, act only on one of the two fluids and
conserve momentum within that fluid. Thus, the flows
they generate in the solvent are screened within a smaller
range from the source. Type II activity, since it acts on
the solvent directly and the solvent has lower viscosity
than the polymer, leads to a larger screening length than
Type I activity, which is screened on the scale of the
polymer mesh size. On length scales above these screen-
ing lengths, the polymer and solvent flow together in a
pattern identical to a Stokeslet.

It is important to estimate what these screening
lengths are, so that we may compare them to the known
dimensions in the case of chromatin and nucleoplasm in
a cell nucleus. We expect the mesh size, l, to range
from around 30 nm to 100 nm [29, 30]. The size of in-
dividual molecular motors, a, is on the order of 10 nm
(the size of bacterial RNA polymerase has been mea-

sured to be 17 nm [31], and eukaryotic RNA polymerase
II is around the same molecular weight [2]). In contrast,
the ratio of viscosities χ is harder to estimate. Bare nu-
cleoplasm has been measured to have a viscosity on the
same order to that of water [32, 33], ηs ' 10−3 Pas ,
whereas a wide range of chromatin viscosities have been
measured, ηp ≈ 0.6 − 3000 Pas [34–39]. Thus, experi-
mental ranges for χ lie between 102 and 106. The two
screening length scales we expect above the mesh size are
l
√
χ and l2χ/a. At the upper limit of the estimates, these

length scales become much larger than the size of the nu-
cleus, making them irrelevant for our system of interest.
The lower limits for their estimates are l

√
χ ≈ 300 nm

and l2χ/a ≈ 4 µm. For comparison, the size of the coher-
ent domains in chromatin was found to be around 3 µm
[10]. Therefore, there is a range of parameters consis-
tent with existing experiments, which makes the screen-
ing lengths be comparable to the length scales which are
relevant to chromatin’s active dynamics as measured by
DCS [10].

We calculated the power spectra for both active trans-
verse and longitudinal fluctuations of the medium and
found characteristic changes in the scaling of the power
spectrum. The length scales at which these changes in
scaling occur correspond to the screening length scales
l
√
χ and l2χ/a estimated above. Thus, from the spa-

tial frequency dependence of the power spectra, param-
eters describing the material and its active components
may be measured. For example, if the two length scales
l2χ/a, l

√
χ were measured, with the prior knowledge of

the motor size a, both the mesh size and the viscosity
ratio of the chromatin-nucleoplasm system can be deter-
mined. By measuring the overall magnitude of the power

spectrum itself, the quantity
(
af
ηp

)2
ρ can be measured.

Given a and ηp (the latter is already measurable by look-
ing at the screening length scales), this can be used to
constrain the value of f2ρ, which gives an estimate of
the force density being injected into the system by ac-
tive dipoles. Using values found in the literature, we can

derive an estimate of
(
af
ηp

)2
ρ ≈ 1 µm3s−2 (for more de-

tails, see Appendix D).
Previous studies have focused on the power spectrum

obtained from fluorescently-labeled chromatin [12]. This
was used to identify the regimes of relevance for trans-
verse and longitudinal fluctuations respectively, as seen in
the polymer fluctuation spectrum. Here we have shown
that additional information may be obtained by measur-
ing the power spectrum of solvent fluctuations. In identi-
fying the regimes in the power spectrum scaling (or lack
thereof), it is possible to rule out types of activity present
in the nucleoplasm (for example, if a q0 scaling is absent,
then Type III activity is either absent or present only in
very small amounts), as well as measure the screening
lengths in the two-fluid solution.

Thus, our description of transverse fluctuations takes
few experimentally measurable parameters as inputs: the
mesh size of chromatin, and the viscosities of chromatin
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and nucleoplasm. The model predicts that each type of
source produces a particular q-dependence in the solvent
velocity power spectrum, as outlined in Table I. The val-
ues of the mesh size and viscosities give the length scales
bounding different scaling regimes of q-dependence, as
shown in Figure 3. These predictions may be be veri-
fied by future experiments. So far, the power spectrum
of chromatin velocity fluctuations has successfully been
measured using DCS [12]. A similar measurement for
nucleoplasm dynamics, which would enable comparison
with our predictions, has not been performed so far.
Future experiments revealing the scaling exponents of
the nucleoplasmic velocity power spectra and screening
length scales delineating the crossovers may test our pre-
dictions.

VI. Conclusions

We have extended a framework for the classification of
active forces in a polymer-solvent system as a model for
chromatin and nucleoplasm’s active fluctuations. These
active sources are approximated as first order in a multi-
pole expansion, and classified based on the type of cou-
pling they have to the two fluids, yielding three different
categories of forces, each of which we found to generate
a different scaling in power spectrum of solvent fluctua-
tions. We considered these sources as independent and
immovable. Yet, in the cell these motors could work co-
operatively, hence the collective behavior of these sources
is of much interest, as the motors which are the sources
of the flows should be advected by chromatin and nu-
cleoplasm themselves. Therefore, the consideration of
the continuum dynamics of other fields, such as the den-
sity and orientation of these sources, will inform on the
system’s dynamics, including self-organization and align-
ment of the sources. In addition, consideration of the
nuclear boundary may provide further insights into the
active behavior of the system found in vivo.

