
PINT: Parallel INTerval-Based Race Detector
Yifan Xu Anchengcheng Zhou Kunal Agrawal I-Ting Angelina Lee

Washington University in St. Louis
{xuyifan, ann.zhou, kunal, angelee}@wustl.edu

Abstract—A race detector for task-parallel code typically con-
sists of two main components — a reachability analysis component
that checks whether two instructions are logically in parallel and
an access history component that keeps track of memory locations
accessed by previous instructions.

Race detectors from prior work typically utilize a hashmap to
maintain the access history, which provides asymptotically opti-
mal overhead per operation but can incur significant overhead
in practice, since the detector needs to insert into and query the
hashmap for every memory access. An exception is STINT by Xu
et al., which race detects task-parallel code by coalescing memory
accesses into intervals, or continuous memory locations accessed
within a sequence of instructions without any parallel construct.
STINT utilizes a treap to manage access history that allows for
insertions and queries of non-overlapping intervals. While a treap
incurs higher asymptotic overhead per operation, this strategy
works well in practice as the race detector performs operation
on the access history with much lower frequency compared to
the strategy that utilizes a hashmap.

STINT only executes task-parallel code sequentially, however,
due to the unique design of their treap that ensures no overlap-
ping intervals exist in the tree. Parallelizing STINT efficiently is
non-trivial, as it would require a concurrent treap that ensures
no overlapping interval, which is challenging to design and likely
incurs high synchronization overhead.

This work proposes PINT, a race detector that, like STINT,
race detects task-parallel code at the interval granularity and
utilizes the same treap design to maintain access history. PINT
executes the computation in parallel, however, while keeping the
parallelization / synchronization overhead low. A key insight is
that, PINT separates out operations needed for race detection
into the core part (e.g., reachability maintenance) and the access
history part. Doing so allows PINT to parallelize the core part
efficiently and perform the access history part asynchronously,
thereby incurring low overhead.

I. INTRODUCTION

A particularly common and insidious cause of bugs in
parallel programming is determinacy races [1] (also called
general races [2]) which occur when two or more instructions
which are logically in parallel with each other access the
same memory and at least one of the accesses is a write.
A determinacy race can cause the program to behave in a
nondeterministic way depending on the order in which the
operations are scheduled. Finding determinacy races is also
challenging due to the nondeterministic program behavior.

For task-parallel programs, the normal paradigm is to detect
races “on the fly” — as the program executes for a partic-
ular input, the race detector maintains data structures that

This work was supported in part by the National Science Foundation
under grant numbers CCF-1725647, CCF-1733873, CCF-1910568, and CCF-
1943456.

keep track of which instruction(s) have read/written to which
memory location and reports a race when conflicting accesses
occur. Several algorithms have been proposed for on-the-fly
race detection in task-parallel code [3], [1], [4], [5], [6], [7],
[8], [9], [10], [11], [12]. These algorithms guarantee that the
race detector reports a race if and only if a race exists for
that input. On-the-fly race detection maintains two crucial
data structures: (1) a reachability analysis data structure
maintains information that allows us to determine whether two
strands — a sequence of instructions containing no parallel
control — are logically in parallel with each other, and (2)
an access history (also called shadow memory) data structure
that records (possibly a subset of) strands that have accessed
a given memory location in the past. Every time a particular
memory location, say ℓ, is accessed by a strand t, the race
detector uses the access history data structure to determine
(the appropriate subset of) prior strands that accessed ℓ. Then
the reachability data structure is queried to see if any of these
prior strands are logically in parallel with t. If no race is found,
then t is (possibly) added to the access history (this step may
involve further queries to the reachability data structure) so
future strands can detect races.

Most prior work for optimizing on-the-fly race detection
for task parallel programs has focused on how to update
and query the reachability data structure more efficiently. The
access history data structure in the prior work is generally an
optimized hashmap where the key is each memory location
and the value is the (list of) prior accesses to this memory
location. Therefore, each query and update to the access
history takes constant time. However, each memory access
within the program leads to a query (and potentially an update)
to this data structure. In addition, as mentioned above, each
query and update to the access history also (potentially) leads
to reachability data structure queries. Therefore, reducing the
number of access history queries and updates can lead to
significant improvement in the performance of race detection.

Researchers have observed that memory accesses within
many programs exhibit spatial locality; that is, strands often
access contiguous memory locations. Therefore, instead of
storing individual memory locations in the access history, one
can store intervals — a range of contiguous memory locations
accessed by a single strand. This observation underlies work
in various contexts that use compile time techniques, runtime
techniques, or both to generate appropriate intervals to speed
up access history management [13], [14], [15], [16], [17],
[18]. Our work, in particular, is inspired by the interval-based
access history STINT [18], which generates intervals using

both compile time and runtime coalescing and stores access
history using a dynamic treap [19], [20] data structure. The
treap by Xu et al. [18] enforces that no two intervals within
the treap overlap and provides fast algorithms to insert and
query into such a treap data structure. Their approach runs the
input parallel program sequentially and uses one reader treap
and one writer treap for access history management.

This paper describes PINT, a parallel race detector based on
the treap data structure used by Xu et al. [18]. In particular,
like all parallel race detection algorithms for race detecting
series-parallel programs, we store (up to) three previous acces-
sors (strands that previously accessed that memory location)
for each memory location using three treaps. The primary
difficulty with designing a parallel race detection algorithm
that uses a dictionary for storing the access history intervals
is concurrent accesses from strands that run in parallel. For
hashmap based access history, concurrent accesses are less of
a problem since each cell of the hashmap stores only one
memory location and all cells can be accessed concurrently
without correctness issues. When we use a treap (or any tree
or skiplist data structure), two issues arise: 1. Each node stores
a potentially large interval and multiple parallel strands could
access different memory locations within the same interval;
and 2. Since it is pointer-based balanced search-tree data
structure, even accesses to different nodes may change the data
structure globally in order to maintain balance conditions. This
is magnified for the modified treap by Xu et al. [18] since each
insert and query can traverse multiple paths in the treap.

One possible solution is to use concurrent search tree or
skiplist data structures; however, we are not aware of a concur-
rent treap data structure that satisfies the no-overlap property
we need and the complex insert and query semantics would
make it nontrivial to design one. In addition, even generic
concurrent search trees and skiplists often incur significant
overheads due to locking or are very complicated to implement
if they are nonblocking.

In this paper, we take the approach of minimizing overheads
by using sequential treaps while executing the actual program
in parallel. Our design separates out operations needed for
race detection into the core component and the access his-
tory component, but the two components perform additional
bookkeeping so that they can be parallelized independently
and execute asynchronously. A set of core workers execute
the core computation in parallel, managing reachability and
producing coalesced access intervals that will be picked up
by treap workers that manage the access history. Each treap
worker manages one of the three treaps independently from
each other but perform enough bookkeeping to ensure the
processing of intervals follow a single global order to ensure
correct race detection.

Since each treap is only accessed by a single worker, a
normal sequential implementation of the treap suffices. Since
the core workers and treap workers proceed asynchronously
— the core workers do not wait for the treap workers to finish
processing intervals for a particular strand before proceeding
to the next strand — our design is compatible with any reason-

able scheduling policy for the core workers. This asynchronous
design enables efficiency, since the core workers are never idle
waiting for treap workers to finish. Our implementation uses
work-stealing to schedule the work of the core component.
Contributions. This paper makes the following contributions:

1) We propose a unique parallelization strategy to enable
efficient treap-based access history for parallel race detec-
tion. An important feature of our design is asynchronous
access history queries and updates, allowing the core
workers to proceed execution without waiting for the
access history updates to complete.

