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Abstract

Computational power and big data have created new opportunities to explore and under-
stand the social world. A special synergy is possible when social scientists combine human
attention to certain aspects of the problem with the power of algorithms to automate other
aspects of the problem. We review selected exemplary applications where machine learning am-
plifies researcher coding, summarizes complex data, relaxes statistical assumptions, and targets
researcher attention to further social science research. We aim to reduce perceived barriers to
machine learning by summarizing several fundamental building blocks and their grounding in
classical statistics. We present a few guiding principles and promising approaches where we see
particular potential for machine learning to transform social science inquiry. We conclude that
machine learning tools are increasingly accessible, worthy of attention, and ready to yield new

discoveries for social research.
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1 Introduction

Advances in statistics and machine learning have the potential to rapidly expand the toolkit avail-
able to social scientists. The pace of change will depend on how social scientists weigh the costs and
benefits of adopting new tools. Our review emphasizes four benefits to adoption: machine learning
can amplify researcher coding, summarize complex data, relax some statistical assumptions, and
target researcher attention. But many social scientists have yet to adopt machine learning tools.
One reason machine learning methods have appeared infrequently thus far may be the appearance
of high adoption costs, such as the time needed to learn new methods and the difficulties that
arise when interpreting a complex model. Yet the increasing availability of open-source software
and pedagogical materials means that these costs are quickly falling. One aim of our review is to
contribute to the reduction in these costs by making new methods accessible; in this respect, we
build on the excellent guidance provided by other recent review papers (e.g., Athey and Imbens
2019; Grimmer et al. 2021; Molina and Garip 2019). A theme of our review is that the benefits of
machine learning are likely to substantially outweigh the costs over time.

Related to assumed costs, some social scientists may have a preconception that the adoption
of machine learning methods requires a qualitative shift away from classical statistical methods. A
second theme of our review is that there is no such qualitative shift. While the fields of “statistics”
and “machine learning” have at times differed in their emphasis on various aspects of data analysis
(Breiman, 2001b), many of the key advances occur when these perspectives are brought together.
What unites these fields is far greater than what divides them. For example, a generalized linear
model is a standard statistical tool. Yet one could say that such a model “learns” a set of coefficients
from data. A lasso version of that regression “learns” which of the covariates should enter the
prediction function. As one moves from methods considered “classical statistics” toward methods
considered “machine learning,” one axis of change is away from imposed structure and toward a
greater role for the data in learning. But this is a difference of degree rather than a difference of
kind. Indeed, when a social scientist uses a statistical method, they can conceptualize that method
as a specific case of a machine learning tool (perhaps a highly structured version). We emphasize
these connections and ground our review in classical statistics.

Hesitancy about the use of machine learning also stems from concerns that these methods are



“black box,” involving many parameters that are difficult to interpret. This concern may loom
especially large among social scientists who are familiar with estimating regression models, placing
the coefficients in a table, and interpreting those coefficients. Two responses address this concern.
First, some ML methods (e.g., ridge regression) still involve coefficients. A second (and more
radical) response is that social scientists’ comfort of “interpretable” regression coefficients is often
misplaced. For example, researchers might interpret the coefficient as the “effect” of a particular
variable. But such an “effect” may not correspond to any causal effect in the absence of additional
assumptions. And if those assumptions hold, any machine learning prediction function can yield
a similarly interpretable average effect estimator: predict the outcome for all units as observed,
add one to the key predictor and make another prediction, difference the two, and average. Both
approaches rely on the same causal assumptions, and under those assumptions both can yield an
interpretable estimate of an average effect. An advantage of some machine learning methods is that
the statistical assumptions may be more credible (e.g., allowing additional interaction terms). This
example illustrates a general point: a researcher who is precise about the quantity to be estimated
can often engineer a machine learning approach to yield an interpretable estimate of that quantity.

A final hesitancy may stem from the belief that social science should be theory-driven, and
machine learning seems to be data-driven. This hesitancy is misplaced; machine learning in social
science requires both theory and data. To answer social science questions with supervised machine
learning, a researcher typically begins by arguing theoretically for the importance of the quantity to
be estimated and then for the credibility of required assumptions. Only then can the data speak to
the theory-driven question. With unsupervised learning, the quantity to be estimated may emerge
from the data, but then the researcher makes a theoretical argument to label and interpret what
has been learned. In either case, both theory and data play essential roles.

Our argument proceeds as follows. We first emphasize several benefits of machine learning by
reviewing its use in existing social science research. Having motivated machine learning from its
applicability in social science, we then provide a pedagogical introduction to some of the central
building blocks of machine learning. We place special emphasis on their connection to standard
statistical approaches. Third, we discuss some frontiers of machine learning research which are
increasingly fruitful for social science research. Finally, we conclude with a discussion of how

machine learning can contribute to social science knowledge moving forward.



2 What you can do with machine learning:

Exemplary applications in social science

Machine learning is already yielding new insights within social science. We illustrate this point by
discussing select papers published from 2016-2021 in a set of journals drawn from sociology, political
science, and economics.! We do not review all uses of machine learning in these journals, nor do
we review all classes of machine learning methods. Instead, we highlight cases that illustrate high-
level ways that machine learning can transform the research process for measurement, estimation,
discovery, and dimension reduction. Table 1 points toward introductory texts on these topics. The
end of this section closes with a word of warning: while there is much that machine learning can
do, there are also aspects of research (e.g., causal claims) for which machine learning is useful only

in combination with assumptions about data that cannot be observed (e.g., counterfactuals).

2.1 Measurement: Supervised machine learning can amplify researcher coding

One characteristic of the digital age is the high volume unstructured text, audio, and video data.
These data pose a challenge for measurement: it is not straightforward to convert them into a
small set of categories or numeric summaries relevant to a research question. In small samples,
researchers can carry out measurement by hand coding: examine the data and manually label.
Yet hand coding becomes prohibitive in massive digital samples. Supervised learning methods
can amplify the researcher’s judgment: the researcher manually labels a random sample, uses an
algorithm to learn patterns mapping the high-dimensional data to the low-dimensional labels in
that training sample, and then predicts the unknown labels in the much larger population (see
Figure 1).2

For example, King et al. (2017) studied government involvement in the social media ecosystem
in China. They examined 43,757 social posts made by individuals employed by the Chinese gov-

ernment to spread propaganda. This volume of digital data would be extremely costly to analyze

"We specifically searched for applications in American Sociological Review, American Journal of Sociology, Amer-
ican Political Science Review, American Economic Review, and Social Science Research. We also searched three
methodological journals: Sociological Methodology, Political Analysis, and Econometrica.

2Unsupervised methods can also be used for measurement (e.g., topic models, Blei et al. 2003). With unsupervised
measurement, the researcher does not manually code any cases and all cases are labelled by the algorithm. Unsu-
pervised dimension reduction is summarized in Sec 2.2. Here we emphasize supervised methods because of the clear
distinction between domain expertise (defining the categories) and algorithmic amplification (labeling many cases).



Category Reference R package Stata package
General references
— Statistical foundations Hastie et al. (2009)
Efron and Hastie (2016)
Bishop (2006)
— Bayesian perspective Murphy (2012)
Measurement
— With text Grimmer et al. (2022)
Hopkins and King (2010) readme
Jerzak et al. (2022) readme?2
— With audio Knox and Lucas (2021) communication
— With images Szeliski (2010)
Dimension reduction
— For text analysis Roberts et al. (2014) stm
Blei et al. (2003) topicmodels
Estimation
For smooth functions Wood (2017) mgcv
— For interactive functions Breiman (2001a)
Wright and Ziegler (2017) ranger
Cerulli (2020) rml_stata_cv
— For penalized generalized linear models Friedman et al. (2010) glmnet
Wurm et al. (2017) ordinalNet
StataCorp (2021) lasso
Townsend (2017) elasticregress
Related topics
— Causal inference Van der Laan and Rose (2018)  tlverse
Imbens and Rubin (2015)
Hernén and Robins (2021)
Pearl (2009)
Pearl and Mackenzie (2018)
Textor et al. (2011) dagitty
Athey and Imbens (2016) causalTree
Athey et al. (2019) grf
Brand et al. (2021) htetree
Ahrens et al. (2018) pdslasso
Ferwerda et al. (2017) krls krls
— Quantification of uncertainty Efron and Tibshirani (1994) bootstrap
— Visualization Wickham (2016) ggplot2

— Social science reviews

Healy (2018)

Grimmer et al. (2021)

Brand et al. (2020)

Athey and Imbens (2019)
Molina and Garip (2019)
Mullainathan and Spiess (2017)

Table 1. Where to go next: Introductory material for interested readers. These are a
few of the growing number of pedagogical introductions to machine learning, many of which are
accompanied by software packages in R or Stata.


https://github.com/iqss-research/ReadMeV1
https://github.com/iqss-research/readme-software
https://cran.r-project.org/package=communication
https://cran.r-project.org/package=stm
https://cran.r-project.org/package=topicmodels
https://cran.r-project.org/package=mgcv
https://cran.r-project.org/package=ranger
https://sites.google.com/view/giovannicerulli/machine-learning-in-stata
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=ordinalNet
https://www.stata.com/features/lasso/
https://github.com/wilburtownsend/elasticregress
https://tlverse.org/
https://cran.r-project.org/package=dagitty
https://github.com/susanathey/causalTree
https://cran.r-project.org/package=grf
https://jiahui1902.github.io/htetree.github.io/
https://statalasso.github.io/docs/pdslasso/
https://cran.r-project.org/package=KRLS
https://ideas.repec.org/c/boc/bocode/s457704.html
https://cran.r-project.org/package=bootstrap
https://cran.r-project.org/package=ggplot2
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Fig. 1. Supervised machine learning for measurement amplifies researcher coding.
One setting which is particularly promising for machine learning exists when social scientists have
many observations, each of which contains some high-dimensional predictor set #; (e.g., the text
of document 7) but the researcher is interested in some low-dimensional, unobserved categorization
y; (e.g., the topic of document i, here represented by colors). A researcher who manually codes a
random sample of the observations into categories can use machine learning tools to amplify that
coding by predicting for the full population.

