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Abstract— We propose a learning-based robust predictive
control algorithm that compensates for significant uncertainty
in the dynamics for a class of discrete-time systems that are
nominally linear with an additive nonlinear component. Such
systems commonly model the nonlinear effects of an unknown
environment on a nominal system. We optimize over a class
of nonlinear feedback policies inspired by certainty equivalent
“estimate-and-cancel” control laws pioneered in classical adap-
tive control to achieve significant performance improvements
in the presence of uncertainties of large magnitude, a setting
in which existing learning-based predictive control algorithms
often struggle to guarantee safety. In contrast to previous
work in robust adaptive MPC, our approach allows us to take
advantage of structure (i.e., the numerical predictions) in the
a priori unknown dynamics learned online through function
approximation. Our approach also extends typical nonlinear
adaptive control methods to systems with state and input
constraints even when we cannot directly cancel the additive
uncertain function from the dynamics. Moreover, we apply
contemporary statistical estimation techniques to certify the
system’s safety through persistent constraint satisfaction with
high probability. Finally, we show in simulation that our method
can accommodate more significant unknown dynamics terms
than existing methods.

I. INTRODUCTION

Learning-based control offers promising methods to enable

the deployment of autonomous systems in diverse, dynamic

environments. Such methods learn from data to improve

closed-loop performance over time. Upon deployment, these

methods should provide safety guarantees and quickly adapt in

the face of uncertainty; to this end, estimates of uncertainties

in learned quantities must be maintained and updated as new

data becomes available to ensure safety constraint satisfaction.

However, many recently proposed learning-based control

algorithms rely on uncertainty estimation methods that result

in policies that are either too conservative (e.g., yielding

limited performance to remain safe) or too fragile (e.g.,

infeasibility in the face of large uncertainties). In this work, we

combine a simple nonlinear control law inspired by “estimate-

and-cancel” methods in nonlinear adaptive control with robust

model predictive control (MPC) techniques to control a system

in an uncertain environment, represented using an unknown,

nonlinear term in the dynamics. Our simulated examples

show that this approach can both reduce the conservatism

and fragility of existing methods.

Related Work. We briefly review two significant

paradigms for the control of uncertain systems, namely

adaptive control and robust control. We then discuss recent
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Fig. 1. Illustration of our high-level approach: We learn the effect of
environmental uncertainty online and curb its influence through certainty
equivalent adaptive control. Then, we account for any remaining uncertainty
and guarantee constraint satisfaction using tube MPC.

works that combine ideas from both paradigms, oftentimes

leveraging modern methods in machine learning.

Adaptive control concerns the joint design of a parametric

feedback controller and a parameter adaptation law to improve

closed-loop performance over time when the dynamics are

(partially) unknown [1], [2]. Design of these components for

nonlinear systems commonly relies on expressing unknown

dynamics terms as linear combinations of known basis

functions, i.e., features [1]. The adaptation law updates the

feature weights online, and the controller applies part of the

control signal towards cancelling the estimated term from

the dynamics [1], [3]–[5]. These simple methods can achieve

tracking convergence up to an error threshold that depends

on the representation capacity of the features relative to the

true dynamics [3], [4]. Recent works proposed combining

high-capacity parametric and nonparametric models from

machine learning with classical adaptive control designs. This

includes deep neural networks via online back-propagation [6],

Gaussian processes [7], and Bayesian neural networks [8], [9]

via online Bayesian updates and meta-learned features [10],

[11]. However, these approaches are fundamentally limited

by common assumptions in classical adaptive control, namely

that uncertain dynamics terms can be stably canceled by the

control input in their entirety, i.e., that these terms are matched

uncertainties [1]–[4]. Moreover, most of these works do not

consider state and input constraints, essential to safe control

in practice. We generalize these classical adaptive methods

to incorporate safety constraints even if the uncertainty is not

fully matched.

Robust control seeks consistent performance despite un-



certainty in the dynamics. In this work, we consider the

robust control of constrained discrete-time systems using

tools from predictive control. In particular, robust MPC

algorithms for linear systems consider the control of a

system subject to bounded noise or uncertain dynamics

terms, i.e. disturbances, as an optimization program with

explicit state and input constraints. Some methods optimize

the worst-case performance of the controller [12], while others

tighten the constraints to accommodate the set of all possible

trajectories induced by the disturbances and optimize the

nominal predicted trajectory instead [13], [14]. To account

for future information gain and reduce conservatism, these

methods either fix a disturbance feedback policy [13] or

optimize over state feedback policies [15].

Adaptive robust MPC (ARMPC), often referred to as

learning-based MPC, incorporates the online estimation (i.e.,

learning) of adaptive control methods into robust MPC to

satisfy constraints in the presence of process noise and model

uncertainty during learning. Recent years have seen a flurry

of work on nonlinear predictive control methods that apply

contemporary machine learning techniques to learn uncertain

dynamics online [16]–[19]. These methods typically result in

non-convex programs for trajectory optimization under the

learned dynamics, while relying on conservative approximate

methods for uncertainty propagation to guarantee constraint

satisfaction. However, it is unclear how to construct the

necessary components—the robust positive invariant and the

terminal cost function—within predictive control to make

claims of persistent constraint satisfaction (i.e., safety) or

stability for arbitrary nonlinear systems. Some methods ignore

these topics and do not make rigorous safety guarantees [17].

