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Switchgrass low-land ecotypes have significantly higher biomass but lower
cold tolerance compared to up-land ecotypes. Understanding the molecular
mechanisms underlying cold response, including the ones at transcriptional
level, can contribute to improving tolerance of high-yield switchgrass under
chilling and freezing environmental conditions. Here, by analyzing an existing
switchgrass transcriptome dataset, the temporal cis-regulatory basis of
switchgrass transcriptional response to cold is dissected computationally. We
found that the number of cold-responsive genes and enriched Gene Ontology
terms increased as duration of cold treatment increased from 30 min to 24
hours, suggesting an amplified response/cascading effect in cold-responsive
gene expression. To identify genomic sequences likely important for regulating
cold response, machine learning models predictive of cold response were
established using k-mer sequences enriched in the genic and flanking regions
of cold-responsive genes but not non-responsive genes. These k-mers,
referred to as putative cis-regulatory elements (pCREs) are likely regulatory
sequences of cold response in switchgrass. There are in total 655 pCREs where
54 are important in all cold treatment time points. Consistent with this, eight of
35 known cold-responsive CREs were similar to top-ranked pCREs in the
models and only these eight were important for predicting temporal cold
response. More importantly, most of the top-ranked pCREs were novel
sequences in cold regulation. Our findings suggest additional sequence
elements important for cold-responsive regulation previously not known that
warrant further studies.
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Introduction

Switchgrass (Panicum virgatum L.) is a perennial C4 grass
species native to North America and identified as a major
lignocellulosic feedstock for biofuel production (Sanderson
et al, 2006). Higher biomass production has been a major
breeding target and a potent research area in switchgrass.
However, high-yielding switchgrass cultivars grow in narrow
climatic niches and are known to be less productive under
drought, high salinity, and freezing/chilling environmental
conditions (Sage et al., 2015; Zhuo et al., 2015; Lovell et al,
2021). Expanding the growing range of high-yielding
switchgrass cultivars has been proposed as a way to achieve
economic bioenergy production (Sanderson et al., 2006).
Coupling high biomass production with low and freezing
temperature tolerance can be an effective way of increasing the
range expansion of high-yielding switchgrass cultivars. Thus, it
is important to understand which genes and how they are
responsive to cold stress in cold-resistant switchgrass cultivars.

The ability to tolerate and/or resist cold stress has been an
active area of research with respect to the underlying genes, their
transcriptional regulators, and signaling pathways (Thomashow,
2010; Park et al., 2018; Manasa et al., 2021). At the level of
transcriptional regulation, the C-repeat-binding factor (CBF)
cold response pathway is one of the best characterized. In
Arabidopsis thaliana, three C-Repeat Binding Factor/
Dehydration Responsive Element-Binding Protein 1 (CBF/
DREBI1) transcription factor (TF) genes are rapidly up-
regulated in response to cold stress (Stockinger et al., 1997; Liu
et al., 1998). Such rapid cold response is due to a signaling
network that is active upon cold stress. During cold treatment,
cellular Ca™ is elevated and activates Calmodulin proteins
(CAMs). CAMs then bind to promoters of CAM-binding
Transcription Activators (CAMTAs) and up-regulate
expression of CAMTAs. Finally, CAMTAs bind to the
conserved CGCG-box in CBF genes and up-regulate their
transcription. Another well-studied regulator of CBF
expression is the Inducer of CBF Expression (ICE)
(Chinnusamy et al., 2003). ICE TFs are activated through low
temperature mediated sumoylation and subsequently bind to
ICE-box promoters in CBF genes to activate its transcription
(Chinnusamy et al., 2003; Chinnusamy et al., 2007; Chinnusamy
et al,, 2010). CBF TFs then up-regulate over 100 cold regulated
(COR) and low-temperature induced genes by binding to C-
repeat/dehydration-responsive (CRT/DRE) elements, located in
promoters of COR genes (Thomashow, 2010). This regulatory
hub is known as the CBF regulon which is a major mechanism of
cold stress response regulation in plants.

Beyond the CBF regulatory hub, there are examples of other,
non-CBF regulatory pathways important for cold stress response
in plants. Studies using CBF mutants have shown that TFs
rapidly responsive to cold, such as HSFC1, ZAT12, and CZF1,
also regulate COR gene expression, indicating CBF-independent
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regulation (Park et al.,, 2018; Liu et al., 2019). Another example is
BZR1 TFs in the brassinosteroid (BR) signaling pathway that
become dephosphorylated upon exposure to cold stress and bind
to BR responsive element and E-box in the promoter regions of
COR genes such as WRKY6, SAG21, and SOCI (Li et al., 2017).
It is also shown that cold-induced, Abscisic Acid modulated
COR gene expression works independently from CBF regulon
(Liu et al,, 1998). There are likely other, non-CBF regulatory
mechanisms for plant cold-responsive transcription that remain
to be discovered. In addition, in switchgrass, it remains unclear
how temporal regulation of cold response is regulated, CBF-
dependent or not.

Computational approaches are powerful tools in the
identification of genome-wide regulatory patterns in plants
under biotic and abiotic stress conditions. In switchgrass, co-
expression analysis has been used to establish the potential
transcriptional regulatory networks in heat, drought, and
biotic stress conditions (Pingault et al, 2020; Hayford et al,
2022; Zhou et al.,, 2022). Recently, a comprehensive,
transcriptomic study on several panicoid grasses, including
switchgrass, revealed that machine learning approaches can be
implemented to predict cold stress responses of genes within and
between species based on nucleotide frequencies in promoter
regions of genes, among other features (Meng et al., 2021).
Beyond nucleotide frequencies, a similar approach using longer
nucleotide sequences (i.e., k-mers) can identify putative cis-
regulatory elements that are regulatory switches of gene
expression under cold stress in switchgrass. Such approaches
have been applied to identify the regulatory switches of genes
under wounding (Liu et al, 2018; Moore et al., 2022), high
salinity (Uygun et al., 2017), iron excess response (Kakei et al,
2021), heat, and drought stress conditions (Azodi et al., 2020).