by hand. Instead, the authors drew a random sample of 200 posts and hand-coded them into a
set of categories chosen by the authors (e.g., whether the post engages in arguments about the
Communist party). Using these 200 posts, they learned the statistical patterns linking the words
used in the posts (high-dimensional predictors) to the categories defined by the researchers (low-
dimensional labels). Finally, they estimated the prevalence of each category in the entire set of
43,757 posts (using a pre-established procedure available in open-source R software; see Hopkins
and King 2010 and Jerzak et al. 2022). Roughly 80% of the posts did not engage in arguments
about the Communist Party but instead simply involved cheerleading for China and for the Party.
This descriptive evidence was made possible by researcher expertise (defining the categories of posts
and labeling a sample) amplified by the power of machine learning (labeling in a massive data set).3

In a sociological application, Friedman and Reeves (2020) explored patterns of cultural dis-
tinction in recreational activities by studying the lives of 71,393 British elites over the 19th and
20th centuries who appeared in Who’s Who, a book cataloguing their lives. They manually coded
600 entries into three categories of recreational activities—aristocratic, highbrow, or ordinary—and

then used supervised learning to estimate the prevalence of each type of recreation in the full set of

3In a study with similar structure, Su and Meng (2016) manually categorized the topics of 1,000 messages from
citizens to Chinese provincial officials and then used supervised learning methods to make predictions for the topics
in the full set of 207,554 messages.



71,393 entries. The authors then summarized how patterns of elite portrayal of their recreational
activities changed over time, an exercise which was only possible by combining researcher decisions
(categorizing text into these three categories) amplified to a new scale by machine learning,.

Beyond text, new forms of audio and visual data also become amenable to analysis through a
strategy of amplified researcher coding. Knox and Lucas (2021) observed that political scientists
transform audio files of political speech into transcripts. But they emphasize that doing so discards
information such as vocal tone and flow of speech. Instead, the authors analyzed a sample of audio
files from Supreme Court hearings. They manually labeled some speech patterns as demonstrating
skepticism, and then they developed methods to predict skepticism in unlabeled utterances as a
function of the audio profile of those utterances. Similar to the study of audio data, supervised
learning methods developed for computer vision (Szeliski, 2010) could amplify the analysis of images
in social science. For example, Canti (2019) studied fraud in a Mexican election by examining
53,249 images of vote tally sheets. They labeled a random sample of 900 images for whether
alterations were present. By amplifying that coding to the full set using a convolutional neural
network classifier, Canti (2019) revealed the extent of fraud.

Sometimes, the human coding necessary for supervised machine learning already exists and
does not have to be carried out by the researcher. Gentzkow et al. (2019) worked with the text
of Congressional speeches, which are already labeled by party, and used this labeled set to learn a
one-dimensional reduction of the text to a continuous score for the degree to which a given piece
of text was typical of one party versus the other. The algorithm allowed them to track this score
over time in Congressional speeches. Zhang and Pan (2019) identified protest events in 9.5 million
Chinese social media posts using a classifier trained on a subset of text and image data that was
already hand-coded by activists. The use of a pre-labeled set can save researcher time but also can
bring the costs of validating the human labels and assessing the generalizability of the potentially
non-random training sample.

Amplified human coding is powerful because it draws on the strengths of both machine learning
and social science. The social scientist excels at defining categories: taking a high-dimensional
predictor & (text, audio, or video data) and mapping that observation into a category y among
a few discrete choices constructed for the theoretical question. The machine learning algorithm

excels at the amplification task: given training samples, learn the patterns in those samples and
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Fig. 2. Unsupervised machine learning inductively summarizes complex data. In
some settings, each observation contains a high-dimensional feature set &; (e.g., unstructured text
data) with no labeled outcomes. Unsupervised machine learning reduces those features to a low-
dimensional representation Z;. Clustering is one example. The representation could be a scalar
(e.g., assignment to a cluster) or a vector (e.g., a set of probabilities over many possible clusters).
With unsupervised methods, the resulting representation depends entirely on the objective func-
tion that the algorithm seeks to optimize. Unsupervised learning can discover representations of
data automatically, but the researcher must then validate those representations and argue for their
substantive usefulness.

predict for new cases. Machine learning tools thus amplify a human labeling task to apply at a

new scale.

2.2 Dimension reduction: Unsupervised machine learning can summarize com-

plex data

In contrast to supervised learning, there exist other unsupervised settings (see Figure 2) which do
not begin with labeled outcomes. Instead, they take a high-dimensional input (e.g., text data)
and reduce that to a low-dimensional summary (e.g., topics). The key to success in unsupervised
learning is first for the researcher to formalize what would make a pattern interesting. Then, an
algorithm searches for those patterns. Finally, the researcher draws on theory to interpret the
result and argue for its usefulness. We join past reviews (e.g., Molina and Garip 2019) in taking
the division between supervised and unsupervised methods to be an important distinction within
machine learning.

One example for unsupervised learning is the latent Dirichlet allocation algorithm (LDA, Blei



et al. 2003), an unsupervised method to take documents (the unit of analysis) and convert the
words they contain (a high-dimensional predictor) into a set of topics discovered inductively (low-
dimensional labels). Each topic is a vector of probabilities over word frequencies, and the algorithm
learns the topics to maximize the probability of the observed word frequencies in the documents
subject to regularization by Bayesian priors. LDA is entirely inductive—the researcher never labels
a training sample. Like many methods for discovery, LDA implicitly assumes a definition of what
is “interesting” in data: a topic is interesting to the degree that it captures a distribution of words
which recurs across many documents. Yet whether this algorithmic definition produces topics which
are substantively useful in social science is a determination that falls to the human researcher, who
should examine each topic and argue for its substantive meaning (Grimmer and Stewart, 2013).
For example, sociologists often use topics learned inductively as measures of culture (Bail, 2014;
DiMaggio et al., 2013; Mohr and Bogdanov, 2013). This path forward is promising but also entails
risks, because there is no guarantee that an algorithm operating on word frequencies will arrive at
a meaningful definition of a cultural category. For this reason, unsupervised methods to summarize
text data always place the burden on the researcher to justify their chosen interpretation and
validate the utility of the topics learned (Grimmer et al., 2022; Grimmer and Stewart, 2013; Ying
et al., 2021). LDA thus illustrates a key idea that applies more broadly to unsupervised methods:
while these methods may appear to inductively discover insights from the data alone, they actually
involve extensive theoretical work on the part of the researcher to justify and interpret the result.

High-dimensional data exist in many social science settings beyond text as data. For example,
Frye and Trinitapoli (2015) examine the sequence of events that precede sexual intercourse for
young women in Malawi. Each respondent’s data consist of an ordered set of experiences they
had with their partner leading up to sex—events such as giving presents, meeting to chat in pri-
vate, talking about contraception, and getting married. Although all respondents worked from
the same set of possible events, the sheer number of unique experience trajectories makes it dif-
ficult to generate theory from the raw data alone. Instead, Frye and Trinitapoli (2015) defined
a distance between the experience trajectories of every pair of women, based on the number of
insertions, deletions, and substitutions needed to convert one woman’s trajectory into that of the
other woman. The authors then used a hierarchical clustering algorithm to inductively place the

observed relationship trajectories into five clusters. While the raw data are insurmountably large



for theory generation, the low-dimensional set of clusters reveals commonalities and differences
across these inductive groupings. The authors highlight differences across clusters such as typical
length of the sequence of events, whether marriage precedes sex, and the inclusion or exclusion of
socially embedded experiences such as attending a community event together. The data reduction
is largely data-driven, yet it supports a heavily theory-driven interpretation of the meaningful dif-
ferences that appear across the learned clusters. The problem is analogous to how LDA produces a
data-driven reduction of complex textual data into a small set of topics which require theory-driven
interpretation. Unsupervised methods for sequence analysis are thus similar to unsupervised meth-
ods for text as data: they convert high-dimensional data to a low-dimensional representation, thus
enabling new theorizing about that low-dimensional summary. This interplay between data and

theory corresponds to a promise of unsupervised learning more generally.

2.3 Estimation: Supervised machine learning can relax statistical assumptions

While both supervised and unsupervised learning hold promise in social science, supervised learning
is particularly straightforward as a plug-in substitute in settings where researchers might have used
parametric regression. Given a set of predictors X and an outcome Y chosen for conceptual
reasons, machine learning can help with the step of estimation: learning the statistical mapping
from X to Y. In classical statistics, this step would involve choices such as whether to include
interactions and squared terms. In machine learning, this step might involve consideration of
nearest neighbors, random forests, and other methods to pool information across units. A machine
learning perspective to estimation grounds these choices in empirical evidence: choose the estimator
that fits the data well. The use of model fit to select an estimator has long been standard in
social science (e.g., in the field of social mobility, see e.g. Hauser et al. 1975, 1983). Machine
learning methods lean particularly heavily on empirical evidence for model selection, often assessing
candidate estimators by their ability to predict the outcomes of out-of-sample cases not used for
learning the model. Doing so not only yields empirically-grounded modeling choices, but it may
also improve the predictive power of the estimated model.

For example, Dube et al. (2020) scraped data on Human Intelligence Tasks (HITs) posted
online on Amazon Mechanical Turk (MTurk), including tasks such as placing labels on images

or completing short questionnaires. Before deciding whether to complete a task, workers could
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see information about the financial reward offered for completion as well as other aspects of the
task. The authors studied the causal effect of the reward amount on the duration of time that the
HIT remained posted before achieving its desired number of responses, taken as a metric of how
quickly workers signed up and completed the task. But there was a problem: whether each worker
chose to complete a task might also have been a function of other aspects of that task, such as
the title, keywords, and time allotted by the requester. Those variables produced confounding, so
that the marginal association between reward amount and posted time arose only in part due to
a causal effect of reward amount. The authors assumed that the measured variables blocked all
confounding, which is a conceptual rather than a statistical assumption (Imbens and Rubin, 2015;
Pearl, 2009). But under that assumption, the authors needed to predict the outcome as a function
of the treatment and confounders. To do so, Dube et al. (2020) use double machine learning
(Chernozhukov et al., 2018) to adjust for confounding by learning an ensemble that averages over
several learning algorithms to predict the treatment (reward amount) and the outcome (duration
of posting). This machine learning strategy thus handles difficult statistical choices automatically,
allowing the authors to focus their attention on the definition of the research question and the
conceptual choices about variables to include so that causal assumptions will be valid.

