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A B S T R A C T 

In this work, we extend our recently developed multifidelity emulation technique to the simulated Lyman- α forest flux power 

spectrum. Multifidelity emulation allows interpolation of simulation outputs between cosmological parameters using many cheap 

low-fidelity simulations and a few e xpensiv e high-fidelity simulations. Using a test suite of small-box (30 Mpc h 
−1 ) simulations, 

we show that multifidelity emulation is able to reproduce the Lyman- α forest flux power spectrum well, achieving an average 

accuracy when compared to a test suite of 0 . 8 per cent . We further show that it has a substantially increased accuracy over 

single-fidelity emulators, constructed using either the high- or low-fidelity simulations only. In particular, it allows the extension 

of an existing simulation suite to smaller scales and higher redshifts. 
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1  I N T RO D U C T I O N  

The modern and future test bed for cosmology lies in small scales and 

non-linear structures. Cosmological analyses exploit observations of 

these scales to explore questions such as the nature of dark matter, 

the total neutrino mass, and the thermal history of the intergalactic 

medium (IGM). One of the most powerful probes of small-scale 

structure is the Lyman- α forest, a series of absorption features in the 

spectrum of quasars (Gunn & Peterson 1965 ; Theuns et al. 1998 ; 

McDonald et al. 2000 , 2006 ; Hui et al. 2001 ; Viel et al. 2002 ; 

Fan et al. 2006 ; Viel & Haehnelt 2006 ). Numerical simulations 

are required to analyse these observations as they probe the non- 

linear regime. As these simulations are expensive, cosmologists 

build emulators (Heitmann et al. 2006, 2009 ; Habib et al. 2007 ), 

which interpolate a summary statistic (in this case the 1D Lyman- 

α forest flux power spectrum) between simulation outputs at different 

cosmological parameters. 

A recent development in cosmology is the application of multi- 

fidelity emulators, which allow simulations with different particle 

loads, and thus costs, to be combined together (Ho, Bird & Shelton 

2022 ). Here, we adapt the multifidelity emulation technique to the 

Lyman- α forest 1D flux power spectrum. Multifidelity emulation is 

especially useful in this context because the Lyman- α forest probes 

a range of redshifts, and is sensitive to smaller scales, which require 

higher resolution simulations, at higher redshifts (Bolton & Becker 

2009 ). The models developed here will allow a single emulator to 

target the wide range of scales probed by the Lyman- α forest, which 

would otherwise require a computationally infeasible number of very 

large simulations (Borde et al. 2014 ). 

The Lyman- α forest is the result of o v erlapping neutral hydrogen 

absorption profiles in the spectra from distant luminous quasars, 

processed through the expansion of the Universe (Gunn & Peterson 

1965 ). As light travels from the quasar, it passes through neutral 
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h ydrogen g as of varying densities. In the rest frame of those neutral 

hydrogen islands, light that has been redshifted close to the Lyman- α

transition at 1215.67 Å will be absorbed and the rest transmitted. This 

is repeated as the light continues to intersect more neutral hydrogen 

islands on its path towards us, the observers. The result is a quasar 

transmission spectrum containing an o v erlapping field of absorption 

features that provides a proxy to the dark matter density along that 

sightline (Croft et al. 1998 ). 

The densities probed by the Lyman- α forest, from redshift 2 to 5, 

are ∼1–100 times the cosmological mean density. At these densities, 

stellar winds and star formation effects are negligible, although black 

hole feedback is important (Viel, Schaye & Booth 2013b ; Chabanier 

et al. 2020 ). The densities along with the range of scales accessed 

have made the Lyman- α forest popular in cosmological studies, 

including constraining the thermal history of the IGM and thus 

reionization (Bolton et al. 2008 , 2014 ; Nasir, Bolton & Becker 2016 ; 

Boera et al. 2019 ; Wu et al. 2019 ; Gaikwad et al. 2021 ; Villasenor 

et al. 2021 ), constraining cosmological parameters including the 

neutrino mass (Viel, Haehnelt & Springel 2004 ; McDonald et al. 

2005 ; Seljak et al. 2005 ; Seljak, Slosar & McDonald 2006 ; Viel, 

Haehnelt & Lewis 2006 ; Palanque-Delabrouille et al. 2020 ; Garny 

et al. 2021 ), and testing alternatives to cold dark matter (Viel et al. 

2005 , 2013a ; Ir ̌si ̌c et al. 2017a ; Palanque-Delabrouille et al. 2020 ; 

Garzilli et al. 2021 ; Rogers & Peiris 2021b ). 

The Lyman- α forest 1D flux power spectrum is the most commonly 

used summary statistic for Lyman- α forest spectra. It probes small- 

scale structure by measuring the two-point Fourier-space correlation 

between neutral hydrogen absorption within a sightline (Croft et al. 

1998 ). 

Current observational measurements of the Lyman- α forest flux 

power spectrum come from either a lower resolution, larger sample 

surv e y (Sloan Digital Sky Survey, SDSS; Chabanier et al. 2019 ) or 

various higher resolution, smaller sample surv e ys (Ir ̌si ̌c et al. 2017b ; 

Day, Tytler & Kambalur 2019 ; Kara c ¸aylı et al. 2022 ). In Chabanier 

et al. ( 2019 ), the flux power spectrum constructed from Baryon 

Oscillation Spectroscopic Surv e y (BOSS) and e xtended BOSS 
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(eBOSS) spectra accesses redshifts from z = 2.2 to 4.6 (6 per cent and 

18 per cent av erage uncertainty, respectiv ely) and scales from k ≈

0.001 to 0.02 s km 
−1 (6 per cent and 14 per cent average uncertainty, 

respectively). The small sample, higher resolution surveys generally 

access a similar redshift range, but shift both the largest and smallest 

scales to higher k . For example, in Kara c ¸aylı et al. ( 2022 ) (their 

conserv ati ve results), using spectra from multiple surv e ys (XQ-100, 

KODIAQ, and SQUAD), they access redshifts from z = 2 to 4.6 

(7 per cent and 27 per cent av erage uncertainty, respectiv ely) and 

scales from k ≈ 0.005 to 0.1 s km 
−1 (12 per cent and 9 per cent 

average uncertainty, respectively). 

The Dark Energy Spectroscopic Instrument (DESI) will soon 

report its first-year results. Ultimately, it will increase the number of 

Lyman- α quasar spectra by a factor of 4 o v er SDSS. This corresponds 

to ∼50 quasars per square degree and a total of 7 × 10 5 quasars o v er 

the 14 000 de g 2 surv e y footprint (DESI Collaboration et al. 2016 ). In 

addition, DESI is expected to measure the 1D flux power spectrum at 

smaller scales ( k < 0.035 s km 
−1 ) and higher redshifts ( z > 4.6) than 

SDSS, achieving an accuracy of the order of a few per cent (Valluri 

et al. 2022 ). 

Extracting cosmological information from these observations will 

require simulations that follow the distribution of gas at rele v ant 

densities and on rele v ant scales. For the Lyman- α forest, box sizes of 

at least 100 Mpc h −1 and mean particle spacing of 100/3072 ≈ 0.03 

Mpc h −1 are necessary (Borde et al. 2014 ). Earlier work has focused 

on methods that can reduce the cost of such simulations. Borde et al. 

( 2014 ) used a splicing technique to produce high-resolution, large- 

volume outputs from three sets of less computationally intensive 

simulations: low resolution, large volume; high resolution, small 

volume; and low resolution, small volume. Luki ́c et al. ( 2015 ) 

explored the use of Richardson extrapolation to enhance output 

resolution, in addition to testing the splicing technique. 

Parameter inference tasks, such as a direct Markov chain Monte 

Carlo analysis, require ∼10 5 –10 6 model e v aluations, indicating 

the number of simulations required by a naive approach. Even 

using techniques such as splicing, this is computationally infeasible. 

Ho we ver, using a significantly reduced number of simulations ( ∼30), 

an emulator can be constructed that ef fecti vely interpolates between 

this smaller set of simulations. In addition to the Lyman- α forest, 

emulators have been used extensively in cosmology for studying the 

matter power spectrum (Heitmann et al. 2009 , 2014 ; Lawrence et al. 