In this study, we aim to apply a similar, machine-learning
based approach in switchgrass to assess the involvement of CBF-
dependent components of cold response regulation and identify
other cis-regulatory mechanisms. Using existing cold stress time
course transcriptomes of switchgrass (Meng et al., 2021), we first
identified temporally cold-responsive genes. To test the extent to
which the temporal cold transcriptional response at different
cold treatment duration can be explained using potential cis-
regulatory sequences, we built machine learning models to
predict genes that are up- and down-regulated upon cold
treatment in the time course experiment using k-mers
enriched among up- or down-regulated genes. The k-mers that
were the most predictive for cold-responsive genes were
considered putative Cis-Regulatory Elements (pCREs)
controlling the temporal transcriptional response. To further
reveal the regulatory logic behind the temporal transcriptional
response, we examined transcription factors that may bind to
pCREs, similarity between pCREs to known CREs, as well as
functions of the genes that these pCREs are located on. In
addition, to understand if there are common mechanisms
underlying the transcriptional response at different time points

frontiersin.org



Ranaweera et al.

after cold treatment, we assessed if pCREs identified in one time
point were similar to the regulatory elements identified in other
time points.

Results and discussion

Temporal transcriptional response in
switchgrass under cold stress

Switchgrass genes responsive to cold stress at different
treatment time points (0.5, 1, 3, 6, 16, and 24 hrs) were identified
using the transcriptome data from Meng et al. (2021) (S1 Table).
We found that the number of cold-responsive genes, regardless if
they were responsive to cold at multiple time points or at a specific
time point, increased as the duration of cold treatments increased
(S1A Figure). This observation is consistent with a cascading effect
of transcriptional response over time, similar to responses to other
biotic (Ren et al., 2008; Ikeuchi et al., 2017; Moore et al., 2022) and
abiotic (Joshi et al., 2016; Ohama et al., 2016) stress conditions. This
cascading effect could be because the key regulators are activated
sequentially during the cold treatment (Ding et al., 2019a; Lamers
et al., 2020). Moreover, as expected, more cold-responsive genes
tend to be shared between adjacent time points compared with time
points apart from each other (S1A Figure).

To understand what functions the genes that are responsive to
cold stress at different time points tend to have, we conducted
Gene Ontology (GO) enrichment analysis (see Methods, S1B, C
Figures). GO terms relevant to signaling and activity of
transcription factors, such as protein phosphorylation and
regulation of transcription, were enriched for genes up-regulated
at earlier time points (i.e., 0.5 - 3 hrs, S1B Figure). These early up-
regulated genes may act as initial regulators of genes that are
responsive to cold at later time points. Consistent with this, it is
known that the accumulation of Ca™ as a result of initial cold
sensing activates the expression of calcium-dependent protein
kinases (CDPKs), which in turn activate transcription factors that
regulate downstream cold stress response (Chinnusamy et al,
2010; Knight and Knight, 2012). Moreover, GO terms such as
glucan metabolism and trehalose biosynthesis were also found to
be enriched at initial time points. These biological processes are
known to be important in the initial cold acclimation in
Arabidopsis (Miranda et al., 2007; Maruyama et al., 2009). The
GO terms enriched in up-regulated genes at later time points (i.e.,
6-24 hrs) may involve biological processes that are required to
maintain the functionality of the plant under prolonged cold
stress. For example, during prolonged cold stress an increase in
plant respiration has been observed (Manasa et al., 2021). As a
result of elevated respiration, plants tend to accumulate higher
amounts of reactive oxidative species (ROS), followed by the
transcription of genes that are responsive to oxidative stress
(Wei et al, 2022). This is in line with the enriched GO terms
for later cold-responsive genes, such as response to oxidative stress
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and metal ion transport. Thus, the results from GO enrichment
analysis are also indicative of the cascading effect of temporal
transcriptional response under cold stress in switchgrass, where
initial responsive genes activate later cold-responsive genes that
are involved in different physiological and metabolic processes to
withstand cold stress conditions.

Putative cis-regulatory elements
regulating temporal cold
stress responses

The cascading effect of temporal transcriptional response that
we observed, as well as the differences between GO terms enriched
in genes that were up-regulated at different time points, indicates
that the transcriptional regulation differs among time points after
cold treatment. To understand how cold-responsive genes are
regulated at the cis-regulatory level, we first identified k-mers in
the promoter and gene body regions that were enriched among
cold-responsive genes at each time point. Then the enriched k-mers
were used to establish a predictive model to distinguish cold-
responsive genes from non-responsive genes for each time point
with machine learning (see Methods; Figure 1A). We calculated F-
measure (F1 score) on the validation and test instances (held out
before model training, see Methods). In our modeling setup, the F1
score ranges between one and zero, where one represents a model
with perfect prediction, while a score ~0.5 indicates a model with
predictions no better than random guesses. Among models
distinguishing genes that are significantly up- or down-regulated
from non-responsive genes at different time points, the F1s were all
higher than random expectation (> 0.7) (Figure 1B), indicating that
the sequence information (i.e., k-mers) was predictive of cold stress
response at a time point.

