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ABSTRACT

In this work, we extend our recently developed multifidelity emulation technique to the simulated Lyman-« forest flux power
spectrum. Multifidelity emulation allows interpolation of simulation outputs between cosmological parameters using many cheap
low-fidelity simulations and a few expensive high-fidelity simulations. Using a test suite of small-box (30 Mpc 2~ ') simulations,
we show that multifidelity emulation is able to reproduce the Lyman-« forest flux power spectrum well, achieving an average
accuracy when compared to a test suite of 0.8 per cent. We further show that it has a substantially increased accuracy over
single-fidelity emulators, constructed using either the high- or low-fidelity simulations only. In particular, it allows the extension

of an existing simulation suite to smaller scales and higher redshifts.

Key words: methods: numerical — methods: statistical —cosmology: theory.

1 INTRODUCTION

The modern and future test bed for cosmology lies in small scales and
non-linear structures. Cosmological analyses exploit observations of
these scales to explore questions such as the nature of dark matter,
the total neutrino mass, and the thermal history of the intergalactic
medium (IGM). One of the most powerful probes of small-scale
structure is the Lyman-« forest, a series of absorption features in the
spectrum of quasars (Gunn & Peterson 1965; Theuns et al. 1998;
McDonald et al. 2000, 2006; Hui et al. 2001; Viel et al. 2002;
Fan et al. 2006; Viel & Haehnelt 2006). Numerical simulations
are required to analyse these observations as they probe the non-
linear regime. As these simulations are expensive, cosmologists
build emulators (Heitmann et al. 2006, 2009; Habib et al. 2007),
which interpolate a summary statistic (in this case the 1D Lyman-
« forest flux power spectrum) between simulation outputs at different
cosmological parameters.

A recent development in cosmology is the application of multi-
fidelity emulators, which allow simulations with different particle
loads, and thus costs, to be combined together (Ho, Bird & Shelton
2022). Here, we adapt the multifidelity emulation technique to the
Lyman-« forest 1D flux power spectrum. Multifidelity emulation is
especially useful in this context because the Lyman-« forest probes
arange of redshifts, and is sensitive to smaller scales, which require
higher resolution simulations, at higher redshifts (Bolton & Becker
2009). The models developed here will allow a single emulator to
target the wide range of scales probed by the Lyman-« forest, which
would otherwise require a computationally infeasible number of very
large simulations (Borde et al. 2014).

The Lyman-« forest is the result of overlapping neutral hydrogen
absorption profiles in the spectra from distant luminous quasars,
processed through the expansion of the Universe (Gunn & Peterson
1965). As light travels from the quasar, it passes through neutral
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hydrogen gas of varying densities. In the rest frame of those neutral
hydrogen islands, light that has been redshifted close to the Lyman-«
transition at 1215.67 A will be absorbed and the rest transmitted. This
is repeated as the light continues to intersect more neutral hydrogen
islands on its path towards us, the observers. The result is a quasar
transmission spectrum containing an overlapping field of absorption
features that provides a proxy to the dark matter density along that
sightline (Croft et al. 1998).

The densities probed by the Lyman-« forest, from redshift 2 to 5,
are ~1-100 times the cosmological mean density. At these densities,
stellar winds and star formation effects are negligible, although black
hole feedback is important (Viel, Schaye & Booth 2013b; Chabanier
et al. 2020). The densities along with the range of scales accessed
have made the Lyman-o forest popular in cosmological studies,
including constraining the thermal history of the IGM and thus
reionization (Bolton et al. 2008, 2014; Nasir, Bolton & Becker 2016;
Boera et al. 2019; Wu et al. 2019; Gaikwad et al. 2021; Villasenor
et al. 2021), constraining cosmological parameters including the
neutrino mass (Viel, Haehnelt & Springel 2004; McDonald et al.
2005; Seljak et al. 2005; Seljak, Slosar & McDonald 2006; Viel,
Haehnelt & Lewis 2006; Palanque-Delabrouille et al. 2020; Garny
et al. 2021), and testing alternatives to cold dark matter (Viel et al.
2005, 2013a; Irsic et al. 2017a; Palanque-Delabrouille et al. 2020;
Garzilli et al. 2021; Rogers & Peiris 2021b).

The Lyman-« forest 1D flux power spectrum is the most commonly
used summary statistic for Lyman-o forest spectra. It probes small-
scale structure by measuring the two-point Fourier-space correlation
between neutral hydrogen absorption within a sightline (Croft et al.
1998).

Current observational measurements of the Lyman-o forest flux
power spectrum come from either a lower resolution, larger sample
survey (Sloan Digital Sky Survey, SDSS; Chabanier et al. 2019) or
various higher resolution, smaller sample surveys (IrSi¢ et al. 2017b;
Day, Tytler & Kambalur 2019; Karagayl: et al. 2022). In Chabanier
et al. (2019), the flux power spectrum constructed from Baryon
Oscillation Spectroscopic Survey (BOSS) and extended BOSS
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(eBOSS) spectra accesses redshifts from z = 2.2 t0 4.6 (6 per cent and
18 per cent average uncertainty, respectively) and scales from k &~
0.001 t0 0.02 s km~" (6 per cent and 14 per cent average uncertainty,
respectively). The small sample, higher resolution surveys generally
access a similar redshift range, but shift both the largest and smallest
scales to higher k. For example, in Karacayli et al. (2022) (their
conservative results), using spectra from multiple surveys (XQ-100,
KODIAQ, and SQUAD), they access redshifts from z = 2 to 4.6
(7 per cent and 27 per cent average uncertainty, respectively) and
scales from k &~ 0.005 to 0.1 skm~!' (12 per cent and 9 per cent
average uncertainty, respectively).

The Dark Energy Spectroscopic Instrument (DESI) will soon
report its first-year results. Ultimately, it will increase the number of
Lyman-« quasar spectra by a factor of 4 over SDSS. This corresponds
to ~50 quasars per square degree and a total of 7 x 10° quasars over
the 14 000 deg? survey footprint (DESI Collaboration et al. 2016). In
addition, DESI is expected to measure the 1D flux power spectrum at
smaller scales (k < 0.035 skm™!) and higher redshifts (z > 4.6) than
SDSS, achieving an accuracy of the order of a few per cent (Valluri
et al. 2022).