2017 ; Giblin et al. 2019 ; Aric ̀o et al. 2021 ; Euclid Collaboration 

et al. 2021 ; Giri & Schneider 2021 ), weak lensing (Harnois-D ́eraps, 

Giblin & Joachimi 2019 ; Davies et al. 2021 ), the halo mass function 

(McClintock et al. 2019 ; Nishimichi et al. 2019 ; Bocquet et al. 2020 ), 

and the 21-cm signal (Kern et al. 2017 ; Cohen et al. 2020 ; Bevins 

et al. 2021 ; Bye, Portillo & Fialkov 2022 ). Still, the computational 

resources required to run ∼30 simulations with the requisite volume 

and resolution are highly restrictive, especially for the Lyman- 

α forest. 

Here, we use modern machine learning techniques to alleviate 

the computational resource cost associated with constructing an 

emulator. Specifically, we are concerned with using machine learning 

to predict high-resolution simulation outputs to a high degree 

of accuracy, while running a minimal number of high-resolution 

simulations. One machine learning method that is suited to this task 

is a Gaussian process (GP) emulator. GPs (Rasmussen & Williams 

2006 ) are a means of interpolating between the simulation outputs, 

providing function prediction in a Bayesian framework. Essentially, 

a distribution of functions is learned through training on simulations, 

and the mean (best estimate) and variance (interpolation error) of 

the output can be returned for arbitrary simulation inputs. While 

other interpolation methods are possible, GPs hav e man y benefits: 

the inherent quantification of prediction uncertainty, the option to 

incorporate prior knowledge, and the ability to interpolate within 

high-dimensional parameter space. 

Previous uses of GP emulators for the Lyman- α forest have been 

shown to be effective at predicting summary statistics (Bird et al. 

2019 ; Rogers et al. 2019 ; Pedersen et al. 2021 ; Rogers & Peiris 2021a , 

b ; Walther et al. 2021 ). Bird et al. ( 2019 ) self-consistently showed 

that the predicted flux power from their GP emulator (trained with 

21 simulations) agreed to within 1 –2 per cent of the corresponding 

simulation flux power spectrum. These GP emulators still require a 

substantial computational cost, as the full simulation suite must be 

run with sufficient volumes and resolutions for the Lyman- α forest. 

Recently, Ho et al. ( 2022 ) implemented a multifidelity GP emula- 

tor (Kennedy & O’Hagan 2000 ) for the matter power spectrum. Here, 

we combine and expand on the methods outlined in Bird et al. ( 2019 ) 

and Ho et al. ( 2022 ), to produce a multifidelity GP emulator for the 

Lyman- α forest flux power spectrum. In our multifidelity model, the 

training simulations are split into two fidelities: a large sample of low- 

resolution simulations (low fidelity, LF) and a small subset of these 

simulations run at higher resolution (high fidelity, HF). Note that 

we use fidelity and resolution interchangeably throughout this work. 

Using these two training sets, the multifidelity emulator is trained to 

predict the 1D flux power spectrum that would be output by a high - 

resolution simulation for arbitrary cosmological and astrophysical 

parameters. 

A multifidelity emulator allows us to replace some of the HF 

simulations that would be needed in a single-fidelity emulator with 

LF simulations. This can dramatically reduce the computational cost 

of constructing an emulator, while retaining predictive power across 

parameter space. Using this method, emulators can be constructed 

that make use of the full range of scales and redshifts probed by 

Lyman- α forest observations. This enables analyses that can jointly 

constrain thermal, astrophysical, and cosmological parameters. 

In our high-resolution simulations, the Lyman- α forest flux power 

spectrum is converged to ≈ 5 per cent . While the scales we probe 

in this work are resolved, the box size we use is smaller than 

required to analyse the full range of scales available in Lyman- 

α forest data, i.e. we cannot compute a likelihood function using 

all the real data without larger boxes. We therefore defer a full 

cosmological likelihood analysis to future work. Our goal is to 

quantitatively test the accuracy of the emulator output, as compared 

with the output from a set of testing simulations run at the same 

resolution as the HF training set, and demonstrate the validity and 

utility of the multifidelity technique. Specifically, we quantify the 

accuracy of the single- and multifidelity emulators with respect to true 

values from the testing simulations, thus determining how effective 

the multifidelity model is at producing high-resolution outputs at 

minimal computational cost. 

2  SIMU LATIO NS  

Simulations were performed using MP-GADGET 1 , an N -body and 

smoothed particle hydrodynamics (SPH) code built on the solid base 

of GADGET-3 (last described in Springel 2005 ). MP-GADGET has been 

substantially modified to include shared-memory parallelism using 

OpenMP, together with many other algorithmic impro v ements and 

new subgrid models, as described in Bird et al. ( 2020, 2022 ) and 

Ni et al. ( 2022 ). The initial power spectrum and transfer functions 

1 ht tps://github.com/MP-Gadget /MP-Gadget 
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are generated with the Boltzmann code CLASS (Lesgourgues 2011 ). 

Species-specific initial conditions are generated for baryons and dark 

matter (Bird et al. 2020 ; Fernandez, Bird & Upton Sanderbeck 2021 ). 

We include radiation in the cosmological background model and 

assume massless neutrinos. 

The physics models largely follow those used for the ASTRID 

simulation, which are described in Bird et al. ( 2022 ). Primary sources 

for these models, as well as changes from Bird et al. ( 2022 ), are 

described below. 

We use a cubic kernel for our density estimator (rather than a 

quintic kernel). For these simulations, the cubic kernel, in addition 

to running faster, produced a neutral hydrogen column density 

distribution that was more consistent with observations for column 

densities between 10 20 and 10 22 cm 
−2 (Ho, Bird & Garnett 2021 ). 

We continue to use the pressure–entropy formulation of SPH. The 

smaller SPH kernel increases the noise within galaxies, but has 

minimal effect on the Lyman- α forest (Bird et al. 2013 ). 

Star formation follows the model of Springel & Hernquist ( 2003 ), 

with our specific implementation as described in Feng et al. ( 2016 ). 

We lower the number of stars produced per gas particle from 4 

(used in ASTRID ) to 1 (as in Illustris-TNG), which speeds up the 

simulation without having an effect on the Lyman- α forest. 

Black holes follow the model of Ni et al. ( 2022 ). We found that 

for the resolutions used here, the dynamic friction from gas led to a 

few black holes escaping from their dark matter halo, so we only use 

dynamic friction from dark matter and stars. The black hole feedback 

factor, which controls the fraction of luminosity that is converted into 

thermal energy, is an emulator parameter (BHF), with the associated 

parameter limits in Fig. 3 . The black hole feedback radius is fixed to 

3 kpc h −1 , selected to be the average black hole feedback radius at the 

highest tested resolution when using a nearest neighbour distance. To 

accommodate a lower mass resolution than ASTRID , the minimum 

stellar mass needed in a halo to seed a black hole was increased to 

2 × 10 8 M �, and all black hole seeds start with a mass of 5 × 10 4 M �. 

Stellar winds are modelled following Okamoto et al. ( 2010 ). The 

decoupling distance for the winds is increased from 20 to 1 Mpc h −1 , 

which allows the winds to recouple due to density changes rather 

than travel distance. The density threshold for wind recoupling is 

set to 10 per cent of the star formation density threshold (which is 

57.7 times the critical density). The minimum wind velocity is set to 

100 km s −1 . Finally, metal return (gas enrichment) is disabled as it 

is not important for the Lyman- α forest and can be computationally 

e xpensiv e. 

Gas is assumed to be in ionization equilibrium with a uniform 

ultraviolet background using the model of Faucher-Gigu ̀ere ( 2020 ). 

We boost the temperature of the gas to 15 000 K, the time-step after 

the gas is reionized, to model impulsive heating during hydrogen 

reionization from ionization fronts (D’Aloisio et al. 2019 ). 

We implement He II reionization using the model of Upton 

Sanderbeck & Bird ( 2020 ). The input parameters for this model 

are quasar mean bubble size and variance, redshifts for the start and 

completion of He II reionization z He II 
i , z He II 

f , and the quasar spectral 

index αq (which ef fecti vely scales the peak temperature during He II 

reionization). The quasar bubble size is reduced from the default 

of ∼30 Mpc, moti v ated by radiati ve transfer simulations (McQuinn 

et al. 2009 ), to 5 Mpc, due to our small box size. 