Next, we asked what features (k-mers) were most predictive of
the temporal cold stress response of genes with feature selection. By
assessing the model performance improvement by adding features
successively from the most to the least important, the minimal
number of features required to reach 95% of the optimal model
performance was identified for each time point model (S2 Figure).
The k-mers that met this criteria for each time point model were
defined as pCREs (52, S3 Tables). From here onwards, we focus on
the pCREs predictive of up-regulated genes. Some of these pCREs
were general across time points (indicating these pCREs were found
in all the time point models) (Figure 2A), which may indicate: (1)
the genes regulated by these pCREs are responsive to cold across
time points; and/or (2) different genes that are responsive to cold
stress at different time points are regulated by the same pCRE set
and/or (3) these pCREs may be basal regulatory elements required
for cold-stress regulation which may be working in combination
with other CREs to fine-tune the temporal transcriptional response
under cold stress. We should note that only 154 and 411 genes for
up- and down-regulation across >4 time points, respectively. On
the other hand, 16,414 and 16,911 genes are up- and down-
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regulated in >=1 time points. Considering that very few genes are
commonly responsive across multiple time points, the first
possibility is unlikely. Some other pCREs were time point-specific
(indicating these pCREs were found only in a single time point
model) (Figure 2A). The remaining pCREs were identified by
models predicting genes up-regulated at 2~5, usually disjointed,
time points (53 Figure).

GO terms enriched for down-regulated genes indicate that
genes involved in essential biochemical processes such as
photosynthesis and growth-related processes have been down-
regulated (S1 Figure C) which has also been observed in other
species such as Arabidopsis (Manasa et al., 2021). However, our
focus in this study is to identify the regulatory elements that may be
directly related with regulating physiological and metabolic
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processes to endow plant resistance to cold. Although our down-
regulation models also had higher performance, the pCREs might
be a mixture of regulatory elements that are responsive to cold and
responsive to other physiological and biochemical processes that
are affected by cold stress. Thus, we will not be focusing on
regulatory elements that control the downregulation under cold
stress in our downstream analysis.

Known cold response regulation
transcription factors likely bound to
pCRE sites

Previous studies have shown that there are some conserved
CREs that control the expression of both early responsive
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transcription factors (TFs), such as CBF, and downstream cold-
responsive genes (e.g., COR genes) that carry out the cold stress
tolerance in plants (Chinnusamy et al., 2010; Thomashow, 2010;
Park et al,, 2018; Ding et al., 2019b). To see if our models have
identified binding sites for these known regulators as well as
novel CREs, we examined the similarities between the general
and time point-specific pCREs and 35 known transcription
factor binding motifs (TFBMs) in Arabidopsis using DAP-seq
(O’'Malley et al, 2016) and CIS-BP (Weirauch et al, 2014)
datasets (S3 Table). In addition, we collected 35 known TFs
regulating plant cold stress response that have binding site
information (S4 Table). Some pCREs that are significantly
more similar (see Methods) to binding sites of 11 out of 35
known TFs regulating cold response than the 95 percentile of
TFBM:s from TFs of the same families (Figure 2A, see Methods).
Two general pCREs were similar to the binding sites of
CAMTA1 and CAMTAS5 (orange and yellow in Figure 2B).
CAMTAs are known to be up-regulated by the activation of
Ca**-dependent Calmodulin due to cold-induced Ca*? spike
(Finkler et al., 2007; Manasa et al., 2021). In addition, CAMTAs
are major regulators of CBF genes that are known regulators of
cold responses, for the immediate cold stress response (Finkler
et al., 2007). Consistent with the involvement of CAMTAs in
early cold response pCREs, the most closely related to CAMTA
binding motifs had the highest feature importance in the 30 min
model (CAMTAL1 and CAMTAS5 ranked 17 and 6, respectively).

Pcc |
importance o 1 0.5

FIGURE 2
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We should point out that the CAMTA1/5 binding motif-like
pCREs were also found in 1hr- and 16 hr-specific sets, indicating
that, like in Arabidopsis, (Doherty et al., 2009) the CAMTAs
may also be involved in maintaining CBF or other cold response
gene expression that are critical for overall cold acclimation in
switchgrass. Because only 11 of 35 cold CREs of known plant
cold stress TFs have similar binding sites to general and specific
pCREs (Figure 2A), we next examined if they could be recovered
using pCREs important in >1 time points (non-specific pCREs,
S3 Table). We found that no new cold CREs can be recovered.
Thus, in later discussion, we mainly focus on general and time
point-specific pCREs only.

Another notable finding is that pCREs are similar to ERF
binding sites (gray and green in Figures 2A, B) and were
identified both in the general and most of the time point-
specific pCRE sets (excluding the 3 and 6-hrs). Like CBF/
DREB TFs, ERF TFs are members of APETALA2/Ethylene
Responsive Element Binding Protein (AP2/EREBP) gene
family which are known to be involved in multiple types of
stress tolerance (Dey and Corina Vlot, 2015; Park et al., 2021).
ERF115 prevents water deprivation in rice under extreme
temperatures and drought conditions (Park et al, 2021).
Dehydration is a condition that can occur under cold stress
and transgenic switchgrass with higher water retention also has
an increased cold tolerance (Xie et al., 2019). Despite the lack of
experimental evidence for the function of ERF TFs in
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switchgrass, our findings suggest that ERF TFs may play
important roles in cold tolerance in switchgrass. Moreover,
there were also pCREs that are similar to binding sites of TFs
from other TFs families, such as WRKY, BZR and ABR. pCREs
similar to binding sites for BZR1 (rank 1 to 4), WRKY24 (rank
seven to eight), and WRKY 30 (rank seven) were also among the
most predictive cold-CREs in cold-TFBM models (5S4 Figure).
These TFs are known for cold signal transduction and cold stress
tolerance via CBF-independent pathways (Park et al, 2015;
Ramirez and Poppenberger, 2020). BZR1 is known to be
involved in cold stress tolerance through processes such as
ROS scavenging (Ramirez and Poppenberger, 2020) and
facilitating structural changes in cell membranes and cell walls
(Benatti et al., 2012). Moreover, WRKY TFs are also known to be
involved in phytohormonal-induced signal transduction for
low-temperature tolerance in plants (Park et al., 2015; Park
et al., 2018). ABRI on the other hand is known to regulate
multiple stress responses, including cold stress in a CBEF-
independent, CBL9-CIPK3-mediated, ABA-signaling cascade
(Pandey et al., 2005). These findings indicate that our
prediction models can not only predict cold-responsiveness for
different time points after cold treatment, but also recover
known plant cold-TFBMs.