As another example, researchers may seek to draw inference about a population using a non-
representative sample. Gelman and Little (1997) proposed to accomplish this task by a parametric
method: estimate a multilevel model for the survey responses as a function of measured variables
(e.g., race, age), predict the outcome in each subgroup defined by those variables, and post-stratify
by the known population distribution of the predictors. The validity of this procedure relies not
only on an identification assumption (ignorable sample inclusion within strata of covariates), but
also on the assumed functional form of the regression model. Bisbee (2019) relaxed the latter
assumption with a nonparametric machine learning approach (Bayesian Additive Regression Trees,
Chipman et al. 2010). This extension illustrates a key principle: once researchers make conceptual
assumptions about the relevant variables, nonparametric machine learning methods can be used in

place of classical models to learn statistical patterns with flexible functional forms.
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2.4 Discovery: Supervised machine learning can target researcher attention

Supervised machine learning can involve a complex mapping between predictors and the outcome.
How to summarize that mapping may not be straightforward—the researcher could focus on many
aspects of the learned relationships. Supervised learning for discovery automates the process of
finding the interesting patterns in the data. We discuss discovery with two examples: the causal
effect of a high-dimensional treatment and the heterogeneous causal effects of a binary treatment
across a high-dimensional set of pre-treatment variables.

Conjoint experiments in political science assess how participants’ perceptions of a hypothetical
candidate respond to a series of randomized attributes about that candidate (Hainmueller et al.,
2014). In one concrete example, Breitenstein (2019) presented voters with profiles of hypothetical
mayoral candidates and randomly varied signals of the candidates’ sex, party affiliation, experience
qualities, economic performance under their leadership, and evidence of corruption. The space
of possible treatment conditions is high-dimensional, with 2 x 4 x 2 x 2 x 3 = 96 unique profiles
possible by combining these attributes. The randomized design identifies the average potential
outcome under each of the 96 treatment conditions, but absorbing that much information would
be difficult for a reader: a low-dimensional summary of the effects is needed. Breitenstein (2019)
used ordinary least squares to produce a low-dimensional summary: the average effect of each
component of the profiles, marginalized over the other components. But this is far from the only
possible summary. In a reanalysis, Incerti (2020) used a decision tree to search for combinations of
randomized signals that interact to produce particularly disparate effects. Decision trees recursively
split the data into subsets where outcomes are increasingly homogeneous, pointing toward new
interactive estimands discovered inductively from the data: voters were most likely to support a
non-corrupt politician’s profile (72% in support) but also demonstrated high support for profiles
involving corruption as long as the candidate was of the same party as the respondent and had
a history of good economic performance under their leadership (67% in support). Meanwhile, a
corrupt candidate of a different political party from the respondent garnered only 36% support.
This substantively interesting interactive partition emerged inductively from the data. Importantly,
both the original study and the re-analysis yielded valid and useful findings. This illustrates how

machine learning can take existing evidence and marshal it in new ways to reveal new insights, in
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this case targeting researcher attention toward treatment combinations with particularly interesting
outcomes.

In other settings, there is one binary treatment 7' and a high-dimensional set of confounders
X. The conditional average causal effect 7'()? ) might take unique values at each value of the
confounders. With so many average causal effects that could be reported, a question arises: for
which population subgroups should we report the average causal effect? A researcher could pre-
register a hypothesis comparing the average causal effect across two subgroups motivated by theory,
such as racial categories. But the researcher may not know a priori which strata of confounders will
show interesting effect heterogeneity. Machine learning with sample splitting provides a principled
solution in this setting: discover interesting subgroups in a training sample and then estimate their
effects in a new test sample. For example, Athey and Imbens (2016) developed causal trees, an
extension of decision trees specifically designed to uncover effect heterogeneity. In one application,
Brand et al. (2021) assessed variation in the effects of college completion on low-wage work. They
found that college completion reduced low-wage work most for individuals whose mothers had less
than a high school degree, who grew up in large families, and who had low social control. Not only
does the use of causal trees allow researchers to uncover subgroups not previously considered, it also
transparently depicts the analyses that lead researchers to focus on particular subgroups. When
a researcher chooses manually to highlight the outcomes of a particular subgroup, it is difficult to
know how they came to that decision. When a causal tree highlights a particular subgroup, the

algorithm that determines the highlighted result is fully transparent.*

2.5 A word of caution: Machine learning, causal inference, and policy

To make the most of machine learning, social scientists must recognize what it can and cannot do.
In particular, machine learning can describe the world as it exists but does not inform policy (what
would happen under an intervention to change the world) in the absence of additional assumptions.

Often, one needs an assumption that the statistical association between two variables derives from

“Causal trees do not always discover effect heterogeneity. Sometimes, they reveal a surprising lack of effect
heterogeneity. Handel and Kolstad (2017) analyzed a randomized health intervention and found almost no evidence
of heterogeneity across the measured variables. Davis and Heller (2017) found that a randomized youth intervention
in Chicago had roughly the same effect on arrests in all subpopulations studied. In general, a lack of evidence for
effect heterogeneity does not mean that effects are constant for everyone, but only reveal a lack of evidence for
heterogeneity as a function of the measured variables.

13



a causal relationship rather than from confounding. This assumption may go under various names,
such as unconfoundedness or conditional independence of the potential outcomes from treatment
assignment (Herndn and Robins, 2021; Imbens and Rubin, 2015; Pearl, 2009).

To illustrate causal assumptions, we first discuss an example from Kleinberg et al. (2015) about
carrying an umbrella in the rain. When it rains, the people who carry an umbrella remain dry.
Consider two explanations: (1) those who like carrying umbrellas are really good at dodging be-
tween raindrops and (2) an umbrella causes a person to stay dry. Explanation (1) corresponds to
confounded treatment assignment—if this explanation were true, then handing an umbrella to an
umbrella-less person would not keep them dry because they still would not know how to dodge the
raindrops. Explanation (2) corresponds to a causal effect—handing an umbrella to an umbrella-less
person will cause them to be dry. Causal claims require us to exclude the confounding explanations
in favor of a causal explanation—often called an assumption of unconfoundedness.

Kleinberg et al. (2015) address the question of when to carry an umbrella. They argue that
carrying an umbrella is a “prediction policy problem” where one only needs to predict whether it
will rain in order to inform policy (whether or not to carry an umbrella). We would argue that the
reason this is such a good example of a prediction policy problem is because the causal structure
of the problem is so very straightforward: we all agree that carrying an umbrella causes people to
stay dry, rather than that those who carry umbrellas are good at dodging raindrops.

But in other settings, the unconfoundedness assumption is not nearly so straightforward. For
example, Chalfin et al. (2016) consider whether firing some police officers and replacing them
with other officers could reduce the rate of police shootings in Philadelphia. For this policy, the
central question is causal: if we took a given encounter between a police officer and a civilian but
counterfactually changed the officer involved, would the probability of a police shooting decrease?
The question is difficult to answer. Perhaps (1) some officers shoot more because they are assigned
to particularly dangerous encounters or (2) some officers shoot more because they are simply more
prone to shooting in any given encounter. The former is a confounded explanation—if Officer A
moved to Officer B’s encounters, their rate of shooting would change to match that of Officer B. The
latter is a causal explanation: which officer is involved causes a difference in the rate of shooting.
The authors coin the term “task confounding” for scenario (1). To conclude that differences across

officers are caused by differences in the officers rather than the tasks, the authors assume the
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absence of task confounding. Under this causal assumption, Chalfin et al. (2016) draw a causal
conclusion: firing the 10% of officers with the highest propensity to shoot and replacing them with
officers of average propensities to shoot would reduce shootings by 4.81 percent. Importantly, while
the authors emphasize the use of predictive modeling, the conclusion rests critically on a causal
assumption (the absence of task confounding).

In both the umbrella problem and the officer shooting problem, we want to know about out-
comes that would be realized under a counterfactual treatment. Would I have stayed dry if I had
remembered my umbrella? Would I have stayed alive if I had encountered Officer A instead of
Officer B? But we only get to see one of the outcomes (Holland, 1986), thus requiring an assump-
tion about the distribution of unobserved outcomes. In the umbrella problem, this assumption is
highly plausible. In the officer shooting problem, it is much less clear. In general, the more we can
confidently assume about the causal structure of a problem, the more we can rightfully focus on the
predictive side of the problem. And when our causal assumptions are doubtful, it becomes all the
more important to give them close attention. One of the most exciting areas of machine learning is
its intersection with causal inference; for reviews and introductions, see Athey and Imbens (2017),
Athey and Imbens (2019), Van der Laan and Rose (2018), and Brand et al. (2022). Broadly, the
dichotomy between prediction problems and causal problems is misleading: new tools for prediction

are best deployed in tandem with careful attention to underlying causal assumptions.

3 Conceptual building blocks: The statistical foundations of ma-

chine learning

To realize the benefits discussed above does not require years of training in machine learning.
Rather, researchers trained in classical statistics already possess knowledge of the fundamental
building blocks that support machine learning. This pedagogical section links machine learning to
classical statistics by presenting a set of core concepts: task clarity, the bias-variance trade-off, data-
driven estimator selection, interpretation, and tasks involving a new (and possibly counterfactual)

target population.
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3.1 Task clarity: Define a precise goal

Every statistical problem begins with a task—the goal that we hope to accomplish. For instance,
we might wish to make predictions in a particular setting or estimate a mean in some population.
A precise statement of the task is essential in all quantitative research, and it takes on renewed
importance in the context of machine learning, which can often be tailored specifically to the task
at hand. For example, consider a task which has been well-studied in both statistics and machine
learning: drawing inference about a target population from a sample. We discuss this task from
two perspectives: estimation of unknown population parameters and prediction of out-of-sample
cases.