Other work, such as [18], [19], assumes these ingredients

already exist, or considers only trajectory optimization tasks

where a goal region needs to be reached in a finite number of

timesteps [16]. Moreover, iterative methods used to solve for

local minima of non-convex programs can be prohibitively

computationally expensive and often have limited associated

performance guarantees.

To make rigorous safety guarantees, we will focus on robust,

adaptive methods for systems that are nominally linear as

considered in [20]–[26]. A straightforward approach is to

maintain an outer bound on an unknown, nonlinear term in

the dynamics and use it as a disturbance bound in any chosen

robust MPC scheme [20]–[23], [26]. These methods avoid

some of the difficulties associated with trajectory optimization

for nonlinear dynamics by ignoring the actual values of the

nonlinear terms at any point in the state space. That is, these

methods do not exploit the learned structure in the a priori

unknown dynamics, often rendering them over-conservative

or fragile.

Contributions. We present an ARMPC method for systems

with an additive unknown nonlinear dynamics term, subject

to state and input constraints. Rather than construct an

outer envelope for such terms, as is normative in ARMPC

literature for linear systems, we develop theoretical guarantees

for a broad class of function approximators, including set

membership and least-squares methods for certain noise

models. Our key idea is to decompose uncertain dynamics

terms into a matched component that lies in a subspace that

can be stably canceled by the control input, and an unmatched

component that lies in an orthogonal complement to this

subspace. We apply certainty equivalent adaptive control

techniques to stably cancel the matched component from

the dynamics and then apply robust MPC, considering the

unmatched component as a bounded disturbance. Therefore,

our method explicitly uses point estimates of the unknown

term throughout the state space for control, i.e., it takes

advantage of the learned structure in the dynamics.

Our approach can be viewed through the lens of both

adaptive control and robust adaptive MPC: on one hand, we

extend classical adaptive cancellation-based methods to a

setting with uncertain, unmatched dynamics subject to state

and input constraints. On the other hand, we introduce a

simple nonlinear feedback law to construct an adaptive, robust

MPC that reduces the conservatism of existing approaches by

taking advantage of the learned structure in a priori unknown

dynamics. We prove our method is recursively feasible and

input-to-state stable. Moreover, we demonstrate on various

simulated systems that our method reduces the conservatism

and increases the feasible domain of the resulting robust MPC

problem compared to typical adaptive robust MPC methods.

II. PROBLEM FORMULATION

We consider the robust control of nonlinear discrete time

systems of the form

x(t+ 1) = Ax(t) +Bu(t) + f(x(t)) + v(t), (1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the

control input, A ∈ R
n×n and B ∈ R

n×m are known constant

matrices, and v(t) ∈ V is a disturbance in a known convex,

compact set V containing the origin. In addition, an unknown,

nonlinear dynamics term f : Rn → R
n acts on the system,

representing the unmodelled influence of the environment on

the nominally linear dynamics of system (1). For example,

f(x) can model the effect that wind conditions have on the

linearized dynamics of a drone. We assume the disturbances

are zero mean and independent and identically distributed

(i.i.d.), i.e., v(t)
iid
∼ p(v) and E[v(t)] = 0 for all t ≥ 0. Our

goal is to regulate the system close to zero according to the

robust optimal control problem

minimize
x,u

E

[ ∞∑

t=0

h(x(t), u(t))
]

subject to x(t+ 1) = Ax(t) +Bu(t) + f(x(t)) + v(t)

u(t) ∈ U , x(t) ∈ X , v(t) ∈ V, ∀t ∈ N≥0

(2)

where X ⊆ R
n and U ⊆ R

m are compact convex sets

containing the origin, and h(x, u) = x⊤Qx + u⊤Ru is

a quadratic stage cost parameterized by positive definite

matrices Q ∈ S
n
≻0 and R ∈ S

m
≻0. The problem (2) is

computationally intractable to solve because the horizon is

infinite and the nonlinear function f makes the problem

non-convex. To approximately solve (2), we need additional



assumptions on the unknown, nonlinear dynamics term f . In

particular, to derive a controller that is robust to any possible

value of f(x), we need f to be bounded on X . Moreover,

to construct guarantees on the online estimation of f and

establish properties of a controller using this estimate, we

also need to assume some structure of f . For these reasons,

we make the following assumption.

Assumption 1 (structure): The nonlinear dynamics term

f : Rn → R
n is linearly parameterizable, i.e.,

f(x) = Wφ(x), ∀x ∈ R
n, (3)

where φ : R
n → R

d is a known nonlinear feature map,

and W ∈ R
n×d is an unknown weight matrix. Moreover,

‖φ(x)‖ ≤ 1 for any x ∈ X , where ‖·‖ is the Euclidean norm.

Representing a nonlinear function using a feature map is

common both in adaptive control [1], [2] and contemporary

machine learning [9], [27], as they can represent arbitrary

functions if properly designed. For simplicity, we assume the

features satisfy a unit norm bound without loss of generality;

this still allows for function classes like neural networks with

scaled sigmoid outputs.