Potentially novel cold cis-regulatory
sequences in switchgrass

While known TFs involved in cold-responsive regulation can be
identified, 45 pCREs either resembled known TFBMs but the TFs
were not known to be involved in cold-regulation. Perhaps more
importantly, another 598 pCREs did not have significant similarity
to known TFBMs. This raises the question if these pCREs not
resembling cold-TFBMs, represent novel component of switchgrass
cis-regulation under cold treatment. To address this, we compared
the informativeness of pCREs identified by our models and the
experimentally validated cold-TFBMs for predicting cold stress
response. Based on literature search, 35 TFs involved in cold
response regulation with binding site information in
different plant species (S4 Table) were used to build models
(hereafter referred to as cold-TFBM models). We found that the
cold-TFBM models had far worse prediction performance
(median F1 = 0.66) than models built using all pCREs
(median F1 = 0.85, Figure 3A). Since these 11 of 35 cold-TFBMs
are significantly similar to top-ranked pCREs (similarity >95% of
randomly expected matches, see Methods), it is not particularly
surprising that the cold-TFBMs predictive of cold responsiveness at
different specific time points are similar to the findings in Figure 2.
By looking at the feature importance of the cold-TFBMs models
built for each of the time points (54 Figure), TFBMs of CAMTA1/5
and CBFs were among the most predictive features among the cold-
TFBMs time point models.
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While the all-pCRE models overall performed significantly
better than cold-TFBM-based ones (T-test, p < 0.01, Figure 3A),
it is possible that the all-pCRE models simply have far more
features. To address this, we also built models using the top 35
most important pCREs (based on the feature importance of time
point models) for comparison. We found that the cold-TFBM
models remain worse than models built using the top 35 pCREs
(median F1 = 0.77, p<0.01, Figure 3A). This finding, together
with that based on all-pCRE models, suggests that pCREs
identified in our models contain potentially novel cold-
responsive CREs that may or may not be specific to
switchgrass. In Figure 3B, the top 10 ranked pCREs from each
of the time point models are shown with emphasis on the
enrichment of novel pCREs in up-regulated genes under cold
stress of different timepoints. These novel pCREs are
significantly enriched (multiple testing corrected, p<0.05) in
cold stress up-regulated genes at each time point (Median log
odds ratio=0.55). Taken together, the comparison between cold-
TFBM models and the all-pCRE or the top-35 pCRE models
shows that known cold-TFBMs could not explain cold
responsiveness at any particular time point as well. These
findings suggest that there are novel temporal cis-regulatory
components of cold transcriptional response.

Relationships between pCREs across
time points

The majority of top pCREs are sequences that do not
resemble TFBMs associated with cold regulation. To further
understand how these pCREs we identified may be involved in
temporal cold stress regulation, we examined: (1) the similarity
of the pCREs across time point models (Figure 4A); (2) sequence
similarities between pCREs and TFBMs (earlier the focus was
only on cold-related TFs, Figure 4B) (3) importance of pCREs
from different clusters in predicting cold response (Figure 4C);
(4) functions carried out by the genes that the pCREs were
located in (Figure 4D); and (5) expression profiles of genes that
the pCREs were located in (Figure 4E). First, we categorized the
pCREs into clusters by calculating the pairwise PCC distance (1-
PCC) based on their sequences (see Methods; S5 Figure). The
clusters were defined using the same PCC distance threshold as
in (Liu et al., 2018), where pCREs with PCC distance <0.39 were
considered to be bound by TFs of the same family. The pCREs
were grouped into 27 clusters and pCREs in 25 clusters were
shared by >1 cold treatment time points. Since pCREs in a
cluster are likely bound by TFs of the same family, this finding
indicates the involvement of most TF families across time points.
These clusters consisted of pCREs important in >1 time points
were referred to as non-specific pCRE clusters (Figure 4A).

To assess if pCREs in different clusters may regulate distinct
sets of genes, we compared the differential expression profiles of
genes that contain pCREs from different clusters in different
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(A) Model performance comparison among models built using all the pCREs (blue), top 35 most important pCREs (cyan), and 35 known cold-
TFBMs (hot pink). (B) Enrichments of top 10 pCREs in 0.5, 1, 3, 6, 16, 24 hr time point models (a-f respectively).