Extracting cosmological information from these observations will
require simulations that follow the distribution of gas at relevant
densities and on relevant scales. For the Lyman-« forest, box sizes of
at least 100 Mpc 4~! and mean particle spacing of 100/3072 ~ 0.03
Mpc i~ are necessary (Borde et al. 2014). Earlier work has focused
on methods that can reduce the cost of such simulations. Borde et al.
(2014) used a splicing technique to produce high-resolution, large-
volume outputs from three sets of less computationally intensive
simulations: low resolution, large volume; high resolution, small
volume; and low resolution, small volume. Luki¢ et al. (2015)
explored the use of Richardson extrapolation to enhance output
resolution, in addition to testing the splicing technique.

Parameter inference tasks, such as a direct Markov chain Monte
Carlo analysis, require ~10°-10° model evaluations, indicating
the number of simulations required by a naive approach. Even
using techniques such as splicing, this is computationally infeasible.
However, using a significantly reduced number of simulations (~30),
an emulator can be constructed that effectively interpolates between
this smaller set of simulations. In addition to the Lyman-« forest,
emulators have been used extensively in cosmology for studying the
matter power spectrum (Heitmann et al. 2009, 2014; Lawrence et al.
2017; Giblin et al. 2019; Arico et al. 2021; Euclid Collaboration
et al. 2021; Giri & Schneider 2021), weak lensing (Harnois-Déraps,
Giblin & Joachimi 2019; Davies et al. 2021), the halo mass function
(McClintock et al. 2019; Nishimichi et al. 2019; Bocquet et al. 2020),
and the 21-cm signal (Kern et al. 2017; Cohen et al. 2020; Bevins
et al. 2021; Bye, Portillo & Fialkov 2022). Still, the computational
resources required to run ~30 simulations with the requisite volume
and resolution are highly restrictive, especially for the Lyman-
«a forest.

Here, we use modern machine learning techniques to alleviate
the computational resource cost associated with constructing an
emulator. Specifically, we are concerned with using machine learning
to predict high-resolution simulation outputs to a high degree
of accuracy, while running a minimal number of high-resolution
simulations. One machine learning method that is suited to this task
is a Gaussian process (GP) emulator. GPs (Rasmussen & Williams
2006) are a means of interpolating between the simulation outputs,
providing function prediction in a Bayesian framework. Essentially,
a distribution of functions is learned through training on simulations,
and the mean (best estimate) and variance (interpolation error) of
the output can be returned for arbitrary simulation inputs. While
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other interpolation methods are possible, GPs have many benefits:
the inherent quantification of prediction uncertainty, the option to
incorporate prior knowledge, and the ability to interpolate within
high-dimensional parameter space.

Previous uses of GP emulators for the Lyman-« forest have been
shown to be effective at predicting summary statistics (Bird et al.
2019; Rogersetal. 2019; Pedersen et al. 2021; Rogers & Peiris 2021a,
b; Walther et al. 2021). Bird et al. (2019) self-consistently showed
that the predicted flux power from their GP emulator (trained with
21 simulations) agreed to within 1-2 per cent of the corresponding
simulation flux power spectrum. These GP emulators still require a
substantial computational cost, as the full simulation suite must be
run with sufficient volumes and resolutions for the Lyman-« forest.

Recently, Ho et al. (2022) implemented a multifidelity GP emula-
tor (Kennedy & O’Hagan 2000) for the matter power spectrum. Here,
we combine and expand on the methods outlined in Bird et al. (2019)
and Ho et al. (2022), to produce a multifidelity GP emulator for the
Lyman-« forest flux power spectrum. In our multifidelity model, the
training simulations are split into two fidelities: a large sample of low-
resolution simulations (low fidelity, LF) and a small subset of these
simulations run at higher resolution (high fidelity, HF). Note that
we use fidelity and resolution interchangeably throughout this work.
Using these two training sets, the multifidelity emulator is trained to
predict the 1D flux power spectrum that would be output by a high-
resolution simulation for arbitrary cosmological and astrophysical
parameters.

A multifidelity emulator allows us to replace some of the HF
simulations that would be needed in a single-fidelity emulator with
LF simulations. This can dramatically reduce the computational cost
of constructing an emulator, while retaining predictive power across
parameter space. Using this method, emulators can be constructed
that make use of the full range of scales and redshifts probed by
Lyman-« forest observations. This enables analyses that can jointly
constrain thermal, astrophysical, and cosmological parameters.

In our high-resolution simulations, the Lyman-« forest flux power
spectrum is converged to &~ 5 per cent. While the scales we probe
in this work are resolved, the box size we use is smaller than
required to analyse the full range of scales available in Lyman-
« forest data, i.e. we cannot compute a likelihood function using
all the real data without larger boxes. We therefore defer a full
cosmological likelihood analysis to future work. Our goal is to
quantitatively test the accuracy of the emulator output, as compared
with the output from a set of testing simulations run at the same
resolution as the HF training set, and demonstrate the validity and
utility of the multifidelity technique. Specifically, we quantify the
accuracy of the single- and multifidelity emulators with respect to true
values from the testing simulations, thus determining how effective
the multifidelity model is at producing high-resolution outputs at
minimal computational cost.

2 SIMULATIONS

Simulations were performed using MP-GADGET!, an N-body and
smoothed particle hydrodynamics (SPH) code built on the solid base
of GADGET-3 (last described in Springel 2005). MP-GADGET has been
substantially modified to include shared-memory parallelism using
OpenMP, together with many other algorithmic improvements and
new subgrid models, as described in Bird et al. (2020, 2022) and
Ni et al. (2022). The initial power spectrum and transfer functions

Thttps://github.com/MP-Gadget/MP-Gadget
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are generated with the Boltzmann code CLASS (Lesgourgues 2011).
Species-specific initial conditions are generated for baryons and dark
matter (Bird et al. 2020; Fernandez, Bird & Upton Sanderbeck 2021).
We include radiation in the cosmological background model and
assume massless neutrinos.

The physics models largely follow those used for the ASTRID
simulation, which are described in Bird et al. (2022). Primary sources
for these models, as well as changes from Bird et al. (2022), are
described below.

We use a cubic kernel for our density estimator (rather than a
quintic kernel). For these simulations, the cubic kernel, in addition
to running faster, produced a neutral hydrogen column density
distribution that was more consistent with observations for column
densities between 10%° and 10?> cm~2 (Ho, Bird & Garnett 2021).
We continue to use the pressure—entropy formulation of SPH. The
smaller SPH kernel increases the noise within galaxies, but has
minimal effect on the Lyman-« forest (Bird et al. 2013).