2) This asynchrony creates interesting issues that prior race
detectors with synchronous access history does not con-
sider. For one, to ensure correct race detection, all treap
workers must process strands in one single global order
and ensure that the ordering satisfies the dependences
specified by the program computation. For two, recycling
memory can become problematic, as the memory should
not be freed until the access history has processed the
corresponding interval. Our design addresses these issues,
and we formally show that the proposed design provides
the same correctness guarantees as prior work.

3) We have developed PINT based on the proposed de-
sign, and we experimentally evaluate PINT to assess
the proposed parallelization strategy. Our experiments
indicate that PINT incurs small parallelization overhead
and provides decent scalability. Moreover, it executes
much more efficiently in practice, providing a much better
overhead compared to the state-of-the-art parallel race
detector for task-parallel code.

II. PRELIMINARIES

This section provides some necessary background.
Fork-Join Parallelism and Series-Parallel DAGs. This paper
focuses on race detection for programs created using fork-join
parallelism. Fork-join parallelism is typically expressed using
two keywords: spawn — which denotes that the spawned
function may execute in parallel with the continuation — and
sync — which ensures that all locally spawned computations
must return before the program proceeds.1

We can model a parallel computation as a directed-acyclic
graph (or DAG for short), where nodes represent strands, a
sequence of instructions containing no parallel control (i.e.,
spawn or sync), and edges represent dependences. Fork-join
computations generate a special class of DAGs called series-
parallel DAGs [21] (or SP DAGs for short). The DAG unfolds
dynamically as the program executes. When the execution
encounters a spawn, a spawn node is created with two
children. By convention, the left child is the first node of the
spawned subroutine and the right child is the node representing
the continuation of the parent, referred to as the continuation
node. When the execution successfully passes a sync, it
creates a sync node with multiple incoming edges.

1The exact keywords may be different across languages and libraries, but
the spirit is captured by these keywords.

Work-Stealing Scheduler. During execution, a work-stealing
scheduler [22], [23] dynamically load balances a parallel
computation across available worker threads. Each worker
maintains a deque, double-ended queue, of available work.
When a worker w executes a spawn node, which creates
two children, w pushes the right child (continuation node)
onto the bottom of its deque and continues to execute the
left child (spawned subroutine). When w returns from the
spawned subroutine, it pops the bottom-most continuation
node from its deque and resumes its execution. If its deque
becomes empty, w turns into a thief , chooses a victim worker
at random to steal from, and takes the topmost node — the
oldest continuation node in the deque — from the victim.
Thus, on a given worker, the continuation of a spawn is
always execution after the spawned function. Moreover, the
execution of a worker between successful steals follows that
of the sequential execution, expanding the DAG is a depth-first
left-to-right fashion.

When a worker reaches a sync node, it must check if all
previously spawned children have returned. If no continuation
associated with any of the spawns within this sync block
were ever stolen, then this is trivially true since the execution
follows sequential order. We call this type of sync a trivial
sync, which is a nop and the worker which encounters a trivial
sync can just continue to execute past it. On the other hand, if
any continuation within the sync block was stolen, then it is
a nontrivial sync and can only be passed once all previously
spawned subroutines return. The runtime system keeps track
of the number of outstanding spawned subroutines for each
sync block, which allows a worker executing a nontrivial sync
to determine whether the sync can be passed or not. If not,
the worker suspends the function and go work steal next.
Race Detection in Series-Parallel DAGs. When a particular
strand s accesses a memory location, say x, the on-the-fly race-
detection tool checks the access history to find prior strands
that have accessed this memory location in order to check if
there are parallel conflicting accesses. Given a pair of nodes
u and v (in this case, s and one of the relevant strands stored
in the access history) the reachability component checks if
they are in series — there is a path from between them
(represented by u ; v) — or in parallel — there is no path
between them. If no race is detected, then we update the access
history if necessary. In this paper, we use WSP-Order [7],
an asymptotically optimal parallel algorithm for reachability
analysis for series-parallel DAGs. We omit the detail fro WSP-
Order here as it can be used as a black box in PINT.

For race detection in general DAGs, the access history data
structure must store potentially many prior strands to correctly
report racy programs. In particular, we need store only one
writer (the last writer) per memory location, but have to store
a set of readers which are all in parallel with each other. For
series-parallel programs, however, it is sufficient to store a
small number of prior strands in the access history. For serial
race detectors (where the race-detector executes the (parallel)
program sequentially), then it suffices to store one reader (and
the last writer) to perform race detection correctly in series-

parallel programs [1].
More relevant to this paper, for parallel race-detectors, it

is sufficient to store two readers and one writer (still the
last writer) per memory location [3]. The two readers stored
are the left-most reader and right-most reader. The left-most
reader is the one that would execute first among all parallel
readers in a left-to-right depth-first execution of the DAG
and the right-most reader is the one that would execute last.
Another, informal way of thinking about this is that the left-
most (correspondingly, the right-most) reader appears left-
most among the parallel readers to the memory location in
the conventional drawing of the DAG. It is important to note
the phrase “among the parallel readers” — for instance, if u
and v are the left-most and the right-most readers to x, and
a node w, which is sequentially after both of them reads x
subsequently, then w will replace u and v as both the left-
most and the right-most readers. The structural properties of
series-parallel DAGs ensure that if both the left-most and the
right-most readers are in series with some subsequent strand,
then all other parallel readers are also in series with it.

III. PINT IMPLEMENTATION OVERVIEW

This section overviews the implementation of our race
detector, PINT, and discusses its design rationale.

The design choices in PINT align with two specific goals.
First, PINT should provide the traditional correctness guar-
antee of on-the-fly race detection. Specifically, PINT reports
a race if and only if a given input program contains a race.
Second, PINT should provide efficient practical performance.
To achieve this goal, the design of PINT strives to incur
low parallelization overhead, avoid synchronization whenever
possible, and utilize a load-balancing strategy that leads to
balanced workload across available cores. In this context, we
define parallelization overhead as the additional work that
PINT must do in order to enable parallel execution.

A. Race-detection with an Interval-Based Access History

Our work is a parallelization of STINT [18], a sequential
race detector with interval-based access history. STINT uses
two interval treaps to perform race detection — the writer
treap holds the last writer for each interval and the reader
treap holds the relevant reader for each interval. In STINT,
compile time and runtime coalescing is used at the strand level
— at the end of a strand s, a set of read and write intervals
are generated which contain all the memory accesses by s.
At this point, the read intervals of s are checked against the
writer treap and then inserted into the reader treap. Similarly,
the write intervals are checked against the intervals in both
treaps and then inserted into the writer treap. The two main
differences between STINT and traditional race detection are:
1. interval-based access history; and 2. delayed processing of
accesses since the intervals of a strand are only checked against
and inserted into the access history once the strand finishes
executing.

One important thing to note is that the treaps store the
exact intervals and not approximate intervals. This is facilitated

by ensuring that no two intervals in the treap can overlap
— the insertion process ensures that each memory location
is in at most one interval and this interval is the “correct
interval.” For instance, say the writer treap has intervals
[1, 4, u] and [6, 10, v] (indicating that the last writer to memory
locations from 1 to 4 was strand u and the last writer to
memory locations from 6 to 10 was v. If a strand w now
writes to interval [3, 7], the treap will be modified to contain
intervals [1, 2, u], [3, 7, w], [8, 10, v]. The reader treap is even
more complex, but based on similar principles. This allows
STINT to provide the precise guarantee we want — a race is
detected if and only if there is a race in the program.

Our system, PINT, uses the same compile time and runtime
coalescing as well as the same treap data structure as PINT.
In order to provide the same correctness guarantee in the
presence of parallelism, instead of maintaining two treaps, we
must maintain three treaps — writer treap, left-most reader
treap, and right-most reader treap. The insertion process for
the last writer and the left-most reader treaps are identical to
STINT while the insertion process for the right-most reader
treap is complementary to the left-most reader treap. Our main
contribution is design of mechanisms that allow for efficient
parallelization as described below.