Matched and Unmatched Uncertainty: While it is com-

mon in adaptive control to assume the uncertain function f
in (1) can be stably cancelled in its entirety [1], [4], we will

generalize this approach to a setting where perfect cancellation

is not possible. To distinguish between the components of

the uncertain dynamics f that can and cannot be cancelled,

we classify the dynamic uncertainty as follows:

Definition 1 (matched and unmatched uncertainty): The

uncertain function f(x) in (1) is a matched uncertainty if

f(x) ∈ Range(B) for all x ∈ X . Conversely, if there exists

an x ∈ X such that f(x) /∈ Range(B), then f(x) is an

unmatched uncertainty.

In this work, we assume that the B matrix in (1) has

full column rank, i.e., there are no redundant actuators,

thereby guaranteeing the existence of the Moore-Penrose

pseudoinverse B† = (B⊤B)−1B⊤. Therefore, if f(x) is

a matched uncertainty, then the function g(x) = B†f(x)
satisfies f(x) = Bg(x) for any x ∈ X .

Controlling systems with matched uncertainty is a classical

problem in the adaptive control literature, much of which

relies on the observation that setting u(t) = ū(t)− g(x(t))
in (1) would cancel the nonlinear term to yield linear dynamics

with respect to the nominal input ū(t). Certainty equivalent

controllers that approximately cancel g(x) with an estimate

ĝ(x) result in simple nonlinear adaptive laws that can achieve

asymptotic tracking performance for matched systems. Even

though systems are often designed to be easy to control,

unmatched uncertainty affects many practical systems of

interest, such as the dynamics of any underactuated robotic

system (e.g., quadrotors and cars). We propose to decompose

the uncertain function f into a matched and unmatched

component, apply certainty equivalent cancellation to the

matched component, and curb the impact of the unmatched

component using robust MPC strategies. Applying part

of the input to cancel matched uncertainty allows us to

instantaneously prevent some components of f from leaking

into the dynamics, avoiding the need to react to large observed

disturbances.

ISS Stability. Due to the disturbance v(t), the system (1)

cannot be regulated exactly to the origin even asymptotically.

Therefore, robust control algorithms are typically analyzed

using Input-to-State Stability (ISS) theory to establish more

appropriate stability properties [14], [15], [22]. We briefly

review relevant results in ISS theory for time-varying systems,

since online adaptation of an estimate of the unknown function

f results in a time-varying closed loop system.

Definition 2 (ISS stability [28]): The system x(t + 1) =
q(t, x(t), v(t)) with disturbance v(t) is globally Input-to-State

Stable (ISS) if there exist a class-KL function β : R+×R+ →
R+ and a class-K function γ : R+ → R+ such that

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(supk∈{0,...,t−1}‖v(k)‖), (4)

for all x(0) ∈ R
n and t ∈ N≥0.

In essence, ISS requires that the nominal system is

asymptotically stable and the influence of the disturbances is

bounded. This makes it a convenient framework to analyze the

stability of systems subject to random disturbances. Similarly

to regular nonlinear stability analysis, we can show a system

is ISS if there exists an ISS-Lyapunov function.

Definition 3 (ISS-Lyapunov function): The function V :
R × R

n → R is an ISS-Lyapunov function for the system

x(t+ 1) = q(t, x(t), v(t)) if it is continuous in x, continuous

at the origin for all t ∈ N≥0, and there exist class-K∞

functions α1, α2, α3 and a class-K function σ such that

α1(‖x(t)‖) ≤ V (t, x(t)) ≤ α2(‖x(t)‖)

V (t+ 1, x(t+ 1))− V (t, x(t)) ≤ −α3(‖x(t)‖) + σ(‖v(t)‖)
(5)

for all x(t) ∈ R
n.

Theorem 1 ([28]): A time-varying system is globally ISS

if it admits an ISS-Lyapunov function.

The above definitions naturally extend to local ISS stability;

for a detailed discussion, we refer readers to [14], [28], [29].

III. ADAPTIVE ROBUST MPC

In this section we first describe assumptions on and

necessary features of the learning procedure in a way that

is agnostic to the choice of learning algorithm. We then

introduce our adaptive robust MPC approach, and prove

stability of the combined learning and control framework.

Learning Desiderata. Since the nonlinear dynamics

term f is unknown, our method takes a certainty equivalent

approach by substituting an estimate f̂ that is refined online

as more data becomes available. To guarantee the adaptive

robust MPC framework satisfies state and input constraints

for all time (i.e., safety), we make several assumptions on f̂ .

We maintain the estimate

f̂(x, t) = Ŵ (t)φ(x) (6)

of f(x), where Ŵ (t) ∈ R
n×d is our estimate of W at time t.

To this end, we need bounds on our initial uncertainty, i.e., the

difference between f(x) and f̂(x, 0) for all x. For a general



statistical estimator, this entails specifying a risk tolerance

δ ∈ (0, 1) and computing confidence intervals on the estimate.

