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Abstract

The Nancy Grace Roman Space Telescope (Roman) is an observatory for both wide-field observations and
coronagraphy that is scheduled for launch in the mid-2020s. Part of the planned survey is a deep, cadenced field or fields
that enable cosmological measurements with type Ia supernovae (SNe Ia). With a pixel scale of 0 11, the Wide Field
Instrument will be undersampled, presenting a difficulty for precisely subtracting the galaxy light underneath the SNe.
We use simulated data to validate the ability of a forward-model code (such codes are frequently also called “scene-
modeling” codes) to perform precision supernova photometry for the Roman SN survey. Our simulation includes over
760,000 image cutouts around SNe Ia or host galaxies (∼10% of a full-scale survey). To have a realistic 2D distribution
of underlying galaxy light, we use the VELA simulated high-resolution images of galaxies. We run each set of cutouts
through our forward-modeling code which automatically measures time-dependent SN fluxes. Given our assumed
inputs of a perfect model of the instrument point-spread functions and calibration, we find biases at the millimagnitude
level from this method in four red filters (Y106, J129, H158, and F184), easily meeting the 0.5% Roman inter-filter
calibration requirement for a cutting-edge measurement of cosmological parameters using SNe Ia. Simulated data in the
bluer Z087 filter shows larger ∼ 2–3 mmg biases, also meeting this requirement, but with more room for improvement.
Our forward-model code has been released on Zenodo.

Unified Astronomy Thesaurus concepts: Surveys (1671); Infrared telescopes (794); Space telescopes (1547); Dark
energy (351); Type Ia supernovae (1728)

1. Introduction

The Nancy Grace Roman Space Telescope (Roman) is an
observatory for both wide-field observations and coronagraphy
that is scheduled for launch in the mid-2020s. The Wide Field
Instrument (WFI) covers 0.281 square degrees and performs
both imaging and low-resolution slitless spectroscopy. One of
the primary science objectives of the Roman mission is to
investigate the expansion history of the universe using
thousands of Type Ia Supernovae (SNe Ia). Although the
Roman supernova survey strategy is not yet finalized, the
survey is planned to have two components: a ∼5 days cadence
multi-band imaging survey to discover transients and measure
their light curves, and a spectroscopic component to classify a
subset of the transients and measure redshifts. The cadenced
observations would take place over a period of about two years
(146 visits), with each visit rotating ∼5° from the previous visit
(two full rotations over two years) to keep the solar panels
pointed at the Sun.

To balance field of view, read noise, and point-spread
function (PSF) sampling, the pixel scale of the WFI was set at
0 11, leaving the imaging PSF undersampled (Table 1). This
undersampling is not mitigated by the SN survey strategy, since
much of the survey will likely only have one (undithered)
exposure per filter per epoch in order to minimize overheads
and read noise. Undersampled, undithered imaging poses a
challenge for photometry methods based on image resampling
(e.g., Alard & Lupton 1998). Much existing undersampled
photometry is thus done with codes that use forward modeling
(e.g., Suzuki et al. 2012; Hayden et al. 2021). Forward
modeling (called “scene modeling” by Holtzman et al. 2008)
bypasses image resampling to model each image as observed.7

Figure 1 shows an example and Figure 2 shows the recovered
high-resolution galaxy model.
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7 The ground-based SuperNova Legacy Survey developed a similar sort of
code that used resampled and aligned images (Astier et al. 2006; Guy et al.
2010). The goal in that work was to avoid image subtraction and take the time-
variable PSF into account.
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The gold standard for validating forward-model results is to
inject simulated SNe into real survey data (Holtzman et al.
2008; Suzuki et al. 2012; Astier et al. 2013; Brout et al. 2019).
As we have no Roman data to validate with, we are left with
two choices for test data: inject simulated SNe into images
from the Hubble Space TelescopeWide Field Camera 3 IR
channel (HST WFC3 IR, which has similar filters with a similar
pixel scale of 0 128), or use fully simulated data. We chose to
test entirely with simulated data for two reasons. (1) There are a
limited number of WFC3 IR visits that have many rotations in
several filters (and many visits do not contain a fair sampling of
the universe, e.g., they contain a galaxy cluster or a globular
cluster). (2) Testing with HST data will confound HST
calibration uncertainties with forward-model problems. Of
particular worry are thermal variations due to the HST’s low
orbit (Bély et al. 1993), PSF spatial variations (Anderson 2016),
and detector effects (e.g., Zhou et al. 2017).
In Section 2 we very briefly outline the assumptions and