B. Challenges in Efficient Parallelization

PINT, like STINT, maintains access history with an interval-
based treap. As a strand executes, it generates intervals using
compile time and runtime coalescing; these intervals are
inserted into treaps for correct race checking. The primary
challenge with efficient race detection is concurrency — since
multiple logically parallel strands can execute and generate
memory accesses in parallel, a treap must coordinate the
concurrent updates and queries from these strands.

One way to handle this is to design a concurrent treap
which allows multiple queries and inserts to run at the same
time. However, concurrent tree-like data structures are often
difficult to implement and inefficient. In addition, since the
treap must satisfy the property that no two intervals overlap,
we cannot simply use any existing design of concurrent binary
search tree. Moreover, the non-overlapping property requires
each insert or query operation to potentially traverse multiple
paths in the treap [18], likely leading to high synchronization
overhead for concurrent operations.

C. Overview of Our Parallelization Approach

In order to execute the computation in parallel and race
detect without incurring high overhead, PINT explicitly sepa-
rates out the access history management from the rest of the
operations required by race detection. To maximize available
parallelism, PINT exploits available parallelism within each
component and allows them to execute asynchronously.

We refer to operations involving access history as the access
history component, which includes inserting intervals into the
treap data structures and performing queries on them to check
for races. PINT maintains three treaps: one treap each for last
writer, left-most reader and right-most reader. We refer to the

rest of the operations as the core component, which includes
executing the core computation, maintaining reachability, and
coalescing memory accesses within a strand into intervals.

This separation allows us to easily exploit parallelism
inherent in the core component with WSP-Order, the same
algorithm used by prior work C-RACER [7], which only
incurs constant overhead. Each treap data structure in the
access history component is a sequential treap and they can
be managed almost independently. The only coordination
required is that each treap must process the same sequence of
reads and writes. When PINT executes on P processing cores,
it utilizes three cores for the access history component, one for
each treap, and allocates P − 3 cores to the core component.

D. Minimizing Synchronization in Asynchronous Execution

Our parallelization strategy avoids any parallelization over-
head within treaps, but requires some coordination between
the two components to allow for asynchronous execution and
between the three treaps so that all treaps observe the same
access history. We refer to workers executing the core com-
ponent as core workers, and workers performing operations
on each of the treaps as the left-most reader treap worker,
right-most reader treap worker, and writer treap worker.

To enable asynchronous execution, each core worker, as
it executes, deposits each executed strand with its interval
information into a first-in first-out trace data structure. Each
core worker has its own local trace data structure, such that
they can execute strands independently from each other and
ahead of the treap workers, processing the core computation
without waiting for the access history component to process
the executed strands.

The treap workers process the generated intervals in a single
global order. Specifically, PINT dedicates one treap worker,
the writer treap worker, to collect strands from the trace data
structures of each core worker and move them into a (first-in
first-out) access history queue shared among treap workers.
Each treap worker processes strands in the order specified by
the queue, which allows each treap worker to process strands
independently but still maintains the same global ordering of
access history.

The goal of this strategy is to minimize coordination and
synchronization. The only coordination between components
is on the trace data structure (which is a producer-consumer
queue) where each core worker produces intervals corre-
sponding to each strand it processes on its (local) trace data
structure and the write treap worker subsequently collects
these intervals. This requires synchronization only when the
queue contains one or zero elements. The synchronization on
the access history queue is also minimal since only the writer
treap worker modifies it and the reader treap workers only
read it. Small amount of synchronization is necessary to allow
for proper recycling of strands and slots in the queue — this
is implemented using simple atomic fetch-and-add counters to
keep track of how many treap workers have finished processing
a strand. The writer treap worker can free memory allocated
for the strand and reuse the slot once the counter reaches three.

Finally, this strategy provides decent load balancing, as we
demonstrate experimentally in Section IV. The work due to the
access history component is generally much smaller than the
core component, at least in our tested benchmarks. Therefore,
with three-way parallelization, the access history component
is not the bottleneck when running on 20 (or fewer) cores.
In addition, executions generally have more reads than writes,
making the writer treap worker the least busy; this motivated
our decision to dedicate writer treap worker to collect the
executed strands, update and recycle the access history queue.

E. Conforming to DAG Dependences

To perform parallel race detection correctly, each treap
worker must process strands in an order that satisfies the
dependences specified in the computation DAG (defined in
Section II). That is, if strand u ; v, then the treap must
process the accesses of u before accesses of v. If u and
v are in parallel, their accesses can be processed in any
order. Henceforth, we will refer to an order that satisfies
these requirements as DAG-conforming. We now describe how
PINT ensures that if u ; v, then u will be before v in the
access-history queue as well.

Operations on the Trace Data Structures. Algorithm 1
shows the operations that a core worker performs to populate
the trace data structures that contain executed strands. We first
focus on how a core worker populates a trace data structure,
discuss the properties of a trace data structure, and finally
examine how PINT ensures that strands are processed in a
DAG-conforming order.

A core worker inserts each executed strand into its current
trace data structure according to their execution order (lines
11, 18, 25, 32, and 38). Whenever the core worker executes
a stolen continuation or a non-trivial sync, it puts away its
current trace and starts a new trace (lines 22–24 and lines
35–37). A core worker additionally performs the necessary
bookkeeping with executed strands to allow the writer treap
worker to check whether a strand v is ready to be collected.

Properties of Trace Data Structures. Before we discuss
the bookkeeping necessary to enable the writer treap worker to
collect strands in a DAG-conforming order, we first formally
define the properties that trace data structure maintains.

Lemma 1 (Trace Properties): A trace data structure satisfies
the following properties:

1. The ordering of strands within a single trace data struc-
ture follows that of the sequential execution;

2. If a strand v is the first strand in a trace T , then v must be
either a stolen continuation of a spawn node or a sync node
corresponding to a non-trivial sync, and v’s immediate
predecessor(s) must be in a different trace.

3. If a strand v is not the first strand in a trace T , v’s
immediate predecessor(s) must also be in T .

Proof. Property 1 trivially holds because a core worker’s
execution follows that of the sequential execution between
successful steals and a core worker inserts strands into a trace
data structure based on their execution order.

The first part of Property 2 holds simply by construction
— based on Algorithm 1, a core worker obtains a new trace
only when it encounters a stolen continuation (lines 22–24)
or a non-trivial sync (lines 35–37). The second part of
Property 2 holds because any of v’s immediate predecessor
u must execute before v and therefore u can not appear after
v in T due to Property 1.

Finally, we argue that Property 3 holds. Since v is not
the first strand in T , v is neither a stolen continuation nor
a non-trivial sync node. If v has one immediate predecessor
u, Property 3 trivially holds because there is nothing between
the execution of u and v to cause the worker to switch to a
new trace. If v has multiple immediate predecessors, v must
be a trivial sync node; that is, no continuation within the sync
block was stolen. In this case, v’s immediate predecessors,
which include the return nodes of these subroutines and the
code leading up to the sync statement corresponding to v,
must execute on the same core worker without intervening
steals and be in trace T also.