Star formation follows the model of Springel & Hernquist (2003),
with our specific implementation as described in Feng et al. (2016).
We lower the number of stars produced per gas particle from 4
(used in ASTRID) to 1 (as in [lustris-TNG), which speeds up the
simulation without having an effect on the Lyman-« forest.

Black holes follow the model of Ni et al. (2022). We found that
for the resolutions used here, the dynamic friction from gas led to a
few black holes escaping from their dark matter halo, so we only use
dynamic friction from dark matter and stars. The black hole feedback
factor, which controls the fraction of luminosity that is converted into
thermal energy, is an emulator parameter (BHF), with the associated
parameter limits in Fig. 3. The black hole feedback radius is fixed to
3kpc b7, selected to be the average black hole feedback radius at the
highest tested resolution when using a nearest neighbour distance. To
accommodate a lower mass resolution than ASTRID, the minimum
stellar mass needed in a halo to seed a black hole was increased to
2 x 108 Mg, and all black hole seeds start with a mass of 5 x 10* M.

Stellar winds are modelled following Okamoto et al. (2010). The
decoupling distance for the winds is increased from 20 to 1 Mpc 4™,
which allows the winds to recouple due to density changes rather
than travel distance. The density threshold for wind recoupling is
set to 10 per cent of the star formation density threshold (which is
57.7 times the critical density). The minimum wind velocity is set to
100 kms~!. Finally, metal return (gas enrichment) is disabled as it
is not important for the Lyman-« forest and can be computationally
expensive.

Gas is assumed to be in ionization equilibrium with a uniform
ultraviolet background using the model of Faucher-Giguere (2020).
We boost the temperature of the gas to 15000 K, the time-step after
the gas is reionized, to model impulsive heating during hydrogen
reionization from ionization fronts (D’ Aloisio et al. 2019).

We implement He 1I reionization using the model of Upton
Sanderbeck & Bird (2020). The input parameters for this model
are quasar mean bubble size and variance, redshifts for the start and
completion of He 1 reionization ™, z'}e ! and the quasar spectral
index a, (which effectively scales the peak temperature during He 11
reionization). The quasar bubble size is reduced from the default
of ~30 Mpc, motivated by radiative transfer simulations (McQuinn
et al. 2009), to 5 Mpc, due to our small box size.

Simulations are initialized at z = 99 and finish at z = 2, and use
periodic boundaries. Box volume, particle number, and gas particle
mass resolution are reported in Table 1. The range given for the gas
resolution is due to the varying value of / in our simulation suite. The
gas particle mass resolution for our HF simulations does not meet
the resolution that Bolton & Becker (2009) recommend to resolve
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the forest at all redshifts of interest. However, the Lyman-o forest
flux power spectrum from our HF simulations is converged to within
~ 5 per cent of a simulation that does meet the required resolution
of Bolton & Becker (2009). We are interested in the performance of
the multifidelity GP emulator in learning the mapping from low to
high resolution; thus, this slight lack of numerical convergence does
not affect our results. Examples of the gas density (at z = 3.6) for
the two resolutions are shown in the top and bottom panels of Fig. 1.

Lyman-« forest absorption spectra are generated using the fake
spectra flux extractor (Bird 2017),? described in Bird et al. (2015). We
generate 32 000 (seeded) randomly placed skewers for each snapshot,
from z = 5.4 to 2.0 in increments of Az = 0.2. The pixel resolution
is set to 10 km s~'. An optical depth threshold of T < 10° is set to
eliminate damped Lyman-« systems. Example spectra from one LF
and one HF simulation (at z = 4) are shown in the middle panel of
Fig. 1. Note that the LF simulation is not simply a smoothed version
of the HF simulation, as the fine velocity structure of the gas moves
the location of the absorption peaks.

These sets of neutral hydrogen absorption spectra are used to
construct the Lyman-o forest flux power spectrum for each sim-
ulation, at each redshift. The flux power spectrum is defined as
Pr(k) = |L7'§2(k)|, where §2 (k) is the Fourier transform of the flux
excess, 6p(k) = F(k)/(F(k)) — 1, and L is the length of the sightline.
The reported flux power spectrum is averaged over all 32 000 spectra.

Fig. 2 shows flux power spectra from a single LF simulation and its
HF counterpart, and the ratio of these at several redshifts. While the
exact difference between the LF and HF flux power spectra depends
on simulation input parameters and redshift, in general the LF differs
most from the HF at small scales. The enhanced power on large
scales for the LF flux power spectra is consistent with Borde et al.
(2014), and is likely due to differences in heating and cooling during
H 1 and He 1 reionization.

Fig. 3 lists the input parameters that are varied across our suite
of simulations, as well as their limits. Two parameters control the
primordial power spectrum: n, is the scalar spectral index (slope) and
A, is the amplitude (see Bird et al. 2019 for more details). Three of
the parameters relate to the He I reionization model: z;'*" and z}*"
are the redshifts for the start and end of He II reionization, and o,
is the quasar spectral index. We vary the Hubble constant through £,
and the total matter density through Qy4%. One parameter is varied
for H I reionization: z! is the midpoint redshift of H I reionization.
Finally, we vary one parameter for the black hole model: BHF is the
black hole feedback factor, which controls the fraction of luminosity
that is converted into thermal energy. Note that our simulations do not
contain a kinetic feedback model. However, at z > 2, it is expected
that the thermal mode dominates. Also shown in Fig. 3 are the LF
and HF training samples. Note that the HF samples are a subset of
the LF samples. The selection of the HF samples is described in
Section 3.2.3.

3 EMULATORS

In Section 3.1, we will briefly review emulation using a GP. In
Section 3.2, we will review how the GP emulator can be extended
to model simulations with different qualities using a multifidelity
emulator, MFEmulator. The multifidelity emulation technique of
Kennedy & O’Hagan (2000) will be reviewed in Section 3.2.1.
Section 3.2.2 will discuss the differences in multifidelity emulator
design between this paper and Ho et al. (2022). Finally, Section 3.2.3

Zhttps://github.com/sbird/fake_spectra
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Flux

Sight Line Distance [Mpc/h]

Figure 1. Example Lyman-« forest spectra and corresponding gas density from simulations at redshift 4. The top and bottom panels show the simulated gas
surrounding the skewer, which produced the spectra shown in the middle panel. Examples are shown for simulations run at high (top panel, yellow line) and
low resolution (bottom panel, red line).
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High Fidelity
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| Figure 3. Simulation parameter limits and samples. Parameters for the low-
) ! ) 10.9 resolution simulations (crosses) were determined by filling a Latin hypercube.
! Initially, 30 low-resolution samples were generated, then an additional 10
T 111 were added while maintaining the Latin hypercube method, hence the non-
H 1.0 uniform spacing for the low-resolution samples. The optimal subset of low-
! ' resolution simulations is determined (see Section 3.2.3), and this subset is

1 z5.4 i run at higher resolution (shown as red circles).
0.01 0.02 0.03 0.04

k [s/km]

Figure 2. Lyman-o forest flux power spectrum from LF and HF simulations. Table 1. Table of simulation sets.

