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Inertial artifact in viscoelastic measurements of
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ABSTRACT Viscoelastic properties of striated muscle are often measured using length perturbation analysis and quantified as
a complex modulus, whose elastic and viscous components reflect the energy-storage and energy-absorbing properties of the
tissue, respectively. The energy stored as inertia is commonly ignored due to the small size of samples examined, typically
<1 mm. Considering recent advances in tissue engineering to generate muscle tissues of larger sizes, we questioned
whether ignoring the inertial artifact was still reasonable in these samples. To answer this question, we derived and solved
the one-dimensional wave equation that describes the propagation of strain along the length of a sample. The inertial artifact
was predicted to contaminate the elastic modulus with (2pf)2L0

2r/6, where f is perturbation frequency, L0 is muscle length,
and r is muscle density. We then measured viscoelastic properties up to 500 Hz in mouse skeletal muscle fibers at long
(4.8 mm) and short (<1 mm) lengths and up to 100 Hz in rat cardiac slices at long (10–12 mm) and short (<2 mm) lengths.
We found the elastic modulus of long preparations was elevated as frequency increased and was about half the magnitude
of that predicted by the model. While the prediction tended to overestimate the measured inertial artifact, these results provided
some validity to the model. We used the predicted artifact as an overly conservative estimate of error that might arise in a
mechanics assay of mammalian striated muscle, whose nominal resting stiffness is on the order 100 kN m�2. We found that
muscle lengths of <1 mm resulted in negligible inertial artifact (<0.5% error) for perturbation frequencies under 250 Hz. Muscle
samples longer than 5 mm, on the other hand, would result in >5% error at frequencies of 200 Hz and higher.
SIGNIFICANCE This study demonstrates that measurements of stiffness in muscle samples can, under certain
conditions, be contaminated by the effects of sample inertia, which could confound interpretation of the data. The degree of
contamination is dependent on the sample length and the frequency with which the sample length is perturbed during the
measurement. We report that measures of viscoelasticity are not contaminated with this artifact when samples are short
(<1 mm), but in larger samples, such as those exemplified by engineered muscle tissue and myocardial slices, the inertial
artifact in the elastic modulus is not negligible. We provide here a guideline that would be useful to assure conditions that
reduce and minimize inertial artifact.
INTRODUCTION

Sound preclinical experimental models are critical for
inferring how striated muscle mechanics measured in the
laboratory would be expected to scale up to higher anatom-
ical levels (e.g., whole heart or whole skeletal muscle). One
measure often used to characterize striated muscle is its
viscoelasticity, which describes an energy-storing property,
also called the elastic or storage modulus, and an energy-
absorbing property, also called the viscous or loss modulus.
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These moduli and their frequency dependence can be used
to probe myosin kinetics (1–5), calcium-independent thin
filament activation (5), and chord stiffness (6) as might
underlie physiological and pathophysiological states of
muscle function.

The examination of viscoelasticity in striated muscle was
first described over 70 years ago (7). For at least 50 years
since then, single-fiber preparations have been the
model system of choice. Engineered tissue and myocardial
slices are relatively recent and novel model systems for
understanding striated muscle function (8,9). Although
there are numerous approaches to studying muscle function
in vitro, myocardial slices in particular offer notable
advantages, including maintenance of the native myofiber
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Inertial artifacts in viscoelasticity
architecture and unique electrophysiological properties.
While permeabilized fibers and myocardial slices both
represent viable preclinical models for studying striated
muscle function, there are notable differences in their
experimental preparation that warrant consideration. For
example, in contrast to single skeletal muscle fibers, which
are often 50–100 mm in width and �1 mm in length,
myocardial slices are typically at least twice as thick
(200–300 mm) and 5- to 10-fold wider and longer (10,11).

Differences in sample preparation size are not expected to
affect the resulting measure of viscoelasticity due to the
normalization factors of length and cross-sectional area
used to define strain and stress, respectively, from which
the elastic and viscous moduli are calculated. In the simplest
terms, the elastic modulus refers to the capacity of the
tissue to store mechanical energy in its deformation akin
to energy stored in the extension or compression of a spring.
Mechanical energy can also be stored as inertia due to tissue
mass in motion, which obviously occurs when length
perturbations are applied to measure viscoelasticity. Inertia
is usually assumed negligible and ignored due to the small
size of muscle samples historically used in the laboratory.
While it is tempting to continue to ignore inertia in these
larger samples, the validity of that assumption is not
immediately obvious. A quantitative rationale for ignoring
the consequences of inertia when examining muscle
viscoelasticity would be useful.