Suppose a researcher studies academic performance for students nested within classrooms. Each
student 4 has a test score Y; capturing their academic performance. We would like to understand

how test scores vary across classrooms,
0; =E(Y; [ Ji = j) (1)

where J; = j means we are taking the expectation among students in classroom j. Equivalently,
we can conceptualize 0; as a prediction rule: if we see a new student in class j, we would predict
that student’s unknown test score to be 6; (Figure 3).

If we observed all students in every classroom, we could calculate each ¢; directly by the
classroom mean. If we only observe a random sample S of students, then we need an estimator for

this unknown parameter. For instance, we could estimate by the sample mean,

B = gy = 5 Y, @
Thies;
where the term beneath the summation sign indicates that we are summing over all students ¢ in
the sample S; from classroom j. The sample mean is a consistent and unbiased estimator, yet it
may not be the optimal estimator in a finite sample. We discuss this issue in the next section.
Estimation of class-specific means is a useful example because it bears resemblance to both
statistics and machine learning. Social scientists and statisticians could easily study this problem

without conceptualizing it as a machine learning problem. Yet it also contains several hallmarks
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Predictor Outcome

Classroom Index Student Test Score
( Student 1 is in classroom 1 ) 84
Student 2 is in classroom 1 89
Each Student 3 is in classroom 2 Learning 72 Cases Sampled
TOW iS & | Gty dent 4 is in classroom 2 70 at Random <—‘
student Student 5 is in classroom 3 93 €S
Student 6 is in classroom 3 91 From the
same
Student 7 is in classroom 1 ? population
Student 8 is in classroom 1 ?
Student 9 is in classroom 2 Prediction ? Unsampled
Student 10 is in classroom 2 ? Cases
Student 11 is in classroom 3 ? ¢S
Student 12 is in classroom 3 ?
S J

Fig. 3. Task clarity: Out-of-sample prediction. A well-studied machine learning task involves
a random sample S taken from a target population, where the goal is to learn a prediction function
to predict the outcomes of new samples from that same target population. For instance, we might
use classroom indices to predict the tests scores of individual students who were not observed in
the training sample.

of machine learning. Machine learning estimators often involve a very large set of parameters to
be estimated (e.g., many classes) and apply in settings where the sample size seems large (e.g.,
many students) but in fact are small given the large number of predictors (e.g., few students in
each classroom). Prediction and estimation are in one sense mathematically identical: if you only
know the class identifier and you want to guess with low mean squared error the test score of a
previously-unseen student (prediction for an individual), then the best you can do is to choose the
population mean score in that class (which requires estimation for a population subgroup). Yet the
emphases in the two cases often differ. For example, if test scores vary considerably within each
class, then you might accurately estimate the class mean while making poor predictions for each
individual student. One can achieve good estimation despite poor prediction. Yet the mathematical
connection between the two nonetheless means that tools designed for prediction may be useful for

estimation, and vice versa.

3.2 The bias-variance trade-off: Choose a biased estimator

Continuing the example of students in classrooms, suppose that the sample size |S;| in class j is
small (e.g., 5 students). In this case, the sample mean may be a poor estimator of the population

mean in the classroom because the sample size is so small. For every statistical and machine
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learning estimator, a first-order concern is how well we can expect that estimator to accomplish
our task. We want to choose an estimator which will be close to the truth on average when applied
to hypothetical samples we could take from the population. Counterintuitively, to produce an
estimator which is close to the truth on average, one might be well-advised to choose an estimator
which has low variance but is slightly wrong on average—a biased estimator. Many of the best
statistical estimators and nearly every estimator that would be considered “machine learning”
accepts some bias in order to improve performance. To make the most of machine learning, social
scientists will need to come to appreciate the benefits that bias can bring. We illustrate this point
through an example which is standard in statistics: a hierarchical linear model (HLM).

To better estimate the classroom mean in a small sample, the researcher could add a shrinkage

term to produce a hierarchical linear model estimator (Bryk and Raudenbush, 1992),

152
n; J

7 (w-9) 3)

H"HLM J
0; T2
ng - J

=y, —
o

Shrinkage Term
(creates bias)

where &32» is the empirical variance of test scores across students within class j, 62 is the empirical
variance of classroom-level mean test scores across all classrooms, and g is the mean test score in
the entire sample.® The multilevel estimator HA;{LM is a partial pooling estimator because it pools
information from class j together with other information about the mean test score in the sample
overall. The consequence of partial pooling is that the estimator for each class is biased toward the
overall mean—the greater the shrinkage, the more the bias. Yet shrinking toward the overall mean
also yields the benefit of reduced variance. Figure 4 shows that the amount of shrinkage in é?LM is
the amount that minimizes the expected squared error of the estimator: across repeated samples,
the average squared distance between the estimated mean and the truth.

The notion of accepting some optimal amount of bias in order to reduce the variance of an

estimator is an idea that is much broader than multilevel models. In particular, the expected

squared error of any estimator can be decomposed into components corresponding to bias and

5This estimator is sometimes called the Best Linear Unbiased Predictor, although that name is misleading because
the estimator is biased.
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1No Shrinkage: 1 Shrinkage Full Shrinkage: |
3.0+ 1 Within—-Group | Chosen Overall Mean
|Means 1 by HLM

Expected
Squared Error

Bias Squared

Variance
o
1

0.00 0.25 0.50 0.75 1.00
Shrinkage Factor

Fig. 4. Simulation: Balancing the bias-variance trade-off. In this simulation, there are
100 classes with class-level mean test scores normally distributed with variance 3. Within classes,
student scores are normally distributed with variance 10. In each of 100 simulated samples, we
estimate from a sample of 5 students from each class. The estimator partially pools the class-
specific mean with the overall mean according to a shrinkage factor: g (shrinkage factor) _ Ui —
(shrinkage factor) (y; —¥). A shrinkage factor of 0 involves no pooling so that the estimate is
the sample mean within each class, and a shrinkage factor of 1 involves complete shrinkage so that
the estimate for every class equals the overall sample mean. A hierarchical linear model selects a
shrinkage factor equal to the variance of the within-class means divided by that variance plus the
variance of the means across classes. The center dashed line takes those variances as known and
shows that the multilevel shrinkage minimizes the expected squared error. To create each curve,
we first calculate the statistic over simulations within classes, and then we report the average of
the statistic over all classes.
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variance.

Bias-Variance Trade-Off: E ((9 - 9)2> - (E (9) - 9)2 +E <<9 “E (9))2> (4)

N——
Expected Squared Error Variance

If we want our estimator to be close to the truth on average (low expected squared error), then it
is often worthwhile to accept some bias in order to reduce the variance of the estimator.

The bias-variance trade-off is especially relevant in settings where the variance of an unbiased
estimator is high. High-variance estimators are common when the number of parameters to be
estimated is large (e.g., many class-specific means), because the amount of data relevant to each
parameter (e.g., the students in a particular class) may be small even if the overall sample size is
very large. Beyond the setting of students in classrooms, the bias-variance trade-off plays a central
role in other statistical problems characterized by large sample sizes but also many parameters
to be estimated, such as in small-area estimation (Rao, 2003). In machine learning, the bias-
variance trade-off is especially important because machine learning estimators often involve many
parameters, such that variance is a serious concern even in big-data settings. Machine learning
estimators resolve this problem by accepting some bias in order to reduce variance and improve
expected squared error. Social scientists applying these methods should be comfortable with this
acceptance of bias just as they are already comfortable with bias in classical statistical settings,
such as multilevel models (Bryk and Raudenbush, 1992) or any setting in which we regularize
estimates to reduce variance. The existence of bias should not be a barrier to the adoption of

machine learning.

3.3 Data-driven estimator selection: Automate what can be automated

Analytic choices abound in quantitative social science. For example, the choice of a model speci-
fication is a central question in classical statistics. Researchers have traditionally approached this
question by some combination of conceptual argument paired with empirical metrics of model fit,
such as R%. A machine learning perspective transfers the weight of these choices in the direction of
empirical evidence. To the degree that data can inform the choice of estimator, machine learning

approaches allow the data to speak.
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A) Data generating process in this simulation. The conditional mean function p(z)
(black curve) is intentionally chosen to not correspond to any of the functional
forms assumed by the estimators.
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B) Performance of six estimators (dashed C) We estimated the dashed functions in
black) for the simulated conditional a train set and then evaluated them in
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Fig. 5. Simulation: Data-driven estimator selection. We consider six estimators: OLS with linear,
log, quadratic, and cubic specifications, a regression tree following defaults in the rpart package (Therneau
et al., 2015), and a Generalized Additive Model (GAM, Wood 2017) following defaults in the mgcv package.
Visually, the GAM comes closest to the true response function (Panel B). Panel C depicts how we randomly
assigned observations to two equally-sized subsamples: the train set and test set. We then estimated each
function on the train set and estimated its mean squared error when predicting the new cases in the test
set. Panel D shows that the GAM achieves the best performance. This exercise illustrates a building block
of machine learning: instead of arguing conceptually for a particular estimator (e.g. OLS with a particular
form), empirically evaluate the performance of many candidate estimators.
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Figure 5 illustrates data-driven estimator selection in a simulated setting. The predictor variable
X is related to the outcome Y by a complicated conditional mean function, as is likely to be the
case in many realistic settings. Not knowing this function in advance, the researcher might consider
several possible estimators with different assumed functional forms (e.g., various OLS specifications)
or different procedures to learn the functional form from the data (e.g., a regression tree and a
Generalized Additive Model). A social scientist might report the results of all these specifications.
Despite the inclusion of machine learning estimators like regression trees, this overall research
approach could be considered “classical” in the sense that it involves choosing the estimator or
estimators for conceptual rather than data-driven reasons. An approach more inspired by machine
learning might instead seek to empirically score the performance of the estimators in order to make
a data-driven choice. The metric by which an estimator is evaluated is often called a loss function,
which formalizes what it means for an estimator to perform poorly (and by extension, what it
means to perform well). For instance, one loss function would take an estimator ég estimated in
a sample § and score it by its mean squared error when predicting new observations from the

population.