Algorithm 1: Trace operations done by core workers
1 let w be the executing worker
2 let u be the node representing currently executing strand
3 /* invoked upon executing a spawn */
4 Function Spawn(u) // u is the spawn node
5 let c be the continuation node and s be the sync node
6 u.child← c
7 u.sync← s
8 c.pred← 1
9 if u is the first spawn for s then

10 s.pred← 0
11 w.trace.Insert(u)
12 /* invoked upon executing a return from a spawned function */
13 Function SpawnReturn(u) // u is the return node
14 let s be the corresponding spawn node
15 if s.child is stolen then
16 u.child← s.sync
17 s.sync.pred← s.sync.pred+ 1
18 w.trace.Insert(u)
19 /* invoked upon executing the continuation of a spawn */
20 Function Continuation(u) // u is the continuation node
21 let s be the corresponding spawn node
22 if u is stolen then
23 w.tracepool.Put(w.trace)
24 w.trace← new Trace()
25 w.trace.Insert(u)
26 /* invoked upon encountering a sync */
27 Function Sync(u) // u is the strand leading to the sync
28 let s be corresponding sync node
29 if s is a non-trivial sync then
30 u.child← s
31 s.pred← s.pred+ 1
32 w.trace.Insert(u)
33 /* invoked after passing a sync successfully */
34 Function AfterSync(u) // u is the sync node
35 if u is a non-trivial sync then
36 w.tracepool.Put(w.trace)
37 w.trace← new Trace()
38 w.trace.Insert(u)

Strand Processing Order. The writer treap collects and
processes strands one by one. We say that a strand is ready
to be collected once its immediate predecessor(s) have been
collected. The writer treap collects a strand by finding a ready

strand s from a core worker and inserting s into the access
history queue; then, it processes s by checking races with s’s
read intervals against the writer treap and inserting s’s write
intervals into the writer treap. The reader treap workers process
the strands in the same order as the writer treap worker by
following the order in the access history queue and perform
complementary checks and insertions. Each treap worker can
process strands independently as each operates exclusively on
its own treap.

Since all treap workers process the strands based on their
order in the access history queue (first-in first-out), if the
collection order is DAG-conforming, so is the processing
of the strands. The writer treap worker follows two simple
collection rules when collecting strands from core workers:

1. it collects strands from a trace T only if the first strand
v in T is ready; and

2. it collects strands from a trace T in first-in first-out order.

Lemma 2: (Collection Rules) The collection rules ensure
that the writer treap worker collects the strands in a DAG-
conforming order.
Proof. For a strand v that is T ’s first strand, by Rule 1 v
can only be collected after its immediate predecessor(s) are
collected. For a strand v that is not the first strand in T , we
know that any of v’s immediate predecessor(s) u is also in T
by Property 3 in Lemma 1 and u must be before v in T by
Property 1 Lemma 1. Thus by Rule 2, v must be collected
after its immediate predecessor(s) are collected. These two
rules together suffice to ensure that the collection of strands
follows a DAG-conforming order.

Algorithm 2: Strand collection done by the writer
treap worker
39 let u be the strand that the writer treap worker is collecting
40 Function Collect(u)
41 queue.Insert(u)
42 if u is a spawn node or
43 u.child is set and u.child is a non-trivial sync then
44 u.child.pred = u.child.pred− 1;

Checking for Strand Readiness. Rule 2 is not difficult to
implement as a trace data structure is first-in first-out. Rule 1 in
Lemma 2 requires the writer treap worker to check whether the
first strand v in a trace T is ready. By Property 2 in Lemma 1,
we know v is either a stolen continuation of a spawn node or a
sync node that corresponds to a non-trivial sync. Algorithm 1
shows how a core worker maintains a count with such a strand
v the number of its immediate predecessor(s) (denoted as
v.pred) and a pointer from its immediate predecessor u back to
v (denoted as u.child) to enable the check. Algorithm 2 shows
the Collect operation for the writer treap worker — when it
collects a strand u, it decrements the count of u’s immediate
successor (denoted as u.child.pred) when appropriate. The
writer treap worker invokes Collect on a strand u only
when its count reaches zero, indicating that u is ready to be
collected.

Lemma 3 (Strand Readiness): For the first strand v in
a trace, v is ready to be collected, (i.e., all its immediate
predecessor(s) has been collected), if v’s count reaches zero.
Proof. By Property 2 in Lemma 1, v is either a stolen
continuation node or a sync node of a non-trivial sync.

If v is a continuation node, its v.pred is always set to
one (line 8) and decremented when its predecessor (the corre-
sponding spawn node) is collected (lines 42 and 44), regardless
of whether the continuation is stolen or not. Thus, v must be
ready if its count is zero. As a side note, even though the
count is not checked when v is not the first node in the trace,
we chose to set and decrement its count always to simplify
the implementation.

If v is a sync node, its v.pred is initialized upon encoun-
tering the first spawn within the sync scope (lines 9–10). A
sync node v’s immediate predecessors include the return node
(last strand) of all the spawned functions within its sync scope
and the continuation of the last spawn statement in its sync
scope leading to the sync statement. When a core worker
executes one of a sync node v’s immediate predecessors u,
if v corresponds to a non-trivial sync (which is known
when u executes), the core worker sets u’s child pointer to
v and increment v’s count (lines 15–17 and lines 29–31).
For each such immediate predecessor u of v that performed
the increment, there is a corresponding decrement when the
writer treap invokes Collect(u) shown in Algorithm 2, as
Collect checks if u has its child set to a non-trivial sync
and decrement the child’s count if so (lines 43 and 44). Thus,
if v’s count reaches zero, all its immediate predecessor(s) have
been collected and v must be ready.

Lemma 4 (DAG-Conforming Order): All treap workers
process strands in a DAG-conforming order.
Proof. By Lemmas 1, 2, and 3, we know that the writer
treap worker collects strands in a DAG-conforming order. The
statement follows since all treap workers follow the same order
to process strands via the access history queue.

F. Avoiding Address Translation

The strands within a trace follow the sequential execution
order (by Property 1 in Lemma 1). The sequential execution
order is DAG-conforming but stricter than what we need. In
principle, two nodes which are logically in parallel within the
same trace can be collected in any order. We specifically chose
to collect nodes in trace order since it has two important per-
formance advantages. First, a core worker’s execution between
successful steals follows the sequential execution order and is
therefore naturally DAG-conforming removing need for some
bookkeeping. Additionally, it allows us to implement the trace
data structure to be a simple resizable array.2 Second, and more
importantly, processing strands in a given trace data structure
in the sequential order allows us to manage access history in a
simpler manner than would otherwise be possible due to stack
reuse.

2We have used a linked list of fixed-sized array in our implementation.

To understand the need for address translation, consider a
scenario where a function A spawns function B and subse-
quently calls function C in the continuation after spawning
B. Assuming the continuation that calls C is not stolen and
thus executed on the same worker, B and C will share the
same stack space for their respective execution potentially in
a conflicting way. Without any special handling, a race detector
will report a race, since B and C are logically in parallel, but
this would be a false race, since their stack frames are logically
distinct and share the same addresses only due to stack reuse.3

A race detector typically handles this scenario by clearing
the range corresponding to B’s stack frame from the access
history once B returns before executing C that reuses the
space. In PINT, this simple strategy doesn’t quite work be-
cause the access history component executes asynchronously
— when a core worker finishes executing B and goes on to
execute C, the intervals accessed by strands in B (and its
sub-computation) may not have been fully processed by the
treap workers yet. Nevertheless, since PINT processes strands
within a single trace following sequential execution order, we
know that the return node of B will be processed before any
strands of C. Thus, to handle this scenario in PINT, each treap
worker simply clears out the memory range of B’s stack frame
from its own treap once it processes the return node of B. If,
on the other hand, we had allowed B and C to process out
of order even though they are in the same trace, then, without
special handling, we might detect these false races.