In this study, we asked how and under what conditions the
energy-storing property of inertia arises in the measurement
of viscoelastic characteristics of striated muscle. We present
in this paper a quantitative analysis of the extent to which
linear viscoelastic measurements of striated muscle are
contaminated with inertial artifact. We start with basic
definitions of linear stiffness and viscoelasticity, derive the
wave equation that describes the influence of inertia in a
linear preparation of muscle, and examine the solution of
the wave equation to quantify the inertial artifact carried
in the observed elastic modulus. Finally, we compare the
mathematical computations to experimental results and
provide guidance of the experimental conditions under
which inertia can be validly ignored.
FIGURE 1 Mechanics assay of a muscle sample. In a mechanics assay of

this type, striated muscle length is often on the order of 1 mm or less. The

length of the half sarcomere, which is the smallest complete contractile

unit, is on the order of 1 mm. When the muscle is lengthened, each half

sarcomere is also lengthened. Values of length change, DL, normalized to

muscle length, L0, and force change, DF, normalized to cross-sectional

area, A, are normally used to characterize whole muscle viscoelasticity

and used as a proxy for that of the half sarcomere. To see this figure in color,

go online.
Measuring macroscopic viscoelasticity

Striated muscle commonly offers a clear longitudinal
orientation that allows for one-dimensional analysis of
stiffness and viscoelasticity. Once orientation has been
established, a length change can be applied to one end of
the muscle sample and a force response is measured at the
other end. The smallest functional unit of striated muscle
is the half sarcomere, which has a very small length
(�1 mm) compared with that of the whole sample
(�1 mm) (Fig. 1). Typically, the experimentalist would
like to have a measure of the viscoelastic characteristics
of the half sarcomere but will take the viscoelasticity of
the whole sample as a proxy for that of the half sarcomere.
One goal in this study is to demonstrate the extent to which
that assumption is valid. Much of the development and def-
initions presented here can be found in textbooks like that of
Y.C. Fung (12).

The simplest example of relating force and length
would be a steady-state proportionality constant indicating
stiffness bearing no consideration of dynamics that arise
from viscous or inertial effects. The relationship between
a change in force and a change in length is simply a
constant, E:

F� F0

A
¼ E

L� L0

L0

; (1)

where F is the measured force, A is the cross-sectional area,
and L is the imposed muscle length. The stiffness constant E
is also termed the chord stiffness and corresponds to the
elastic or Young’s modulus characterizing the longitudinal
stiffness of the muscle per cross-sectional area. The
subscript 0 refers to initial conditions of the sample prepara-
tion. Therefore, F�F0 refers to the change in force, DF, and
L�L0 refers to the change in length, DL. We can now define
tensile stress, s ¼ DF/A, and strain, ε ¼ DL/L0, which
provide terms that apply equally for the entire muscle
Biophysical Journal 121, 1424–1434, April 19, 2022 1425
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sample as well as for the half sarcomere. Likewise, the
stiffness, E, measured at the whole muscle level is a valid
representation of stiffness of the half sarcomere. We have
used Eq. 1 in the past to demonstrate that the passive
stiffness of cardiac muscle in diastolic heart failure is due
primarily to enhanced stiffness in titin and collagen (6).

Amore generalized linear mechanical transfer function al-
lows for use of an imposed time-varying strain as well as a
combination of elastic and viscous behavior. The recorded
stress response would then be represented in a mechanical
transfer function, YL0ðtÞ, convolved with the imposed strain:

srðtÞ ¼
Z t

�N

YL0ðt� tÞεrðtÞdt; (2)

where sr(t) is the recorded stress transient and εr(t) is the re-
corded strain transient imposed on the muscle. The subscript

L0 seen in term YL0ðtÞ indicates that this mechanical transfer
FIGURE 2 Viscoelastic characteristics represented as mechanical step respo

applied to a muscle sample can be used to characterize viscoelasticity. The rec

the strain, εr(t), imposed on the sample and is usually very small<1%. (B) The re

the stress, sr(t), propagated along the length of the sample due to the strain. Th

stress release (log plot in inset shows a straight line indicative of a fractional deriv

YL0 ðtÞ, is calculated as the time derivative of the step response, but is not genera

several frequencies can also be used to characterize viscoelasticity. (E) The stress

strain. The magnitude of the stress that is in-phase with the strain, sE, divided by

stress 90 degrees out-of-phase, sV, divided by ε defines the viscous modulus. (F

complex modulus, which consists of the elastic modulus (i.e., real part of the co

perturbation frequencies applied in the assay.
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function relates to the entire length of the muscle sample.
Equation 2 can also be written as:

srðtÞ ¼ YL0 � εrðtÞ; (3)

where the symbol * represents the convolution operation.
A step length change, like that shown in Fig. 2A, applied to

relaxed striated muscle results in a force response
exemplified in Fig. 2 B. If our muscle represents a linear
mechanical system, which is valid for small length
perturbations, then mechanical transfer function, YL0ðtÞ,
can be calculated as the time derivative of the step response
(Fig. 2C). The transfer function represents the force response
to an infinitely short duration length change called an
impulse. We could theoretically use the mechanical transfer
function to calculate the force response to any imagined
length change. This transfer function, however, is not
generally used, in part because calculation of the transfer
function in the time domain in practice is difficult. The
complex modulus in the frequency domain, on the other
nse, impulse response, and complex modulus. (A) A step length change

orded change in length, DL, normalized to original length, L0, represents

corded change in force,DF, normalized to cross-sectional area, A, represents

is example step response of the stress exemplifies the fractional derivative

ative) often exhibited by biological samples (11). (C) The impulse response,

lly used to characterize viscoelasticity. (D) A sinusoidal strain applied over

response will also be sinusoidal, but usually out of phase with the sinusoidal

the magnitude of strain, ε, defines the elastic modulus. The magnitude of the

) The frequency domain representation of viscoelasticity is provided by the

mplex modulus) and viscous modulus (imaginary part) across the range of



Inertial artifacts in viscoelasticity
hand, ismuchmore easily calculated and generallymore use-
ful, thus we work in the frequency domain for the remainder
of this study.