Assumption 2 (prior knowledge): Let wi, ŵi(t), and w̃i(t)

be the i-th rows of W , Ŵ (t), and W̃ (t) := Ŵ (t) − W ,

respectively, for i ∈ {1, 2, . . . , n}. At t = 0, we know an

initial estimate Ŵ (0) ∈ R
n×d and bounded sets {Wi(0)}

n
i=1

with Wi(0) ⊂ R
d, such that W̃ (0) ∈ W(0) with probability

at least 1− δ, where

W(t) :=
{
W̃ ∈ R

n×d | w̃i ∈ Wi(t), ∀i ∈ {1, . . . , n}
}
,
(7)

for all t ∈ N≥0.

Assumption 2 provides only an initial bound on the error

of the estimate, which we explicitly label as the estimate

at t = 0. Later, we will define W(t) for all t ∈ N≥0 when

we adaptively update our estimate Ŵ (t) and the bounds

{Wi(t)}
n
i=1 online. Our approach leverages the certainty

equivalent “estimate and cancel” control laws pioneered in

classical unconstrained adaptive control [1], [4]. As such,

Assumption 1 and Assumption 2 are necessary to bound

our approximation error. However, since we specify the risk

tolerance δ, we cannot guarantee exact constraint satisfaction

for all time. We instead relax our definition of safety to

Prob
(
x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0

)
≥ 1− δ, (8)

which states that the probability of a constraint violation

should be no more than δ over the entire realized trajectory.

Moreover, to guarantee closed loop safety, we assume we

have an online adaptation strategy that ensures the quality of

the estimate Ŵ (t) cannot get worse over time.

Assumption 3 (online learning): We have an online pa-

rameter estimator that maps an initial estimate Ŵ (0), the

associated 1− δ confidence interval W(0), and the trajectory

history {x(k), u(k)}tk=0 to an online estimate Ŵ (t) and

confidence interval W(t) at time t, such that ŵi(t)− wi ∈
Wi(t) for all time t ∈ N≥0 and i ∈ {1, 2 . . . , n} with

probability at least 1− δ. We assume the confidence intervals

on Ŵ (t) are not growing with time, i.e.,

W(t+ 1) ⊆ W(t), (9)

for all t ∈ N≥0.

Formulating separate confidence intervals for each row of

Ŵ (t) is a natural approach, as fitting Ŵ (t) to historical

data decomposes into n separate least-squares problems

(one for each row). Crucially, Assumption 3 allows us to

treat the confidence intervals W(t) as exact bounds in the

control design, since a controller that guarantees constraint

satisfaction conditioned on the event that ŵi(t)−wi ∈ Wi(t)
for all time then satisfies (8). Therefore, we treat the chance

constraint (8) as a proxy for robust constraint satisfaction and

construct our approach for the remainder of §III conditioned

on the event that ŵi(t) − wi ∈ Wi(t) for all time. This

approach was also taken in [16], [30]. We discuss two

commonplace estimators that satisfy our desiderata in §IV.

Assumption 3 does not require the range of the estimated

function to shrink over time. Therefore, our estimation

procedure differs from methods such as [20], [22], [23] that

refine a shrinking bound exclusively on the range of the

estimate without taking direct advantage of the structure in

the nonlinear dynamics.

A. Certainty Equivalent Cancellation

We propose optimizing over feedback policies that cancel

as much of the nonlinear term f(x) as possible.

Definition 4: The set of matching Certainty Equivalent

(CE) policies is the time-varying function class whose

elements π : X × N≥0 → U are of the form

π(x(t), t) = u⋆(x(t), t)−B†f̂(x(t), t) (10)

The matching CE policies simply project f̂(x(t), t) onto

Range(B), and cancel out as much of the disturbance as we

can in the Euclidean norm sense, since

B†f̂(x(t), t) = argmin
z

‖Bz − f̂(x(t), t)‖.

The matching CE law (10) results in the closed-loop dynamics

x(t+ 1) = Ax(t) +Bπ(x(t), t) + f(x(t)) + v(t)

= Ax(t) +Bu⋆(x(t), t) + d(t)
, (11)

where we define the compound disturbance term as

d(t) := v(t) + f(x(t))−BB†f̂(x(t), t)

= v(t) +BB†(f(x(t))− f̂(x(t), t))

+ (I −BB†)f(x(t)).

(12)

We have written d(t) above with three terms to highlight that

it is driven by the process disturbance v(t), the estimation

error f(x)− f̂(x), and the imperfect matching using B†.

We now introduce two simple polytopic approximations

to bound the support of the cancellation term in (10) and the

terms that make up the compound disturbance d(t). This will

allow us to apply the certainty equivalent cancellation in (10)

and handle d(t) by appropriately selecting u⋆(·) using robust

MPC. As mentioned in our learning desiderata, we assume

ŵi(t)− wi ∈ Wi(t) for the rest of this section.

Lemma 1: Consider online approximation of f(x) with

features satisfying Assumption 1, an estimator satisfying

Assumption 3, and define the estimated support set as

F(t) := {z ∈ R
n : |zi| ≤ ‖ŵi(t)‖+2 max

w̃i∈Wi(t)
‖w̃i‖}. (13)

Then, for all x ∈ X and t, k ∈ N≥0 it holds that

f̂(x, t+ k), f(x) ∈ F(t). (14)

Proof: We show F(t) over-approximates the range of

values z = f̂(x, t + k) can take for any x ∈ X and k ≥ 0.