Loss Function: E(ég) = E;.igs ((és(%) - %)2) (5)

~

In practice, we do not observe the full population and thus must rely on an estimate £() of the
loss function. Suppose we take our sample S and randomly assign observations into two equally-
sized samples: a training sample Styaining and a test sample Stegs; (Figure 5 Panel C). We then learn

the prediction function in the training sample and estimate the loss function in the test sample.

A A 1 A 2
Estimated Loss Function: L(0s) = Z (05Training (z5) — yi) (6)

’STeSt ’ iESTcst

Finally, we can choose the estimator for which the estimated loss function ﬁ(ég) is as close
as possible to zero. In the simulated example of Figure 5, this procedure selects the Generalized
Additive Model estimator. In this setting, it is visually apparent in Figure 5 Panel B that this is
the best estimator. But in non-simulated settings, the true conditional mean function (the gray

curve in Figure 5 Panel B) is unknown and out-of-sample predictive performance can still help the
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researcher choose an estimator which comes as close as possible to that unknown function.

While data-driven estimator selection is a hallmark of machine learning, it is also in full align-
ment with standard statistical procedures. Social scientists already compare models by empirical
scores such as R2, likelihood ratios, the Akaike information criterion (AIC, Akaike 1973), the
Bayesian information criterion (BIC, Schwarz 1978), and numerous other scores. Each of these can
be interpreted as a loss function for data-driven model selection. When carried out within machine
learning, the loss function is typically evaluated on data not used to estimate the model in order
to assess the ability of the model to generalize to new observations.

We have taken care to distinguish the true loss function £(k) from the estimated loss function
E(k) because the estimated loss function may be statistically uncertain, especially if it evaluated on
a small sample. An estimator which is inferior in the population may outperform another estimator
in the test sample because of the chance of which cases from the population happen to appear in the
test sample. One way to improve the precision of ﬁ(k:) is to conduct cross validation, a procedure
in which the full sample S is partitioned into a set of k folds Si, ..., Sk, each of which plays the

role of Steg in turn.

k
L 1 1 R 2
Cross-Validated Estimate: Lcov(0s) = z g g (G{Sf/}f/# (i) — yl) (7)
=1

IS¢l s,
~—— ~
Average over Average squared error in fold Sy
k folds from estimates that pool all other folds

Cross-validation has long been used in statistics (e.g., Stone 1974) and is common in machine
learning today. There are two advantages of cross-validation over a single split into training and
test samples. First, each fold-specific error estimate is trained on a sample with a fraction % of all
observations. For large k, the training sample size in each cross-validated fold thus approximates
the full sample size |S|, which is useful if the researcher will ultimately draw inference by training
a model on the full sample. Second, in cross-validation all observations play the role of the holdout
at some point, which potentially improves the statistical precision of the estimated loss function.
Both sample splitting and cross validation yield a signal about the empirical merits of various
candidate models. One word of caution is that those signals can themselves be noisy. We might

like to know how Model A and Model B would perform when predicting an arbitrarily large set of
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previously-unseen observations. But we estimate their out-of-sample performance using an actual
sample, just as one would estimate a population mean from a sample. And just as a population
mean estimated in a sample ought to be accompanied by a confidence interval, a mean squared error
estimated in a sample perhaps also ought to be accompanied by a confidence interval. Regardless of
whether one reports confidence intervals for model performance metrics, one should be aware that
those metrics themselves have statistical uncertainty arising from sampling. Just because Model A
is best in our observed out-of-sample data does not necessarily imply that Model A would be best
if assessed on an entire population of out-of-sample data, even if our sample comes from the same

data generating process as that population.

3.4 Interpretation: Report the target estimate, not a model parameter

A barrier to the adoption of machine learning methods is that they are “black box.” That is,
researchers perceive a loss of interpretability if they use these methods. This barrier may loom
particularly large for social scientists who ordinarily summarize their models by tables of regression
coefficients, which is not possible for many machine learning methods. We emphasize two responses
to this concern. First, for machine learning methods there exists a single-number summary anal-
ogous to a regression coefficient: the average partial effect. Second, social scientists’ comfort with
regression coefficients may be misplaced: coefficients are more difficult to interpret than some may
believe.

A regression coeflicient is easy to present: it summarizes a relationship between two variables
with a single number. Figure 6 Panel A presents a simulated example with 10 data points, where
the relationship between the predictor X and the outcome Y could be summarized by the slope of
a regression line: B = 1.061. Conventionally, one might say that a unit increase in X is associated
with a 1.061 increase in Y. By the assumption of a line, the slope 1.061 applies to every data
point, regardless of the value of X. But what if the line is a poor approximation? Figure 6 Panel
B presents a smooth curve estimated by a thin-plate spline (Wood, 2017). Unlike a regression line,
no single coefficient summarizes the shape of the thin-plate spline. Yet we can arrive at a summary
which is analogous to the regression coefficient. At each data point, estimate the slope of the curve
at that data point. Then, average over all data points. In this example, the average partial effect

estimate is 1.513, substantially higher than the regression coefficient. Beyond smooth curves, the
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notion of an average partial effect or average first difference applies broadly as a tool to summarize
prediction functions. Take a key predictor, add a small A to each data point, record the average
change in the predicted values, and divide by A to yield an estimate of the average responsiveness
of the outcome per unit change in the key predictor. Almost any prediction function can thus be
summarized with one number which is as interpretable as a regression coefficient.

Importantly, an average partial effect from a flexible estimator may actually correspond more
closely to what researchers aim to know. The heuristic interpretation of a regression coefficient—on
average over units, the change in Y for a small change in X—corresponds to the average partial
effect but may not correspond to the regression coefficient. In our example, the pattern is nonlinear
and the data are skewed, with a higher density of observations at lower values of X. The regression
coefficient is heavily influenced by the sparsely-populated high values of X (where the slope is
flatter) while most of the data is in the densely-populated low values of X (where the slope is
steeper). Thus, the regression coefficient is closer to 0 than the slope averaged over points where
the data exist. When a line is a poor approximation to a statistical pattern, an average partial effect
may better correspond to the quantity that social scientists want. More generally, the approach
above can generalize to multivariate settings where other variables are held constant, in which one
can make predictions at the observed values of confounders X while examining the average partial
effect of a change in a treatment variable T

Average partial effects offer single-number summaries of statistical patterns analogous to regres-
sion coefficients. But there is a further reason why the familiarity of regression coefficients should
not hold us back: familiar interpretations of regression coefficients are often misleading in two ways.
First, it is rare that an entire table of regression coefficients is interpretable. When a regression
model includes as predictors a treatment variable as well as pre-treatment covariates sufficient to
block confounding, then only the coefficient on the treatment is interpretable in causal terms—the
coefficients on the pre-treatment covariates are not causal effects at all. Second, even the coefficient
on the treatment may be misleading if the assumed functional form is incorrect. Figure 7 gives a
simple example. Suppose we are interested in the causal effect of precipitation on outdoor exercise.
We sample 5,000 residents on random days in January in each of two locations: Vail, Colorado and
Phoenix, Arizona. We then record whether it precipitated on the day in question and whether they

engaged in outdoor exercise. When it does not precipitate, 50% of respondents in each city exercise
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A) The coefficient of a best-fit line is an estimate of the average
partial effect: the average rate of change in Y as a function of X.
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B) A flexible curve can also be summarized by an average partial effect estimate.
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Fig. 6. Partial effects: The interpretability of regression is not lost. In this simulation, the

true curve is the quadratic function Y = 1 — (1 — X)2. The predictor values 1, ..

., 210 are spaced on an

exponential scale. The true average partial effect is greater than the OLS coefficient estimate because the
data are denser at the far left of the plot, where the slope is steeper, but the points at the far right of the plot
have high leverage over the OLS estimate. The estimated curve is a thin-plate spline estimated by the gam
function in the mgcv package in R (Wood, 2017). The simulation illustrates that a key benefit of OLS—a
single-number summary of a relationship—is also available for flexible machine learning methods. Further,
machine learning methods can yield superior estimates of the average partial effect.
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outdoors. When it does precipitate, the outcomes are very different. In Vail, the precipitation is
snow and outdoor exercise jumps to 90% as residents hit the ski slopes. In Phoenix, the rare days
of precipitation are rain and residents stay indoors: only 10% exercise outside. Assuming that
location is the only confounder of precipitation in this example, we could say that precipitation
increases outdoor exercise by 40 percentage points in Vail but reduces it by 40 percentage points
in Phoenix. Because the two balance out, the average causal effect in our sample is zero.

Now suppose that we estimate an OLS regression model with precipitation and city entered
additively as predictors. The model would be misspecified due to the omission of an important
interaction: the effect of precipitation is very different in Vail and in Phoenix. With this interaction
omitted, the coefficient on precipitation does not estimate the average causal effect. In fact, the
resulting estimate suggests that precipitation increases outdoor exercise by 18 percentage points.
The reason the coefficient is much closer to the Vail effect than to the Phoenix effect is because an
OLS coefficient in this setting estimates a weighted average causal effect with weights proportional
to the variance of the treatment variable (precipitation) within strata of the confounders (city, see
Elwert and Winship 2010, Brand and Thomas 2013, and Aronow and Samii 2016). Because it
precipitates on 48% of days in Vail but only 10% of days in Phoenix, there is more information
about the effect of rain in Vail. OLS therefore maximizes efficiency by placing 76% of the weight on
Vail and only 24% of the weight on Phoenix, so the coefficient is much closer to the effect in Vail.
This example is extreme—the treatment variance and causal effects both differ dramatically across
strata. While the problem may be smaller in other settings, it remains the case that regression
coefficients do not estimate average causal effects in the absence of strong faith in the assumed
functional form. Further, one can avoid this problem by estimating a more flexible model including
the interaction term. The average causal effect could then be estimated by a discrete version of
the average partial effect: take every observation, predict the outcomes under precipitation and no
precipitation, difference, and average over the sample. That procedure is equally valid for regression
and machine learning strategies, as long as the underlying causal assumptions (required for both)
are valid.