The top panel shows the flux power spectrum at redshift 3 from an LF - - .
simulation (blue) and its HF counterpart (yellow). The lower panels show the Simulation Box volume Npart Mgas Mo h™)
ratio of the flux power for these two resolutions, for all LF-HF simulation

LF Mpc h~1)3 2 x 2563 1.78, 2. 107

pairs, at z = 3.8, 4.6, and 5.4. Dashed lines show the highest k probed by (30 Mpc h,1)3 x 563 [1.78,2.37] x 06
BOSS/cBOSS (Chabanier et al. 2019) and the estimated reach for DESI 1+ (S0Mpe h™ )" 25120 [2:22,2.96] x 10
¢ abamer et k. and the estimated reach for Test (G0Mpch™1)® 2% 5123 [2.22,2.96] x 10°

(Valluri et al. 2022).
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will outline how we select our training simulations in the parameter
space.

3.1 GP emulator

GP regression models (Rasmussen & Williams 2006) have been
widely used to build cosmological emulators (Heitmann et al. 2006,
2009; Habib et al. 2007). A GP provides closed-form expressions for
predictions. In addition, a GP naturally comes with uncertainty quan-
tification, which is useful when building an inference framework. In
the context of emulation, a GP can be seen as a Bayesian prior for
the simulation response. It is a prior because the emulator model
is chosen to ensure smoothness and monotonicity features of the
simulation response before data are collected (Santner, Williams &
Notz 2003).

Let® € ® C R4 be the input cosmologies for the simulator, where
d is the dimension of the parameters (d = 9 for our emulator).
() is the corresponding output summary statistic. In this work, the
summary statistic, f(@), is the Lyman-« forest flux power spectrum.
A GP regression model can be viewed as a prior on the response
surface of our simulated Lyman-« forest flux power spectrum:

f(©) ~ GP(11(0), k0, 8")), M

where (0) = E[f(#)] is the mean function, and k(8,0') =
Cov[ f(#), f(8")] is the covariance kernel function. In this work,
we assume a zero mean function, and we used the same covariance
function as in Bird et al. (2019), which will be defined later in this
section.

Suppose we run the simulations at n carefully chosen input
cosmologies, D = {6, - - - , 8,}, and we generate the corresponding
Lyman-a forest flux power spectrum for each simulation, y =
{f(@@,),---, f(0,)}. Conditioning on this training data, we can get
the predictive distribution of f at a new input cosmology @ through
the closed-form expression

f®6) |y, D~ N(ua(8),0,0)). 2
where the mean and variance are
1a(0) = k0, D)TK(D) ' y;

2 —1 (3)
0,(0)=k(0,0)— k@, D)TK(D) k0, D).

The vector k(0, D) = [k(0,6,),--- , k(0,0,)] represents the co-
variance between the new input cosmology, #, and the training data.
The matrix K(D) is the covariance for the training data.

For the covariance kernel function, we choose the same kernel as
in Bird et al. (2019), which is a combination of a linear kernel and a
radial basis kernel (RBF):

k(0,0";00,1,0) = krgr(0, 0';00, 1) + kun(8, 0';0)

L0 -0y d
= 002 exp (Z —'212’> + Zafo,-a/,
i=1 i i=1
)]

where O'g and o2 are the variance hyperparameters for the RBF kernel
and the linear kernel, respectively. / is the length-scale parameter that
controls the smoothness of the GP function. We applied automatic
relevance determination for both linear and RBF kernels. That is,
we assign one length-scale /; (variance ;) hyperparameter for each
input dimension i for the RBF and linear kernels. This allows the
GP to dynamically learn the scale over which each input dimension
varies, which corresponds to the degree of sensitivity of the flux
power spectrum to the input parameter.

MNRAS 517, 3200-3211 (2022)

Although we do not explicitly write in the notation, f() is a
single-valued output. Since our target summary statistic is a vector,
we model each & bin of the flux power spectrum with a separate GP.
The primary reason for this choice is that the correlation between
the LF and HF flux power spectrum changes depending on the scale
considered. The multifidelity method can only capture this scale
dependence if we model each scale separately.

3.2 Multifidelity emulation

We first introduce the Kennedy—O’Hagan model (KO model;
Kennedy & O’Hagan 2000) in Section 3.2.1. Section 3.2.2 describes
the changes we have made to adapt the model from Ho et al. (2022)
to the Lyman-« forest. Finally, the strategy we employ for choosing
parameters at which to generate HF training simulations is described
in Section 3.2.3.

3.2.1 KO method

The KO model (Kennedy & O’Hagan 2000) was first introduced
to model a sequence of computer codes with increasing fidelity.
For simplicity, we assume that there are only two fidelities: low-
fidelity (LF) simulations with low resolution and high-fidelity (HF)
simulations with high resolution.

We define {y,p, yyr} as the Lyman-« forest flux power spectra
in the training set. ypp = {fir(@"))/ and yupe = (fiur (0,
where npr and nyp are the number of simulations in the low- and
high-fidelity training sets. We use the KO method to model Lyman-
o forest flux power spectra from different fidelities:

Sfur(0) = p - fir(9) + 5(0), ()

where p is a trainable parameter describing a multiplicative correc-
tion between the LF and HF Lyman-« forest flux power spectra.
3(0) is a GP independent of f;r(6), describing an additive correction
between fidelities. In other words, equation (5) assumes that the HF
Lyman-« forest flux power can be decomposed as the LF flux power
multiplied by a correction parameter, p, and an additive bias function
3(0).

As mentioned in Ho et al. (2022), the p parameter has to be scale-
dependent (a function of k) to model the well-known fact that small
scales are less well resolved in smaller simulations. Here, we use the
same method as Ho et al. (2022) and assume that equation (5) is a
single-output GP model. We assign a KO model to each k bin of the
data.?® In this way, we can model p as a function of &, as shown in
Fig. 4.