The asynchronous access history component poses a similar
but slightly different issue for heap memory reuse. Again
imagine the same code example where A spawns B and calls
C. Imagine B frees some heap memory and C subsequently
allocates heap memory, which happens to be reusing the
memory freed by B. Also note that this scenario can happen
even if B and C execute in parallel on two different core
workers (and thus in two different traces). Again, a race
detector with synchronous access history can simply clear out
the access history of the freed memory range upon a call to
free. PINT cannot do that due to asynchronous access history
— when a core worker executes the free, strands prior to
free that use the memory may not have been fully processed
yet. To handle this issue, PINT simply delays the actual free
call — when a core worker executes a free call in strand s,
the “freed” memory is put aside being stored with the strand
s inserted into the trace. When the writer treap collects and
processes s, it performs the actual free to free the memory.
It is safe to perform the actual free once s is collected because
any strand that reuses the freed memory later must be collected
after s.

G. Putting Everything Together

We have discussed the parallelization strategy, the asyn-
chronous design, and the properties that the access history
guarantees. In the last part of this section, we argue that our

3This scenario does not cause an issue when B and C execute in parallel,
because they will not share stack space thanks to the runtime support for
“cactus stack” [24].

design provides the desired correctness guarantee, i.e., PINT
reports a race if and only if a race exists in the computation.
Recall that PINT detects races at the strand granularity where
the queries and updates to the access history are delayed
and asynchronous. On the other hand, other race detection
algorithms such as C-RACER [7] generally perform queries
and updates to the access history as soon as a memory access
occurs. Therefore, one might worry that PINT does not provide
the same correctness guarantee. Here we will prove that it, in
fact, does.

Theorem 5: Say the treap workers in PINT process strands
in some order H based on the access history queue, and a
different parallel race detector, say A, executes the strands
one at a time in the same order H but uses a synchronous
access history component. Then, PINT reports a race between
strands u and v if and only if A reports a race between the
same strands u and v.
Proof. By Lemma 4, we know that H is a valid schedule
for A. Consider the two executions — 1) execution of PINT
with the access history queue containing strands in H, and 2)
execution of A executing strands in H one at a time but insert
and queries the access history as each memory access occurs.
By induction on H, before PINT processes a strand s, the state
of each memory location in the access history (i.e., left-most
reader, right-most reader, and last writer) is the same as that
in A before A executes s.

If A does not detect a race, it’s obvious that PINT will not,
either, as there are no conflicting accesses in the access history.
Say A detects a race between strands u and v. That is, when
A executes v, it finds a conflicting access u, where u is not
v (as accesses in v cannot race with each other). The same
strand u is also in PINT’s access history before it processes
v. In PINT, since a treap worker always performs query first
before insert when it processes a strand, PINT will also detect
a race between u and v.

Note that we do not claim that PINT and A will report
exactly the same races. Rather, they simply report a race
between the same pair of strands. For instance, if strand u
reads memory location x and is stored in the access history as
the left-most reader of x (and some other strand w is stored
as the right-most reader to x). Later a strand v (which is in
parallel to u and left-of u) reads x and then writes x, A will
not detect the write/read race between u and v since v will
replace u as the left-most reader to x when it reads x and the
subsequent write to x by v will not be detected as the race. A
will instead detect the write/write race between u and v (and
also detect a different write/read race between w and v). On
the other hand, PINT will detect all three races if let to run
long enough.

IV. EXPERIMENTAL EVALUATION OF PINT
In this section, we empirically evaluate PINT to gauge

whether the design choices we made achieve the desired goal,
namely practical parallel performance. Specifically, we would
like to answer the following questions:

1. how the performance of PINT compare to prior work;

2. how much parallelization overhead PINT incurs; and
3. how well can PINT scale and under what condition the
use of sequential treaps may create a bottleneck.

Experimental Setup. We ran our experiments on a machine
with two Intel Xeon Gold 6148 processors, each with 20 2.40-
GHz cores. Each core has a 32-KB L1 data cache, a 32-KB l1
instruction cache, and a 1-MB L2 cache. Each processor has
a shared (among 20 cores) 27.5-MB L3 cache and the whole
system has 768 GB main memory. Hyperthreading is disabled.
Experiments ran in Linux kernel 4.15, and all benchmarks
were compiled with -O3 using the clang 10.1-based Tapir
compiler [25].

To evaluate the empirical performance, we compare PINT
with two other race detectors from prior work. The first one is
STINT [18] with a similar design for access history, although
STINT must execute the computation sequentially and has a
synchronous access history. As far as we know, STINT is
the only race detector for task-parallel code that focuses on
optimizing the access history component. The second system
is C-RACER [7], which implements the state-of-the-art WSP-
Order algorithm for reachability analysis. We compare PINT
against C-RACER because PINT utilizes the same WSP-Order
algorithm for reachability and mainly differs in how it handles
access history.

We evaluate and compare these systems using seven
task-parallel benchmarks, including Cholesky decomposition
(chol, n = 4000, z = 40000, b = 16); parallel mergesort
(sort, n = 5e7, b = 2048); fast Fourier transform (fft,
n = 226, b = 128); heat diffusion simulation on a 2D grid
(heat, nx = 2048, ny = 2048, b = 10); matrix multiplication
(mmul, n = 2048, b = 64), and two versions of Strassen’s
algorithm for matrix multiplication, stra and straz, which
use row-major order layout and Morton Z layout, respectively
(n = 2048, b = 64). Each data point presented is the average
of five runs, with standard deviation less than 5%. We collected
the numbers shown in Sections IV-A and IV-B using base case
size b and other benchmark-specific input sizes mentioned
above, with the parallel running times collected on a single
socket with 20 cores to avoid cross-socket overhead. We vary
the number of cores used and input sizes when we examine the
scalability and potential bottleneck of PINT in Section IV-C.

A. Overview of Performance Results

Figure 1 shows the execution times of the baseline (i.e.,
running the benchmark with no race detection) and on each
race detector running on one core and 20 cores. When we run
PINT on one core, the access history of PINT does not execute
asynchronously. Rather, PINT performs the core component
entirely, before moving onto the access history component
(which may result in a larger memory footprint than if it had
executed the access history component asynchronously on a
separate thread). By removing the asynchronous maintenance
of access history, the one-core execution time reflects the total
amount of work involved in PINT and allows us to gauge and
compare the overhead of PINT against STINT and C-RACER
more easily.

This comparison allows us to gauge parallelization overhead
of PINT, because both STINT and PINT perform memory co-
alescing using the same mechanism, race detect at the interval
granularity, and utilize similar access history design. The one-
core execution removes the asynchrony factor, allowing the
running time to reflect the total amount of work involved in
using STINT and PINT.

We first compare the execution times of PINT and STINT,
both of which perform memory coalescing using the same
mechanism, race detect at the interval granularity, and utilize
the same treap data structure for maintaining access history.
PINT performs more work than STINT in the core component
and maintains one extra treap to enable parallel race detection,
however. As expected, PINT incurs slightly higher overhead
compared to STINT when running on one core. Nevertheless,
the additional overhead allows PINT to run the computation
in parallel during race detection, and the higher overhead is
easily compensated by the speedup obtained during parallel
execution.

We also compare the execution times of PINT and C-
RACER. The numbers indicate that C-RACER incurs much
higher overhead when running on one core. This is because
C-RACER uses the conventional approach for maintaining
access history, which detects races at each memory access.
Each memory access essentially translates to multiple function
calls (invoking the instrumentation hook into the race detector,
which in turn invokes the insert and query into the access
history data structure, which in turn invokes the query into
the reachability data structure). On the other hand, the race
detection overhead in STINT and PINT is more manageable
compared to C-RACER, because the access history is only
updated and queried much less frequently, at each interval. The
reachability component in STINT and PINT is also queries
much less frequently, which is determined by how many
existing intervals overlap with the newly inserted interval,
which is typically much smaller than the number of memory
accesses represented by the intervals.