More broadly, the appeal of regression coefficients is that these model parameters might equal
the quantities of interest under simplifying assumptions. That is no longer the case with machine

learning estimators, which may not involve coefficients. Yet if one assumes that many regression
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An OLS coefficient is misleading: Illustrated by a hypothetical example.
The effect of precipitation on outdoor exercise in two cities.

Vail, Colorado Phoenix, Arizona

Sample of 5,000 residents Sample of 5,000 residents

on random days in January on random days in January
48% chance of precipitation 10% chance of precipitation
Probability of outdoor exercise: Probability of outdoor exercise:
— 90% if it precipitates (snow) — 10% if it precipitates (rain)
— 50% if it does not — 50% if it does not

Assumption: Given location, the event “precipitation occurs” is
unconfounded with respect to potential exercise

Conditional Average Causal Effect Conditional Average Causal Effect
Precipitation increases outdoor Precipitation decreases outdoor
exercise by 40 percentage points exercise by 40 percentage points

™~ -

Average Causal Effect
On average, precipitation causes
a 0 percentage point
change in outdoor exercise.

What would we get with an OLS model?
P(Outdoor Exercise | Precipitation, City) = o + B(Precipitates) + ~(Vail)

This misspecified model assumes the same precipitation effect 5 in Vail and Phoenix.
But there is more information in Vail, where the chance of precipitation is closer to 50%.

Because OLS has assumed the effect is the same value g in both places, it gives greater
weight to Vail (where the effect is more precise).

OLS puts 76% of the weight on Vail and 24% of the weight on Phoenix.
OLS estimate: B =0.18

When effects are heterogeneous, OLS does not estimate the average causal effect.

(. J

Fig. 7. A regression coefficient is hard to interpret. An apparent barrier to the adoption
of machine learning is the perceived interpretability of standard regression models. Regression
coefficients may seem familiar, but they are not as easy to interpret as many scholars may believe.
As one example, the coefficient of a misspecified OLS model cannot be interpreted as the average
causal effect, even when that model includes all confounding variables. For a longer discussion,
see Elwert and Winship (2010), Brand and Thomas (2013), and Aronow and Samii (2016). In the
example above, the probability of January precipitation in each city is true; all else is simulated.
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models were misspecified to begin with, then coefficients were not guaranteed to correspond to the
quantities of interest. Machine learning therefore presents an opportunity to estimate a realistic
model, complete with interaction terms and nonlinearities which would complicate the interpreta-
tion of regression coefficients. Then, one can use the model to predict the data needed to estimate

the target quantity, thus producing an interpretable estimate of the target parameter.

3.5 A return to task clarity: Prediction in new populations and prediction for

causal inference

Our first conceptual building block was task clarity—being precise about the goal of the quantitative
exercise. To re-emphasize the importance of task clarity, we now turn from standard out-of-sample
prediction tasks to a range of more complex tasks. We discuss two settings that demonstrate the
importance of task clarity: prediction in a new target population (where statistical patterns may
differ from the training population) and prediction for causal inference.

To consider prediction in a new target population, suppose we study a cohort of students
entering Statsville West High School in 2017. For each student, we observe many variables about
academic performance in 8th grade and we observe whether they drop out of high school over the
next four years. Using a machine learning algorithm, we learn a function to predict high school
dropout. Impressed by our model, the principal of Statsville West suggests that for the entering
cohort of 2022 we predict the likelihood of dropping out for each student, so that the principal can
target extra counseling resources to those students. Perhaps the principal of Statsville East High
School also hears about our model and wants to deploy it in that context as well. For each of these
use cases, there is a danger: the population that entered Statsville West in 2017 is not the same as
the population entering in 2022, and is surely different from the population entering Statsville East
in 2022. The mapping between the predictors and the outcome in these new populations may not
be the same as the mapping in the original population on which the algorithm was learned (i.e.,
Statsville West, entering in 2017). The problem of Statsville West and Statsville East is ubiquitous
across real applications of machine learning. Researchers routinely learn things in one context in
the past, and then apply what they have learned in the future and possibly in new contexts. To
use statistics and machine learning responsibly, one must be aware when there is a leap when we

extrapolate to a new target population (see Figure 8).
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Task: Prediction in the same population

ooty Sample )
random Sample

Target

Population

Example:

1) Sample students entering Statsville
West High School in 2017

2) Observe if they drop out

3) Learn a prediction function

4) Predict for all students
entering Statsville West in 2017

Task: Prediction in a new population

Chos oty Sample )
random Sample

Learning
Population

Target
Population

Example:

1) Sample students entering Statsville
West High School in 2017

2) Observe if they drop out

3) Learn a prediction function

4) Predict for all students
entering Statsville West in 2022

Fig. 8. Caution: Prediction in a new target population. A standard machine learning task is
to learn about a target population using a sample of cases selected at random from that population.
In practice, however, algorithms are often deployed to make predictions in new populations from
which no training cases were available. For example, a function to predict high school dropout
learned in a cohort entering high school in 2017 might be used to target resources to at-risk students
entering high school in 2022. But if the mapping between the predictors and outcome changes across
cohorts, that prediction function may no longer be useful. To the extent that prediction functions
are learned in one population and applied in a new target population, the validity of predictions
may be uncertain.

Prediction in a new target population is especially relevant for causal inference (Figure 9). Sup-
pose the principal of Statsville West had already implemented a program to offer extra counseling
to some students in the 2017 entering cohort. After observing whether those students dropped out,
the principal wants to predict whether those who did not receive the program would have benefited
if the program had been available to them. But those who did not receive the extra counseling
are by definition not part of the learning population from whom we drew the sample. In fact,
it is impossible to sample people who did not receive counseling and observe the outcome they
would have realized if they had received the counseling (i.e., this is the fundamental problem of
causal inference, Holland 1986). To learn about what would have happened if other students had
received extra counseling, the principal is necessarily requiring the researcher to make predictions in
a new population. Absent additional assumptions, prediction for causal questions always involves
a target population which is different from the learning population. Only by an assumption can
we generalize from the learning population to the target population (Hartman et al., 2015; Pearl
and Bareinboim, 2011; Stuart et al., 2015; Xie, 2013). For instance, we might assume that the

potential outcome under treatment Y;(1) follows the same distribution among the treated units as
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Prediction in a counterfactual population.

Task: Predict the outcome that would be realized under treatment.

Le.arning .P(?pulation Chosen at
(e.g., units receiving treatment) random

1
Target Population Inference '
(e.g., untreated units)

Required Treatment (which determines membership in the learning

Assumption: versus target population) is independent of the outcome
Y;(1) that would be realized under treatment, within sub-
populations defined by the predictor variables.

Fig. 9. Causal inference: A task that involves a new target population. Suppose we
observe a set of units who receive a treatment of interest (e.g., extra counseling in high school).
After learning a prediction function in a sample of treated units, we wish to predict the outcome
that untreated units would have realized if they had received treatment. For instance, we might
predict whether those who did not receive counseling would not have dropped out if they had
received counseling. Causal questions of this form require assumptions because in the absence of a
randomized treatment it is impossible to draw a simple random sample from the target population.

among the untreated units, within each subpopulation defined by a set of predictor values. By this
assumption, any mapping )?z — Y;(1) learned in the learning population will still be valid in the
target population.

Yet even in the best-case scenario, causal inference for policy prescriptions often involves an
additional leap to a new target population (see Figure 10). Suppose the principal randomly assigned
counseling to students entering Statsville West in 2017. But then, the principal wants to use these
results to justify the an expansion of counseling support for the cohort entering in 2022. Despite
strong internal validity for the causal effect estimate in the 2017 cohort, the principal still must leap
to a new population to deploy the policy in the 2022 cohort. The leap from the training population
to the target population is therefore particularly relevant to causal policy prescriptions.®

In fact, there is often a trade-off between internal and external validity, where one can study
a population less like the target population in a randomized design (high internal validity) or

a population more like the target population in an observational study (high external validity).

Perhaps the Statsville principal has a randomized experiment from a very old cohort that entered

5The assumption to draw causal inference in the target population is {Y(0),Y (1)}1{P,S,D} | X, where P
indicates membership in the learning versus target population, S indicates inclusion in the sample of cases, D
indicates treatment assignment, and X denotes the vector of pre-treatment predictors. One setting where this would
hold is if the target population is the learning population and S and D are randomly assigned.

31



—

Within each subgroup defined by predictor values X = &,

Learning
Population
CEE—
Ob. d Dat
Y1(0) Yi(1) Random Random serve ata
Sample Treatment
Y2(0)  Ya(1) of Cases Assignment

Ya0)  Ya(l)

| S —

Target
Population
E——

Y{(0) Y{(1)

Y3(0)  ¥3(1)

e ________________________________ 1
: : Inference: Under the assumption that the
Y, (0) Y.(1) target population follows the same
\ ) data generating process as the

learning population within X=z
S J

Fig. 10. Causal inference for policy prescriptions: A particular leap to a new target.
Suppose there is a learning population of n units, each of whom has a potential outcome that would
be realized under the control condition Y;(0) and under the treatment condition Y;(1). Suppose
we take a random sample from the learning population and then randomly assign treatments to
units in that sample. For each unit in the sample, we observe one of the two potential outcomes.
Under randomization, a prediction function learned in the observed data can be used to make
predictions in the learning population. But when designing policy, we generally want to predict
treatment effectiveness in a new population who have not yet received the treatment. To predict
in a new target population, we would have to additionally assume that the same data generating
process holds in the target population as in the learning population. In observational settings,
machine learning can be used for causal inference if the assumptions of random sampling and
random treatment assignment are credible within subgroups defined by the observed predictors X.

in 2000 and an observational study on the cohort that entered in 2017. It would not be clear
which study would be more informative for a policy prescription applying to the cohort entering
in 2022. Every study has limitations, and the leap from a learning population to a different target

population is a limitation of which one must always be aware.