Let z = f̂(x, t+ k) = Ŵ (t+ k)φ(x). Then,

|zi| = |ŵi(t+ k)⊤φ(x)|

≤ ‖ŵi(t+ k)‖

≤ ‖ŵi(t)‖+ ‖ŵi(t+ k)− ŵi(t)‖

≤ ‖ŵi(t)‖+ ‖ŵi(t+ k)− wi‖+ ‖ŵi(t)− wi‖.

(15)

The shrinking confidence interval property from Assumption 3

gives Wi(t+ k) ⊆ Wi(t) for k ≥ 0, so

|zi| ≤ ‖ŵi(t)‖+ 2 max
w̃i∈Wi(t)

‖w̃i‖, (16)



which proves that f̂(x, t + k) ∈ F(t) for all k ≥ 0. In

addition, let y = f(x) = Wφ(x) for some x ∈ X . Then,

|yi| = |w⊤
i φ(x)|

≤ ‖wi‖

≤ ‖ŵi(t)‖+ ‖ŵi(t)− wi‖

≤ ‖ŵi(t)‖+ max
w̃i∈Wi(t)

‖w̃i‖.

(17)

Hence, f(x) ∈ F(t).
The set F(t) in Lemma 1 contains all possible values

that our online estimate can take for all future times. It is

not straightforward to create a tighter approximation (i.e.,

eliminate the factor of 2) without additional assumptions. To

see this, consider a constant unit norm ball confidence interval.

In the worst case, the true parameter lies on the boundary of

the ball around the current estimate. This means all future

estimates may lie a Euclidean distance of 2 units away from

the current estimate, yielding the bound in Lemma 1.

Moreover, Lemma 1 does not require that F(t+1) ⊆ F(t),
so we provide the following corollary to help us create an

approximation that is non-increasing in size.

Corollary 1: At time t, the sets {F(i)}ti=0 are known, so

f̂(x, t+ k), f(x) ∈
t⋂

i=0

F(i) =: F̂(t) (18)

for all x ∈ X and k ∈ N≥0, where we define F̂(t) as the set

{z : |zi| ≤ min
j∈{0,...,t}

[‖ŵi(j)‖+ 2 max
w̃i∈Wi(j)

‖w̃i‖]}. (19)

Note F̂(t) can be computed recursively in time.

To construct a robust MPC problem to optimize the CE policy

(10), we need to account for the compound disturbance d(t).
We do this with the following lemma.

Lemma 2: Assume the online parameter estimator satisfies

Assumption 3 with features that satisfy Assumption 1 and

define the approximation error support D(t) as the set

{z ∈ R
n | |zi| ≤ max

w̃i∈Wi(t)
‖w̃i‖, ∀i ∈ {1, . . . , n}}. (20)

If we control the system (1) using the certainty equivalent

control law (10), then at time t for all k ∈ N≥0, the compound

disturbance d(t+ k) in the dynamics (11) is contained in the

set D̂(t) ⊆ D̂(t− 1), defined as

D̂(t) := (I −BB†)F̂(t)⊕BB†D(t)⊕ V . (21)

Here ⊕ indicates the Minkowski sum and a matrix-set

multiplication indicates a linear transformation of the set’s

elements.

Proof: At any state x ∈ X and time t + k, let z =
f̂(x, t + k) − f(x) = (Ŵ (t + k) − W )φ(x) = W̃φ(x) for

some W̃ ∈ W(t+ k) ⊆ W(t). Then

|zi| = |w̃⊤
i φ(xt)| ≤ ‖w̃i‖ ≤ max

w̃i∈Wi(t)
‖w̃i‖.

So f̂(x, t+k)−f(x) ∈ D(t) for all k ∈ N≥0. Since Wi(t) ⊆
Wi(t − 1) by Assumption 3, this implies D(t) ⊆ D(t −

1). Then, by Corollary 1, f(x) ∈ F̂(t). Therefore, d(t) in

the closed loop dynamics (11) is contained in D̂(t) since

D(t) is symmetric. In addition, since both F̂(t) ⊆ F̂(t− 1)
and D(t) ⊆ D(t−1), the support of d(t) is nested over time,

i.e., D̂(t) ⊆ D̂(t− 1).
Remark 1: We could consider multiple variations on the

bounds in Lemmas 1, 2 that would yield equivalent properties

of the closed loop system. For example, if a bound on the

true range of values of f is known a priori, we may project

f̂ into a known box enclosing the support of f .

Rather than search over open-loop input sequences, which

can incur issues with feasibility and stability under distur-

bances, we consider the standard practice of searching over

closed-loop feedback policies [13], [15], [21]. In particular,

we follow [15] in optimizing over time-varying, causal, affine

disturbance feedback policies of the form

ut+k|t = ūt+k|t +
∑k−1

j=0Kk,j|tdt+j|t, (22)

to define the constraint-tightened robust MPC problem that

we solve online as follows:

minimize
{Kk,j|t}

N−1,k−1

k=0,j=0
,

{ūt+k|t}
N−1

k=0

VN (x̄t+N |t) +

N−1∑

k=0

h(x̄t+k|t, ūt+k|t)

subject to x̄t+k+1|t = Ax̄t+k|t +Būt+k|t

xt+k+1|t = Axt+k|t +But+k|t + dt+k|t

ut+k|t = ūt+k|t +
∑k−1

j=0Kk,j|tdt+j|t

xk|t ∈ X , ut+k|t ∈ U ⊖B†F̂(t)

∀k ∈ {0, 1, . . . , N − 1}

x̄t|t = x(t), xt|t = x(t), xt+N |t ∈ O(t)

∀{dt+k|t}
N−1
k=0 ⊂ D̂(t)

.