Our model aims to study the genome’s dynamical
properties, by identifying and classifying the effects of
different active sources on chromatin. This expands our
understanding of the genome as a nonequilibrium system.
It also contributes to our efforts to elucidate the physics
of nonequilibrium materials by enriching the types of pos-
sible activity. Our symmetry-based classification scheme
applies to any active system composed of two fluids, and
could systematically be extended to multicomponent sys-
tems as well. For example, this framework could be ex-
tended to account for more components within the nucle-
oplasm which may interact preferentially with different
forms of activity, or be extended to multiphase separated
systems such as nucleoli [40]. Thus, we have shown that
because of symmetry and conservation laws, there are
few possible forms that active events can take in a two-
fluid system. Then, it is straightforward to study the
effects of these forces in the system of interest. In a com-
plex biological system such as chromatin, with a myriad
of different components interacting, this approach gives

promising avenues for identifying and studying the pos-
sible sources for observed nonequilibrium effects.
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Appendix A. Solvent viscosity

The equations of motion presented in [12] are adequate
for the description of fluids, where the viscosity of the sol-
vent is a lot larger than that of the polymer (chromatin)
but the resulting phenomenology does not capture the
effects of hydrodynamic screening.

Here, we show with a simple argument, why this is the
case. Consider the polymer to be a Newtonian fluid, such
that ∇·σ~

~

= ηp∇2vp. Then, consider the case, where the
system is translationally symmetric in the x and y direc-
tions, so all dynamical parameters are only functions of
z. Then, we have the following equations of motion:

ζ(vp − vs) = ηp∂2zv
p − ẑ∂zΠ− ẑφ0∂zP

ζ(vs − vp) = −ẑ(1− φ0)∂zP .
(A1)

Now, consider a situation, where the half-space z < 0 is
filled with a polymer-solvent mixture, where the polymer
is held fixed, so vp = 0. In the half-space z > 0, we have
φ = 0, and we impose a shear flow of solvent at a velocity
vs = ux̂.

The classical result for a colloidal solution in such an
arrangement with a solvent of viscosity ηs is a screening
effect where the solvent velocity goes vs ∝ x̂ez/l for z <

0, with l ∼
√

ηs
ζφ0

where ηs is the solvent viscosity [41].

Such a screening cannot result from Eqs. (A1). Since
vs − vp ∝ ẑ∂zP , no difference in flow is possible along
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the shear direction x̂. This means that no friction along
that direction is permissible, and thus no screening.

This is remedied by the addition of a stress tensor for
the solvent, which in our case we take to be Newtonian.
Thus, we add a term ηs∇2vs to the second equation of
motion. We then obtain

ζ(vp − vs) = ηp∇2vp −∇Π− φ0∇P
ζ(vs − vp) = ηs∇2vs − (1− φ0)∇P

(A2)

which, in the 1D shear situation presented above, allows

a solution vs ∝ x̂ez/lfor z < 0 with l =
√

ηsχ
ζ(1+χ) , where

χ is the ratio of viscosities ηp/ηs.

Appendix B. Higher multipole moments

Our consideration is based on force dipoles. One may
ask if higher order force multipoles can be relevant. In
general, we can perform a multipole expansion of our
system’s force distribution. For the nth order of the
expansion, the responding flows will decay like r−(n+1).
By momentum conservation we expect the monopole
(n = 0) term to be 0, and then terms higher than the
dipole will be sub-dominant in the far field. Since the
length scales we are considering are larger than the
motors themselves, the far-field expansion applies here.
Furthermore, the torque-free condition means pairs of
forces must act along a single line. Therefore, the local
building blocks of the force distribution must be force
dipoles of the three types outlined in the main text.

In the formal structure of our theory, it is worth
noting that there exists a (purely mathematical) cor-
respondence between scalar active events and a certain
arrangement of dipolar sources. First of all, notice that
any shift in osmotic pressure in one of the fluids is equiv-
alent to an opposite shift in the second fluid’s osmotic
pressure, up to a scale factor. This is a consequence of
incompressibility: the chemical potential of this system
is an exchange chemical potential. Formally speaking,
adding any pressure ∇π in the polymer is equivalent to
a pressure − 1−φ0

φ0
∇π in the solvent.