requirements for our forward modeling algorithm and how it
may interface with the Roman pipeline and cosmology
analysis. In Section 3 we describe the WFI mock observations
which we generate and use to test the forward modeling
algorithm. In Section 4 we explain the forward-modeling
assumptions in detail, and in Section 5 we present and discuss
the results. Section 6 summarizes our conclusions.

2. Forward-model Inputs and Outputs

Figure 3 shows a conceptual overview of the Roman SN
cosmological data-processing flowchart and how this work fits
in. The downlinked data will be processed into calibrated
images (top of Figure 3). Mosby et al. (2020) discuss the
performance of the IR detectors in detail. In short, there are
eighteen Teledyne HAWAII 4RG detectors (with 10 μm 4k by
4k pixels) that non-destructively read out every 2.825 s. These
multiple readouts enable lower read noise than is possible with
one read, enable rejecting cosmic-ray hits during a single
exposure (visible as jumps in charge versus readouts), and
possibly provide better control of pointing drifts and detector
effects (Rauscher et al. 2019). (To lower the required
bandwidth, averaged groups or other linear combinations of
readouts will be downlinked.) We assume for this work that the
calibration process produces 2D images with known astro-
metric and photometric calibration. We acknowledge the
possibility that we may need to go back earlier in the process
(for example by fitting the readouts directly); this will have to
be explored with better simulations of the detectors (and
ultimately explored with real data).
After the images are calibrated, we assume further proces-

sing generates a PSF model. This PSF model will have to take a
focal-plane position and effective wavelength into account (and
possibly temporal or thermal variations as discussed above for
HST). Depending on the linearity calibration (Choi &
Hirata 2020), it may also have to take flux into account.
The transients in each image will have to be found and

assessed. This will require a highly automated process; a
20 deg2 survey with a five-day cadence is equivalent to
searching more than 3000 WFC3 IR pointings per day. Hayden
et al. (2021) demonstrated an automated transient classifier for
WFC3 IR data with near-human levels of performance (as
noted above, WFC3 IR has a similar pixel scale and
wavelength coverage), so the search process is feasible, even
for these large data sets.

Table 1
Filter-dependent Simulation Quantities

Filter Z087 Y106 J129 H158 F184

Background (e− pix−1 s−1) 0.349 0.384 0.376 0.365 0.381
Exposure Time (s) 300 300 300 300 600
Read Noise (e−) 8.3 8.3 8.3 8.3 6.9
Fitted PSF FWHM (″) 0 127 0 130 0 136 0 150 0 166
Gaussian Fitted PSF

FWHM (Pixels)
1.16 1.18 1.24 1.36 1.51

Figure 1. Forward modeling an example simulated SN in Y106. Each epoch (each column) consists of only one undithered exposure per filter; subpixel sampling is
provided by a ∼5° rotation between subsequent epochs. The top row of panels shows a set of cutouts around the SN; only epochs with SN light are shown. The next
row of panels shows the model inferred from this data and 49 reference epochs without the SN. The galaxy model is an analytic function, parameterized with a 2D set
of spline nodes. For each image, the galaxy model is sampled at high resolution (11× oversampling, across each pixel, then convolved with the PSF and the pixel and
sampled at the native pixel scale. This accuracy is sufficient for ∼ 10−4 accuracy in representing the spline. The image-dependent SN light (also convolved by the PSF
and the pixel and sampled at the native scale) and background are added to this galaxy model. The next row of panels show the residuals where the SN models are not
subtracted. Finally, the bottom row of panels show the residuals when the modeled SN and modeled galaxy are subtracted.
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With a series of calibrated images, a PSF model, and
transient detections, the forward-modeling code can run. We
describe this in more detail in Section 4. This step produces
calibrated fluxes. The slitless spectroscopy will also need a
separate forward-model code appropriate for 3D reconstruction
(two-dimensions on the sky plus wavelength). This is a
fundamentally harder problem (because of the increase in
dimensionality, the increase in data volume, and the spatial/
spectral degeneracy of a slitless spectrograph observing a
complex scene). Ryan et al. (2018) demonstrate this concept on
WFC3 IR data.