Simulations are initialized at z = 99 and finish at z = 2, and use 

periodic boundaries. Box volume, particle number, and gas particle 

mass resolution are reported in Table 1 . The range given for the gas 

resolution is due to the varying value of h in our simulation suite. The 

gas particle mass resolution for our HF simulations does not meet 

the resolution that Bolton & Becker ( 2009 ) recommend to resolve 

the forest at all redshifts of interest. Ho we ver, the Lyman- α forest 

flux power spectrum from our HF simulations is converged to within 

≈ 5 per cent of a simulation that does meet the required resolution 

of Bolton & Becker ( 2009 ). We are interested in the performance of 

the multifidelity GP emulator in learning the mapping from low to 

high resolution; thus, this slight lack of numerical convergence does 

not affect our results. Examples of the gas density (at z = 3.6) for 

the two resolutions are shown in the top and bottom panels of Fig. 1 . 

Lyman- α forest absorption spectra are generated using the f ak e 

spectra flux extractor (Bird 2017 ), 2 described in Bird et al. ( 2015 ). We 

generate 32 000 (seeded) randomly placed skewers for each snapshot, 

from z = 5.4 to 2.0 in increments of �z = 0.2. The pixel resolution 

is set to 10 km s −1 . An optical depth threshold of τ < 10 6 is set to 

eliminate damped Lyman- α systems. Example spectra from one LF 

and one HF simulation (at z = 4) are shown in the middle panel of 

Fig. 1 . Note that the LF simulation is not simply a smoothed version 

of the HF simulation, as the fine velocity structure of the gas moves 

the location of the absorption peaks. 

These sets of neutral hydrogen absorption spectra are used to 

construct the Lyman- α forest flux power spectrum for each sim- 

ulation, at each redshift. The flux power spectrum is defined as 

P F ( k) = | L 
−1 ̃  δ2 

F ( k) | , where ̃  δ2 
F ( k) is the Fourier transform of the flux 

excess, δF ( k ) = F ( k )/ � F ( k ) � − 1, and L is the length of the sightline. 

The reported flux power spectrum is averaged over all 32 000 spectra. 

Fig. 2 shows flux power spectra from a single LF simulation and its 

HF counterpart, and the ratio of these at several redshifts. While the 

exact difference between the LF and HF flux power spectra depends 

on simulation input parameters and redshift, in general the LF differs 

most from the HF at small scales. The enhanced power on large 

scales for the LF flux power spectra is consistent with Borde et al. 

( 2014 ), and is likely due to differences in heating and cooling during 

H I and He II reionization. 

Fig. 3 lists the input parameters that are varied across our suite 

of simulations, as well as their limits. Two parameters control the 

primordial power spectrum: n s is the scalar spectral index (slope) and 

A p is the amplitude (see Bird et al. 2019 for more details). Three of 

the parameters relate to the He II reionization model: z He II 
i and z He II 

f 

are the redshifts for the start and end of He II reionization, and αq 

is the quasar spectral index. We vary the Hubble constant through h , 

and the total matter density through �M h 
2 . One parameter is varied 

for H I reionization: z H I is the midpoint redshift of H I reionization. 

Finally, we vary one parameter for the black hole model: BHF is the 

black hole feedback factor, which controls the fraction of luminosity 

that is converted into thermal energy. Note that our simulations do not 

contain a kinetic feedback model. Ho we ver, at z > 2, it is expected 

that the thermal mode dominates. Also shown in Fig. 3 are the LF 

and HF training samples. Note that the HF samples are a subset of 

the LF samples. The selection of the HF samples is described in 

Section 3.2.3 . 

3  E M U L ATO R S  

In Section 3.1 , we will briefly re vie w emulation using a GP. In 

Section 3.2 , we will re vie w ho w the GP emulator can be extended 

to model simulations with different qualities using a multifidelity 

emulator, MFEmulator . The multifidelity emulation technique of 

Kennedy & O’Hagan ( 2000 ) will be reviewed in Section 3.2.1 . 

Section 3.2.2 will discuss the differences in multifidelity emulator 

design between this paper and Ho et al. ( 2022 ). Finally, Section 3.2.3 

2 ht tps://github.com/sbird/fake spect ra 
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Figure 1. Example Lyman- α forest spectra and corresponding gas density from simulations at redshift 4. The top and bottom panels show the simulated gas 

surrounding the skewer, which produced the spectra shown in the middle panel. Examples are shown for simulations run at high (top panel, yellow line) and 

low resolution (bottom panel, red line). 

Figure 2. Lyman- α forest flux power spectrum from LF and HF simulations. 

The top panel shows the flux power spectrum at redshift 3 from an LF 

simulation (blue) and its HF counterpart (yello w). The lo wer panels show the 

ratio of the flux power for these two resolutions, for all LF–HF simulation 

pairs, at z = 3 . 8 , 4 . 6 , and 5 . 4. Dashed lines show the highest k probed by 

BOSS/eBOSS (Chabanier et al. 2019 ) and the estimated reach for DESI 

(Valluri et al. 2022 ). 

Figure 3. Simulation parameter limits and samples. Parameters for the low- 

resolution simulations (crosses) were determined by filling a Latin hypercube. 

Initially, 30 low-resolution samples were generated, then an additional 10 

were added while maintaining the Latin hypercube method, hence the non- 

uniform spacing for the low-resolution samples. The optimal subset of low- 

resolution simulations is determined (see Section 3.2.3 ), and this subset is 

run at higher resolution (shown as red circles). 

Table 1. Table of simulation sets. 

Simulation Box volume N part M gas (M � h −1 ) 

LF (30 Mpc h −1 ) 3 2 × 256 3 [1.78, 2.37] × 10 7 

HF (30 Mpc h −1 ) 3 2 × 512 3 [2.22, 2.96] × 10 6 

Test (30 Mpc h −1 ) 3 2 × 512 3 [2.22, 2.96] × 10 6 
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will outline how we select our training simulations in the parameter 

space. 

3.1 GP emulator 

GP regression models (Rasmussen & Williams 2006 ) have been 

widely used to build cosmological emulators (Heitmann et al. 2006, 

2009 ; Habib et al. 2007 ). A GP pro vides closed-form e xpressions for 

predictions. In addition, a GP naturally comes with uncertainty quan- 

tification, which is useful when building an inference framework. In 

the context of emulation, a GP can be seen as a Bayesian prior for 

the simulation response. It is a prior because the emulator model 

is chosen to ensure smoothness and monotonicity features of the 

simulation response before data are collected (Santner , W illiams & 

Notz 2003 ). 

Let θ ∈ " ⊆ R 
d be the input cosmologies for the simulator, where 

d is the dimension of the parameters ( d = 9 for our emulator). 

f ( θ ) is the corresponding output summary statistic. In this work, the 

summary statistic, f ( θ ), is the Lyman- α forest flux power spectrum. 

A GP regression model can be viewed as a prior on the response 

surface of our simulated Lyman- α forest flux power spectrum: 

f ( θ ) ∼ GP ( μ( θ ) , k( θ , θ � )) , (1) 

where μ( θ ) = E [ f ( θ )] is the mean function, and k( θ , θ � ) = 

Cov [ f ( θ ) , f ( θ � )] is the covariance kernel function. In this work, 

we assume a zero mean function, and we used the same covariance 

function as in Bird et al. ( 2019 ), which will be defined later in this 

section. 

Suppose we run the simulations at n carefully chosen input 

cosmologies, D = { θ1 , · · · , θn } , and we generate the corresponding 

Lyman- α forest flux power spectrum for each simulation, y = 

{ f ( θ1 ) , · · · , f ( θn ) } . Conditioning on this training data, we can get 

the predictive distribution of f at a new input cosmology θ through 

the closed-form expression 

f ( θ ) | y , D ∼ N ( μn ( θ) , σ 2 
n ( θ )) , (2) 

where the mean and variance are 

μn ( θ ) = k ( θ, D ) ᵀ K ( D ) −1 y ; 

σ 2 
n ( θ ) = k( θ , θ ) − k ( θ , D ) ᵀ K ( D ) −1 k ( θ , D ) . 

(3) 

The vector k ( θ , D) = [ k ( θ , θ1 ) , · · · , k ( θ , θn )] represents the co- 

variance between the new input cosmology, θ , and the training data. 

The matrix K ( D) is the covariance for the training data. 