Scalar activity was considered as precisely such a
shift in pressure, where Fp = −sκ(t)∇δ(r − R). If we
consider an isotropic distribution of either Types I or II
active dipoles, such that 〈n̂n̂〉 = 1

3I, we obtain:

〈f〉 = −af
3
κ(t)∇δ(r−R) . (B1)

Thus, an isotropic solution of Type I dipoles simply
increases (decreases) the osmotic pressure of polymer
(solvent), and vice-versa for Type II dipoles. However,
it is clearly physically unfeasible to place an infinite
number of dipoles in a given location to produce such
a local shift in osmotic pressure, so we must emphasize

that this connection is purely formal.

Appendix C. Transverse parts of singular flows

In solving for the transverse parts of the flows in the main
text, we used the notation Fp

⊥, Fs
⊥ to indicate that we

were applying the transverse projection operator to the
sources in our equations of motion. Since these sources
take the form of δ-functions or their gradients, the result-
ing objects may be ill-defined. Here, we show a procedure
for handling them in the case of our equations of motion.

Our equations of motion are linear, and we consider
them in an unbounded space. Thus, we may solve them
via Fourier transform in space and time, which trans-
forms the differential equations into algebraic equations.
The transverse projection operator in Fourier space is

Pαβ = δαβ −
qαqβ
q2

(C1)

for a wavevector q, where q = |q|. In general, we may
consider a transverse velocity field v⊥ which obeys the
following linear response relation

v⊥αq = Rαβqfβq , (C2)

where all repeated indices except for q are summed over.
Conveniently, in our case the response functions are di-
agonal in Fourier space, so all the tensorial structure is
given by P: Rαβq = gqPαβq, which simplifies the linear
response relation

v⊥αq = gqPαβqfβq . (C3)

We define the real space Green’s function of this system
as follows:

vα(r) = Rαβ(r)fβ(r) . (C4)

There are only two rank-2 tensors available to us, so we
can write R as their linear combination:

Rαβ(r) = AR(r)δαβ +BR(r)
rαrβ
r2

, (C5)

where AR, BR are some scalar functions of r = |r|. To
find these functions, we consider the following two invari-
ant combinations:

Rαβδαβ = 3AR +BR

Rαβ
rαrβ
r2

= AR + r2BR
(C6)

These scalar expressions can be further compared to
their analogs in Fourier space:

Rαβqδαβ = 2gq

Rαβq
rαrβ
r2

= gq (1− (q · r))
(C7)
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It is then straightforward to take the inverse Fourier
transform of expressions (C7) and compare them to the
expressions (C6), and solve the resulting set of equations
for AR, BR.

These results can be checked by an alternate solution
method, which is more reminiscent of traditional incom-
pressible low-Reynolds number hydrodynamics. In that
case, we implicitly take the transverse component of a
velocity field by imposing incompressibility through an
auxiliary scalar field, the pressure. The Stokes equations
are:

η∇2v +∇P = f

∇ · v = 0
(C8)

and their solution is the well-known Oseen tensor
[27]. We can take a similar strategy by taking our
original equation of motion, foregoing the transverse
projection operator on the force, and simply imposing
incompressibility by adding an auxiliary pressure and a
new equation: ∇ · v = 0. Using this technique gives the
same results as the procedure outlined above.

Appendix D. Estimates

1. RNA polymerase II as a source of activity

There are approximately 105 RNA polymerase II
molecules in a HeLa cell [42], whose nucleus is ap-
proximately 10 µm across, leading to a density around

102 molecules/µm3. The force exerted by RNA poly-
merase II is on the order of 10 pN, ranging up to 40
pN [25, 43], and their step size is half a base-pair, corre-
sponding to 0.16 nm [44]. The rate constants controlling
the stepping process when it is not paused lie around
20 − 100 s−1, meaning the step time is at a maximum
around 0.05 s per step.

If we take the force density of these motors Fm, and
multiply it by a step time τm ≈ 0.05 s as well as a step
size dm = 0.016 nm, we get a quantity with units of
viscosity, which can be compared to the viscosity of the
polymer, which is still poorly constrained in the case of
chromatin but is likely in the range ηp ≈ 0.6− 3000 Pas
[34–39].

In this case we have Fmτmdm ≈ 0.03 Pa s, and there-
fore Fmτmdm � ηp, so we don’t expect a single RNA
polymerase II event to generate a strain of order unity in
chromatin.

To approximate the power spectrum magnitude in this
case, if we take the size of a molecular motor to be 10
nm, its density 102 molecules/µm3, and the viscosity of

chromatin to be 1 Pas, then we get
(
af
ηp

)2
ρ ' 1µm3s−2.

2. Length scales of nonlocal rheology

Nonlocal effects are relevant for length scales r where

(t/τ0) � r4

b4 τ0, where τ0 is the Rouse relaxation time of
a Kuhn length of polymer, and b is that Kuhn length (as
shown in [26] Figure 3). In our case, b ∼ 100 nm [30], and

τ0 = ηsb3

T ∼ 10−4 s (estimated using viscosity of water
and room temperature), where we measure temperature
in units of energy, setting kB = 1.
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