The lower half of Figure 3 outlines the steps involved in
going from these calibrated imaging and spectroscopic fluxes to
SN distances and cosmological results. We do not elaborate
here, as many of the steps will be similar to other surveys (e.g.,
Scolnic et al. 2018).

3. Simulated Data Generation

To create mock observations, we use galaxies from the
VELA Cosmological Simulation (Snyder 2018; Simons et al.
2019). The data set spans the cosmic time evolution of 35
galaxies over 10–50 timesteps with cosmological scale factors
between 0.05 and 0.5 (redshift 1–19), each with approximately
20 viewing angles. The simulated spatially dependent galaxy
spectral energy distributions (SEDs) are integrated over Roman
filters (and other existing and proposed observatories), making
simulated images. These simulated images are high resolution
(oversampled by a factor ∼15 compared to Roman pixels), and
are much larger than a PSF (800 by 800 oversampled pixels or
∼50 by 50 native pixels), making them perfect for precision
tests of galaxy subtraction. The stellar mass distribution is also

similar to SN Ia hosts. We add the time-dependent SN Ia fluxes
and reproject the high-resolution images onto the WFI detector
pixels at different telescope orientations (depending on the
position relative to the Sun) for 74 time epochs in a range of
1 yr (which is designed to fit well within the two-year planned
Roman survey).

3.1. Supernova Light Curves

So that our light curves would be reasonably realistic, we
generated a sample of SN Ia fluxes using the SALT2-Extended
model in the SNCosmo Python package (Barbary 2014).
SALT2 is a two-parameter (light-curve shape x1 and light-curve
color c) spectro-temporal model (Guy et al. 2007) that was
extended into the UV and NIR with the Hsiao et al. (2007)
template.8 To ensure good sampling of redshift, we assumed a
random uniform redshift distribution of the SN sample between
z= 0.7 and 2, instead of following SN rates and cosmological
volume. Our assumed cadence is five days (Spergel et al. 2015;
Hounsell et al. 2018). We generated a random time of peak
brightness compared to the cadence (so there is not always an
epoch right at maximum, nor is maximum always between two
epochs). We used a random normal absolute magnitude
distribution of− 19.1− 0.14x1+ 3.1c+Δm mag, where x1
and c are drawn from random normal distributions centered
around 0 with standard deviations of 1 and 0.1, respectively.
These are similar to the distributions in, e.g., Scolnic & Kessler
(2016), and are intended to span a representative range of
signal-to-noise ratio (S/N) in the simulated imaging. Δm is

Figure 2. Recovered galaxy model from Figure 1. The left panel shows the recovered high-resolution galaxy model G (from Equation (1)), sampled at 11× the native
resolution (i.e., 0 01). The right panel shows G convolved with the PSF and the pixel (the PSF has the same orientation), also at 11× the native resolution. Most of the
unphysical high-frequency power visible in the left panel is suppressed. Note that the convolution with the pixel ensures that the total galaxy flux is not dependent on
the alignment with the pixels in a given epoch.