We also assign KO models for each redshift. As shown in Fig. 4,
p is a non-trivial function of both k and z, so we cannot simply use
an emulator trained on one redshift to apply on another redshift.* We
note that it is possible to assume a smooth function to model p(k, z).
However, validating p(k, z) is out of scope for this paper. In practice,
observational data are conditioned on a specific redshift, so training
emulators on separate redshifts is sufficient for cosmology inference.

Fig. 4 shows that p stays close to unity at large scales for most
of the redshifts. At small scales, however, different redshifts require
different values of p. At the middle redshifts (3 < z < 5), p has a

3We can easily get the same set of k bins for LF and HF by using the same
spectral resolution for both simulations.

4See Pedersen et al. (2021) for a Lyman-« forest emulator that uses a single
GP for all redshifts, and achieves sub-percent accuracy, albeit with some
ambiguity between model parameters and redshift.
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Figure 4. The scale parameter, p, of the KO model (equation 5) as a function
of k. Different colours represent different redshifts. We separate the redshifts
into four bins, 2 <z <3,3<z<4,4 <z <5, and 5 < z < 5.4. Within
each redshift bin, we average over fixed kK modes, which are linearly spaced
between the maximum k and minimum k at the given redshift range. This
emulator used 40 LF and 6 HF for training.

large positive deviation from unity. At the low redshifts (2 < z < 3),
p has a moderate deviation towards p > 1. The only exception is at
the high redshifts (5 < z < 5.4), which stays close to p = 1 for all
scales. This indicates that the correction to the Lyman-« forest flux
power due to the resolution of the simulation varies with redshift,
depending on the overdensity probed by the forest.

3.2.2 Model differences from Ho et al. (2022)

Here, we highlight the ways in which we have adapted the model
from Ho et al. (2022), which emulated the non-linear matter power
spectrum at z = 0-2, to the Lyman-« forest at z = 2-5.4. Since the
redshift range is larger in this work, we employed a new strategy to
select the optimal HF training set by averaging over the interpolation
loss for all redshift bins. We will describe the strategy in detail in
Section 3.2.3.

In Ho et al. (2022), we outlined two multifidelity methods: a
linear multifidelity emulator [the KO model or the autoregression
model (AR1)] and a non-linear multifidelity emulator (non-linear
autoregressive GP or NARGP; Perdikaris et al. 2017). However, we
found that NARGP requires more HF training simulations for the
Lyman-« forest flux power than AR1, perhaps due to the wide range
of redshifts used. We use the KO model for our main results, and
describe the NARGP results in Appendix A.

In this work, instead of emulating logarithm scaled powers, we
adopted the mean-flux normalization strategy proposed in Bird et al.
(2019). We normalize all flux power spectra in the training set by the
median spectrum:

Yip YL .
Y median; (yp)
Yur ©
Yur <

median; (yg) a

The index i refers to one of the spectra in the training set,
Yk = {fie(@F)} . Equation (6) ensures that the training sample
distribution is close to having a zero mean, matching the prior of
the GP emulator. We found that in practice this normalization makes
training the emulator substantially easier. Note that we normalize

the HF training set using the same LF median spectrum. As the HF

Multifidelity Lyman-« forest emulator 3205

training set is small, the median spectrum estimate for HF is noisy,
and so using it for normalization may introduce some unwanted
training bias.

3.2.3 Sampling strategy for HF simulations

The KO model approach can be seen as a Bayesian way to correct
an emulator from LF to HE. Thus, if y is the HF Lyman-« forest flux
power spectrum used for training, and @ is the corresponding input
parameters:

y = fir(0) + (fur(0) — fLr(0))
= fLe(9) + error(9).

The emulation accuracy will be directly affected by how well an
autoregressive construction can model error(@). Usually, a large set
of LF simulations are used as training data for fir(f) because they
can be obtained cheaply. The quality of training data for error(f) =
fur(@) — fLr(@) thus relies on the choice of HF simulations.

In Ho et al. (2022), we proposed an optimization strategy to select
HF training simulations. A low-fidelity only emulator (LFEmu)’ is
trained on a subset of LF training simulations. The posterior means of
the trained LFEmu are used to calculate the emulation errors from the
remaining LF samples in the Latin hypercube sampling (LHS). By
minimizing the emulation errors of LFEmu, we can grid search for the
optimal set of cosmologies that best interpolates the parameter space
using a small number of training simulations. Assuming LFEmu is
correlated with HFEmu, we can use the selected optimal cosmologies
as inputs for the HF training set. By ensuring the HF training set
achieves a good interpolation, we mitigate emulation errors for the
multifidelity emulator.

In practice, we employ a three-stage procedure for building a
multifidelity emulator:

(N

(1) Prepare LF simulation suite.

(i1) Prepare HF simulation suite. This is done by using LFEmu to
find the set of cosmologies that minimizes the interpolation loss.

(iii) Build MFEmulator. If the accuracy is not enough, go back
to stage 1 or 2 to run more training simulations.

For stage (ii), to avoid wasting computational resources running
more LF simulations, we directly use the LF simulation suite in stage
(i) to build and validate the LFEmu. Thus, the cosmologies chosen
for the HF set are a subset of the LF simulation LHS, which fulfils
the nested training data set design suggested in Kennedy & O’Hagan
(2000). The benefit of using a nested data structure, Oyr < 0y, is
that we can directly compute posterior means from the LF training
set for cosmologies @yr, without any interpolation in LF.

We note that it is possible to train a MFEmulator without
using the LF simulations to optimize the HF points. However, if
the selection of HF points is suboptimal (i.e. can barely interpolate
in the prior volume), then the MFEmulator accuracy will be
suboptimal. This is because the error(9) cannot be decomposed into
an autoregressive structure easily.

To find the optimal HF training set across the full redshift range,
7z =2-5.4, we train an LFEmu for each redshift and get the validation
loss (we used mean squared errors). We sum up the validation loss
for all redshifts and find a subset of cosmologies that minimizes the
summed validation loss.

In Fig. 5, we summarize the above-described procedure in a

STn a similar way, we call a high-fidelity only emulator, HFEmu.