F or the co variance kernel function, we choose the same kernel as 

in Bird et al. ( 2019 ), which is a combination of a linear kernel and a 

radial basis kernel (RBF): 

k( θ , θ � ; σ0 , l , σ ) = k RBF ( θ , θ � ; σ0 , l ) + k LIN ( θ, θ � ; σ ) 

= σ 2 
0 exp 

( 
d 

∑ 

i= 1 

−
( θ i − θ i 

� ) 2 

2 l 2 i 

) 

+ 

d 
∑ 

i= 1 

σ 2 
i θ i θ i 

� , 

(4) 

where σ 2 
0 and σ 2 are the variance hyperparameters for the RBF kernel 

and the linear kernel, respectively. l is the length-scale parameter that 

controls the smoothness of the GP function. We applied automatic 

rele v ance determination for both linear and RBF kernels. That is, 

we assign one length-scale l i (variance σ i ) hyperparameter for each 

input dimension i for the RBF and linear kernels. This allows the 

GP to dynamically learn the scale o v er which each input dimension 

varies, which corresponds to the degree of sensitivity of the flux 

power spectrum to the input parameter. 

Although we do not explicitly write in the notation, f ( θ ) is a 

single-valued output. Since our target summary statistic is a vector, 

we model each k bin of the flux power spectrum with a separate GP. 

The primary reason for this choice is that the correlation between 

the LF and HF flux power spectrum changes depending on the scale 

considered. The multifidelity method can only capture this scale 

dependence if we model each scale separately. 

3.2 Multifidelity emulation 

We first introduce the Kennedy–O’Hagan model (KO model; 

Kennedy & O’Hagan 2000 ) in Section 3.2.1 . Section 3.2.2 describes 

the changes we have made to adapt the model from Ho et al. ( 2022 ) 

to the Lyman- α forest. Finally, the strategy we employ for choosing 

parameters at which to generate HF training simulations is described 

in Section 3.2.3 . 

3.2.1 KO method 

The KO model (Kennedy & O’Hagan 2000 ) was first introduced 

to model a sequence of computer codes with increasing fidelity. 

For simplicity, we assume that there are only two fidelities: low- 

fidelity (LF) simulations with low resolution and high-fidelity (HF) 

simulations with high resolution. 

We define { y LF , y HF } as the Lyman- α forest flux power spectra 

in the training set. y LF = { f LF ( θ
LF 
i ) } 

n LF 
i= 1 and y HF = { f HF ( θ

HF 
i ) } 

n HF 
i= 1 , 

where n LF and n HF are the number of simulations in the low- and 

high-fidelity training sets. We use the KO method to model Lyman- 

α forest flux power spectra from different fidelities: 

f HF ( θ ) = ρ · f LF ( θ ) + δ( θ ) , (5) 

where ρ is a trainable parameter describing a multiplicative correc- 

tion between the LF and HF Lyman- α forest flux power spectra. 

δ( θ ) is a GP independent of f LF ( θ ), describing an additive correction 

between fidelities. In other words, equation ( 5 ) assumes that the HF 

Lyman- α forest flux power can be decomposed as the LF flux power 

multiplied by a correction parameter, ρ, and an additive bias function 

δ( θ ). 

As mentioned in Ho et al. ( 2022 ), the ρ parameter has to be scale- 

dependent (a function of k ) to model the well-known fact that small 

scales are less well resolved in smaller simulations. Here, we use the 

same method as Ho et al. ( 2022 ) and assume that equation ( 5 ) is a 

single-output GP model. We assign a KO model to each k bin of the 

data. 3 In this way, we can model ρ as a function of k , as shown in 

Fig. 4 . 

We also assign KO models for each redshift. As shown in Fig. 4 , 

ρ is a non-trivial function of both k and z, so we cannot simply use 

an emulator trained on one redshift to apply on another redshift. 4 We 

note that it is possible to assume a smooth function to model ρ( k , z). 

Ho we ver, v alidating ρ( k , z) is out of scope for this paper. In practice, 

observational data are conditioned on a specific redshift, so training 

emulators on separate redshifts is sufficient for cosmology inference. 

Fig. 4 shows that ρ stays close to unity at large scales for most 

of the redshifts. At small scales, ho we ver, dif ferent redshifts require 

dif ferent v alues of ρ. At the middle redshifts (3 ≤ z < 5), ρ has a 

3 We can easily get the same set of k bins for LF and HF by using the same 

spectral resolution for both simulations. 
4 See Pedersen et al. ( 2021 ) for a Lyman- α forest emulator that uses a single 

GP for all redshifts, and achieves sub-per cent accuracy, albeit with some 

ambiguity between model parameters and redshift. 
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Figure 4. The scale parameter, ρ, of the KO model (equation 5 ) as a function 

of k . Different colours represent different redshifts. We separate the redshifts 

into four bins, 2 ≤ z < 3, 3 ≤ z < 4, 4 ≤ z < 5, and 5 ≤ z ≤ 5.4. Within 

each redshift bin, we average over fixed k modes, which are linearly spaced 

between the maximum k and minimum k at the given redshift range. This 

emulator used 40 LF and 6 HF for training. 

large positive deviation from unity. At the low redshifts (2 ≤ z < 3), 

ρ has a moderate de viation to wards ρ > 1. The only exception is at 

the high redshifts (5 ≤ z ≤ 5.4), which stays close to ρ = 1 for all 

scales. This indicates that the correction to the Lyman- α forest flux 

power due to the resolution of the simulation varies with redshift, 

depending on the o v erdensity probed by the forest. 

3.2.2 Model differences from Ho et al. ( 2022 ) 

Here, we highlight the ways in which we have adapted the model 

from Ho et al. ( 2022 ), which emulated the non-linear matter power 

spectrum at z = 0–2, to the Lyman- α forest at z = 2–5.4. Since the 

redshift range is larger in this work, we employed a new strategy to 

select the optimal HF training set by averaging over the interpolation 

loss for all redshift bins. We will describe the strategy in detail in 

Section 3.2.3 . 

In Ho et al. ( 2022 ), we outlined two multifidelity methods: a 

linear multifidelity emulator [the KO model or the autoregression 

model (AR1)] and a non-linear multifidelity emulator (non-linear 

autore gressiv e GP or NARGP; Perdikaris et al. 2017 ). However, we 

found that NARGP requires more HF training simulations for the 

Lyman- α forest flux power than AR1, perhaps due to the wide range 

of redshifts used. We use the KO model for our main results, and 

describe the NARGP results in Appendix A . 

In this work, instead of emulating logarithm scaled powers, we 

adopted the mean-flux normalization strategy proposed in Bird et al. 

( 2019 ). We normalize all flux power spectra in the training set by the 

median spectrum: 

y LF ← 
y LF 

median i ( y LF ) 
− 1; 

y HF ← 
y HF 

median i ( y LF ) 
− 1 . 

(6) 

The index i refers to one of the spectra in the training set, 

y LF = { f LF ( θ
LF 
i ) } 

n LF 
i= 1 . Equation ( 6 ) ensures that the training sample 

distribution is close to having a zero mean, matching the prior of 

the GP emulator. We found that in practice this normalization makes 

training the emulator substantially easier. Note that we normalize 

the HF training set using the same LF median spectrum. As the HF 

training set is small, the median spectrum estimate for HF is noisy, 

and so using it for normalization may introduce some unwanted 

training bias. 

3.2.3 Sampling strategy for HF simulations 

The KO model approach can be seen as a Bayesian way to correct 

an emulator from LF to HF. Thus, if y is the HF Lyman- α forest flux 

power spectrum used for training, and θ is the corresponding input 

parameters: 

y = f LF ( θ) + ( f HF ( θ ) − f LF ( θ )) 

= f LF ( θ) + error ( θ) . 
(7) 

The emulation accuracy will be directly affected by how well an 

autore gressiv e construction can model error ( θ ). Usually, a large set 

of LF simulations are used as training data for f LF ( θ ) because they 

can be obtained cheaply. The quality of training data for error ( θ ) = 

f HF ( θ ) − f LF ( θ ) thus relies on the choice of HF simulations. 