8 More than one version of SALT2-Extended has been trained. We use the
SNCosmo version, not the published one (Pierel et al. 2018); the SNCosmo
version seems to have more accurate rest-frame UV fluxes.
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also assumed to be Gaussian, with a standard deviation of
+ z0.1 0.0552 2( ) . The 0.055z is the magnitude dispersion due

to the weak gravitational lensing of galaxy halos along the line
of sight (Jönsson et al. 2010). Finally, we calculated the
integrated flux of the SNe in the five Roman bands (Z087,
Y106, J129, H158, F184) over the SALT2 phase range of (−15
to +45 rest-frame days) in 5 observer-frame day steps (an
average of 31 epochs).

3.2. Supernova Positions

We assume that SNe Ia is distributed following the optical
light of the galaxy (Anderson et al. 2015), and convolve the
high-resolution Y106 VELA image by a Gaussian with a 1 kpc
radius before choosing locations to plant SNe.

3.3. Point Spread Functions

We use PSFs generated by WebbPSF (Perrin et al. 2014).
We convolve the PSFs with square 0 11 pixels with uniform
sensitivity. As described in Section 2, we assume that detector
effects such as count nonlinearity, count-rate nonlinearity, and
inter-pixel capacitance have been perfectly calibrated and can
be neglected. We also assume that the dependence of the PSFs
on the SED of the source is negligible.9 All of these simplifying

Figure 3. Conceptual Roman SN cosmological data-processing flowchart. The red dashed square denotes the photometry component, which is described and validated
in this work. We show each step as a single box, but many surveys use more than one semi-independent analyses of the same data as a cross-check (e.g., Guy
et al. 2010).

9 In practice, one can use an iterative process of generating a PSF, measuring
photometry, estimating the SED from a light-curve fit, and re-estimating the
PSF (Suzuki et al. 2012). We neglect this iteration for simplicity. For
sufficiently well sampled images, an even simpler approximation suffices:
using a single PSF for all SEDs and modifying the filter bandpass instead of the
PSF (e.g., Guy et al. 2010; Suzuki et al. 2012).
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assumptions are in keeping with our philosophy for this work
of focusing on the “Photometry” box in Figure 3.

3.4. Reprojection

With a full set of oversampled live-SN and reference images
in hand, we use Astropy reproject_exact to rotate the
oversampled data to match the rotation angle for each epoch
and give each epoch and filter a random sub-pixel dither offset.
This procedure technically convolves the images by each
oversampled pixel twice: once when generating the data, and
once when rotating the data. We use 30× oversampled images
(pixel doubling the 15× oversampled VELA images), so this
limits the accuracy of our simulations to »- 30 0.1%2( ) . We
then convolve the rotated image by the PSF and the pixel, and
sample it at the native 0 11 resolution. Figure 4 shows a
randomly selected set of simulated images (near maximum
light for the SNe) before the addition of noise.

WebbPSF defines the PSF as the PSF at exactly the
sampled locations. The image-reprojecting code effectively
defines the PSF as convolved with the subpixel (in the sense
that adding together all the subpixels of a pixel of the PSF
should exactly equal the PSF convolved with the pixel). We
sample the PSFs at very high resolution (∼100×) and
integrate over each subpixel to ensure that the pixel
convolution is done with high accuracy. Such definition
considerations will need to be kept in mind as the Roman
software stack is built.

3.5. Sources of Noise

It is likely that the Roman SN survey strategy will consist of
tiers (Spergel et al. 2015; Hounsell et al. 2018; Rubin 2020),
with each “wedding cake” layer of the survey trading area on
the sky against depth. The deepest tier will likely have ∼300 s
exposure times and reach redshift∼2 with reasonable S/N; the
wider tier(s) will have 100 s exposure times and reach
redshift∼1 or less. The VELA data are generated only as low
as redshift 1, so we will have the most fidelity simulating the
deepest tier. To extend the redshift span, we plant simulated
SNe as low as redshift 0.7 on the z= 1 VELA images (the
angular scale is only about 12% different between z= 0.7 and
1). As higher-redshift SNe have lower contrast against their
host galaxy (due to the loss of physical resolution with
increasing distance for z 1.6), the deepest tier presents the
most difficult host-galaxy-subtraction problem. Validating the
forward-model code in the deep tier will thus validate it in any
other tiers as well.