Within the bounds of linear systems analysis, linear
operators, such as the Fourier transform (FT), can be applied
to the time domain description of viscoelasticity, such as
Eq. 3. The frequency domain representation of the relation-
ship among stress, strain and complex modulus is then:

~srðuÞ ¼ ~YL0ðuÞ~εrðuÞ; (4)

where u is angular frequency related to frequency, f, as
u ¼ 2pf, and ~YL0ðuÞ ¼ complex modulus for length L0
defined as the FT of the YL0ðtÞ. In practice the complex
modulus ~YL0ðuÞ is calculated from experimental measures
as the FT of recorded stress, ~srðuÞ, divided by the FT of
recorded strain, ~εrðuÞ (Fig. 2, D and E). The real part of
YL0ðtÞ is the elastic modulus and the imaginary part is the
viscous modulus. An example complex modulus measured
in relaxed striated muscle is shown in Fig. 2 F.

The complex modulus utilized in Eq. 4 represents the
elastic and viscous characteristics of the full length of the
sample. As we are interested in the complex modulus of
the half sarcomere, we would have to apply Eqs. 1–4 to a
half sarcomere within a muscle sample. Fig. 3 illustrates a
cylindrical muscle sample with an initial length L0 and
tensile force F0. Recognizing that we will later develop
the wave equation (13), we will call the length of this half
sarcomere, dx. If we let u(x,t) represent the time-varying
displacement of the half sarcomere at position x, then
u(x þ dx,t) is the time-varying displacement at position
x þ dx.
The change in length of the half sarcomere is therefore
u(x þ dx,t) � u(x,t) (Fig. 3). We have assumed here a
negligible radial compression with longitudinal expansion,
i.e., Poisson ratio ¼ 0, for very small perturbations that
allows linear analysis. Referring to Eqs. 1 and 3 for whole
muscle length, we produce an analogous relationship
between stress and strain for the half sarcomere of length
dx and the local microscopic transfer function over dx,
i.e., ~YdxðtÞ:
Fðx; tÞ � F0ðxÞ

A
¼ YdxðtÞ

�
�½dx þ uðx þ dx; tÞ � uðx; tÞ� � dx

dx

�
(5)

Equation 5 is the starting point for deriving and solving
the wave equation, which will relate the complex modulus
of the whole sample with that of the half sarcomere and
account for the effects of mass. Please refer to the Appendix
for the derivation and solution.

The solution suggests that the complex modulus
measured at the macroscopic level, ~YL0ðuÞ, is related to
the complex modulus present at the microscopic level,
~YdxðuÞ, as follows:

~YL0ðuÞ ¼ ~YdxðuÞ q

sinðqÞ; (6)

where q ¼ u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~YdxðuÞ =rÞ

p , and r ¼ tissue density. The term q/

sin(q) on the right-hand side of Eq. 6 is recognizable as
the reciprocal of a sinc function, sin(q)/q, which has a unity
FIGURE 3 The one-dimensional longitudinal

wave equation is used to model the influence of

inertia on the complex modulus. The time-varying

displacement of any part of the sample along its

length, x, is represented here by the function

u(x,t). Muscle length is perturbed at x ¼ L0, and

the displacement is represented by u(L0,t), which

when normalized to L0 is the recorded strain,

εr(t). The displacement of the muscle at x ¼ 0 is

held constant, u(0,t)¼ 0. The tensile force required

to maintain that boundary condition at x ¼ 0 is

measured with a force transducer. The recorded

force normalized to cross-sectional area A provides

the recorded stress, sr(t). An infinitesimally small

length, dx, would be elongated and displaced rela-

tive to its original length and position. This length

dx is analogous to the half sarcomere within the

muscle. Elongation of dx described in terms of dis-

placements of its boundaries, u(x þ dx,t) � u(x,t),

is useful in the derivation of the one-dimensional

longitudinal wave equation. To see this figure in

color, go online.
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value at q ¼ 0. However, while the value of q may be small,

it cannot be 0 due to non-zero values for u, L0, ~YdxðuÞ, and r
that define q. We quantify in the next section the inertial

artifact introduced into ~YL0ðuÞ due to q/sin(q).
Quantifying the inertial artifact

A series expansion of the q/sin(q) term of Eq. 6, also given
in the Appendix, is useful to estimate the inertial artifact.
The first-order approximation is (14):

~YL0ðuÞy ~YdxðuÞ þ 1

6
u2L2

0r (7)

This result suggests that the real part of the macroscopic
complex modulus, i.e., the elastic modulus, would be
observed higher than that of the microscopic mass-indepen-
dent complex modulus due to the addition of an inertial
artifact approximated as

Artifacty
1

6
u2L2

0r: (8)

It is worth noting that units of the complex moduli are
N m�2 or kg m�1 s�2, which matches that of the artifact
term when using units of s�1 for angular frequency, m for
length, and kg m�3 for density.