(23)

The problem (23) optimizes a time-varying feedback policy

with a cost on the nominal trajectory (x̄, ū) subject to state

and input constraints on the realized trajectory. We use the

subscript t+k|t for quantities at the k-th step of the prediction

horizon when (23) is solved online at time t ∈ N≥0. If the

function VN : X → R, the terminal set O, and the disturbance

set D̂ are convex, then (23) is a convex problem and we refer

the reader to [15] for implementation details. One might also

consider a formulation of (23) where the feedback gains are

fixed, yielding a more basic tube MPC as considered in [13].

Let the optimal value of (24) be J⋆
N (t, x(t)), with associ-

ated optimal policy sequence [u⋆
t|t, . . . , u

⋆
t+N−1|t]. We then

choose the robust control term of the certainty equivalent

control policy (10) as the receding horizon feedback law

u⋆ : X × N≥0 → U such that

u⋆(x(t), t) = u⋆
t|t. (24)

In (23) we have tightened the input constraints to account

for the matching term in the certainty equivalent policy (10)

when compared to a more standard robust MPC problem (i.e.

see [15]). As is standard in robust MPC, we assume we can

both compute a robust control invariant set O(t) and have

access to a convex terminal cost function VN .



Assumption 4: The terminal cost VN : R
n → R+ is

a continuous convex Lyapunov function for the nominal

dynamics under a policy uN (x) = −Kx. That is, there exists

a class-K∞ function αN (‖x‖) ≥ h(x, uN (x)) for which

VN ((A−BK)x)− VN (x) ≤ −αN (‖x‖). (25)

Assumption 5: For the policy uN (x) = −Kx in Assump-

tion 4, the terminal set O(t) ⊆ X is a maximal robust

positive invariant set for the closed loop system x(t+ 1) =
(A − BK)x(t) + d(t) for d(t) ∈ D̂(t) subject to x(t) ∈ X
and uN (x(t)) ∈ U ⊖B†F̂(t) for all t ≥ 0.

Assumption 4 and Assumption 5 are standard and easily

satisfied by taking uN (x) = −Kx and VN (x) = x⊤Px as

the solution to an LQR problem with h as the stage cost.

Then, O(t) can be computed efficiently using the standard

algorithms in [31].

Lemmas 1 and 2 imply that O(t−1) ⊆ O(t) since D̂(t) ⊆
D̂(t − 1) and F̂(t) ⊆ F̂(t − 1). Therefore, the terminal

constraint becomes less conservative over time.

B. Stability

We prove the stability of our algorithm through a recursive

feasibility and input-to-state stability argument.

Theorem 2: Consider the system (1), a parameter estima-

tor that satisfies Assumption 3 with features that satisfy

Assumption 1 in closed loop feedback with the matching

certainty equivalent control law (10),(24). If the tube MPC

problem (23) is feasible at t = 0, then for all t ≥ 0 we have

that (23) is feasible and the closed loop system (1),(10),(24)

satisfies x(t) ∈ X , and π(x(t), t) ∈ U .

Proof: Suppose the optimal control problem (23) is

feasible at time t, with solution [u⋆
t|t(·), . . . , u

⋆
t+N−1|t(·)]. By

Lemma 1 and Corollary 1 we have that f̂(x, t+ k) ∈ F̂(t)
for all k ∈ N≥0. Therefore, the time-varying CE control law

πt+k|t(·) = u⋆
t+k|t(·)−B†f̂(x(t), t+ k) (26)

satisfies the input constraints for t ∈ [t, t+N −1], since (23)

then implies u⋆
t+k|t(·) ∈ U⊖B†F̂(t). Moreover, by Lemma 2

the disturbance support shrinks in time, i.e., D̂(t+1) ⊆ D̂(t).
Therefore, we have that under policy (26) the closed-loop

trajectory formed by (1),(26) satisfies x(t+ k) ∈ X for all

k ∈ [0, N ] and that x(t + N) ∈ O(t). Hence, if we apply

the CE policy (10),(24) at time t, then x(t + 1) ∈ X and

π(x(t), t) ∈ U .

By Assumption 5, for any x ∈ O(t) ⊆ O(t + 1),
applying the policy uN (x) ∈ U ⊖ B†F̂(t) implies that

Ax + BuN (x) + d ∈ O(t + 1) for any d ∈ D̂(t). There-

fore, Corollary 1 and Lemma 2 imply the policy sequence

[u⋆
t+1|t(·), . . . u

⋆
t+N−1|t(·), uN (·)] is feasible for the tube

MPC problem (23) at time t + 1. Therefore, if the MPC

program (23) is feasible at time t = 0, it is also feasible for

all t ≥ 0 and the closed-loop system formed by the matching

CE law (1), (10), (24) must robustly satisfy state and input

constraints by induction.