The only exception is fft, where C-RACER outperforms
PINT and STINT. As explained in [18], this is because even
though the number of intervals is smaller than the number of 4-
byte memory accesses in fft, the reduction in the number of
function calls is not sufficient to offset the increased overhead
per insert and query into the treap data structure. Since PINT
follows the same design of access history in STINT, PINT
suffers from the same issue.

Next, we compare the parallel execution times of PINT and
C-RACER shown on the right-hand side of the table. STINT
is not included as it is a sequential tool. PINT maintains the
same lower-overhead, although in a few benchmarks, it scales
less well compared to C-RACER. However, the much lower
overhead means that PINT still wins out significantly in terms
of the absolute execution time.

B. Parallelization Overhead of PINT

We compare PINT against STINT when running on one core
to gauge its parallelization overhead, defined as the extra work

running time on one core running time on 20 cores
baseline STINT PINT C-RACER baseline PINT C-RACER

chol 4.82 154.12 [31.98×] 207.96 [43.15×] 1122.54 [232.89×] 0.28 (17.21×) 16.63 (12.51×) 58.16 (19.30×)
heat 4.09 25.68 [6.28×] 26.43 [6.46×] 599.67 [146.62×] 0.39 (10.49×) 2.21 (11.96×) 34.08 (17.60×)
mmul 8.17 230.67 [28.23×] 243.83 [29.84×] 426.69 [52.23×] 0.41 (19.93×) 13.32 (18.31×) 21.58 (19.77×)
sort 7.33 35.68 [4.87×] 50.36 [6.87×] 215.72 [29.43×] 0.37 (19.81×) 3.29 (15.31×) 29.39 (7.34×)
stra 1.64 38.58 [23.52×] 43.14 [26.30×] 594.63 [362.58×] 0.20 (8.20×) 3.09 (13.96×) 56.31 (10.56×)
straz 1.56 57.87 [37.10×] 77.14 [49.45×] 336.05 [215.42×] 0.11 (14.18×) 6.42 (12.02×) 27.67 (12.14×)
fft 13.88 549.71 [39.60×] 741.65 [53.43×] 466.31 [33.60×] 1.07 (12.97×) 276.73 (2.68×) 71.91 (6.48×)

Fig. 1. Running time of seven benchmarks shown in seconds. The left-hand side of the table shows the single-core running time of the baseline (i.e., no
race detection), STINT, PINT, and C-RACER. The numbers in the brackets show the race detection overhead of each system compared to the baseline. The
right-hand side shows the 20-core running time of the baseline, PINT, and C-RACER. The numbers in the parentheses show the scalability compared to its
respective single-core execution.

par. work breakdown par. exe. time
overhead core writer rreader lreader core total

chol 1.35 192.18 5.14 5.37 5.27 16.32 16.63
heat 1.03 24.25 0.61 0.91 0.66 2.16 2.21
mmul 1.06 216.09 6.53 10.38 10.83 13.04 13.32
sort 1.41 45.16 0.81 2.25 2.14 3.13 3.29
stra 1.12 40.86 0.45 1.18 0.65 3.09 3.09
straz 1.33 71.61 1.76 1.81 1.96 6.28 6.42
fft 1.35 175.78 179.74 190.79 195.34 21.04 276.73

Fig. 2. The left-hand side of the table shows the parallelization overhead
and the work breakdown of PINT, where the parallelization overhead is
computed by taking the one-core execution time of PINT divided by that of
STINT, and the work breakdown shows how much time PINT spends on the
core component (core), the writer treap (writer), the right-most reader treap
(rreader), and the left-most reader treap (lreader) during one-core execution.
The rigth-hand side of the table shows the parallel executime time of PINT
running on 20 cores spent on the core component (core, which uses 17
workers) and in total (total.

that PINT needs to perform to enable parallel execution. This
overhead includes building the trace data structures in the core
component, moving strands from the trace data structures into
the access history queue, and managing one additional reader
treap as required by parallel race detections.

As shown in Figure 2, the parallel overhead is manageable,
with at most 41% increase (sort). To figure out where the
time went, we separately collected data on how much work
(computation time spent running on single core) going into
each of the PINT components. The core component includes
maintaining the reachability analysis and the trace data struc-
tures. The writer component involves work done by the writer
treap, which includes moving strands from the data structure
into the global access history queue and maintaining the writer
treap. The rreader and lreader involves work done by the
right-most and left-most reader treap workers, respectively,
i.e., maintaining the two reader treaps.

The numbers indicate that the work done by any treap
worker is relatively small compared to the work done by
the core component at least for the default inputs, with the
exception of fft. Given this breakdown, we can deduce that
most parallelization overhead of PINT comes from the core
component, which does the extra work of building the trace
data structures. In STINT, the time spent maintaining the
writer and reader treap is similar to that in PINT, with the
writer treap incurs slightly less work because STINT does not
need to move strands from the trace data structures into the
global access history queue. However, in all benchmarks, it is

more expensive to maintain the reader treaps than the writer
treap, which is expected, because most benchmarks perform
many more reads than writes. Thus, the writer treap is not
going to be the bottleneck for the treap component.

C. Scalability of PINT

One potential concern with our design is that the use of
sequential treaps for access history, albeit the three-way par-
allelism, would cause a sequential bottleneck during parallel
execution, thereby limiting the scalability of PINT. For the
benchmarks tested with default inputs running on 20 cores
at least, the use of the sequential treaps is not usually the
bottleneck, with the exception of fft, which we explained
earlier. We can see this by examining the right-hand side of
the table in Figure 2.

The first column in Figure 2 shows the absolute running
time of the core component on 17 cores. The second column
shows the overall 20-core execution time of PINT. The times
shown in two columns have little difference (except for fft),
meaning that the asynchronous access history component
works well and overlap with the core component substantially
during execution. Moreover, the time that each treap worker
spent (which is just the total work shown on the left) is less
than the parallel running time spent on the core component,
which suggests that there is more room for the treap workers
before they become the bottleneck.

If we had used more cores to run PINT, would the treap
workers become the bottleneck? Whether the use of sequential
treaps causes a bottleneck depends on a couple factors — the
amount of parallelism in the core part of the computation and
the total work for each treap, both of which are application
and input dependent. We examine the question of scalability
in more detail next and discuss when the use of sequential
treaps becomes a bottleneck.

Strong Scalability Analysis. Assuming the core component
scales well, the treap component may eventually become the
bottleneck when running on more cores. We performed a
strong scalability analysis and see how the benchmarks with
the default inputs scale as we increase the core counts.

Figure 3 shows the execution times of four benchmarks
when running with 1, 4, 8, 16, 24, and 32 core workers (plus
three treap workers). Due to space constraint, we don’t show
the numbers for chol and straz, which have a similar

core workers used
1 4 8 16 24 32

heat 24.82 6.59 3.68 2.37 2.10 2.23 (2.04)
mmul 216.86 54.36 27.33 13.91 16.17 (9.74) 16.52 (7.38)
sort 45.75 11.79 6.14 3.39 4.06 (2.89) 4.24 (2.65)
stra 41.15 10.67 5.64 3.22 2.53 2.23

Fig. 3. Running time of four benchmarks shown in seconds running with
varying number of core workers. For a given entry, the number in a parenthesis
(when shown) indicates the corresponding parallel running time of the
core component, where the overall running time is dominated by the treap
component. Otherwise, for an entry without a parenthesis, the core component
dominates the overall running time.

scaling pattern as heat and mmul, respectively; we also don’t
show the numbers for fft, as it simply does not scale.