We assume that this deep tier consists of 300 s exposures in
Z087, Y106, J129, and H158, and a 600 s exposure in F184. It
is also possible that the R062 filter or the proposed K213 band
could be used, but these were too recent to be in the Vela
simulations, so they are not included here. We briefly note
that the R062 is comparably undersampled to the Z087 after

convolution with the pixel, but will have more high-frequency
power as the pixel is assumed to be a perfectly sharp square.
Thus if we could test R062, we may have found worse results
than for the Z087. Fortunately, R062 is currently only planned
to be used in the shallower and wider z 1 tier with ∼100 s
exposure times. This yields an AB magnitude depth of almost
exactly 1 mag shallower than our 300 s Z087 exposure. Thus
R062 can tolerate a factor of a few worse host-galaxy
residuals than can the Z087. In the other extreme, K213 is
even better sampled than the data simulated in this work, so it
should be straightforward to model and remove the K213
galaxy light.
We generate a copy of the images with noise included, but

also retain the images without noise for testing. In addition to
Poisson noise from the scene (SN + host galaxy), we include
zodiacal (based on the model of Aldering 2002) and thermal
background (Rubin 2020) given in Table 1. For read noise, we
assume 106 reads for the 300 s exposures and 212 reads for
600 s, using 20 electrons per read with a 5 electron floor, giving
values also displayed in Table 1 (Garnett & Forrest 1993;
Vacca et al. 2004; Rauscher et al. 2007).10

Some forward-modeling codes for ground-based data (e.g.,
Astier et al. 2013) use only the sky noise (not the source
Poisson noise or detector noise) to eliminate biases that would
otherwise by caused by by using noisy observations to
estimate the Poisson noise. Our photometry is in an even more
complex regime: SN Poisson noise, galaxy+sky Poisson
noise, and detector noise all matter. We assume that the up-
the-ramp readouts have been accurately fit, yielding count-
rates with known, Gaussian-distributed uncertainties. As
discussed in Section 2, we may have to forward model
starting with the original detector readouts (which will be
read-noise-limited for these faint sources) for satisfactory
performance.
If the SN survey takes place over two years, with visits to the

SN field(s) every five days, then there will be 146 visits. If a SN
goes off at a random epoch, and every image taken after
explosion at that location is considered contaminated with SN
light, then the number of references will vary up to about 140
(assuming an absolute minimum of ∼6 epochs required for a
good light curve), but be ∼70 on average. (Including lost
epochs due to chip gaps, these numbers are ∼124 and ∼62.)
We simulate only a year of data, with an average of 43
reference images per filter, representing a below-average
reference set compared to the planned survey, but still
relatively representative. As we only simulate one year out of
the planned two years of the survey, we do not incorporate

10 As most of the noise in the simulated observations is Poisson noise, we take
a simple quadrature sum of the read noise and Poisson noise, without the 6 5
scaling on the Poisson noise appropriate for the read-noise-dominated regime.
See Fadeyev et al. (2006) or Kubik et al. (2016) for a more detailed discussion
of possible up-the-ramp estimators.
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missing data, e.g., due to bad pixels or detector gaps, into the
simulated images.

4. Photometry

Following Suzuki et al. (2012), we performed photometry of the
SNe Ia in the WFI mock observations using a forward-model code

(the same one used by Hayden et al. 2021 and F. Ori et al. 2021, in
preparation). This code fits analytic 2D-spline galaxy models (one
independent model for each filter) which are convolved with PSFs
(including convolution with the pixel) and resampled to match the
images. As in Suzuki et al. (2012), the modeling uses 0 01
subpixels (11× oversampling). Our minimizer of choice is
Levenberg–Marquardt (Levenberg 1944; Marquardt 1963).