We can make a cursory estimate of the magnitude of
this artifact based on reasonable values for u, L0, and r.
A reasonable angular frequency to consider would be
u ¼ 10 s�1, which corresponds to 1.6 Hz and falls within
the normal range of frequencies for human resting heart
Using the difference of the elastic moduli of long and short samples, the

artifact based on a sample length of 4.8 mm. The mean measured artifact was
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rate (0.8–2.8 Hz) and walking stride (1.41–2.13 Hz)
(15,16). For assays depicted in Fig. 1, a reasonable value
for L0 ¼ 1 mm or 1 � 10�3 m. Mammalian striated muscle
density is accepted as r ¼ 1.06 kg per liter or 1,060 kg m�3

(17). Applying these values to Eq. 8, the inertial artifact
would have a value of 17.7 � 10�3 N m�2. Values for the
elastic modulus of relaxedmuscle under the conditions noted
above are on the order of 100 � 103 N m�2 (1,2,18). There-
fore, the inertial artifact associated with the above-specified
conditions is more than 6 orders of magnitude smaller than
the expected mass-independent complex modulus ~YdxðuÞ at
1.6 Hz and would contribute only �0.00017% error. How-
ever, if the length of the muscle sample is on the order of
5 mm and the measured complex modulus includes u ¼
1256.6 s�1, corresponding to 200 Hz, the inertial artifact at
that frequency would be on the order of 6.97 � 103 N m�2,
which is greater than 5% of the nominal 100 � 103 N m�2

and would not be considered negligible. The wide range of
values for the inertial artifact results from its dependence
upon the squared values of both frequency andmuscle length,
which can vary over multiple orders of magnitude.

To illustrate how inertial artifact might be observed in
practice, we modeled the elastic and viscous moduli that
would result from Eq. 7 using reasonable values for
~YdxðuÞ. This mass-independent complex modulus was
modeled as a fractional derivative viscoelasticity common
for biological tissues. We used values for the stiffness
(100 � 103 N m�2) and the fractional derivative coefficient
(0.1) common for relaxed mammalian striated muscle
~YdxðuÞ ¼ 100 � 103 (iu)0.1 N m�2 (2,18,19). Fig. 4 A
illustrates the modeled elastic and viscous moduli with
FIGURE 4 Inertial artifact expected (A and B)

and measured (C and D) in permeabilized skeletal

muscle samples. (A) Based on the results of the

wave equation, an inertial artifact is expected to

arise in relatively long muscle samples and at

relatively high perturbation frequencies. The

elastic and viscous moduli without an artifact

were generated using the fractional derivative rep-

resentation of the complex modulus common for

muscle at rest: 100 � 103 (iu)0.1 N m�2. Muscle

density was assumed to be 1060 kg m�3. The ex-

pected inertial artifact was then calculated for

L0 ¼ 1, 2, and 3 mm samples. (B) The inertial

artifact can be substantial as frequency rises and,

in this example, introduces more than 5 � 103

N m�2, thus adding �5% error, at frequencies

greater than 1400, 650, and 450 Hz for L0 ¼ 1,

2, and 3 mm samples, respectively. (C) Elastic

and viscous moduli were measured in long

(4.8 mm) and short (0.65 mm) preparations of

the same mouse EDL muscle fiber, and therefore

were expected to possess similar viscoelastic

qualities. The elastic modulus of the longer sam-

ple appears to include an inertial artifact

compared with that of the shorter sample. (D)

inertial artifact was estimated and plotted against the predicted inertial

about half that predicted. Symbols indicate mean 5 SE.



Inertial artifacts in viscoelasticity
the inertial artifact over a frequency range up to 1,500 Hz for
muscle lengths of 1, 2, and 3 mm. Fig. 4, A and B
demonstrate that, if the wave equation model is applicable,
the inertial artifact would be noticeable at frequencies above
�200–500 Hz and more so noticeable as frequencies
increased and muscle samples became longer.

To illustrate the point with recorded data, wemeasured the
complex modulus of a skeletal muscle fiber isolated from a
mouse extensor digitorum longus. Euthanasia and animal
use were undertaken in accordance with and approved by
the IACUC of the University of Massachusetts at Amherst.
Details of the methods used to prepare the sample have
been described elsewhere (3). The same fiber was clipped
at two different lengths, long �3–4 mm and short
�400 mm, and bathed in relaxing solution containing
40 mM BDM. The long sample was examined first and pre-
stretched to 4.8 mm, the longest possible for the apparatus,
which corresponded to sarcomere lengths 2.8–3.4 mm. Sinu-
soidal length perturbations were applied at 0.1% muscle
length, and the complex modulus was recorded up to
500 Hz. The short sample was stretched to match the sarco-
mere length of the longer sample, and then fine adjusted to
match stiffness of the longer sample at <10 Hz.