time points (Figures 4E, S6). To facilitate interpretation of the
differential expression profiles, we encoded the transcriptional
responsiveness of a gene at a time point as U, D, N if it is
significantly up-regulated, significantly down-regulated, and not
differentially expressed, respectively. For example, a profile of
“UUDDNN” indicates that the gene is significantly up-regulated
at 30 minutes and 1 hr, down-regulated at 3 hrs and 6 hrs, and
not differentially expressed at 16 hrs and 24 hrs after cold
treatment. Using this strategy, we investigated the frequency of
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differential expression profiles of genes with pCREs in different
PCRE clusters. NNNUUN, NNNUUU, and NNUUUU were the
top three most frequent expression profiles found on the genes
that contain pCREs in all 25 non-specific pCRE clusters (S7
Figure). Because the up-regulatory patterns were contiguous
after 3hrs of cold treatment, regulatory switches common
between time points may have a role in the up-regulation and
maintaining the expression of genes at later time points.
Similarly, previous studies also show that in both CBF-
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Properties of pCRE clusters which were defined based on sequence similarity. (A) Heatmap showing the distribution of general and time point-
specific pCREs within a cluster. Color scale represents the percentage of general and time point-specific pCREs in each pCRE cluster. (B)
Potential transcription factors (TFs) that could bind to pCREs in pCRE clusters based on the similarity between pCREs and TF binding sites (TFBS)
information based on in-vitro binding assays. A TF was considered to bind a pCRE only if the PCC similarity between the pCRE and its binding
sites was above the 95" percentile of the background PCC distribution, which was calculated among TFs in the same TF family. TF families that
don't fall under this threshold were marked in gray. Color scale represents the percentage of pCREs within a pCRE cluster that showed
significant similarity with TFBS. (C) Median importance of pCREs in a cluster. Cell color depicts median min-max scaled Gini index of the pCREs
within each cluster. Gray color indicates that the pCRE is not used in the time point model in question. (D) Significantly enriched biological GO
terms of genes containing pCREs in a pCRE cluster. Color scale represents the log;o(odds ratio), for details, see Methods. (E) Differential
expression of genes that contain pCREs in clusters 3, 16, or 23 at different time points. Each row shows the profile of a gene, and color scale

dependent and independent pathways, immediately cold-
responsive TFs are responsible for up-regulating and
maintaining the expression of a large number of downstream
cold-responsive genes by binding to conserved regulatory
sequences (Thomashow, 2010; Park et al., 2015; Li et al.,
2017). Some genes harboring pCREs from non-specific pCRE
clusters also had unique expression profiles (expressed in a single
time point) as well as much more complex expression profiles
(up- or down-regulated in multiple, non-contiguous time
points) (S6 and S7 Figure).

In addition to non-specific clusters, there were two 30 min-
specific pCRE clusters (clusters 23 and 25) (Figure 4A). pCREs in
these clusters may regulate initial cold transcriptional response.
However, these clusters were significantly enriched (q < 0.05)
with the genes that are up-regulated only at the 30-min time
point compared to genes that contain pCREs in other clusters
(S8 Figure), For example, in cluster 23, UNNNNN, UNUUNN,
UNUNNU, UUUUUU, UUDDDD, and UUNNDD are among
profiles with the highest degrees of enrichment. There are ~360
different gene expression profiles that contain pCREs in all 25 of
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the shared pCRE clusters (S7 Figure). Thus, the temporal
regulation of cold transcriptional response is likely mediated
through a combination of general CREs that are important for
the entire duration, specific CREs that regulate response at a
particular time, as well as non-specific CREs that regulate a
certain duration (contiguous time points) or complicated
expression profiles (e.g, UNUNNU). To assess the functions
of genes that contained pCREs from pCREs clusters, we
examined which GO terms were enriched with genes
containing pCREs in a cluster (Figure 4D). Except for the
general enriched GO terms (e.g., metabolic processes), genes
containing pCREs of non-specific pCRE clusters were enriched
with biosynthetic processes that are involved in cold stress
responses (e.g., fatty acid biosynthetic process, lipid
biosynthetic process, and trehalose biosynthetic process) and
specific metabolic processes (e.g., response to oxidative stress,
carbohydrate metabolic process) (Figure 4D). These GO terms
are known to be enriched in late responsive genes under cold
stress (Manasa et al., 2021). Our findings suggest that some
genes containing pCREs from these non-specific pCRE clusters
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may contribute to metabolic processes crucial for cold tolerance.
None of the GO terms were enriched for genes containing
pCRE:s in the specific pCRE clusters 23 and 25, potentially due
to the small sample size of these two clusters.

Cold stress regulatory pCREs that do not
resemble known TFBMs

To further assess the regulatory role of the pCREs in pCRE
clusters, we asked what TFs may bind to these pCREs using the
in-vitro TFBM information of 344 Arabidopsis TFs. Although
the Arabidopsis and the switchgrass lineages diverged ~200
million years ago (Wolfe et al., 1989), the TFBMs of dicot and
monocot TFs from the same families are highly similar
(Weirauch et al., 2014).A TF was considered to have the
potential to bind to a pCRE if the similarity between its TEFBM
and the pCRE in question was above the 95th percentile of the
similarity distribution calculated among TFBMs in the same TF
family (see Methods). In addition to members of the AP2-
EREBP family discussed previously (Figure 2, 4B), TFBMs of
B3, bZIP, MYB, Trihelix, and FAR1 TF families were also found
to have a significant similarity to pCREs in multiple clusters
(Figure 4B). In soybean, the bZIP TFs are known to regulate cold
stress in ABA-dependent pathways by inducing the expression
of downstream COR and ERF type genes that help plants to
resist cold stress conditions (Liao et al., 2008; Yu et al., 2020).
Moreover, in tomatoes, the Trihelix type TFs are known to be
up-regulated under cold stress conditions, and activate
downstream genes with products that modulate stomatal
conductance to prevent water loss (Liu et al, 2012; Yu et al,
2018). In apples, R2R3-MYB TFs were found to be induced by
cold stress and activate ROS scavenging genes (An et al,, 2018).