4 The future: Guiding principles and promising approaches

We proceed cautiously in predicting how machine learning will be used in the future. In this section,

we nonetheless offer a few guiding principles and approaches which we believe hold promise for
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resolving particular issues in social science research. These guiding principles are relevant to both
descriptive and causal claims, but our discussion often emphasizes the relevance to causal claims

because we see an especially promising space of applications in that domain.

4.1 Resolving p-hacking: The promise of automated model selection

The replication crisis raises questions as to the validity of common quantitative social science
research practice (Freese and Peterson, 2017; Simmons et al., 2011). A key source of concern is the
practice in which researchers iterate between model fitting and interpretation until arriving at a
chosen specification which is reported to the reader. This procedure creates many opportunities for
a well-meaning researcher to select the model for which the results most align with the researcher’s
preexisting beliefs (Gelman and Loken, 2014). The (possibly unintentional) practice of choosing an
estimator based on the results undermines the validity of p-values and confidence intervals, which
are designed under the assumption that the researcher follows a single procedure that would be
applied the same way in any hypothetical sample.

Machine learning may seem to amplify this problem: with more candidate estimators, re-
searchers who stay the course will simply have more opportunities to select their preferred result.
Yet automated model selection offers a way out of this problem. Before analyzing the data, re-
searchers can specify a single decision rule for choosing among many candidate estimators. For
instance, we might choose the one with the lowest cross-validated mean squared error. By defin-
ing the decision rule before viewing any results, researchers can remove the danger of choosing
a result based on their preferred specification. Beyond selection of the single best model, there
are numerous possible decision rules to combine several candidate learners into one aggregate pre-
diction function, including stacking (Wolpert, 1992), boosting (Schapire and Freund, 2012), and
Bayesian model averaging (Raftery et al., 1997). One promising ensemble method is Super Learner
(Van der Laan et al., 2007), which accepts a dataset and a set of candidate learners as arguments
and returns a single prediction function which is a weighted average of those learners with weights
learned through cross-validation. Super Learner is available in open-source software for R, both in
the SuperLearner package (Van der Laan et al., 2007) and in the s13 package (Coyle et al., 2021)
which is part of the tlverse.

An important caveat to automated model selection is that not all analytical choices can, or
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should, be automated. The choice of a target quantity requires an argument from the researcher
about why that target quantity would matter for theory (Lundberg et al., 2021). For causal
target quantities in observational data, the set of variables needed for adjustment cannot be chosen
from data because the choice necessarily involves unobserved counterfactual quantities; the set of
variables must instead be chosen by argument about the underlying causal model (Pearl, 2009). For
example, a variable that is a consequence of the treatment may itself affect the outcome. Yet, such
a variable should not be held constant when estimating the average causal effect of the treatment,
because conditioning on it would block a causal pathway from the treatment to the outcome and
may unblock other non-causal pathways. Our theory about the causal ordering of the variables,
not statistical evidence, informs the decision to exclude this covariate from the adjustment set.
There exist some settings where empirical evidence can inform the causal model—for exam-
ple, if a pre-treatment variable is independent of treatment given other confounders, then that
variable may not be needed for confounding adjustment.” But as a general principle, the choice
of adjustment variables is often better decided by theoretical argument rather than empirical evi-
dence. Two pieces of the research process—defining the question and defending assumptions about
counterfactuals—rest heavily on the researcher’s conceptual argument. The piece which can be
more easily automated involves questions about estimation, such as whether or not an interaction
between two predictors should be included (Brand et al., 2021).2 For a given research question
and a given set of variables, a researcher who defines a decision rule can use data to automate the
choice of a prediction function using those variables. By doing so, the researcher removes some of

the opportunities for p-hacking.

4.2 Resolving approximate models: The promise of an agnostic perspective

Researchers often begin by assuming a model. All statistical properties (parameter definitions,
standard errors, confidence intervals, etc.) are then valid only by the assumption that the model

is correct. Yet social scientists and statisticians have long accepted that “all models are wrong”

"Imbens and Rubin (2015) Ch. 13 discusses an iterative procedure for selecting confounders based on their sta-
tistical relationship with the treatment. The Stata package ITPSCORE (Moore et al., 2021) implements this type of
iterative propensity score specification. Researchers still select the input variables. With ITPSCORE, researchers can
choose to bypass allowing the algorithm to eliminate any input covariates. For a LASSO-based approach to variable
selection, see Belloni et al. (2014).

8The Imbens and Rubin (2015) iterative procedure and ITPSCORE (Moore et al., 2021) also selects higher order
and interaction terms.
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(Box 1976:792). If we believe that all models are wrong, then under the standard perspective all
statistical properties of those models are thus unreliable as well. One resolution to this conundrum is
a more balanced perspective known as an agnostic approach: any statistical analysis is understood
as an approximation to more complex phenomena. For example, past work in this perspective
has formalized the statistical properties of ordinary least squares as a best linear approximation
to a nonlinear or interactive function (see e.g. Aronow and Miller 2019; Buja et al. 2019a,b; Lin
2013). From an agnostic perspective the question is not whether we have the correct model, but
rather whether one can provide evidence and argument that the chosen model is likely to usefully
approximate the target quantity of interest (see Grimmer et al. 2021). A researcher who defines
this target quantity or estimand outside of the model can then begin to reason about the relative
merits of various approaches (Lundberg et al., 2021).

While the agnostic perspective is not new, it gains new importance with machine learning
methods. With many machine learning methods, it is difficult to argue on conceptual grounds that
the learned function is “correct.” For example, while one could reason about the relative merits of
an assumed functional form for ordinary least squares, it is more difficult to reason conceptually
about whether a random forest has been given a large enough sample to arrive at a “correct”
representation of the response surface. These types of flexible learners have asymptotic guarantees,
but one never knows if one’s sample is large enough to lean heavily on those guarantees. Here the
notion of a useful approximation becomes essential: for at least some target quantities, one can
marshal evidence about out-of-sample predictive performance to indirectly support the claim that
the chosen algorithm will yield a good approximation to the target quantity.

The agnostic approach is related to a difference in worldview between classical statistics and
machine learning. Classical approaches often emphasize the conceptual merits of a model, relying
heavily on the assumption that the model generates the observed data. Machine learning approaches
may never seek to learn the true model, but rather emphasize empirical evidence that the model
performs well at a given task. In fact, Donoho (2017) argued that the “secret sauce” of machine
learning is to precisely specify a task, open that task to all approaches, and select the best algorithm
by a well-defined metric involving out-of-sample prediction. The best algorithm performs the

task well, and it may or may not accurately represent the entire process that generated the data
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(Breiman, 2001b).? Of course, what it means to “perform well” is part of the definition of the task,
and is subject to researchers’ theoretical and normative choices. Social scientists may benefit from
adopting elements of an algorithmic machine learning perspective. One element of that perspective
is an agnostic approach: instead of seeking the correct model, we seek an approximation for which
there is good reason or empirical evidence to expect the empirical properties that are desirable for

our research question.

4.3 Resolving extrapolation: The promise of local estimators

Extrapolation is an ever-present danger in globally parametric models like ordinary least squares.'”

Extrapolation occurs when a data point to be predicted is far from the mass of the training data,
so that the predicted value may depend heavily on the assumed functional form (e.g., a line).
Another side of the problem is influence. Influence is the converse, when a training point far from
the mass of the data heavily shapes the fitted prediction function. Extrapolation and influence
are two consequences with the same source: the assumption of global parametric models (e.g., the
assumption of a line). Local estimators offer a solution to the problem: only allow each unit j
to contribute to the estimate for unit ¢ to the degree that unit j is “near” to unit i. For every
local estimator, the central question is what it means for two units to be “near” each other. New
advances in local estimation are thus most powerful paired with conceptual social science argument
for the chosen definition of “near.”

Propensity score matching for causal inference is one example of a local estimator (Imbens,
2015; Morgan and Harding, 2006). Suppose we know the probability of treatment p; (also known
as the propensity score) given the values of confounding variables for unit 7. If unit ¢ is treated,
we might estimate the potential outcome under control Y;(0) by the outcome of the untreated unit
j with propensity score p; closest to unit ¢. This is a local estimator because only the nearest

untreated unit contributes to the estimate for unit 7. Propensity score matching is a nearest

9As an example of the algorithmic modeling culture, data scientists often emphasize algorithms as a set of pro-
cedures applied to data and the conditions under which those procedures perform well. See for example Wu et al.
(2008).

10 A5 used here, a globally parametric model is one where information is shared along an assumed functional form
such that statistical patterns in one part of the space are taken to be informative about patterns in a very far removed
part of the space. For instance, ordinary least squares is a globally parametric model where the pattern at the lowest
values of a predictor informs the estimated pattern at the highest values of that predictor via the assumption of
linearity, thus producing a substantial possibility of extrapolation.
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neighbors estimator (Fix and Hodges, 1951): the unit or units nearest to the focal unit contribute
to the estimate.

Nearest neighbors and other local estimators depend crucially on the definition of “near.” There
are many ways to define what it means to be near. In propensity score matching, the distance
between any pair of units may be defined as the difference in their probabilities of treatment
p; — pj, which is a univariate summary of the difference in their confounder sets X; and X j. Or
we could also define nearness as a function of the confounders X; and X}- directly, as is the case
for Manhattan distance (sum of absolute differences over all covariate values), Euclidean distance
(sum of squared differences), or Mahalanobis distance (a generalization of Euclidean distance which
incorporates the covariance among X , Mahalanobis 1936). For each of these distances, one can
define a local estimator by averaging across units which are “near” the focal unit by the chosen
distance metric.