Figure 4. A randomly selected set of postage stamps from our simulations near maximum light for each supernova before the addition of noise. The arrows point out
the SN locations. The color channels are Z087 (blue), J129 (green), and F184 (red). The subpixel positions are different for each filter, so we resample the Z087 and
F184 images to match the J129 so that the colors align. The VELA galaxies are qualitatively similar to real SN host galaxies (e.g., Figure 2 of Riess et al. 2007). Some
of the VELA viewing angles are aligned by angular momentum axis, giving a similar orientation for some galaxies in this figure.
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The flux of image i on a pixel x, y near the SN location is
modeled as the sum of galaxy light G(α, δ), background light
si, and SN light (Fi, which is zero for epochs before explosion
or ∼1 rest-frame year after peak). The temporally unchanging
galaxy model is evaluated in sky coordinates (R.A. α and decl.
δ). These must be mapped to the 11× oversampled pixel
coordinates with WCS functions a´ ´ x y: ,i

11 11 and

d´ ´ x y: ,i
11 11 . In our code, this is done using Astropy

all_pix2world. These α and δ values are slightly adjusted
with Δαi and Δδi values for each image (it remains to be seen
if the Roman WCS solution will be good enough to avoid these
adjustments). The 11× oversampled galaxy model is con-
volved with the PSF and the pixel (also 11× oversampled),
then this high-resolution model is sampled every 11 subpixels

Figure 5. Visualization of the second derivative (Laplacian) for a galaxy. The left panel shows the central area around a VELA simulated galaxy, convolved with the
PSF and the pixel. To better show faint features, this panel uses inverse hyperbolic sine scaling. The right panel shows the second derivative of the left panel. The
largest deviations from zero are in a small region of the galaxy around the core. It is these regions that most require spatial flexibility in a galaxy model.

Figure 6. For each band, for each simulated SN, we show the mean flux residual (recovered flux − true flux) over the whole light curve (blue points) plotted against
the second derivative of the galaxy flux at the SN location. As illustrated in Figure 5, the second derivative is close to zero over much of the galaxy after convolution
with the PSF and the pixel. The error bar on each point shows the rms across epochs for that SN. To search for any possible trends with the highest sensitivity, we use
the forward-model runs on the images that have no noise added. The typical flux at maximum light in this redshift range is 3 e− s−1 for the four bluest bands and 1.5
e− s−1 for F184, thus these results show very small residuals for almost all the simulated SNe. Note the piecewise-linear scale with an expanded view of −0.03 to 0.03
e− s−1 (roughly ±1% of peak flux). Any trends with galaxy second derivative would indicate that the photometry may need a more flexible galaxy model (e.g.,
spacing the spline nodes closer together).
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(including at x, y). Thus,

a
d

=
+ D
+ D Ä

´ ´

´ ´
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
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G x y G x y

x y

x y
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, ,

PSF , . 1

i i

i i
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11 11
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11 11
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( ) ( ( )
( )

) ( )∣ ( )

The SN coordinates are also stored in sky coordinates (aSN,
dSN), but the PSF is in pixels. To convert, we need the inverse
of the above WCS transform (Astropy all_world2pix):

a d  x: ,i i
SN SN SN and a d  y: ,i i

SN SN SN. These are also
adjusted with Δαi and Δδi, giving

a a d d

a a d d

= + D + D

´ + D + D





x y, , ,

, . 2
i i i i i

i i i

SN SN SN SN

SN SN

( )
( ) ( )

Finally, we can combine both models with the image-
dependent, spatially flat sky si, giving the model Mi(x, y):

= +

´ - - +

M x y G x y
F

A x y

x x y y s

, ,
,

PSF , . 3

i i
i

i i
SN SNi i

( ) ( )
( )

( ) ( )

We assume (as is true for WFC3 IR) that the flat-fielding
preserves surface brightness, but point-source fluxes are scaled
down proportional to the pixel area on the sky A(x, y). Thus the
SN model fluxes must also be scaled down to match the data.
The galaxy model goes to zero at the edge of the circular fit
patch (thus breaking the degeneracy between sky and galaxy
light). Note that both the galaxy model and the SN require
convolution with the PSF, but we do not insert the SN as a
Dirac delta function into the 11× oversampled galaxy model,