In Ho et al. ( 2022 ), we proposed an optimization strategy to select 

HF training simulations. A low-fidelity only emulator (LFEmu) 5 is 

trained on a subset of LF training simulations. The posterior means of 

the trained LFEmu are used to calculate the emulation errors from the 

remaining LF samples in the Latin hypercube sampling (LHS). By 

minimizing the emulation errors of LFEmu, we can grid search for the 

optimal set of cosmologies that best interpolates the parameter space 

using a small number of training simulations. Assuming LFEmu is 

correlated with HFEmu, we can use the selected optimal cosmologies 

as inputs for the HF training set. By ensuring the HF training set 

achieves a good interpolation, we mitigate emulation errors for the 

multifidelity emulator. 

In practice, we employ a three-stage procedure for building a 

multifidelity emulator: 

(i) Prepare LF simulation suite. 

(ii) Prepare HF simulation suite. This is done by using LFEmu to 

find the set of cosmologies that minimizes the interpolation loss. 

(iii) Build MFEmulator . If the accuracy is not enough, go back 

to stage 1 or 2 to run more training simulations. 

For stage (ii), to a v oid wasting computational resources running 

more LF simulations, we directly use the LF simulation suite in stage 

(i) to build and validate the LFEmu. Thus, the cosmologies chosen 

for the HF set are a subset of the LF simulation LHS, which fulfils 

the nested training data set design suggested in Kennedy & O’Hagan 

( 2000 ). The benefit of using a nested data structure, θHF ⊆ θLF , is 

that we can directly compute posterior means from the LF training 

set for cosmologies θHF , without any interpolation in LF. 

We note that it is possible to train a MFEmulator without 

using the LF simulations to optimize the HF points. Ho we ver, if 

the selection of HF points is suboptimal (i.e. can barely interpolate 

in the prior volume), then the MFEmulator accuracy will be 

suboptimal. This is because the error( θ ) cannot be decomposed into 

an autore gressiv e structure easily. 

To find the optimal HF training set across the full redshift range, 

z = 2–5.4, we train an LFEmu for each redshift and get the validation 

loss (we used mean squared errors). We sum up the validation loss 

for all redshifts and find a subset of cosmologies that minimizes the 

summed validation loss. 

In Fig. 5 , we summarize the abo v e-described procedure in a 

5 In a similar way, we call a high-fidelity only emulator, HFEmu. 
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Figure 5. A flowchart for training a multifidelity emulator. We start with 

an LF set of simulations. We then select a subset of LF points to train an 

emulator, LFEmu, at each redshift. The validation loss for each LFEmu is 

computed using the rest of the LF simulations as a validation set. Finally, 

we sum up the validation losses at each redshift, and use the summed loss to 

propose a set of cosmologies θHF that can best minimize the summed loss. 

flowchart. For a formal description, we refer to Ho et al. ( 2022 ). 

The only difference between the proposed procedure in Fig. 5 and 

the procedure in Ho et al. ( 2022 ) is that we optimize θHF across 

redshifts z = 2–5.4 in this work. Thus, we have an additional step to 

sum the LFEmu validation loss across redshifts. 

Training an LFEmu on all possible LF subsets is computationally 

intensive. To reduce costs, we employed the greedy optimization 

strategy from Ho et al. ( 2022 ). We first explored all possible subsets 

for three design points within the LF LHS. For the optimal four design 

points, instead of exploring all possible subsets, we grew the subset 

one point at a time, fixing the previously chosen optimal three HF 

points. In the same line of thought, we grew the subset to six optimal 

design points for HF training cosmologies. Our final simulation suite 

of 40 LF and 6 HF samples, along with parameter limits, is shown 

in Fig. 3 . 

4  RESULTS  A N D  DISCUSSION  

Using the flux power spectra from our LF and HF simulations, we 

train single-fidelity (one LF only and one HF only) and multifidelity 

emulators. These trained emulators are used to predict the flux power 

spectrum output for a set of 10 simulation input parameters. We then 

compare these predictions to the corresponding testing simulations 

that were run at the same resolution as the HF simulations (see 

Table 1 ). 

4.1 Emulator accuracy 

In the following, we only show results for the emulators that use 

the full available set of training simulations (40 LF and 6 HF). We 

hav e v erified that using all available training simulations leads to the 

most accurate emulator. Section 4.2 shows how emulator accuracy 

degrades when a smaller subset of the available simulations is used. 

Using the full set of available simulations, the mean predic- 

tion error for the multifidelity emulator is �| P 
pred 
F /P 

true 
F − 1 |� ≈

0 . 8 per cent (averaging across all scales, redshifts, and testing 

simulation outputs). For the LF single-fidelity emulator, the mean 

prediction error is ≈ 4 per cent . This is not unexpected; there are 

Figure 6. Comparing the prediction error as a function of (linearly binned) 

wav ev ector for single- and multifidelity emulators. This is the mean error 

across all redshifts and 10 test simulations. The shaded regions are the 

variance in the prediction error. Dashed lines show the highest k probed 

by BOSS/eBOSS (Chabanier et al. 2019 ) and the estimated reach for DESI 

(Valluri et al. 2022 ). 

real differences between the flux power spectra output by the low- 

and high-resolution simulations that are not being captured with this 

method. The 4 per cent error may seem quantitatively quite good, 

considering the simpler methodology and reduced resource cost. 

Ho we ver, there is no indication that the error could be reduced further 

with additional simulations (see Section 4.2 ). 

For the HF single-fidelity emulator, the mean prediction error 

is ≈ 3 per cent . This is likely limited by the sample size of the 

training set (six simulations), leading to increased errors when 

making predictions for inputs that are far away from the training 

samples. It is important to note that the HF samples are selected 

to optimize the multifidelity emulator, rather than as an independent 

emulator (i.e. as a Latin hypercube sample). There is some indication 

that prior information from the LF training samples provides useful 

information about the best areas of parameter space to sample. To 

test this, we split our testing set (10 simulations, same resolution 

as the HF samples) into training and testing sets, then train all 210 

combinations of 6 samples, and predict the outputs for the remaining 

4 samples. The error range from this e x ercise is 2 . 5 –11 . 5 per cent 

(5 . 5 per cent mean error, 1 . 5 per cent standard deviation). Though 

not a direct comparison, the 3 per cent error we obtain from the HF 

single-fidelity emulator compares fa v ourably with this, indicating 

that the HF samples selected are an impro v ement o v er using an LHS 

scheme. 

Fig. 6 shows the mean prediction error, averaged over all redshifts 

and 10 test simulation outputs, as a function of wav ev ector k . In this, 

and the following figures, the shaded region around the curves is the 

variance in prediction error ( | P 
pred 
F /P 

true 
F − 1 | ), to give a sense of how 

much the error varies beyond the mean. The multifidelity emulator 

outperforms the single-fidelity emulators at all scales, with an error 

between 0 . 5 and 1 . 5 per cent . The LF (HF) single-fidelity emulator 

has error between 2 and 7 per cent (2 –6 per cent ). 

Both single-fidelity emulators and the multifidelity emulator 

trend towards higher error for small scales. The LF emulator dips 

1 –2 per cent around k ≈ 0.02 s km 
−1 . The dip occurs on scales at 

which the low-resolution flux power spectra go from o v erestimating 

to underestimating the high-resolution power (see Fig. 2 , for z ≤

4.6). The uptick in the multifidelity emulator error for the largest 
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Figure 7. Comparing the prediction error as a function of redshift and scale for single- and multifidelity emulators. This is mean error across all 10 test 

simulations. The blue shaded region shows the extent of helium reionization in our simulations (see parameter limits in Fig. 3 ). 

k bins is also present in the HF emulator, indicating that there is a 

scarcity of large-scale modes available in the emulator training. 

Fig. 7 shows how the emulators perform as a function of redshift 

and scale. In the following, we define small scales as k > 0.02 s km 
−1 

and large scales as k ≤ 0.02 s km 
−1 (divided at the smallest scale 

accessible by BOSS/eBOSS data; Chabanier et al. 2019 ). On large 

scales (Fig. 7 , left-hand panel), the LF emulator error decreases with 

time until z ≈ 4, and then slowly increases. This trend is because, 

as can be seen in Fig. 2 (left of the BOSS/eBOSS dashed line), 

the low-resolution flux power comes into better agreement with the 

high-resolution flux power as it nears z ≈ 4. We also found that the 

LF simulations do not cool as efficiently as the HF simulations after 

He II reionization, likely leading to the rise in error for z ≤ 3.2. 