Remark 2: Theorem 2 and Assumption 5 imply that the

maximal RPI set O(t) or disturbance sets D̂(t), F̂(t) need not

be updated at every timestep to guarantee recursive feasibility

(nor stability), so we can apply this algorithm in an iterative

setting and update the constraints only between episodes.

Theorem 3: Consider a system of the form in (1), a

parameter estimator that satisfies Assumption 3 with features

that satisfy Assumption 1 in closed-loop feedback with the

certainty equivalent control law (10),(24). Let XN ⊆ X
denote the set of states for which the tube MPC problem (23)

is feasible. Then the closed loop system is locally input-to-

state stable with region of attraction XN .

Proof: Our proof closely resembles [21, Thm. 2]. We

argue that the nominal system is stable by a standard MPC

argument, and that the closed-loop system is ISS since

the disturbances are bounded. Since we assume the stage

cost is quadratic, there exist two class-K∞ functions α1, α2

such that for all t ≥ 0, α1(‖x‖) ≤ J⋆
N (t, x) ≤ α2(‖x‖),

a class-K∞ function α3 such that h(x, u) ≥ α3(‖x‖),
and J⋆

N (t, 0) = 0 (see [14, Prop. 1], [21, Thm. 2]). Let

J⋆
N (t, x(t)) be the solution of (23) associated with the

nominal prediction [x̄⋆
t|t, . . . , x̄

⋆
t+N |t] and feedback policies

[u⋆
t|t(·), . . . , u

⋆
t+N−1|t(·)]. As in the proof of Theorem 2,

we have that if we apply the CE control law (10),(24)

at time t, then the policies [u⋆
t+1|t, . . . , u

⋆
t+N−1|t, uN ] are

a feasible solution for (23) at time t + 1. Let J̄(t, x) be

the cost associated with forward simulating the nominal

system using the policies [u⋆
t+1|t, . . . , u

⋆
t+N−1|t, uN ] with

x as initial condition. i.e., set u⋆
t+N |t = uN (·) and let

x̄t+1|t+1 = x, x̄k+1|t+1 = Ax̄k|t+1 + Bu⋆
k|t(x̄k|t+1) for

k ∈ {t+ 1, . . . , t+N} so that

J̄(t, x) =

t+N∑

k=t+1

h(x̄k|t+1, u
⋆
k|t(x̄k|t+1)) + VN (x̄t+N+1|t+1).

This gives that J⋆
N (t+1, x(t+1)) ≤ J̄(t, x(t+1)). Moreover,

since the stage cost is quadratic and by Assumption 4, J̄(t, x)
is uniformly continuous in x for all t ≥ 0 on the state space

since the inputs are constrained in a compact set. It follows

that for x1, x2 ∈ X , there exists a K∞ function αJ such that

for all t ≥ 0, |J̄(t, x1)− J̄(t, x2)| ≤ αJ(‖x1−x2‖) (see [14,

Lem. 1]). Therefore,

J⋆
N (t+ 1, x(t+ 1))− J⋆

N (t, x(t))

≤ J̄(t, x(t+ 1))− J⋆
N (t, x(t))

= J̄(t, x(t+ 1))− J̄(t, x̄⋆
t+1|t) + J̄(t, x̄⋆

t+1|t)− J⋆
N (t, x(t))

≤ |J̄(t, x(t+ 1))− J̄(t, x̄⋆
t+1|t)| − h(xt, ū

⋆
t|t(x(t)))

≤ αJ(‖d(t)‖)− α3(‖x(t)‖).

So, the system is ISS by Theorem 1.

Remark 3: The ISS result in Theorem 3 does not explicitly

show that improvements in the confidence of the model lead

to better performance of the controller, since we only assume

the model confidence is non-decreasing in Assumption 3.

In adaptive control, stronger guarantees of performance im-

provement are typically made under persistence of excitation

assumptions [1].

IV. ADAPTATION LAWS & LEARNING ALGORITHMS

In this section we highlight two common and perhaps

complimentary online function approximation schemes, one is



statistical and one is not, that satisfy the decaying confidence

interval of Assumption 3 that we used to construct our

ARMPC algorithm.

Set Membership Estimation. A common approach in the

adaptive MPC literature is to estimate constant, or slowly

changing, disturbances through set membership estimation

[20], [25]. These estimators maintain a feasible parameter set

that is refined as more data becomes available. The feasible

parameter set contains all credible model parameters that

explain previous observations, which means that the feasible

parameter sets are nested over time. We consider learning the

parameters of a nonlinear uncertainty model of the form in

(3) directly using set-membership estimation. Under the prior

knowledge Assumption 2, the initial feasible parameter set is

given as Θ(0) = {Ŵ (0)}⊕W(0) and the feasible parameter

set at time t is obtained as

Θ(t) =
{
W ∈ Θ : x(k + 1)−Ax(k)−Bu(k)

−Wφ(x(k)) ∈ V, ∀k ∈ {0, . . . , t− 1}
}
.