Example elastic and viscous moduli of the two sample
lengths are superimposed in Fig. 4 C, where the elastic
modulus of the longer sample appears elevated at higher
frequencies. If we assume that no inertial artifact impacted
the moduli of both samples at frequencies<10 Hz and of the
shorter sample at all frequencies, the difference in elastic
moduli between the long and short samples should reflect
the inertial artifact. Fig. 4 D illustrates that the measured
inertial artifact resembled that predicted by Eq. 8 and would
not obviously be considered negligible, although the
predicted artifact appears to have overestimated the actual
artifact by a factor of 2. Nevertheless, we would conclude
that the inertial artifact can arise under assay conditions
that include high frequencies of length perturbation applied
to relatively long muscle samples.

We also measured the complex modulus of a myocardial
slice prepared from rat heart. Euthanasia and animal use
were approved by the IACUC of the University of Vermont.
Sample preparation followed methods described by Pitoulis
et al. (10). The same slice was clipped at two different
lengths, long �8–10 mm and short �1 mm, and bathed in
a Tyrode’s solution containing 30 mM BDM. The long
sample was examined first and prestretched to 10–12 mm,
which resulted in sarcomere lengths 2.2–2.4 mm. Sinusoidal
length perturbations were applied at 0.25% muscle length,
and the complex modulus was recorded up to 100 Hz.
Again, the short sample was stretched to match stiffness
of the longer sample at <10 Hz.

Fig. 5, A and B, present the expected inertial artifact over
a frequency range up to 100 Hz for slice lengths of 5, 10, and
15 mm. An example pair of elastic and viscous moduli for
two sample lengths examined are superimposed in Fig. 5
C. As observed in the skeletal muscle, the elastic modulus
of the longer myocardial slice sample is elevated at higher
frequencies. Fig. 5 D compares the mean observed inertial
artifact and that predicted. Again, the inertial artifact ap-
pears to play some role in the measure of the elastic
modulus.
Conditions for negligible inertial artifact

Here, we provide a quantitative estimate of errors due to an
inertial artifact that would be expected in assays of
FIGURE 5 Inertial artifact expected (A and B)

and measured (C and D) in cardiac slices. (A)

Some inertial artifact is expected to arise in rela-

tively long samples and with perturbation fre-

quencies as low as 100 Hz. The expected inertial

artifact was calculated for L0 ¼ 5, 10, and

15 mm, which would be relevant for cardiac slices

and other engineered tissue samples. (B) The iner-

tial artifact could add as much as 2, 6, and 10% er-

ror at 100 Hz for L0 ¼ 5, 10, and 15 mm,

respectively. (C) Elastic and viscous moduli were

measured in long (10.5 mm) and short (1.5 mm)

preparations of the same cardiac slice. The elastic

modulus of the longer sample appears to include an

inertial artifact. (D) The mean of the artifacts

observed in long samples. Symbols indicate

mean 5 SE.
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viscoelasticity. We first note that the density of striated
muscle does not differ much from sample to sample, and
we assume a value of 1060 kg m�3 for the remainder of
our analyses. The angular frequency and sample length,
on the other hand, can vary widely depending on the assay
and muscle type. The angular frequency, for example, can
get at least as high as 1,250 s�1, which corresponds to a
low wing beat frequency of a fruit fly at �200 Hz (20). It
is also often advantageous to acquire data at much higher
frequencies, e.g., greater than 10� the normal physiological
frequency, to detect the viscoelastic consequences of
myosin-actin interactions (1–4). The angular frequencies
we might apply to fruit fly flight muscle could therefore
be on the order of 12,500 s�1 or �2,000 Hz.

It would be useful then to evaluate the percent error that
would arise in measurements of viscoelasticity over a wide
range of frequencies, up to 10 kHz, and preparation lengths,
up to 100 mm. We assumed an elastic modulus of 100
kN m�2 or 105 N m�2 (1,5), which reasonably reflects the
stiffness of relaxed mammalian striated muscle and, because
it is a low stiffness, represents a worst case scenario for
evaluating error caused by artifact relative to actual
stiffness. The expected error as a fraction of 105 N m�2

attributable to inertial artifact is then:

error � 105 ¼ 1

6
u2L2

0r (9)

If we recognize the angular frequency u ¼ 2pf, the
perturbation frequency (f) versus length (L0) relationship
is given as

f ¼ 1

2pL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
error � 105

� � 6

r

s
(10)
FIGURE 6 The frequency-length relationship was calculated for errors corresp

modulus (A) and 500 � 103 N m�2 elastic modulus (B), which are values releva

inertial artifact and low errors occur with short samples and low frequencies. H

quencies. Examples of a single cardiac myocyte (120 mm long) and a typical s

artifact unless perturbation frequencies were exceptionally high, e.g., >2,00

10 mm would be subject to some degree of inertial artifact at 200 and 100 H

viscoelasticity.
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Fig. 6 A illustrates the f versus L0 relationship for five er-
ror levels, 0.5, 1, 2, 5, and 10% error, compared with relaxed
conditions with an elastic modulus of 100 kN m�2. At long
lengths and high frequencies (upper right-hand part of Fig. 6
A), the error associated with measures of viscoelasticity is
above 10%. At short lengths and low frequencies (lower
left-hand side), the error is below 0.5%. Fig. 6 B illustrates
the f versus L0 relationship for the five error levels under
activated conditions, which result in an elastic modulus on
the order of 500 kN m�2 (1–3). The value 105 N m�2 in
Eq. 10 is replaced by 5 � 105 N m�2, and the frequencies
in Fig. 6 B are raised by O5 compared with Fig. 6 A.