Aside from 19 clusters containing pCREs resembling known
Arabidopsis TFBMs, eight clusters did not contain pCREs
resembling TFBMs we investigated (Figure 4B). These pCREs
are referred to as “unknown” pCREs (those with “between”
threshold in S3 Table). In our time-point models, those
unknown pCREs were also important for predicting cold
responsiveness of a gene (S3 Table) as indicated by the median
importance of pCREs in clusters (Figure 4C). Furthermore, the
feature importance ranks of these pCREs in predicting cold
transcriptional response in the time point models (median
rank=0.45) are significantly similar (T-test, p-value<0.01) to
those of pCREs resembling known TFBMs (median
rank=0.38). Using general pCREs as examples, we built models
to predict genes up-regulated at different time points using solely
pCREs similar to known TFBMs (n=16), and another model
with unknown pCREs (n=38). We found that the performances
of models built using general pCREs similar to known TFBM
(median F1 = 0.66) and general “unknown” pCREs (median F1 =
0.70) were not significantly different (T-test, p-value>0.01). This
result also suggests that “unknown” pCREs have similar
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importance to pCREs that resemble known TFBMs in
predicting temporal cold-stress response in switchgrass. The
reasons we did not find similar TFBMs to these pCREs may be
because the threshold we used to assign a pCRE to TFBSs was
too stringent. However, the threshold used was established as the
degree of similarity that allows binding motifs of a plant TF
family to be identified (Azodi et al., 2020). Thus, it was not
asking if a pCRE resembled a specific TFBM, but the binding
motifs at the level of family. The second reason may be that
Arabidopsis TFBMs were used, which may miss TFBMs specific
in other species. Although there is broad conservation of TFBMs
across species, even between plants and humans (Weirauch
et al., 2014), this can only be assessed with additional
experimental studies either through DAP-seq or one-hybrid
assay. Another possibility is that the Arabidopsis TFBM data
may miss binding sites due to the limitations of in vitro binding
assays (Bartlett et al., 2017). Finally, it is also possible that,
instead of TFBMs, a subset of pCREs may represent motifs
relevant for levels of regulation beyond transcription, such as
post-transcriptional or translational regulation. This possibility
remains to be investigated.

Conclusion

In this study, we aimed to find DNA regulatory switches
responsible for temporal transcriptional response in switchgrass
under cold stress conditions. By examining the number of cold-
responsive genes at different time points, and the functions these
genes tend to have, we found a cascading effect of gene
transcriptional responses with regards to the time the plant
was exposed to cold stress. The k-mers enriched for cold-
responsive genes at a particular time point were predictive of
the cold responsiveness of genes at that time point. By examining
the top most predictive k-mers, we were able to identify well
known CREs that regulate cold stress response in plants,
indicating the usefulness of our models. Based on similarity of
a subset of pCREs to known cold TFs, switchgrass cold stress
response is mediated through both CBF-dependent and
independent pathways. Beyond the known cold-responsive
CREs, additional pCREs not known to be regulating cold
response were identified. Some pCREs were identified in
specific time point models, while others (general and non-
specific pCREs) appeared to be relevant to regulation of cold
response at multiple, sometimes disjoint, time points. In the
latter case, differential expression profiles of genes containing
these pCREs show complex patterns throughout the time course.

A substantial fraction of the pCREs do not resemble known
binding motifs of known cold response regulatory TFs or, in
general, Arabidopsis TFs with in vivo binding data. However, the
regulatory function of these pCREs in cold responses needs to be
experimentally validated using knockout lines and additional
efforts, including modeling complex expression patterns under
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cold stress response (i.e., non-contiguous, up-/down-regulation)
to identify the pCREs responsible for complex temporal
expression and modeling cold stress response using
combinations of pCREs to identify complex expression
patterns under cold stress are required to fully understand the
cold-responsive cis-regulatory code in switchgrass. We also
emphasize how building computational methods and their
interpretations are important for identifying the global
patterns of gene expression and their context-specific
regulatory elements. This study provides sequence elements
that regulate temporal cold stress response, allows a systematic
understanding of the temporal cold stress regulation in
switchgrass and, with subsequent validation studies, the
information can be used as the bases for fine tuning
switchgrass tolerance to cold stress.

Materials and methods

Transcriptome data collection,
preprocessing, and gene-set
enrichment analysis

The switchgrass cold response RNA-seq data were from a
published study of a time course (0.5, 1, 3, 6, 16, and 24 hrs)
under cold treatment (6°C) with paired control samples (29°C/
23°C in a 12-h/12-h day/night cycle) (Meng et al., 2021).
Switchgrass transcriptomes under three other stress conditions
were from three published studies [Dehydration ( (Zhang et al.,
2018)), salt ( (Zhang et al,, 2021)), and drought ( (Zuo et al,
2018)]. The RNA-sequencing (RNA-seq) data of these studies
were downloaded from NCBI-SRA database (https://www.ncbi.
nlm.nih.gov/sra), processed, and used to generate raw counts
and transcript abundance (transcripts per million, TPM) using
an RNA-seq analysis pipeline (https://github.com/ShiuLab/
RNA-seq_data_processing.git). For mapping RNA-seq reads,
Panicum virgatum v5.1 genome and the corresponding
genome annotations were downloaded from the Joint Genome
Institute (JGI) database (https://jgi.doe.gov). Only reads that
were uniquely mapped to the genome were used. Differential
expression of genes (fold change, FC) contrasting cold stress
treatment and corresponding control at each time point and
false discovery rate corrected p-values were calculated using the
EdgeR package implemented in R (Robinson et al., 2010).