On small scales (Fig. 7 , right-hand panel), the LF emulator error is 

more variable. The dip in error seen around z ≈ 4.6 occurs as the low- 

resolution flux power crosses from o v erestimating to underestimating 

the high-resolution flux power (Fig. 2 , right of the BOSS/eBOSS 

dashed line). The subsequent rise in error is due to the loss of 

small-scale power and consequent underestimation of the flux power 

spectrum in the LF simulations. 

The trends in redshift and scale seen in the LF emulator perfor- 

mance are not due to interpolation error, but due to the different 

numerical resolution of the two simulation fidelities, since this 

emulator is not predicting the flux power at the higher resolution. 

Some differences are connected to temperature differences between 

the LF and HF simulations. For low densities ( ∼1 times the mean 

density), the LF simulations are colder than the HF simulations at 

high redshift, but come into better agreement leading up to He II 

reionization, after which they diverge from the HF simulations 

again. For higher densities (1–100 times the mean density), the LF 

simulations are once again colder than the HF simulations at high 

redshift, but at lower redshift they are too hot (with a crosso v er 

at z ≈ 4.6). As higher redshifts probe lower densities, the error 

initially decreases with redshift, before rising again towards the 

lowest redshifts. 

On both large and small scales, the HF emulator errors are 

around 3 . 5 per cent , dominated by sampling variance. During He II 

reionization, the HF emulator has more variation in error, which is 

probably exacerbated by our small box sizes. The increased variation 

during He II reionization further indicates that the primary source of 

error for the HF emulator is the sample size of the training set. 

On small scales, the multifidelity emulator error is insensitive to 

redshift and small (0 . 9 per cent ). On large scales, the multifidelity 

emulator error slightly decreases until z = 4.2, and then increases 

with the onset of He II reionization, before flattening again. The 

trend is also more variable during He II reionization, indicating that 

emulator finds it more difficult to learn the mapping during this pro- 

cess. Ho we ver, the multifidelity emulator still outperforms the single- 

fidelity emulators, with an error between ≈ 0 . 4 and 1 per cent . 

4.2 Emulator runtime 

While we have shown that the multifidelity emulator outperforms 

the single-fidelity emulators presented here, it still remains to show 

that it is more computationally cost efficient. We could, for example, 

add more training simulations to our single-fidelity HF emulator 

and get a similarly accurate high-resolution emulator. Ho we ver, the 

computational cost would increase significantly. By comparing the 

total emulator runtime to prediction error, we can determine the 

choice that balances computational cost and accuracy. In practice, the 

important question is to determine the computational cost at which 

a given emulation technique can achieve a desired accuracy. The 

computational cost of training the emulators is subdominant ( O(1) 

cpu-hours) to running the training simulations, so in the following, 

we only consider the runtime for the simulation suites. 

Fig. 8 shows the mean prediction error (averaged over all redshifts 

and test outputs) as a function of the number of simulations used in 

the training set, for small and large scales (as defined in Section 4 

and Fig. 7 ). The solid lines show prediction errors for multifidelity 

emulators trained using six HF and a varying number of LF 

simulations. The small- and large-scale errors flatten out after ≈30 

LF simulations are used in the training set. The LF simulations allow 

the emulator to determine how the flux power spectrum depends 

on the cosmological input parameters, and so this indicates that 

30 LF simulations are needed to explore our nine-parameter space. 

Other emulators range from using ≈6 simulations per parameter 

(e.g. McClintock et al. 2019 ; Ho et al. 2022 ) to 30 per parameter 

(e.g. Euclid Collaboration et al. 2021 ). The three to four simulations 

per parameter required here is unusually low, perhaps because the 

input parameters affect the flux power spectrum close to linearly in 

much of parameter space. 
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Figure 8. Emulator prediction error as a function of the number of simula- 

tions used in training the emulator. This is the mean error across all redshifts 

and 10 test simulation outputs. The prediction error is broken down into large 

( k < 0.02 s km −1 ) and small ( k > 0.02 s km −1 ) scales, as in Fig. 7 . The solid 

lines show how the average error depends on the number of LF simulations, 

while the dashed lines show how the average error depends on the number of 

HF simulations once all LF simulations are included. 

Figure 9. Prediction error as a function of total training simulation computa- 

tional cost. This is the mean error for 10 test simulations o v er all redshifts and 

scales. The solid line shows the prediction error when changing the number 

of HF simulations used in training the multifidelity emulator. Also shown 

are the single-fidelity emulators (red squares) and the multifidelity emulator 

trend with a varying number of LF training simulations (yellow, dashed). 

Dashed lines show prediction errors for multifidelity emulators 

trained using 40 LF and a varying number of HF simulations. 

Adding extra HF simulations to the training set has a larger impact 

than adding LF simulations. The addition of each HF simulation 

generally impro v es the emulator accurac y for small scales more than 

for large scales. This is as expected, since the main purpose of the 

HF simulations is to learn the mapping from low- to high-resolution 

output, with small scales being more resolved in the HF simulations. 

Fig. 9 shows the emulator prediction errors as a function of the total 

runtime (cost of running the training simulations). All simulations 

were run on the Frontera supercomputer at the Texas Advanced 

Computing Center. The cost is divided between the LF training 

simulations, which cost ≈10 node hours each, and the HF training 

simulations, which cost ≈150 node hours each. 

The dashed trend shows the same emulators as Fig. 8 , but no longer 

di vided by scale. Qualitati vely, it looks the same as both the large- 

scale and small-scale results from the previous figure. The error is flat 

after ≈30 LF training simulations, indicating that a similar accuracy 

can be achieved using the multifidelity emulator with ≈30 rather than 

40 LF simulations. The most efficient 1 per cent error emulator in 

this study is a multifidelity emulator using 30 LF and 5 HF training 

simulations (the cost for this was ≈1050 node hours). The most 

accurate emulator is the 40 LF, 6 HF multifidelity emulator, with 

error 0 . 8 per cent and cost ≈1300 node hours. 

The dotted line (squares) shows the error and runtime for the 

single-fidelity emulators. Following from the six HF single-fidelity 

emulator result to the dashed (yellow) line, it can be seen that the 

addition of just a few LF training simulations quickly impro v es the 

accuracy. It can also be seen that in terms of computational cost, the 

multifidelity emulator is more efficient. 6 Note that the HF training 

simulations are not selected to optimize a single-fidelity emulator, 

but instead are selected to optimize the multifidelity emulator. They 

thus use prior information provided by the LF training simulations 

and so perform better than a naive Latin hypercube construction of 

an HF emulator using six training samples. Our multifidelity scheme 

is thus an even larger improvement on a single-fidelity model than 

Fig. 9 suggests. 

The solid line shows the error and runtime for the multifidelity 

emulator trained using 40 LF simulations and 2–6 HF simulations. 

The point on the solid line corresponding to 40 LF, 2 HF has a similar 

cost, but slightly worse performance than the 5 HF single-fidelity 

result. Adding a third HF training sample decreases the error more 

for the multifidelity emulator (error for 40 LF, 3 HF emulator) than 

it does for the single-fidelity emulator (error marked 6 HF). Adding 

a sixth HF simulation to the 40 LF, 5 HF multifidelity emulator 

produces a relatively small improvement in error, perhaps indicating 

that stochasticity in the simulations due to our relatively small box 

size is beginning to dominate interpolation error. 

5  C O N C L U S I O N S  

In this work, we developed and tested a multifidelity emulator for the 

simulated Lyman- α forest flux power spectrum. Emulators address 

the growing computational demands of simulations, which must be 

run at increasingly high resolutions to allow analysis of the increasing 

quality and quantity of observational data. Here, we use a GP-based 

emulator that addresses this demand by, in a Bayesian framework, 

training an interpolating function to predict the output (Lyman- α

forest flux power spectrum) for a given input (simulation input 

parameters). Relati vely fe w simulations are required to accurately 

predict across the span of input parameter space, making emulators 

especially useful for parameter inference problems. 

The multifidelity framework allows a further reduction in com- 

putational cost by dividing the emulator training samples into 

multiple (in our case two) fidelities. The LF (low-resolution) training 

samples allow the emulator to learn how the outputs depend on 

input parameters. The HF (high-resolution) training samples correct 

numerical errors in the LF emulator with a (parameter-dependent) 

mapping from LF to HF. Thus, the emulator can be trained with a 

large sample of LF training simulations and a small subset of HF 

training simulations. 