The treap component is not the bottleneck when running
with 16 core workers or less. When running with 24 and 32
core workers, the core component continues to scale (albeit
slowly flattening out), and the treap component becomes the
dominating overhead in some benchmarks. It’s also worth
noting that the race detection runs on two sockets, and the
treap workers may perform cross-socket communication when
they process strands from the core workers, which causes work
inflation, where the time it takes for a treap worker to process
the same set of strands increases when we increase the core
count. As an evidence supporting this hypothesis, for the two-
socket runs, pinning the treap workers on the full socket (i.e.,
all 20 cores are used) provides slightly better performance than
pinning them on the other socket with fewer core workers.
Nevertheless, the performance should not degrade too much
further as we increase the core counts, because the scalability
of the core component is tapering out, and the amount of the
treap work stays fixed sans work inflation.

Weak Scalability Analysis. We additionally perform weak
scalability analysis. Typically, the weak scalability analysis
involves increasing the problem size and the core count such
that the work from the parallel part of the computation per
core stays the same. Such an analysis is meant to demonstrate
whether the overhead per unit of work stays the same as one
scales out the problem size. In task-parallel code, it is difficult
to measure the overhead per unit of work directly, however,
because scheduling occurs dynamically during program exe-
cution. Moreover, in the context of race detection, how well
the execution scales depends on two factors: the inherent par-
allelism in the baseline computation (which changes with the
problem size) and where the race detection incurs overhead.
The parallelism profile of the race detection run can differ
from that of the baseline, for instance, if the race detection
overhead is unevenly distributed across the computation such
that higher overhead is incurred along the span, the longest
sequential dependences in the computation. In performing the
weak analysis, we would like to tease out the impact on
scalability due to where the race detector incurs overhead from
the changes in the inherent parallelism of the baseline, as we
care about the former but not the latter.

Thus, to perform weak scalability analysis, we increase the
problem size and the core count, and we compare the running

core workers used
1 2 4 8 16 32

heat
baseline 0.42 0.43 0.49 0.58 1.02 1.91

PINT 3.07 3.19 3.42 3.68 3.95 7.38 (5.31)
overhead 7.31 7.42 6.98 6.34 3.87 3.86

mmul
baseline 0.11 0.20 0.25 0.43 0.51 1.11

PINT 3.40 6.09 6.87 12.51 13.91 132.57 (29.13)
overhead 30.91 30.45 27.48 29.09 27.27 119.43

sort
baseline 3.48 3.86 3.91 4.09 4.18 5.81

PINT 21.44 23.28 23.90 25.86 29.94 (27.51) 187.77 (41.83)
overhead 6.16 6.03 6.11 6.32 7.16 32.32

stra
baseline 0.01 0.02 0.08 0.31 1.29 7.97

PINT 21.44 23.28 23.90 25.86 29.94 90.68 (90.43)
overhead 15.00 24.00 20.13 18.19 16.93 11.38

Fig. 4. The first two rows of a given benchmark show the running times
(in seconds) of its baseline (no race detection) and running on PINT. The
last row shows the correponding overhead (PINT/ baseline). The baseline
is run on P cores where P equals to the number of core workers used in
PINT so that it scales similarly as PINT. For a given entry, the number in a
parenthesis (when shown) indicates the corresponding parallel running time of
the core component, where the overall running time is dominated by the treap
component. Otherwise, for an entry without a parenthesis, the core component
dominates the overall running time.

times of PINT against that of the baseline program. Assuming
that scaling out does not adversely impact the scalability of the
race detector, the race detection overhead (i.e., running times
of PINT over that of baseline) should remain the same.

Figure 4 shows the results for the same subset of bench-
marks. The problem size of heat and sort doubles as we
double the number of core workers. For mmul the input matri-
ces’ dimension is scaled up by 1.5× as we double the number
of core workers. For stra the input matrices’ dimension is
doubled as we double the number of core workers. Doing
so gives us a varying range of how the parallelism of the
computation grows as we double the core workers.

For heat and stra, the overhead of PINT decreases as we
increase the problem size. Even though for the 32-core data
point, the running time is dominated by the treap component,
the difference between the core and the treap is small enough
that the overhead is not adversely impacted.

For mmul and sort, the overhead of PINT stays about
the same except for the last data point running on 32 cores.
In this configuration, the running time is dominated by the
treap component, which incurs a much longer running time
compared to the core component, due to two reasons. First,
the core component scales well in these benchmarks running
on 32 cores. Second, the problem size used for the 32-
core runs in these benchmarks is large enough that the treap
component has quite a bit more work to do, since the increase
of problem size also increases the number of intervals. It’s
worth noting, however, despite the treap component being the
bottlenecks, PINT still perform much better than C-RACER
for these benchmarks with these larger inputs. Nevertheless,
these results indicate that the treap component may benefit
from further parallelization for certain benchmarks with larger
inputs.

V. RELATED WORK

Access History. Access history is used in many tools such

as memory checkers and race detectors [26], [27], [28], [29],
[30], [31], [1], [6], [32], [33], [7]. Many schemes have been
explored to optimize access history [34], [29], [30], [28], [35],
[36], [37], [38] which make various trade-offs in terms of
access time and space. Coalescing of accesses into intervals
has been explored as an optimization of access history [13],
[14], [15], [16], [17]. Most of these tools either use easy-to-
parallelize data structures such as hashmaps and/or does not
perform asynchronous access history management.

Race Detection. On-the-fly race detection for series-parallel
programs is a heavily studied topic [39], [40], [1], [6], [33].
Most prior parallel on-the-fly race detection algorithms for
series-parallel programs have focused on optimizing the reach-
ability data structure and they use a hashmap-based access his-
tory [3], [33], [7]. Race detection for more general (non-series-
parallel) programs has also been studied extensively [31],
[29], [41], [11], [10], [9], [12]. Our work on access history
optimization can plausibly be applied to more general race-
detection as well. In general race detection, however, it is
often not sufficient to keep two reader strands for each memory
location; therefore, we have to rethink the design of the reader
treaps.

Concurrent Trees. Concurrent balanced trees are widely
studied both theoretically and experimentally [42], [43], [44],
[45], [46] and are one plausible way of implementing our
race detector. However, they are generally slow and/or difficult
to implement correctly. Our design most closely resembles
various software combining techniques, designed primarily
to reduce concurrency overhead in concurrent data struc-
tures [47], [48], [49]. In these techniques, generally, each
processor inserts a request in a shared queue and a single
processor sequentially executes all outstanding requests later.
We use a pull strategy instead of a push strategy in order to
reduce contention on a shared queue where one of our treap
workers collects all the outstanding intervals for insertion into
treaps.

VI. CONCLUDING REMARKS

We have described a parallel race detector with an optimized
interval-based access history. The goal of our implementation
is to minimize parallelization and synchronization overhead
and achieve efficient parallel performance. While we find good
parallel performance compared to state-of-the-art hashmap-
based access history, the scalability of some benchmarks left
more to be desired, such as mmul and sort with large input
sizes (i.e., Figure 4 in Section IV when running on 32 cores).

To get better performance as we increase the number of
workers, we would need to parallelize the treap accesses since
they are increasingly more likely to become the bottleneck.
One promising strategy would be to design a treap that allows
for batched insert or batched query without high synchroniza-
tion overhead so that multiple strands can be processed in
parallel by multiple treap workers on a single treap. In order
to implement this, however, it would be important to solve
the stack-memory reuse problem (discussed in Section III-F
in Section III) via efficient address translation so as to prevent

detection of false races. In addition, the trace data structure
would have to be more complicated so as to allow us to collect
multiple strands from the same worker.

REFERENCES

[1] M. Feng and C. E. Leiserson, “Efficient detection of determinacy races
in Cilk programs,” Theory of Computing Systems, vol. 32, no. 3, pp.
301–326, 1999.

[2] R. H. B. Netzer and B. P. Miller, “What are race conditions?” ACM
Letters on Programming Languages and Systems, vol. 1, no. 1, pp. 74–
88, March 1992.