We have noted in Fig. 6, A and B the placement of four
example muscle samples. A single mammalian cardiac my-
ocyte is about 120 mm long and would normally operate near
a physiological range of 10 Hz for a mouse. Any inertial
artifact associated with a measure of elastic modulus in
this muscle would be less than 0.5% error up to at least
2000 Hz. A skeletal muscle strip 1 mm long could likewise
be examined up to at least 250 Hz with less than 0.5% error.
However, a skeletal muscle fiber taken from a rodent limb,
for example, may be as long as 5 or 10 mm, and any measure
of the elastic modulus over �200 and �100 Hz, respec-
tively, may carry an artifact over 5% error under relaxed
conditions (Fig. 6 A), but not more than 2% under activated
conditions (Fig. 6 B).
DISCUSSION

In this study, we demonstrated that the inertial artifact may
contaminate measurements of the elastic modulus during
measures of tissue viscoelasticity under certain conditions.
Using a one-dimensional wave equation, we predicted the
inertial artifact in terms of perturbation frequency, muscle
onding to 10, 5, 2, 1, and 0.5% error of a nominal 100 � 103 N m�2 elastic

nt for relaxed and activated mammalian striated muscle, respectively. Low

igh inertial artifact and high errors occur with long samples and high fre-

keletal muscle sample (1 mm long) would not likely be subject to inertial

0 and >500 Hz, respectively. Relatively long muscle samples of 5 and

z, respectively, which are not uncommon frequencies for characterizing
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length, and muscle density (see Eq. 8). Accordingly, the
inertial artifact is not dependent upon muscle fiber type,
temperature, or perturbation amplitude when experimental
conditions allow for linear systems analysis.

Our model suggests that, under those conditions that
generate artifact, the observed elastic modulus will overes-
timate the actual elastic modulus, and that this overestimate
will increase with higher perturbation frequencies and
longer preparations. With the growing use of engineered
tissues and cardiac slices (8–11), which are generally larger
than single muscle fiber preparations, the inertial artifact
may need to be anticipated when examining viscoelastic
characteristics of muscle samples. For example, samples
as long as 10 mm could demonstrate an artifact that adds
6% error for frequencies up to 100 Hz, which for many
purposes could distort the physiological interpretation
of viscoelasticity. The issue would be worse for faster
muscle types. For example, insect flight muscle bears
important viscoelastic information at 200 Hz and higher
(7), although it is not possible to prepare native flight mus-
cle longer than 1 mm. Nevertheless, if myosin of insect
flight muscle were to be engineered into a muscle tissue
of larger scale, the impact of an inertial artifact may
need to be addressed.

We demonstrated that the inertial artifact measured in
long muscle preparations (5–10 mm) matched the predicted
artifact within a factor of 2, thus giving some validity to the
model. The discrepancy must be due to factors that play
some role in defining the inertial artifact but were not
accounted for in our model. Those factors could include se-
ries compliance between the sample and the measurement
apparatus or viscous load due to bathing medium. It is
also worth questioning whether the clips used to attach the
muscle sample to the apparatus may have contributed
inertia. The clip attached to the force transducer does not
move and therefore would not be affected by inertia. The
clip attached to the length motor certainly moves and
experiences inertia. In both cases illustrated in this study,
either aluminum T-clips used to attach the skeletal muscle
or acrylic triangles used to attach the myocardial slice, the
material is so much stiffer than the muscle that the wave
equation model would not need to take these components
into account. Furthermore, at least in the case of the acrylic
clips, these clips become an extension of the apparatus. For
the clip on the force transducer, the resonant frequency may
be reduced, but there is no effect of the clip attached on the
length motor.