The definition of nearness is consequential: units that are “near” by one metric may be far

11 Future research with local estimators will need to reason carefully

apart by another metric.
about the definition of “near” that is relevant to the problem at hand. For instance, the covariate
balancing propensity score (CBPS) (Imai and Ratkovic, 2014) modifies the propensity score to
optimize balance along the covariates. Entropy balancing (Hainmueller, 2012) optimizes matches
such that first, second, or higher moments of the covariates are similar across matched units. No
distance metric is inherently superior to another outside of a specific application—they are all
different definitions of what it means to be “near.”

Machine learning tools offer new ways to define the distance between any pair of observations.
Random forests (Breiman, 2001b) are one example. A random forest is an algorithm which repeat-
edly (1) randomly samples a subset of predictors from the data, (2) randomly samples observations
from the data with replacement, and (3) partitions the resulting sample into a set of “leaves” which
are cells defined by the predictor variables and for which the outcome Y is relatively homogeneous.
Each iteration produces a tree, and the average of all the trees is a forest. As highlighted by Lin

and Jeon (2006), the random forest can be interpreted as a weighted nearest neighbors estimator,

where units ¢ and j are “near” to each other proportional to the frequency that they fall in the same

11p fact, when the predictor set X is high-dimensional (i.e., containing many unique values), it is possible that
every unit is in some sense quite far from all other units. In causal inference, this can create a setting where arguably
there is no untreated unit which is comparable to any given treated unit (D’Amour et al., 2021).
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leaf. The connection is powerful because it connects random forests (a machine learning tool) to a
setting well-studied in classical statistics (weighted means). Wager and Athey (2018) exploit this
connection to derive asymptotically-valid confidence intervals for estimates from random forests,
drawing on results from classical statistics (Hajek, 1968; Hoeffding, 1948). The notion of random
forests as adaptive nearest neighbors estimator generalizes to many problems (Athey et al., 2019),
such as using random forests to define nearness for weighted local linear regression (Friedberg et al.,
2021).

Local estimators hold great promise for future social science research. The barriers to adoption
are low: many of the advances discussed above are implemented in open-source R software, including
cbps for the covariate balancing propensity score (Fong et al., 2021), ebal for entropy balancing
(Hainmueller, 2014), ranger for random forests (Wright and Ziegler, 2017), and grf for generalized
random forests (Tibshirani et al., 2018). The open task for social scientists is to motivate the

chosen definition of “near” with respect to their substantive problem.

4.4 Resolving poor convergence: The promise of targeted learning

Flexible machine learning estimators such as random forests can approximate unknown conditional
mean functions E(Y | X ) without the strong parametric assumptions common to classical methods
like generalized linear models. Yet flexibility comes at a cost: the rate at which adaptive estimators
converge toward the conditional mean is slower than the rate achieved by parametric methods.
Targeted learning (Van der Laan and Rose, 2018; Van Der Laan and Rubin, 2006) resolves this
convergence problem. While one cannot generally achieve fast convergence for the full conditional
mean function, it is often possible to target the estimator and achieve fast convergence rates for a
low-dimensional parameter of social science interest.

For concreteness, suppose we are interested in the population-average potential outcome E(Y (t))
that would be realized if a treatment variable T" were assigned to the value t. We make the causal
assumption that a set of measured variables X is sufficient to block all confounding, and we proceed

by predicting the outcome Y as a function of the treatment 1" and confounders X. Our causal target
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parameter can be rewritten as a particular aggregation of a statistical function.

Expected outcome
under treatment ¢ Conditional mean
(low-dimensional) (high-dimensional)

! —

E(Y()) =E (E (Y T = t)?))

A

Outer expectation over the Converts a high-dimensional function
population distribution of X to a low-dimensional target parameter

(8)
The target E(Y (¢)) is just one number. But the internal conditional expectation E(Y | T = ¢, X) is
high-dimensional because the confounders X have many unique values. For this reason, a flexible
machine learning estimator of E(Y | T = ¢, X ) may achieve good properties only at an extremely
large sample size.

Targeted learning (Figure 11) is a strategy to improve performance by incorporating the ultimate
target into the process: the full response function E(Y | T =t, X ) is only relevant to our question
insofar as we ultimately will aggregate over X to estimate the target parameter. Begin by estimating
a prediction function §(T,X) ~ E(Y | T, X) to predict outcomes. Ultimately, we would like to
make predictions for all units under the (possibly counterfactual) treatment 7" = ¢. Yet here
is a problem: suppose a stratum X = 7 of the confounders contains only a few treated units
(T = t) but also contains many untreated units (7" # t). A naive prediction function will not
optimize for prediction in this stratum, because few treated units are observed in the stratum.
Yet, in the target population this stratum may be very important because it is home to many
untreated units. Ideally, we would modify the prediction function §(7, X ) to place greater weight
on accurate prediction in the spaces of {T,X } where we will be making predictions. A targeted

learning estimator achieves that ideal by incorporating a model for the conditional probability of

treatment (¢, X) ~ P(T =t | X). For each unit with factual treatment 7' = ¢, the inverse m(tl)?)
is a weight which captures the prevalence of units like this one in the target population relative
to their prevalence in the available sample. There are many methods to incorporate the inverse

probability of treatment to improve performance for an estimated parameter, including augmented

inverse probability weighting (Robins and Rotnitzky, 1995; Robins et al., 1994) and double machine
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prediction functions

2) Define a new H(T, X') _ I(T=t)
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[Sample split: Optionally, carry out step 3 in a different sample from steps 1 and 2]

3) Regress Y on the logit (P(Y —1] T,)?)) ~ logit (g(T,X)) + H(T,X)B
new covariate 1 7 1
with an offset Offset Clever Coefficient
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prediction 1 1
function Targeted prediction rule Original prediction rule

optimized for the way we optimized for
will aggregate predictions disaggregate prediction

5) Estimate using t'he E(Y(t) =1 d¢ X))
targeted prediction
function

Fig. 11. Targeted learning with a binary outcome. An important advantage of targeted
learning (Van der Laan and Rose, 2018) over double machine learning (Chernozhukov et al., 2018)
is that targeted learning can accommodate a link function (the logit in steps 3 and 4) which can
guarantee that predicted values fall within the support of the outcome.

learning (Chernozhukov et al., 2018).12 In targeted learning, the inverse probability weight is used
as a covariate in a new regression model to predict the outcome, with the initial prediction included
as an offset term (a known intercept). To the degree that outcomes trend upward or downward as
a function of the inverse probability of treatment, that trend can be corrected to produce a new
prediction function §'(¢, Z) optimized for prediction in the counterfactual target population.
Targeted learning should be more widely applied in social science due to its several advantages.
First, the applicability of machine learning in social science is limited by the need for massive sam-

ples for flexible estimators to perform well. Targeted learning brings down this barrier by improving

12 Appendix Figure 13 presents double machine learning (Chernozhukov et al., 2018), and Appendix Figure 12
presents targeted learning for a continuous outcome to support direct comparisons with double machine learning.
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convergence for the target parameter (in this case, E(Y(¢))). Second, targeted learning is superior
to other methods such as augmented inverse probability weighting (Robins and Rotnitzky, 1995;
Robins et al., 1994) and double machine learning (Chernozhukov et al., 2018) because targeting
(Step 4 in Figure 11) can involve a generalized linear model with a link function (e.g., logit). Thus,
targeted learning never makes predictions outside the support of the outcome variable. Third, tar-
geted learning comes with statistical guarantees of consistency and asymptotic normality (Van der
Laan and Rose, 2018). Finally, targeted learning is accessible: for common target parameters, the

tlverse suite of R packages supports this approach.

5 Conclusion

Machine learning creates abundant opportunities in social science. Where researchers might have
coded a few documents by hand, we can now amplify that coding to tens of thousands of documents.
Where researchers might have summarized a vast dataset by a set of coefficients, we can now
use methods for discovery to target attention toward interesting patterns we may have missed.
Where researchers might have assumed a regression specification, we can now learn interactions
and nonlinearities directly from the data.

Social science is an inherently human endeavor. A researcher has to carefully consider what
questions to ask, how data have been measured, and what assumptions are needed to answer those
questions. Machine learning empowers researchers to do more; it does not replace us. The most
effective uses of machine learning are likely to be in settings where social scientists can define a
clear aspect of the problem to usefully outsource to an algorithm. One subfield that has already
seen this synergy is causal inference, where researchers use argument to translate causal questions
to statistical parameters (Pearl, 2009) before outsourcing the estimation of those parameters to
flexible machine learning tools (Van der Laan and Rose, 2018). Machine learning is likely to have
the most impact on problems for which researchers successfully partition the human and machine
components of research.

Aspects of machine learning are not really new, since at its foundation it is just new develop-
ments in statistics. After all, the basics are the same: variables, assumptions, patterns in data.

Yet we have argued throughout this manuscript that there are advantages to machine learning that
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extend beyond traditional approaches. Indeed, technological improvements increasingly render ma-
chine learning tools attractive alternatives to classical methods. Conversely, some social scientists
may perceive that the technical barriers to using machine learning remain too high to surmount.
Yet barriers to adoption are plummeting with accessible, open-source software. We predict that

that the benefits will rapidly outpace the costs to widespread adoption of machine learning tools.
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Fig. 12. Targeted learning with a continuous outcome. This method is analogous to the
method for a binary outcome presented in Figure 11. We include the continuous version here for
comparison with double machine learning (Appendix Figure 13).
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Fig. 13. Double machine learning. This figure presents double machine learning (Cher-
nozhukov et al., 2018) using the notation of targeted learning (Van der Laan and Rose, 2018) in
order to emphasize the parallels between the two methods. For targeted learning with a continuous
outcome, see Appendix Figure 12. For targeted learning with a binary outcome, see Figure 11.
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