[3] J. Mellor-Crummey, “On-the-fly detection of data races for programs
with nested fork-join parallelism,” in Proceedings of Supercomputing’91,
1991, pp. 24–33.

[4] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data
race detection for async-finish parallelism,” in Runtime Verification, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2010, vol. 6418, pp. 368–383.

[5] J. T. Fineman, “Provably good race detection that runs in parallel,”
Master’s thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, Cambridge, MA, August
2005.

[6] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson, “On-the-
fly maintenance of series-parallel relationships in fork-join multithreaded
programs,” in 16th Annual ACM Symposium on Parallel Algorithms and
Architectures, 2004, pp. 133–144.

[7] R. Utterback, K. Agrawal, J. Fineman, and I.-T. A. Lee, “Provably good
and practically efficient parallel race detection for fork-join programs,”
in Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures. ACM, 2016, pp. 83–94.

[8] R. Surendran and V. Sarkar, Dynamic Determinacy Race Detection for
Task Parallelism with Futures. Cham: Springer International Publishing,
2016, pp. 368–385.

[9] Y. Xu, I.-T. A. Lee, and K. Agrawal, “Efficient parallel determinacy
race detection for two-dimensional dags,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 2018, pp. 368–380.

[10] K. Agrawal, J. Devietti, J. T. Fineman, I.-T. A. Lee, R. Utterback, and
C. Xu, “Race detection and reachability in nearly series-parallel dags,”
in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), January 2018.

[11] R. Utterback, K. Agrawal, J. Fineman, and I.-T. A. Lee, “Efficient
race detection with futures,” in Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’19.
Washington, District of Columbia: ACM, 2019, pp. 340–354.

[12] Y. Xu, K. Singer, and I.-T. A. Lee, “Parallel determinacy race detection
for futures,” in Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP). ACM, Feb.
2020, p. 217–231.

[13] C. Flanagan and S. N. Freund, “RedCard: Redundant check elimination
for dynamic race detectors,” in Proceedings of the 27th European Con-
ference on Object-Oriented Programming. Springer Berlin Heidelberg,
July 2013, pp. 255–280.

[14] Y. Peng, C. DeLozier, A. Eizenberg, W. Mansky, and J. Devietti,
“SLIMFAST: Reducing metadata redundancy in sound and complete
dynamic data race detection,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018, pp. 835–844.

[15] J. R. Wilcox, P. Finch, C. Flanagan, and S. N. Freund, “Array shadow
state compression for precise dynamic race detection,” in Proceedings
of the 30th IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 2015, p. 155–165.

[16] D. Rhodes, C. Flanagan, and S. N. Freund, “Bigfoot: Static check
placement for dynamic race detection,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2017, p. 141–156.

[17] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient data race
detection for distributed memory parallel programs,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011.

[18] Y. Xu, A. Zhou, G. Q. Yin, K. Agrawal, I.-T. A. Lee, and T. B.
Schardl, “Efficient access history for race detection,” in Proceedings of
the Symposium on Algorithm Engineering and Experiments (ALENEX
2022), Jan. 2022.

[19] R. E. Tarjan, C. Levy, and S. Timmel, “Zip trees,” ACM Transactions
on Algorithms, vol. 17, no. 4, Oct. 2021.

[20] R. Seidel and C. R. Aragon, “Randomized search trees,” in ALGORITH-
MICA, 1996, pp. 540–545.

[21] J. Valdes, “Parsing flowcharts and series-parallel graphs,” Ph.D. disser-
tation, Stanford University, December 1978, sTAN-CS-78-682.

[22] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” JACM, vol. 46, no. 5, pp. 720–748, 1999.

[23] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and im-
plementation. ACM, 1998, pp. 212–223.

[24] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson, “Using
memory mapping to support cactus stacks in work-stealing runtime
systems,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE,
2010, pp. 411–420.

[25] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embedding re-
cursive fork-join parallelism into LLVM’s intermediate representation,”
ACM Transactions on Parallel Computing, vol. 6, no. 4, Dec. 2019.

[26] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2007, pp. 89–100.

[27] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” in Proceedings of the IEEE/ACM International Symposium on Code
Generation and Optimization, 2011, pp. 213–223.

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A fast address sanity checker,” in Proceedings of the
2012 USENIX Conference on Annual Technical Conference. USENIX
Association, 2012.

[29] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic race detector for multi-threaded programs,” in
Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles (SOSP), Oct. 1997.

[30] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detec-
tion in practice,” in Proceedings of the Workshop on Binary Instrumen-
tation and Applications. ACM, 2009, pp. 62–71.

[31] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise dynamic
race detection,” SIGPLAN Not., vol. 44, no. 6, pp. 121–133, Jun. 2009.

[32] I. Corporation, “Intel Cilk Plus software development kit,” Avail-
able at http://software.intel.com/en-us/articles/intel-cilk-plus-software-
development-kit/, Dec. 2011.

[33] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable
and precise dynamic datarace detection for structured parallelism,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2012, pp. 531–542.

[34] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” in Proceedings of the 3rd International Conference
on Virtual Execution Environments. ACM, 2007, pp. 65—-74.

[35] W. Cheng, Qin Zhao, Bei Yu, and S. Hiroshige, “TaintTrace: Efficient
flow tracing with dynamic binary rewriting,” in 11th IEEE Symposium
on Computers and Communications (ISCC’06), 2006, pp. 749–754.

[36] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “LIFT: A low-
overhead practical information flow tracking system for detecting secu-
rity attacks,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), 2006, pp. 135–148.

[37] M. Payer, E. Kravina, and T. R. Gross, “Lightweight memory tracing,”
in 2013 USENIX Annual Technical Conference (USENIX ATC 13).
USENIX Association, Jun. 2013, pp. 115–126.

[38] Q. Zhao, D. Bruening, and S. Amarasinghe, “Umbra: Efficient and scal-
able memory shadowing,” in Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization. ACM,
2010, p. 22–31.

[39] J. T. Fineman and C. E. Leiserson, “Race detectors for Cilk and
Cilk++ programs,” in Encyclopedia of Parallel Computing, D. Padua,
Ed. Springer, 2011, pp. 1706–1719.

[40] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race detection
in multithreaded C++ programs,” pp. 179–190, 2003.

[41] ——, “MultiRace: Efficient on-the-fly data race detection in multi-
threaded c++ programs: Research articles,” Concurrency and Computa-
tion: Practice and Experience, vol. 19, no. 3, pp. 327–340, Mar. 2007.

[42] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[43] R. Bayer and M. Schkolnick, “Concurency of operations on b-trees,”
Acta Informatica, vol. 9, pp. 1–21, 1977.

[44] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul, “Con-
current cache-oblivious B-trees,” in 15th ACM Symposium on Parallel
Algorithms and Architectures, 2005, pp. 228–237.

[45] T. Johnson and D. Shasha, “The performance of current B-tree algo-
rithms,” ACM Trans. Database Syst., vol. 18, no. 1, pp. 51–101, 1993.

[46] A. Braginsky and E. Petrank, “A lock-free B+tree,” in Proceedings of the
24th ACM Symposium on Parallelism in Algorithms and Architectures,
2012, pp. 58–67.

[47] P. Fatourou and N. D. Kallimanis, “Revisiting the combining syn-
chronization technique,” in Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, 2012,
pp. 257–266.

[48] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining and the
synchronization-parallelism tradeoff,” in Proceedings of the 22nd ACM
symposium on Parallelism in algorithms and architectures, 2010, pp.
355–364.

[49] Y. Oyama, K. Taura, and A. Yonezawa, “Executing parallel programs
with synchronization bottlenecks efficiently,” in Proceedings of Interna-
tional Workshop on Parallel and Distributed Computing for Symbolic
and Irregular Applications (PDSIA ’99), 1999, pp. 182–204.