Figure 7. Summary statistics for pulls: (recovered flux − true flux)/recovered flux uncertainty. The results are binned in AB magnitude and separate results are shown
for each filter (left to right is Z087 to F184). The top panel shows central values (mean with red dots, median with blue triangles). In general, there is no evidence for
biases (offsets from zero) except in the Z087 filter in the middle of the magnitude range (∼25–28). We also show the 16th to 84th percentile of SN fluxes at maximum
for our simulated sample. The bottom panel shows dispersions (standard deviation with red dots, the normalized median absolute deviation with blue triangles). The
uncertainties on the NMAD are computed with bootstrap resampling. If all uncertainties are correct and Gaussian, the dispersion values should be unity. There is
evidence of mildly underestimated (by 10%) flux uncertainties in bluer filters for magnitudes fainter than ∼26.
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as the SN may land with light split between subpixels,
broadening the PSF. Finally, we note that other extensions of
the formalism (e.g., modifying the PSF shape as a function of
image counts, Choi & Hirata 2020) are straightforward, but we
do not consider these here.

There are many possible choices for the galaxy basis
functions (Thevenaz et al. 2000). The general considerations
for the galaxy basis functions are that they should be flexible
enough to model real galaxies accurately, without being so
flexible that the model is poorly constrained, amplifying noise.

Figure 8. Average scaling on true flux to match observed flux, binned by AB magnitude and separated by filter. The top panel shows the results from the images with
noise added. A small consistent bias is seen in the Z087 filter (leftmost point in each bin). The bottom panel shows the results from images without noise added. The
brightest three magnitude bins show a slight bias (probably due to the way the data were generated as discussed in Section 3). The faintest magnitude bins show a
larger (but still small) bias.
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Holtzman et al. (2008), Astier et al. (2013), and Brout et al.
(2019) used a grid of squares of constant surface brightness.
Smooth parameterizations are also used; Rodet et al. (2008)
used Gaussians and Bongard et al. (2011) used sinc interpola-
tion of a uniform grid. We want to maintain a smoother model
for the undersampled data than a pixelized model or even
Gaussians, and want a faster falloff than sinc interpolation (for
a smaller modeled patch), so we use 2D splines. Suzuki et al.
(2012) and Rubin et al. (2013) also used 2D splines, but added
greater flexibility in the galaxy radial direction, giving an
overall smoother model to reduce noise for SNe with limited
numbers of references. Here, we have many reference epochs,
so we simply use 2D splines with a uniform grid. Initially, we
experimented with the spline node spacing. In the end, we
settled on 2 nodes per PSF FWHM, effectively building an
approximately Nyquist-sampled model. In other words, the

spline-node spacing for J129 was 0.62 pixels or 0 068
(Table 1).

5. Results and Discussion

We run several sets of analyses to investigate the results of
the photometry. Our first result is that our spline-node spacing
is sufficient. It is common in ground-based forward modeling
to plot results against local galaxy surface brightness (e.g.,
Brout et al. 2019). However, the galaxy-light Laplacian
(second derivative) is the better quantity for most types of
modeling errors, as smooth galaxy gradients generally do not
cause problems. For ground-based work, the host galaxy is
frequently poorly resolved, and the local surface brightness
correlates with the Laplacian. Figure 5 shows the second
derivative for a typical galaxy. For each band, Figure 6 shows

Figure 9. Summary statistics on recovered distance modulus compared to true distance modulus for each SN. The top panel shows the mean (blue circles) and median
(red triangles) in bins of redshift. The blue and red lines show the result over all redshifts. No strong evidence of bias is seen. The bottom panel shows the dispersion in
each bin (blue dots for the mean, and red triangles for the normalized median absolute deviation). The increase as a function of redshift is due to a combination of the
lower signal to noise, and the loss of red rest-frame wavelength coverage.