MNRAS 517, 3200-3211 (2022)
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Figure 5. A flowchart for training a multifidelity emulator. We start with
an LF set of simulations. We then select a subset of LF points to train an
emulator, LFEmu, at each redshift. The validation loss for each LFEmu is
computed using the rest of the LF simulations as a validation set. Finally,
we sum up the validation losses at each redshift, and use the summed loss to
propose a set of cosmologies @y that can best minimize the summed loss.

flowchart. For a formal description, we refer to Ho et al. (2022).
The only difference between the proposed procedure in Fig. 5 and
the procedure in Ho et al. (2022) is that we optimize @yr across
redshifts z = 2-5.4 in this work. Thus, we have an additional step to
sum the LFEmu validation loss across redshifts.

Training an LFEmu on all possible LF subsets is computationally
intensive. To reduce costs, we employed the greedy optimization
strategy from Ho et al. (2022). We first explored all possible subsets
for three design points within the LF LHS. For the optimal four design
points, instead of exploring all possible subsets, we grew the subset
one point at a time, fixing the previously chosen optimal three HF
points. In the same line of thought, we grew the subset to six optimal
design points for HF training cosmologies. Our final simulation suite
of 40 LF and 6 HF samples, along with parameter limits, is shown
in Fig. 3.

4 RESULTS AND DISCUSSION

Using the flux power spectra from our LF and HF simulations, we
train single-fidelity (one LF only and one HF only) and multifidelity
emulators. These trained emulators are used to predict the flux power
spectrum output for a set of 10 simulation input parameters. We then
compare these predictions to the corresponding testing simulations
that were run at the same resolution as the HF simulations (see
Table 1).

4.1 Emulator accuracy

In the following, we only show results for the emulators that use
the full available set of training simulations (40 LF and 6 HF). We
have verified that using all available training simulations leads to the
most accurate emulator. Section 4.2 shows how emulator accuracy
degrades when a smaller subset of the available simulations is used.

Using the full set of available simulations, the mean predic-
tion error for the multifidelity emulator is (|PE*'/Pime —1]) ~
0.8 per cent (averaging across all scales, redshifts, and testing
simulation outputs). For the LF single-fidelity emulator, the mean
prediction error is ~ 4 per cent. This is not unexpected; there are

MNRAS 517, 3200-3211 (2022)
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Figure 6. Comparing the prediction error as a function of (linearly binned)
wavevector for single- and multifidelity emulators. This is the mean error
across all redshifts and 10 test simulations. The shaded regions are the
variance in the prediction error. Dashed lines show the highest k probed
by BOSS/eBOSS (Chabanier et al. 2019) and the estimated reach for DESI
(Valluri et al. 2022).

real differences between the flux power spectra output by the low-
and high-resolution simulations that are not being captured with this
method. The 4 per cent error may seem quantitatively quite good,
considering the simpler methodology and reduced resource cost.
However, there is no indication that the error could be reduced further
with additional simulations (see Section 4.2).

For the HF single-fidelity emulator, the mean prediction error
is &~ 3 per cent. This is likely limited by the sample size of the
training set (six simulations), leading to increased errors when
making predictions for inputs that are far away from the training
samples. It is important to note that the HF samples are selected
to optimize the multifidelity emulator, rather than as an independent
emulator (i.e. as a Latin hypercube sample). There is some indication
that prior information from the LF training samples provides useful
information about the best areas of parameter space to sample. To
test this, we split our testing set (10 simulations, same resolution
as the HF samples) into training and testing sets, then train all 210
combinations of 6 samples, and predict the outputs for the remaining
4 samples. The error range from this exercise is 2.5-11.5 per cent
(5.5 per cent mean error, 1.5 per cent standard deviation). Though
not a direct comparison, the 3 per cent error we obtain from the HF
single-fidelity emulator compares favourably with this, indicating
that the HF samples selected are an improvement over using an LHS
scheme.

Fig. 6 shows the mean prediction error, averaged over all redshifts
and 10 test simulation outputs, as a function of wavevector k. In this,
and the following figures, the shaded region around the curves is the
variance in prediction error (| PFpmi /PE¢ — 1), to give a sense of how
much the error varies beyond the mean. The multifidelity emulator
outperforms the single-fidelity emulators at all scales, with an error
between 0.5 and 1.5 per cent. The LF (HF) single-fidelity emulator
has error between 2 and 7 per cent (2—6 per cent).

Both single-fidelity emulators and the multifidelity emulator
trend towards higher error for small scales. The LF emulator dips
1-2 per cent around k &~ 0.02 skm~!. The dip occurs on scales at
which the low-resolution flux power spectra go from overestimating
to underestimating the high-resolution power (see Fig. 2, for z <
4.6). The uptick in the multifidelity emulator error for the largest
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Figure 7. Comparing the prediction error as a function of redshift and scale for single- and multifidelity emulators. This is mean error across all 10 test
simulations. The blue shaded region shows the extent of helium reionization in our simulations (see parameter limits in Fig. 3).

k bins is also present in the HF emulator, indicating that there is a
scarcity of large-scale modes available in the emulator training.

Fig. 7 shows how the emulators perform as a function of redshift
and scale. In the following, we define small scales as k > 0.02 s km™!
and large scales as k < 0.02 skm™! (divided at the smallest scale
accessible by BOSS/eBOSS data; Chabanier et al. 2019). On large
scales (Fig. 7, left-hand panel), the LF emulator error decreases with
time until z & 4, and then slowly increases. This trend is because,
as can be seen in Fig. 2 (left of the BOSS/eBOSS dashed line),
the low-resolution flux power comes into better agreement with the
high-resolution flux power as it nears z ~ 4. We also found that the
LF simulations do not cool as efficiently as the HF simulations after
He 11 reionization, likely leading to the rise in error for z < 3.2.

On small scales (Fig. 7, right-hand panel), the LF emulator error is
more variable. The dip in error seen around z & 4.6 occurs as the low-
resolution flux power crosses from overestimating to underestimating
the high-resolution flux power (Fig. 2, right of the BOSS/eBOSS
dashed line). The subsequent rise in error is due to the loss of
small-scale power and consequent underestimation of the flux power
spectrum in the LF simulations.

The trends in redshift and scale seen in the LF emulator perfor-
mance are not due to interpolation error, but due to the different
numerical resolution of the two simulation fidelities, since this
emulator is not predicting the flux power at the higher resolution.
Some differences are connected to temperature differences between
the LF and HF simulations. For low densities (~1 times the mean
density), the LF simulations are colder than the HF simulations at
high redshift, but come into better agreement leading up to He 1II
reionization, after which they diverge from the HF simulations
again. For higher densities (1-100 times the mean density), the LF
simulations are once again colder than the HF simulations at high
redshift, but at lower redshift they are too hot (with a crossover
at z &~ 4.6). As higher redshifts probe lower densities, the error
initially decreases with redshift, before rising again towards the
lowest redshifts.