6 At least for errors less than 4 per cent , the approximate amount by which 

the LF simulations fail to be converged. 
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Our training suite included 40 low-resolution hydrodynamical 

simulations (30 Mpc h −1 simulation box length, 256 3 particles) and 6 

high-resolution hydrodynamical simulations (30 Mpc h −1 simulation 

box length, 512 3 particles). Using the Lyman- α forest flux power 

spectrum extracted from these simulations, we trained single- and 

multifidelity emulators to predict the high-resolution flux power 

spectrum. 10 independent simulations were run to test the prediction 

accuracy of the trained emulators. 

In summary, the multifidelity emulator: 

(i) Modelled a redshift range 5.4–2 (in 18 redshift bins with �z = 

0.2), on scales ranging from k = 1.4 × 10 −3 to 5.7 × 10 −2 s km 
−1 

(in 25 bins). 

(ii) Achieved sub-1 per cent error on most scales and redshifts 

when averaged over 10 test simulations. 

(iii) Reached an average error of 0 . 8 per cent . 

(iv) Achiev ed 1 per cent av erage error most cost efficiently using a 

training set with 30 low-resolution and 5 high-resolution simulations. 

The low-resolution single-fidelity emulator (4 per cent average 

error) predicts the low-resolution flux power, so it is limited by 

real differences between the output of the two resolutions. The 

high-resolution single-fidelity emulator (3 per cent average error) is 

limited by the small number of training samples. It is likely that the 

average error for the high-resolution single-fidelity emulator could be 

impro v ed to match the multifidelity emulator performance with the 

addition of more training simulations. Ho we ver, the high-resolution 

single-fidelity emulator quickly increases in computational cost with 

additional samples, and we expect it would thus be more e xpensiv e 

than our multifidelity emulator. 

Some important caveats to our results are that the Lyman- α

forest is converged at the ≈ 5 per cent level in our high-resolution 

simulations, and the box size is small. In a forthcoming work, a 

model that uses two different box sizes (rather than two different 

resolutions) to construct a multifidelity emulator will be developed 

and tested. While there is no direct evidence to suggest that changing 

the resolution or box size would significantly enhance or diminish 

the accuracy of the emulators presented here, it still remains to be 

tested on simulations with higher resolution and larger box sizes. In 

a forthcoming work, we test the multifidelity framework on larger 

box size, higher resolution simulations, and use this multifidelity 

emulator for cosmological inference. 
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DATA  AVAILABILITY  

Flux power spectra generated from the low resolution, high resolu- 

tion, and testing sets are available at https:// github.com/mafern/ MF 

Emulat orLyaDat a . HDF5 and plain text (appropriate for multifidelity 

emulation) formats are available. Select single- and multifidelity 

emulator predictions for the 10 testing simulations are also available 

from the same repository. The spectra underlying the flux power are 

available upon request. 

REFER ENCES  

Aric ̀o G., Angulo R. E., Contreras S., Ondaro-Mallea L., Pellejero-Iba ̃ nez 

M., Zennaro M., 2021, MNRAS , 506, 4070 

Bevins H. T. J., Handley W. J., Fialkov A., de Lera Acedo E., Javid K., 2021, 

MNRAS , 508, 2923 

Bird S., 2017, Astrophysics Source Code Library, record ascl:1710.012 

Bird S., Vogelsberger M., Sijacki D., Zaldarriaga M., Springel V., Hernquist 

L., 2013, MNRAS , 429, 3341 

Bird S., Haehnelt M., Neeleman M., Genel S., Vogelsberger M., Hernquist 

L., 2015, MNRAS , 447, 1834 

Bird S., Rogers K. K., Peiris H. V., Verde L., Font-Ribera A., Pontzen A., 

2019, J. Cosmol. Astropart. Phys. , 2019, 050 

Bird S., Feng Y., Pedersen C., Font-Ribera A., 2020, J. Cosmol. Astropart. 

Phys. , 2020, 002 

Bird S., Ni Y., Di Matteo T., Croft R., Feng Y., Chen N., 2022, MNRAS , 512, 

3703 

Bocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., Pope 

A., Finkel H., 2020, ApJ , 901, 5 

Boera E., Becker G. D., Bolton J. S., Nasir F., 2019, ApJ , 872, 101 

Bolton J. S., Becker G. D., 2009, MNRAS , 398, L26 

Bolton J. S., Viel M., Kim T. S., Haehnelt M. G., Carswell R. F., 2008, 

MNRAS , 386, 1131 

Bolton J. S., Becker G. D., Haehnelt M. G., Viel M., 2014, MNRAS , 438, 

2499 

Borde A., Palanque-Delabrouille N., Rossi G., Viel M., Bolton J. S., Y ̀eche 

C., LeGoff J.-M., Rich J., 2014, J. Cosmol. Astropart. Phys. , 2014, 005 

Bye C. H., Portillo S. K. N., Fialkov A., 2022, ApJ , 930, 79 

Chabanier S. et al., 2019, J. Cosmol. Astropart. Phys. , 2019, 017 

Chabanier S., Bournaud F., Dubois Y., Palanque-Delabrouille N., Y ̀eche C., 

Armengaud E., Peirani S., Beckmann R., 2020, MNRAS , 495, 1825 

Cohen A., Fialkov A., Barkana R., Monsalve R. A., 2020, MNRAS , 495, 

4845 

Croft R. A. C., Weinberg D. H., Katz N., Hernquist L., 1998, ApJ , 495, 44 

D’Aloisio A., McQuinn M., Maupin O., Davies F. B., Trac H., Fuller S., 

Upton Sanderbeck P. R., 2019, ApJ , 874, 154 

Damianou A., Lawrence N. D., 2013, in Carvalho C. M., Ravikumar P., 

eds, Proceedings of the Sixteenth International Conference on Artificial 

Intelligence and Statistics, vol. 31. Deep Gaussian Processes. PMLR, 

Scottsdale, AZ, p. 207 

Davies C. T., Cautun M., Giblin B., Li B., Harnois-D ́eraps J., Cai Y.-C., 2021, 

MNRAS , 507, 2267 

Day A., Tytler D., Kambalur B., 2019, MNRAS , 489, 2536 

DESI Collaboration et al., 2016, preprint ( arXiv:1611.00036 ) 

Euclid Collaboration et al., 2021, MNRAS , 505, 2840 

Fan X. et al., 2006, AJ , 132, 117 

Faucher-Gigu ̀ere C.-A., 2020, MNRAS , 493, 1614 

Feng Y., Di-Matteo T., Croft R. A., Bird S., Battaglia N., Wilkins S., 2016, 

MNRAS , 455, 2778 

Fernandez M. A., Bird S., Upton Sanderbeck P., 2021, MNRAS , 503, 1668 

Gaikwad P., Srianand R., Haehnelt M. G., Choudhury T. R., 2021, MNRAS , 

506, 4389 

Garny M., Konstandin T., Sagunski L., Viel M., 2021, J. Cosmol. Astropart. 

Phys. , 2021, 049 

Garzilli A., Magalich A., Ruchayskiy O., Boyarsky A., 2021, MNRAS , 502, 

2356 

Giblin B., Cataneo M., Moews B., Heymans C., 2019, MNRAS , 490, 4826 

Giri S. K., Schneider A., 2021, J. Cosmol. Astropart. Phys. , 2021, 046 

Gunn J. E., Peterson B. A., 1965, ApJ , 142, 1633 

Habib S., Heitmann K., Higdon D., Nakhleh C., Williams B., 2007, 

Phys. Rev. D , 76, 083503 

Harnois-D ́eraps J., Giblin B., Joachimi B., 2019, A&A , 631, A160 



3210 M. A. Fernandez, M.-F. Ho and S. Bird 

MNRAS 517, 3200–3211 (2022) 