Gene Ontology (GO) annotations of switchgrass genes were
downloaded from JGI Data Portal as of 07.08.2021 (https://data.
jgi.doe.gov). Fisher’s exact test was conducted to identify GO
categories enriched in cold-responsive genes at each time point
versus all the other genes in the genome. The resulting p-values
were adjusted using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995), and GO terms with adjusted
p-values < 0.05 were considered as enriched for cold-responsive
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genes (https://github.com/ShiuLab/Manuscript_Code/tree/
master/2022_switchgrass_cold pCREs). The GO enrichment
analysis was also conducted for genes that contain pCREs
from the same pCRE distance cluster versus all the genes in
the genome (see next sections).

Identification of cold-responsive putative
cis-regulatory elements

Cold-responsive genes were defined as genes that were either
significantly up-regulated (Log,FC>1 and adjusted p < 0.05) or
down-regulated (Log,FC<-1 and adjusted p < 0.05) upon cold
treatment at each time point. Genes were defined as non-
responsive to cold at any of the six time points and
nonresponsive to the other three stress conditions mentioned
above (|log,FC|<0.5 and/or adjusted p>0.05). Here, stress
conditions other than cold treatment were considered to
define non-responsive genes, because previous studies have
found that stress-responsive CREs could activate genes under
multiple stress conditions (Zou et al., 2011; Azodi et al,, 2020).
Thus, contrasting the cold-responsive genes against genes that
are not responsive to combined stresses would allow us to
identify the full scale of pCREs, ie., both cold-stress-specific
pCREs and pCREs responsible for multiple stress conditions
including cold stress.

To identify pCREs, we applied a combination of a k-mer
enrichment approach and machine learning. To avoid data
leakage, for each time point, cold-responsive genes (up- or
down-regulated after cold treatment) and non-responsive
genes were split where 80% of the genes were used as the
training set and 20% were the test set. The test set was set
aside and was not used for any pCRE identification or modeling
steps. For the k-mer enrichment step, genes in the training set
were further split into five bins. For each bin, we first identified
all possible k-mers (k=5-8 nucleotides where a forward k-mer
was considered as the same as its reverse complements) from
1kb upstream, gene body including 5° and 3’ untranslated
regions, and 1kb downstream regions of both cold-responsive
and non-responsive genes. K-mers enriched for cold-responsive
genes (Fisher’s exact test adjusted p-value<0.05) were identified
for each bin, and the k-mers commonly enriched among all five
bins were used as features to establish machine learning models
classifying cold-responsive genes (positive examples) and non-
responsive genes (negative examples) in the training set.

To create a balanced training dataset (same numbers of
positive and negative examples), genes in the minority class with
fewer instances were randomly up-sampled using the Synthetic
Minority Over-sampling Technique (Chawla et al., 2002). We
also experimented with down-sampling where the majority class
was randomly selected to match the number of minority class
genes. Classification models were built for each time point to
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predict cold-responsive and non-cold responsive genes using the
random forest algorithm (Breiman, 2001) and grid search was
conducted based on 60 hyperparameter combinations
(‘max_depth’: [3, 5, 10], ‘max_features’ [0.1, 0.5, ‘sqrt’, log2’,
None], ‘n_estimators™: [10, 100, 500, 1000]) in a five-fold cross-
validation scheme where every gene was used in the validation
set exactly once. The optimal hyperparameter set was selected
based on F1 score of the validation set predictions. F1 measure is
the harmonic mean of precision and recall. An “optimal” model
for each time point was then built using all training instances
with the optimal hyperparameters. The final model for each time
point was then applied to predict the cold responsiveness of
genes in the testing set and model performance was evaluated
using F1 measure.

Selection of minimal pCRE sets as
features and determining relationships
between pCREs

To identify the minimal number of features (enriched k-
mers) that have a similar performance as the optimal model
using all features to distinguish cold-responsive from non-
responsive genes, features were selected based on Gini
importance defined as the impurity difference of a node in the
decision tree when the feature in question is used, a measure of
the contribution of a feature for distinguishing the cold-
responsive and non-responsive genes. New models use the
training set again by increasing the numbers of features used,
starting with just the top 10 important features and, for
subsequent models, increasing the number of features by 20 in
order of decreasing feature importance. The trend line of the
cross-validation F1 score against the number of features was fit
with the Michaelis-Menten Equation. For each time point the
minimal number of features was determined as where the fitted
line had a near zero differential (e.g., the 30 min model, S1
Figure), or where the F1 first reached 90% of the optimal model
FI if there was no clear plateau (e.g., the 30 min model, SI
Figure). Features within the minimal set were designated as
PCREs for the cold response at the time point in question. If the
same pCRE (an important k-mer with identical sequence) was
found among all time point models, we designated it as a general
PCRE, while a pCRE that was only identified in one time point
model was designated as time point-specific pCRE. To
determine the similarity between pCREs, pairwise PCC
distances between pCREs were calculated using the TAMO
package (Gordon et al.,, 2005), implemented in R. The distance
matrix was used to construct a UPGMA tree using average
linkage in the library ‘cluster’ in R (Maechler et al., 2012).
Sequence similarity of 0.39 was used as a threshold, such that
PCREs with similarity >0.39 can be treated as a single pCRE (Liu
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etal,, 2018). For each cluster of pCREs, the proportion of pCREs
in different categories (general or time point-specific pCRE
groups) were calculated using custom scripts (https://github.
com/ShiuLab/Manuscript_Code/tree/master/2022_switchgrass_
cold_pCREs).