10

Publications of the Astronomical Society of the Pacific, 133:064001 (12pp), 2021 June Rubin et al.



the noise-free residuals plotted against the local second
derivative of the host-galaxy light; no trends are seen.11

Next, we search for biases and check the uncertainties by
plotting distributions of pulls: (recovered flux − true flux)/
(recovered flux uncertainty). Figure 7 shows summary statistics,
binned in true AB magnitude: zero-point− 2.5 log10(true flux). In
general, the forward-model code has better performance in the
redder filters with better sampling. The mildly underestimated
(10%) flux uncertainties in bluer filters at faint magnitudes
might plausibly be due to the small galaxy-subtraction residuals
shown in Figure 6.

Figure 8 shows observed flux regressed on true flux. We use
both images with noise (top panel) and images without noise
(bottom panel). For the images without noise only small biases

(∼1 mmag or 0.1%) are seen until faint magnitudes. These are
likely caused by the accuracy of the image reprojection
(discussed in Section 3). At fainter magnitudes, the accuracy
degrades, possibly due to the slight galaxy-subtraction
residuals seen in Figure 6). For the results including noise,
∼2 mmag biases are seen in Z087 but the other filters are
generally consistent with unity mean scaling between true and
observed fluxes.
Finally, we fit light curves using SALT2-Extended; Figure 9

shows these results. Any biases seem to be at the few mmag
level or smaller. Figure 10 shows the sensitivity of our distance
moduli to the calibration of each filter as a function of redshift.
Our constraints on the cosmological bias are thus expected
from the accuracy with which we recover the light-curve
fluxes, but this test still uniquely measures any correlated
effects of host-galaxy subtraction on the full light curves.

6. Summary

We validate a forward-model code for performing SN
photometry in simulated undersampled images for the Roman
transient survey. As there are no real images to inject simulated
SNe into, we use the VELA simulated galaxy images, which

Figure 10. Sensitivity of the distance modulus of each SN to the calibration of each filter, plotted as a function of the redshift of each SN. As in Amanullah et al.
(2010), this is computed by scaling the calibration for each filter in turn, refitting the SN with SALT2, and computing a new distance modulus. The distance modulus
difference divided by the size of the shift in magnitudes gives the derivative. We do not propagate these calibration changes into the training of SALT2, which will
change the results in detail (Guy et al. 2010). The sum of all the derivatives should be 1 (moving the calibration of each filter by 1 mag should move the distance
modulus by 1 mag), and Amanullah et al. (2010) note that unstable light-curve fits frequently reveal themselves as deviations from 1. We exclude three such SNe from
this plot which show up as outliers. For the five-band light-curves considered in this work, the sensitivity of the distance moduli to the calibration of any one filter is
1. Limiting the wavelength range or the number of bands will significantly increase the sensitivity to calibration, resulting in much larger values than those shown
here. For example, with just rest-frame B and V data (and using 3.1 for the slope of the color–magnitude relation), the distance moduli scale as mB − 3.1
(mB − mV) = 3.1mV − 2.1mB.

11 For a simple comparison, we also perform photometry using a simple image-
resampling code for the host-galaxy subtraction. For each image with SN light in it,
we take each reference image and resample it to the pixels of that live-SN image.
We use a square kernel with a size of 0.3 pixels (frequently called the pixfrac). After
subtracting the references, we perform PSF photometry on the subtracted images.
We only perform this test with the noise-free images to better examine the
differences with forward modeling. This is an extremely simplistic resampling
compared to more accurate procedures, e.g., Rowe et al. (2011) or Fruchter (2011).
Unsurprisingly, it gives results that are much poorer than the forward model, with
large negative slopes visible in all panels indicating over-smoothed galaxy models.
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are generated in the Roman filters over a similar redshift range
as the SN survey. We create 762,570 simulated postage stamps
around the locations of 2061 simulated SNe (∼10% of the
anticipated full survey). We describe the assumptions of our
forward-model code and validate those assumptions first with
noise-free images, and then with images that have noise added.
Finally, we fit our simulated light curves and show that we can
recover SN distance moduli with biases limited to less than a
few mmag. The forward-model code has been released on
Zenodo (Rubin 2021).
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