Heitmann K., Higdon D., Nakhleh C., Habib S., 2006, ApJ , 646, L1 

Heitmann K., Higdon D., White M., Habib S., Williams B. J., Lawrence E., 

Wagner C., 2009, ApJ , 705, 156 

Heitmann K., Lawrence E., Kwan J., Habib S., Higdon D., 2014, ApJ , 780, 

111 

Ho M.-F., Bird S., Garnett R., 2021, MNRAS , 507, 704 

Ho M.-F., Bird S., Shelton C. R., 2022, MNRAS , 509, 2551 

Hui L., Burles S., Seljak U., Rutledge R. E., Magnier E., Tytler D., 2001, 

ApJ , 552, 15 

Ir ̌si ̌c V. et al., 2017a, Phys. Rev. D , 96, 023522 

Ir ̌si ̌c V. et al., 2017b, MNRAS , 466, 4332 

Kara c ¸aylı N. G. et al., 2022, MNRAS , 509, 2842 

Kennedy M., O’Hagan A., 2000, Biometrika , 87, 1 

Kern N. S., Liu A., Parsons A. R., Mesinger A., Greig B., 2017, ApJ , 848, 23 

Lawrence E. et al., 2017, ApJ , 847, 50 

Lesgourgues J., 2011, preprint ( arXiv:1104.2932 ) 

Luki ́c Z., Stark C. W., Nugent P., White M., Meiksin A. A., Almgren A., 

2015, MNRAS , 446, 3697 

McClintock T. et al., 2019, ApJ , 872, 53 

McDonald P., Miralda-Escud ́e J., Rauch M., Sargent W. L. W., Barlow T. A., 

Cen R., Ostriker J. P., 2000, ApJ , 543, 1 

McDonald P. et al., 2005, ApJ , 635, 761 

McDonald P. et al., 2006, ApJS , 163, 80 

McQuinn M., Lidz A., Zaldarriaga M., Hernquist L., Hopkins P. F., Dutta S., 

Faucher-Gigu ̀ere C.-A., 2009, ApJ , 694, 842 

Nasir F., Bolton J. S., Becker G. D., 2016, MNRAS , 463, 2335 

Ni Y. et al., 2022, MNRAS , 513, 670 

Nishimichi T. et al., 2019, ApJ , 884, 29 

Okamoto T., Frenk C. S., Jenkins A., Theuns T., 2010, MNRAS , 406, 208 

Palanque-Delabrouille N., Y ̀eche C., Sch ̈oneberg N., Lesgourgues J., Walther 

M., Chabanier S., Armengaud E., 2020, J. Cosmol. Astropart. Phys. , 2020, 

038 

Pedersen C., Font-Ribera A., Rogers K. K., McDonald P., Peiris H. V., Pontzen 

A., Slosar A., 2021, J. Cosmol. Astropart. Phys. , 2021, 033 

Perdikaris P., Raissi M., Damianou A., Lawrence N. D., Karniadakis G. E., 

2017, Proc. R. Soc. A , 473, 20160751 

Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for Machine 

Learning. MIT Press, Cambridge, Massachusetts 

Rogers K. K., Peiris H. V., 2021a, Phys. Rev. D , 103, 043526 

Rogers K. K., Peiris H. V., 2021b, Phys. Rev. Lett. , 126, 071302 

Rogers K. K., Peiris H. V., Pontzen A., Bird S., Verde L., Font-Ribera A., 

2019, J. Cosmol. Astropart. Phys. , 2019, 031 

Santner T. J., Williams B. J., Notz W. I., 2003, Springer Series in Statistics, 

The Design and Analysis of Computer Experiments. Springer, New York, 

NY 

Seljak U. et al., 2005, Phys. Rev. D , 71, 103515 

Seljak U., Slosar A., McDonald P., 2006, J. Cosmol. Astropart. Phys. , 2006, 

014 

Springel V., 2005, MNRAS , 364, 1105 

Springel V., Hernquist L., 2003, MNRAS , 339, 289 

Theuns T., Leonard A., Efstathiou G., Pearce F. R., Thomas P. A., 1998, 

MNRAS , 301, 478 

Upton Sanderbeck P., Bird S., 2020, MNRAS , 496, 4372 

Valluri M. et al., 2022, preprint ( arXiv:2203.07491 ) 

Viel M., Haehnelt M. G., 2006, MNRAS , 365, 231 

Viel M., Matarrese S., Mo H. J., Haehnelt M. G., Theuns T., 2002, MNRAS , 

329, 848 

Viel M., Haehnelt M. G., Springel V., 2004, MNRAS , 354, 684 

Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005, 

Phys. Rev. D , 71, 063534 

Viel M., Haehnelt M. G., Lewis A., 2006, MNRAS , 370, L51 

Viel M., Becker G. D., Bolton J. S., Haehnelt M. G., 2013a, Phys. Rev. D , 

88, 043502 

Viel M., Schaye J., Booth C. M., 2013b, MNRAS , 429, 1734 

Villasenor B., Robertson B., Madau P., Schneider E., 2022, APJ,933, 59 

Walther M., Armengaud E., Ra v oux C., Palanque-Delabrouille N., Y ̀eche C., 

Luki ́c Z., 2021, J. Cosmol. Astropart. Phys. , 2021, 059 

Wu X., McQuinn M., Kannan R., D’Aloisio A., Bird S., Marinacci F., Dav ́e 

R., Hernquist L., 2019, MNRAS , 490, 3177 

AP PENDIX  A :  N O N - L I N E A R  MU LTIFIDE LITY  

EMULATO R  

In the main text, we have explored the ef fecti veness of a linear 

multifidelity emulator (the KO model, or AR1). In the linear model, 

the mapping from LF to HF is f HF ( θ ) = ρf LF ( θ ) + δ( θ ) , where f HF 

and f LF are the emulator predictions at those resolutions, and ρ is 

independent of the input parameters θ . 

Here, we compare those results with the results using a non-linear 

multifidelity emulator (NARGP). In the non-linear multifidelity 

model, proposed by Perdikaris et al. ( 2017 ), the mapping is a function 

of both the LF output and the input parameters. We model this as 

f HF ( θ ) = ρ( θ , ˜ f LF ( θ )) + δ( θ ) , 

such that ρ depends on both the input parameters and LF posterior 

output. The LF outputs, as is the case with the linear model, are 

median normalized such that the assumption on the GP of zero mean 

is more reasonable, ˜ f LF ( θ) = f LF ( θ ) /μLF − 1. 

Figure A1. Comparing the prediction error as a function of redshift and scale for linear and non-linear multifidelity emulators. This is mean error across all 10 

test simulations. The shaded region shows the extent of helium reionization in our simulations (see parameter limits in Fig. 3 ). 
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Following Perdikaris et al. ( 2017 ), ρ is modelled as a GP with 

input from both input cosmologies for HF, θHF , and the output 

from LF, ˜ f LF ( θ). The NARGP construction results in a deep GP 

model (Damianou & Lawrence 2013 ). We follow the approximation 

in Perdikaris et al. ( 2017 ) and replace ˜ f LF ( θ ) with its posterior 

distribution. Thus, the training reduces to training two regular GPs 

recursively. 

In Fig. A1 , we show the prediction errors separated into small 

and large scales, as a function of redshift for both the linear and 

non-linear multifidelity emulators. They perform similarly, with the 

linear emulator being more accurate at low redshifts on all scales, 

and high redshifts for small scales. The difference between the 

average error for the linear and non-linear models (o v er all scales 

and redshifts) is 0 . 08 per cent . This is in contrast to emulation of 

the matter power spectrum in Ho et al. ( 2022 ), where the non-linear 

model outperformed the linear model. 

It is worth noting that the non-linear model agrees closely with the 

linear model when using the full suite of training simulations, but lags 

behind the linear model when using fewer HF training simulations. 

F or e xample, the difference in the av erage error between linear and 

non-linear models using 40 LF and 3 HF is ≈ 2 per cent (1 . 9 per cent 

error for linear, 3 . 7 per cent error for non-linear). When using four 

HF, the difference is ≈ 1 per cent (1 . 5 per cent , 2 . 5 per cent ), and 

when using five HF the difference is ≈ 0 . 4 per cent (0 . 9 per cent , 

1 . 3 per cent ). While differences in the effectiveness of the non- 

linear model may be due to the quantity being emulated (matter 

power versus flux power), one likely reason for the difference is 

the number of input parameters. In Ho et al. ( 2022 ), five input 

parameters are used, while in this work we use nine. The non- 

linear model uses the posterior of the LF output, which requires 

Monte Carlo sampling. It is possible that the additional dimensions 

degrade the performance of the Monte Carlo integration, and thus the 

performance of the non-linear model. One other reason may be the 

larger number of hyperparameters that need to be optimized in the 

training. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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