Identification of transcription factors
with binding sites similar to pCREs

The assessment of sequence similarity between pCREs and
known transcription factor binding sites (TFBSs) was carried out
using the Motif Discovery Pipeline (https://github.com/ShiuLab/
MotifDiscovery.git) as described in (Azodi et al., 2020). For this
analysis, only the pCREs responsible for up-regulation upon
cold treatment were considered. Known TFBS data was retrieved
from two datasets: (1) DNA Affinity Purification sequencing
(DAP-seq) database, where in-vitro DNA binding assays were
performed for 344 TFs in Arabidopsis thaliana; (2) Catalog of
Inferred Sequence Binding Preferences (CIS-BP) database,
where position frequency matrices (PFMs) for TFBS of 190
TFs (non-redundant TFBS with DAP-seq database) in A.
thaliana were available (Weirauch et al,, 2014). To assess the
similarity between pCREs and TFBSs, the Pearson’s Correlation
Coefficients (PCC) between the position weighted matrices
(PWMs) of pCREs and PWMs of TFBSs were calculated as
described in (Azodi et al., 2020). The top matching TFBS for
each pCRE was reported in three threshold levels (same TF,
same family, or significantly more similar than randomly
expected) as described in (Azodi et al, 2020). To determine
the similarity between pCRE and TFBMs for TFs regulating cold
response, we checked if pCRE-TFBM PCC is higher than 95th
percentile of the PCCs calculated among TFBMs of different
transcription factors families. This is a mid-stringency threshold
out of the three thresholds we used to find similarities between
pPCREs and TFBMs. Since we are using Arabidopsis TFBMs to
identify similar binding sites of specific TFs in switchgrass, we
wanted to use TFBMs with the highest similarity when
compared with other families of TFs, which with a higher
stringency threshold would not have been found. Using this
mid-stringency threshold we will be able to say if a pCRE
resembles a specific binding site of a particular TF in
comparison with other TFs in different TF families.

To assess how well the binding sites of TFs known to
regulate cold response might predict cold response, we
collected known cold regulation TFs through a literature
search (54 Table). Using PWMs of binding sites of TFs known
to regulate cold stress in plants (cold-CREs), we mapped similar
binding sites in up-regulated genes in different time points.
Based on absence/presence of cold-CREs in a gene we recreate
feature tables for genes that are up-regulated in each time point.
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Using the similar machine learning methods used in the
“Identification of cold-responsive putative cis-regulatory
elements” section, we made models to predict cold
responsiveness of a gene up-regulated in each time point using
cold-TFBMs. The performance of these models were then
compared to our original time point models.
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SUPPLEMENTARY FIGURE 1

Properties of cold-responsive genes at different time points. (A) Matrix showing
the number of up-regulated (top left triangle) and down-regulated (bottom
right triangle) genes at different time points after cold treatment. Color scale and
number within the cell on the diagonal represent the count of time point-
specific cold-responsive genes, while those in other cells indicate the number
of responsive genes shared between two time points. For example, the number
eightinthe top left cellindicates that there are eight genes that are up-regulated
at both 30 min and 24 hrs. (B, C) Biological process GO terms that are
significantly enriched (g < 0.05) for genes that are down-regulated (B) or up-
regulated (C) at different time points. Color scale: -logio(q) for over-
representative GO terms, and log10(q) for under-representative GO terms.

SUPPLEMENTARY FIGURE 2

Feature selection. Graphs show the relationship between the Flscore and the
number of features in time point models distinguishing genes up-regulated (left
panel) or down-regulated (right panel) after cold treatment from non-responsive
genes. The data points were fitted using the Michaelis-Menten Equation.

SUPPLEMENTARY FIGURE 3
pCREs that were identified from models predictive of genes up-regulated
in >1 time points and their resemblances with known cold-CREs.

SUPPLEMENTARY FIGURE 4

Heatmap showing feature importance in the cold-TFBM models. Color scale and
numbers in the cells represent the importance rank of features that have positive
Gini indexes, the darker color and smaller number, the more important a feature
was. Gray color indicates that the Gini index for the feature was negative.

SUPPLEMENTARY FIGURE 5

A dendrogram showing relationships among general and time point-
specific pCREs based on pairwise PCC distances. The dendrogram is
clustered based on the similarity threshold of 0.39.

SUPPLEMENTARY FIGURE 6
Heatmaps showing the degrees of differential expression of genes that
contain pCREs from different pCRE clusters at different time points after
cold treatment. Color scale indicates log fold change values.

SUPPLEMENTARY FIGURE 7

Frequency of genes showing a specific expression profiles (e.g.,, NNUDNN, y-
axis) and containing pCREs that belong to different pCRE clusters (x-axis).
Color scale indicates log,(counts) of genes showing the expression profile. U,
up-regulated; D, down-regulated; N, non-responsive.

SUPPLEMENTARY FIGURE 8

Degrees of enrichment of genes containing pCREs from a pCRE cluster (x-
axis) that also have a specific expression profile (e.g., NNUDNN, y-axis). The
color scale represents the log odds ratio, which was calculated as ratios
between two values. The first value is the number of genes containing pCRE
in cluster C and having expression profile P divided by the number of genes
with Cand notin P. The second value is the number of genes withno C butin P
divided by the number of genes without C and not in P.

SUPPLEMENTARY TABLE 1
Metadata of the transcriptome sequences used in this study.

SUPPLEMENTARY TABLE 2
Number of features selected in the feature selection processes and the
best threshold used in different time point models.

SUPPLEMENTARY TABLE 3

Enrichment p-values, feature importance scores, feature importance ranks,
and summary of the similarity between pCREs and in-vitro transcription
factor binding site data of pCREs in different time point models.
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