(27)

When V is a hyperbox, this estimator maintains independent

feasible sets for each row of W and can be updated recursively

in time with polytopical set intersections by rewriting (27) in

terms of the row-wise vectorization of W . Clearly, Θ(t) ⊆
Θ(t− 1). As is common practice in the literature [22], we

propose generating a point estimate of the parameters as the

Chebyshev center of the feasible parameter set:

Ŵ (t) = argmin
Ŵ

max
W∈Θ(t)

‖Ŵ −W‖F . (28)

By definition, this approach minimizes the worst-case error

of the point estimates and is typically straightforward to

compute [32]. Denoting the Chebyshev radius for the feasible

parameter set associated with the i-th row of W as ri(t) =
minw maxwi∈Θi(t) ‖w−wi‖2, we take the confidence interval

on ŵi(t)− wi as Wi(t) = {w̃i : ‖w̃i‖2 ≤ ri(t)}.

By definition, since Θ(t) ⊆ Θ(t − 1), the Chebyshev

radii must be decreasing over time: ri(t) ≤ ri(t − 1).
Therefore, a set-membership estimator with point estimates

as the Chebyshev center satisfies Assumption 3.

Recursive Bayesian Linear Regression (BLR). In the

case of Bayesian estimation, we can generate confidence

intervals directly from the posterior distribution over parame-

ters if we know the disturbance distribution. We outline this

approach under a simple, standard assumption.

Assumption 6: We assume that each entry of the process

noise is bounded v(t) = [v1(t), . . . , vn(t)]
⊤ ∈ V = {v :

|v| ≤ σi}, and that each entry vi(t) is independent of the

others. Hence, vi(t) is sub-Gaussian with variance proxy σ2
i .

Under Assumption 6, we can essentially treat the noise

as both normally distributed for convenient analysis and

provide safety guarantees for the algorithm proposed in

§III. If we place subjective priors over the rows of W
of the form wi ∼ N (ŵi(0), σ

2
iΛ

−1
i (0)), then the resulting

posterior parameter distribution at time t is also Gaussian,

wi ∼ N (ŵi(t), σ
2
iΛ

−1
i (t)). We then use the mean of the

posterior—also corresponding to the maximum a posteriori

(MAP) estimate—as a point estimate for control: f̂(x, t) =

Ŵ (t)φ(x). Defining the measurement and prediction at time

t as y(t) := x(t+1)−Ax(t)−Bu(t) and ŷ(t) := Ŵ (t)φ(t),
the MAP estimate for each row can then be updated with

constant complexity in time using the recursive updates

ŵi(t+ 1) = ŵi(t)−
(ŷi(t)− yi(t))φ(t)

⊤Λ−1
i (t)

1 + φ(t)⊤Λ−1
i (t)φ(t)

(29)

Λ−1
i (t+ 1) = Λ−1

i (t)−
Λ−1
i (t)φ(t)φ(t)⊤Λ−1

i (t)

1 + φ(t)⊤Λ−1
i (t)φ(t)

, (30)

where we write each entry of ŷ(t) as ŷi(t) = ŵi(t)
⊤φ(t)

and φ(t) := φ(x(t)). We can recover the frequentist ordinary

least-squares estimator if we assume a flat prior [33], which

requires the availability of some amount of prior data to yield

the initial values Ŵ (0), Λ(0).
Taking a risk tolerance of δ ∈ (0, 1), we could naively

define the confidence interval for the i-th row of Ŵ (t) as

Wnaive
i (t) := {w̃i ∈ R

n : w̃⊤
i Λi(t)w̃i ≤ σ2

i χ
2
n(1−

δ

n
)},

(31)

where χ2
n(1− δ) is the 1− δ quantile of the chi-square distri-

bution with n degrees of freedom. However, the confidence

interval in (31) does not capture the fact that we want to certify

the safety of the policy for all time with high probability.

We cannot achieve this with a single confidence interval of

a point estimate at time t, as (31) ignores the correlations

between the model estimates over time. For robust control,

we instead desire confidence intervals such that

Ŵ (t)−W ∈ W(t), ∀t ∈ N≥0, (32)

with probability at least 1− δ.

Recent work applied a Martingale argument originating

from the Bandits literature to generate such confidence

intervals [16] by scaling the naive confidence intervals by a

time-varying parameter1.

Theorem 4: [16, Thm 1] For the recursive Bayesian linear

filter (29),(30), we have the estimation error ŵi(t) − wi ∈
Wi(t) for all t ≥ 0 with probability at least 1− δ, where

Wi(t) := {w̃i : (w̃
⊤
i Λi(t)w̃i)

1
2 ≤ σiβt(δ/n)}, (33)

with βt(δ) equal to
√
2 log

( det(Λi(t))1/2

δ det(Λi(0))1/2

)
+

√
λmax(Λi(0))

λmin(Λi(t))
χ2
n(1− δ).

(34)

The confidence intervals resulting from Theorem 4 unfor-

tunately do not immediately satisfy Assumption 3 without a

persistence of excitation or active exploration assumption as is

made in [27]. A simple workaround is to update the estimate

(29) fed into to the controller only when the associated

confidence intervals (33) have shrunk, effectively disregarding

new data until the system has been excited sufficiently. This

1Subject to assumptions on the calibration of the prior, for which we refer
the reader to [16, Assumption 3]. This assumption is trivially satisfied for
flat priors, and we assume this assumption is satisfied for subjective priors.
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