On both large and small scales, the HF emulator errors are
around 3.5 per cent, dominated by sampling variance. During He 11
reionization, the HF emulator has more variation in error, which is
probably exacerbated by our small box sizes. The increased variation
during He 1I reionization further indicates that the primary source of
error for the HF emulator is the sample size of the training set.

On small scales, the multifidelity emulator error is insensitive to
redshift and small (0.9 per cent). On large scales, the multifidelity
emulator error slightly decreases until z = 4.2, and then increases
with the onset of He II reionization, before flattening again. The
trend is also more variable during He II reionization, indicating that
emulator finds it more difficult to learn the mapping during this pro-
cess. However, the multifidelity emulator still outperforms the single-
fidelity emulators, with an error between &~ 0.4 and 1 per cent.

4.2 Emulator runtime

While we have shown that the multifidelity emulator outperforms
the single-fidelity emulators presented here, it still remains to show
that it is more computationally cost efficient. We could, for example,
add more training simulations to our single-fidelity HF emulator
and get a similarly accurate high-resolution emulator. However, the
computational cost would increase significantly. By comparing the
total emulator runtime to prediction error, we can determine the
choice that balances computational cost and accuracy. In practice, the
important question is to determine the computational cost at which
a given emulation technique can achieve a desired accuracy. The
computational cost of training the emulators is subdominant (O(1)
cpu-hours) to running the training simulations, so in the following,
we only consider the runtime for the simulation suites.

Fig. 8 shows the mean prediction error (averaged over all redshifts
and test outputs) as a function of the number of simulations used in
the training set, for small and large scales (as defined in Section 4
and Fig. 7). The solid lines show prediction errors for multifidelity
emulators trained using six HF and a varying number of LF
simulations. The small- and large-scale errors flatten out after ~30
LF simulations are used in the training set. The LF simulations allow
the emulator to determine how the flux power spectrum depends
on the cosmological input parameters, and so this indicates that
30 LF simulations are needed to explore our nine-parameter space.
Other emulators range from using ~6 simulations per parameter
(e.g. McClintock et al. 2019; Ho et al. 2022) to 30 per parameter
(e.g. Euclid Collaboration et al. 2021). The three to four simulations
per parameter required here is unusually low, perhaps because the
input parameters affect the flux power spectrum close to linearly in
much of parameter space.

MNRAS 517, 3200-3211 (2022)
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Figure 8. Emulator prediction error as a function of the number of simula-
tions used in training the emulator. This is the mean error across all redshifts
and 10 test simulation outputs. The prediction error is broken down into large
(k < 0.02 skm™") and small (k > 0.02 skm™") scales, as in Fig. 7. The solid
lines show how the average error depends on the number of LF simulations,
while the dashed lines show how the average error depends on the number of
HF simulations once all LF simulations are included.
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Figure 9. Prediction error as a function of total training simulation computa-
tional cost. This is the mean error for 10 test simulations over all redshifts and
scales. The solid line shows the prediction error when changing the number
of HF simulations used in training the multifidelity emulator. Also shown
are the single-fidelity emulators (red squares) and the multifidelity emulator
trend with a varying number of LF training simulations (yellow, dashed).

Dashed lines show prediction errors for multifidelity emulators
trained using 40 LF and a varying number of HF simulations.
Adding extra HF simulations to the training set has a larger impact
than adding LF simulations. The addition of each HF simulation
generally improves the emulator accuracy for small scales more than
for large scales. This is as expected, since the main purpose of the
HF simulations is to learn the mapping from low- to high-resolution
output, with small scales being more resolved in the HF simulations.

Fig. 9 shows the emulator prediction errors as a function of the total
runtime (cost of running the training simulations). All simulations
were run on the Frontera supercomputer at the Texas Advanced
Computing Center. The cost is divided between the LF training
simulations, which cost ~10 node hours each, and the HF training
simulations, which cost ~150 node hours each.

MNRAS 517, 3200-3211 (2022)

The dashed trend shows the same emulators as Fig. 8, but no longer
divided by scale. Qualitatively, it looks the same as both the large-
scale and small-scale results from the previous figure. The error is flat
after ~30 LF training simulations, indicating that a similar accuracy
can be achieved using the multifidelity emulator with ~30 rather than
40 LF simulations. The most efficient 1 per cent error emulator in
this study is a multifidelity emulator using 30 LF and 5 HF training
simulations (the cost for this was ~1050 node hours). The most
accurate emulator is the 40 LF, 6 HF multifidelity emulator, with
error 0.8 per cent and cost ~1300 node hours.

The dotted line (squares) shows the error and runtime for the
single-fidelity emulators. Following from the six HF single-fidelity
emulator result to the dashed (yellow) line, it can be seen that the
addition of just a few LF training simulations quickly improves the
accuracy. It can also be seen that in terms of computational cost, the
multifidelity emulator is more efficient.® Note that the HF training
simulations are not selected to optimize a single-fidelity emulator,
but instead are selected to optimize the multifidelity emulator. They
thus use prior information provided by the LF training simulations
and so perform better than a naive Latin hypercube construction of
an HF emulator using six training samples. Our multifidelity scheme
is thus an even larger improvement on a single-fidelity model than
Fig. 9 suggests.

The solid line shows the error and runtime for the multifidelity
emulator trained using 40 LF simulations and 2—6 HF simulations.
The point on the solid line corresponding to 40 LF, 2 HF has a similar
cost, but slightly worse performance than the 5 HF single-fidelity
result. Adding a third HF training sample decreases the error more
for the multifidelity emulator (error for 40 LF, 3 HF emulator) than
it does for the single-fidelity emulator (error marked 6 HF). Adding
a sixth HF simulation to the 40 LF, 5 HF multifidelity emulator
produces a relatively small improvement in error, perhaps indicating
that stochasticity in the simulations due to our relatively small box
size is beginning to dominate interpolation error.