We would define a reasonably negligible artifact as
contributing less than 0.5% error. With this definition, as
illustrated in Fig. 6, A and B, the degree of contamination
due to inertia is reasonably negligible for samples under
�1 mm in length examined with perturbation frequencies
under 250 Hz. Those conditions are usually met when study-
ing amphibian and mammalian striated muscle, and the
interpretation of previous studies need not be reexamined.
Nevertheless, if perturbation analysis requires frequencies
higher than 250 Hz or samples longer than 1 mm, it may
be necessary to characterize and correct for an inertial arti-
fact to avoid spurious interpretations of the measured elastic
modulus. Other investigators using other muscles that are
especially fast, e.g., those of insect, fish, or bird muscle,
that require a high frequency range of length perturbation
may need to reevaluate whether experimental conditions
result in a negligible inertial artifact or warrant correction.
APPENDIX

In this Appendix, we derive and solve the one-dimensional
wave equation, which will be used to model the effects of
inertia on macroscopic measures of viscoelasticity.
Derivation of the wave equation

The one-dimensional longitudinal wave equation describes
the time-varying displacement u(x,t) of a material at any
position x along its length (13). A cartoon depiction of a cy-
lindrical muscle sample with an initial length L0 and tensile
force F0 is provided in Fig. 3. The derivation starts with
consideration of an infinitesimally small length, dx, within
the muscle sample analogous to the single half sarcomere
in Fig. 1. Upon application of a time-varying displacement
at L0, u(L0,t), the total sample length expands (and/or
contracts), and the length enclosed within dx likewise
expands (and/or contracts) according to the relative
displacements on either end of dx. We recognize that
u(x,t) is the time-varying displacement at position x, and
u(x þ dx,t) is the time-varying displacement at position
x þ dx. The change in length of the infinitesimally small
length dx is therefore u(x þ dx,t) � u(x,t) (Fig. 3). We
have assumed here a negligible radial compression with
longitudinal expansion, i.e., Poisson ratio ¼ 0, for very
small perturbations that allows linear analysis.

Referring to Eqs. 1 and 3 for whole muscle length, we
produce an analogous relationship for stress and strain
experienced by the infinitesimally small length dx and the
local microscopic transfer function over dx, i.e., ~YdxðtÞ:
Fðx; tÞ � F0ðxÞ

A
¼ YdxðtÞ

�
�½dx þ uðx þ dx; tÞ � uðx; tÞ� � dx

dx

�
(A1)

We can replace the left-hand side of Eq. A1 as the tran-
sient stress at point x, sðx; tÞ. After canceling the dx terms
in the numerator of the right-hand side, we can further
recognize the first derivative of local displacement with
respect to the x dimension. Equation A1 can then be
rewritten
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sðx; tÞ ¼ YdxðtÞ �
�
uðx þ dx; tÞ � uðx; tÞ

dx

�

¼ YdxðtÞ � vuðx; tÞ
vx

(A2)

Equation A2 will be useful after we have developed the
equation of motion for the length dx.

The equation of motion refers to the application of
Newton’s second law of motion for the length dx, i.e.,
force ¼ mass � acceleration. The net force on length
dx is given as Aðsðxþdx; tÞ � sðx; tÞÞ, where As(x þ
dx,t) ¼ tensile force applied to length dx at x þ dx,
and As(x,t) ¼ tensile force applied to length dx at x.
Given a tissue density of r, the mass contained within
length dx is rAdx. We can now write the equation of
motion, force ¼ mass � acceleration, for the length dx
as follows:

Aðsðxþ dx; tÞ� sðx; tÞÞ ¼ rAdx
v2uðx; tÞ

vt2
; (A3)

where v2uðx;tÞ
vt2 is the acceleration of the length dx. The

force term in this equation of motion can now be rewritten
using the expression for stress due to strain provided in
Eq. A2:

A

�
YdxðtÞ � vuðx þ dx; tÞ

vx
� YdxðtÞ � vuðx; tÞ

vx

�
¼ rAdx

v2uðx; tÞ
vt2

(A4)

Next, we divide each side of Eq. A4 by r, and allow dx/dx
to be multiplied to the left-hand side of Eq. A4.

A

r

dx

dx

�
YdxðtÞ � vuðx þ dx; tÞ

vx
� YdxðtÞ � vuðx; tÞ

vx

�
¼

Adx
v2uðx; tÞ

vt2

(A5)

The infinitesimal volume Adx can now be removed from
each side. As long as YdxðtÞ is not a function of position x, it
can be moved out of the brackets.

YdxðtÞ
rdx

�
�
vuðx þ dx; tÞ

vx
� vuðx; tÞ

vx

�
¼ v2uðx; tÞ

vt2
(A6)

The left-hand side of Eq. A6 is recognized as bearing the
second-derivative of the displacement u(x,t) with respect to
position x, or

YdxðtÞ
r

� v
2uðx; tÞ
vx2

¼ v2uðx; tÞ
vt2

(A7)

Equation A7 is the longitudinal wave equation in one
dimension.
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Solution to the wave equation

Upon applying the FT, Eq. A7 is transformed from a partial
differential equation into an ordinary differential equation in
frequency space for the function ~Uðx;uÞ, which is the FT of
u(x,t): �

~YdxðuÞ
r

�
v2 ~U

�
x;u

�
vx2

¼ �u2 ~U
�
x;u

�
(A8)

Notably, Eq. A8 is written as though the sample is at

rest before time zero (pictured in Fig. 1 A), thus the displace-
ment and velocity, u(x,t) and du(x,t)/dt, are zero valued.

The general solution to a second-order ordinary differen-
tial equation, like Eq. A8, can be found in several textbooks
including Berg and McGregor (13) and is:

~Uðx;uÞ ¼ ~VðuÞexp

"
iu xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

#

þ ~WðuÞexp

"
�iu xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~YdxðuÞ=rÞ

q
# (A9)

where ~Vðx;uÞ and ~Wðx;uÞ are arbitrary functions of fre-

quency to be determined by boundary conditions (3), and
exp[ ] ¼ e[ ]. The boundary conditions refer to stipulations
applied to the ends of the sample. As illustrated in Fig. 3,
the boundary conditions would be:

~Uð0;uÞ ¼ 0 (A10a)

~UðL0;uÞ ¼ D~LðuÞ; (A10b)
where L0 is the original length of sample being assayed,
~
DLðuÞ is FT of the imposed displacement at x ¼ L0,

namely u(L0,t) ¼ L(t) � L0. Upon applying the
boundary condition stipulated by Eq. A10a to Eq. A9, we
find ~Vðx; uÞ ¼ � ~Wðx; uÞ. Using Euler’s identity for the
sine function, i.e., 2isin(q) ¼ exp(iq) – exp(-iq), the solution
for ~Uðx;uÞ in Eq. A9 becomes:

~Uðx;uÞ ¼ ~VðuÞ 2i sin

 
u xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!
: (A11)

Applying the boundary condition stipulated by Eq. A10b,

~Vðx;uÞ must be:

~VðuÞ ¼ D~LðuÞ
2i sin

�
uL0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
p

� (A12)



Inertial artifacts in viscoelasticity
Therefore, the solution for the frequency domain displace-
ment at any point x along the length of the muscle is then:

~Uðx;uÞ ¼
sin

 
u xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!

sin

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!D~LðuÞ: (A13)

We now use this solution to relate the macroscopic com-
plex modulus, ~YL ðuÞ, which bears inertial artifact, to the
0

microscopic complex modulus, ~YdxðuÞ, which is indepen-
dent of mass and sample length.
Relating macroscopic and microscopic complex
moduli

As mentioned earlier, in practice, the macroscopic complex
modulus ~YL0ðuÞ is calculated from experimental measures
as the FT of recorded stress, ~srðuÞ, divided by the FT of re-
corded strain, ~εrðuÞ. Here, we use Eqs. A1 and A13 to pro-
vide the expected FT of the recorded stress, ~srðuÞ. The
recorded stress at x ¼ 0 in the frequency domain is given
by the FT of Eq. 6 evaluated at x ¼ 0:

~srðuÞ ¼ ~YdxðuÞv
~Uðx;uÞ
vx

				
x¼ 0

: (A14)

Using the solution of Eq. A13 and carrying out the differ-

entiation:
~srðuÞ ¼ ~YdxðuÞ

 
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!
cos

 
uxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!

sin

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

! D~LðuÞ

									
x¼ 0

: (A15)
Evaluating at x ¼ 0 gives:

~srðuÞ ¼ ~YdxðuÞ

 
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!

sin

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!D~LðuÞ: (A16)

We multiply the right-hand side by L0/L0, and use the
definition of recorded strain for muscle sample, ~εrðuÞ ¼
D~LðuÞ=L0. The ratio of stress recorded at x ¼ 0 to strain re-
corded at x ¼ L0 is then:
~srðuÞ
~εrðuÞ ¼ ~YdxðuÞ

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ =rÞ
q

!

sin

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ =rÞ
q

!: (A17)

Equation A17 represents the measured complex modulus

of a muscle preparation of length L0 and density r and
bearing a microscopic complex modulus ~YdxðuÞ. Compare
Eq. A17 with Eq. 4, and the complex modulus measured
at the macroscopic level, ~YL0ðuÞ, is related to the complex
modulus present at the microscopic level, ~YdxðuÞ, as
follows:

~YL0ðuÞ ¼ ~YdxðuÞ

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ =rÞ
q

!

sin

 
u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ =rÞ
q

!: (A18)

If we use q ¼
�

u L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~YdxðuÞ =rÞ

p
�
, the term q/sin(q) on the

right-hand side of Eq. A18 is recognizable as the reciprocal
of a sinc function, sin(q)/q, which has a unity value at q ¼ 0.
However, while the value of q may be small, it cannot be
0 due to non-zero values for u, L0, ~YdxðuÞ, and r that define
q. We quantify in the next section the inertial artifact
introduced into ~YL0ðuÞ due to q/sin(q).
Series expansion approximation

A series expansion of the q/sin(q) term of Eq. A18 is useful
to estimate the inertial artifact:
~YL0ðuÞ ¼ ~YdxðuÞ
"
1þ u2L2

0

6ð~YdxðuÞ=rÞ
þ 7u4L4

0

360ð~YdxðuÞ=rÞ2
þ/

þ
XN
n¼ 0

2
�
22n�1 � 1

�jB2nj
ð2nÞ!

 
uL0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~YdxðuÞ=rÞ
q

!2n#
;

(A19)
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where Bn is Bernoulli number (14). The first-order approx-
imation is:

~YL0ðuÞy ~YdxðuÞ þ 1

6
u2L2

0r: (A20)
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