5 CONCLUSIONS

In this work, we developed and tested a multifidelity emulator for the
simulated Lyman-« forest flux power spectrum. Emulators address
the growing computational demands of simulations, which must be
run at increasingly high resolutions to allow analysis of the increasing
quality and quantity of observational data. Here, we use a GP-based
emulator that addresses this demand by, in a Bayesian framework,
training an interpolating function to predict the output (Lyman-o
forest flux power spectrum) for a given input (simulation input
parameters). Relatively few simulations are required to accurately
predict across the span of input parameter space, making emulators
especially useful for parameter inference problems.

The multifidelity framework allows a further reduction in com-
putational cost by dividing the emulator training samples into
multiple (in our case two) fidelities. The LF (low-resolution) training
samples allow the emulator to learn how the outputs depend on
input parameters. The HF (high-resolution) training samples correct
numerical errors in the LF emulator with a (parameter-dependent)
mapping from LF to HF. Thus, the emulator can be trained with a
large sample of LF training simulations and a small subset of HF
training simulations.

O At least for errors less than 4 per cent, the approximate amount by which
the LF simulations fail to be converged.
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Our training suite included 40 low-resolution hydrodynamical
simulations (30 Mpc 4~! simulation box length, 2567 particles) and 6
high-resolution hydrodynamical simulations (30 Mpc 4~ simulation
box length, 5123 particles). Using the Lyman-« forest flux power
spectrum extracted from these simulations, we trained single- and
multifidelity emulators to predict the high-resolution flux power
spectrum. 10 independent simulations were run to test the prediction
accuracy of the trained emulators.

In summary, the multifidelity emulator:

(i) Modelled a redshift range 5.4-2 (in 18 redshift bins with Az =
0.2), on scales ranging from k = 1.4 x 1073 t0 5.7 x 1072 skm™!
(in 25 bins).

(ii) Achieved sub-1 per cent error on most scales and redshifts
when averaged over 10 test simulations.

(iii) Reached an average error of 0.8 per cent.

(iv) Achieved 1 per cent average error most cost efficiently using a
training set with 30 low-resolution and 5 high-resolution simulations.

The low-resolution single-fidelity emulator (4 per cent average
error) predicts the low-resolution flux power, so it is limited by
real differences between the output of the two resolutions. The
high-resolution single-fidelity emulator (3 per cent average error) is
limited by the small number of training samples. It is likely that the
average error for the high-resolution single-fidelity emulator could be
improved to match the multifidelity emulator performance with the
addition of more training simulations. However, the high-resolution
single-fidelity emulator quickly increases in computational cost with
additional samples, and we expect it would thus be more expensive
than our multifidelity emulator.

Some important caveats to our results are that the Lyman-o
forest is converged at the & 5 per cent level in our high-resolution
simulations, and the box size is small. In a forthcoming work, a
model that uses two different box sizes (rather than two different
resolutions) to construct a multifidelity emulator will be developed
and tested. While there is no direct evidence to suggest that changing
the resolution or box size would significantly enhance or diminish
the accuracy of the emulators presented here, it still remains to be
tested on simulations with higher resolution and larger box sizes. In
a forthcoming work, we test the multifidelity framework on larger
box size, higher resolution simulations, and use this multifidelity
emulator for cosmological inference.
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DATA AVAILABILITY

Flux power spectra generated from the low resolution, high resolu-
tion, and testing sets are available at https://github.com/mafern/MF
EmulatorLyaData. HDFS and plain text (appropriate for multifidelity
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emulation) formats are available. Select single- and multifidelity
emulator predictions for the 10 testing simulations are also available
from the same repository. The spectra underlying the flux power are
available upon request.
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APPENDIX A: NON-LINEAR MULTIFIDELITY
EMULATOR

In the main text, we have explored the effectiveness of a linear
multifidelity emulator (the KO model, or AR1). In the linear model,
the mapping from LF to HF is fur(0) = p fLr(0) + 5(0), where fur
and fip are the emulator predictions at those resolutions, and p is
independent of the input parameters 6.

Here, we compare those results with the results using a non-linear
multifidelity emulator (NARGP). In the non-linear multifidelity
model, proposed by Perdikaris et al. (2017), the mapping is a function
of both the LF output and the input parameters. We model this as

fur(0) = p(0, fLr(9)) + 5(6).

such that p depends on both the input parameters and LF posterior
output. The LF outputs, as is the case with the linear model, are
median normalized such that the assumption on the GP of zero mean
is more reasonable, fLF(O) = fLr(0)/ i — 1.
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Figure A1. Comparing the prediction error as a function of redshift and scale for linear and non-linear multifidelity emulators. This is mean error across all 10
test simulations. The shaded region shows the extent of helium reionization in our simulations (see parameter limits in Fig. 3).
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Following Perdikaris et al. (2017), p is modelled as a GP with
input from both input cosmologies for HF, @yr, and the output
from LF, fir(@). The NARGP construction results in a deep GP
model (Damianou & Lawrence 2013). We follow the approximation
in Perdikaris et al. (2017) and replace fip(@) with its posterior
distribution. Thus, the training reduces to training two regular GPs
recursively.

In Fig. Al, we show the prediction errors separated into small
and large scales, as a function of redshift for both the linear and
non-linear multifidelity emulators. They perform similarly, with the
linear emulator being more accurate at low redshifts on all scales,
and high redshifts for small scales. The difference between the
average error for the linear and non-linear models (over all scales
and redshifts) is 0.08 per cent. This is in contrast to emulation of
the matter power spectrum in Ho et al. (2022), where the non-linear
model outperformed the linear model.

It is worth noting that the non-linear model agrees closely with the
linear model when using the full suite of training simulations, but lags
behind the linear model when using fewer HF training simulations.

Multifidelity Lyman-« forest emulator — 3211

For example, the difference in the average error between linear and
non-linear models using 40 LF and 3 HF is & 2 per cent (1.9 per cent
error for linear, 3.7 per cent error for non-linear). When using four
HF, the difference is & 1 per cent (1.5 per cent, 2.5 per cent), and
when using five HF the difference is =~ 0.4 per cent (0.9 per cent,
1.3 per cent). While differences in the effectiveness of the non-
linear model may be due to the quantity being emulated (matter
power versus flux power), one likely reason for the difference is
the number of input parameters. In Ho et al. (2022), five input
parameters are used, while in this work we use nine. The non-
linear model uses the posterior of the LF output, which requires
Monte Carlo sampling. It is possible that the additional dimensions
degrade the performance of the Monte Carlo integration, and thus the
performance of the non-linear model. One other reason may be the
larger number of hyperparameters that need to be optimized in the
training.

This paper has been typeset from a TeX/IATEX file prepared by the author.
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