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Hadamard Extensions and the Identification of
Mixtures of Product Distributions

Spencer L. Gordon and Leonard J. Schulman

Abstract—The Hadamard Extension H(m) of an n×k matrix
m is the collection of all Hadamard products of subsets of its
rows. This construction is essential for source identification (pa-
rameter estimation) of a mixture of k product distributions over
n binary random variables. A necessary requirement for such
identification is that H(m) have full column rank; conversely,
identification is possible if apart from each row there exist two
disjoint sets of rows of m, each of whose extension has full column
rank. It is necessary therefore to understand when H(m) has full
column rank; we provide two results in this direction. The first
is that if H(m) has full column rank then there exists a set of at
most k − 1 rows of m, whose extension already has full column
rank. The second is a Hall-type condition on the values in the
rows of m, that suffices to ensure full column rank of H(m).

Index Terms—Machine Learning Algorithms, Mixture Models,
Parameter Estimation.

I. INTRODUCTION

The Hadamard product for row vectors u = (u1, . . . , uk),
v = (v1, . . . , vk) is the mapping ⊙ : Rk ×Rk → Rk given by

u⊙ v := (u1v1, . . . , ukvk)

The identity for this product is the all-ones vector 1. We
associate with vector v the linear operator v⊙ = diag(v), a
k × k diagonal matrix, so that

u · v⊙ = v ⊙ u.

Throughout this paper m is a real matrix with row set [n] :=
{1, . . . , n} and column set [k]; write mi for a row and mj

for a column.
As a matter of notation, for a matrix Q and nonempty sets

R of rows and C of columns, let Q|CR be the restriction of Q
to those rows and columns (with either index omitted if all
rows or columns are retained).

Definition 1. The Hadamard Extension of m, written H(m),
is the 2n × k matrix with rows mS for all S ⊆ [n], where,
for S = {i1, . . . , iℓ}, mS = mi1 ⊙ · · · ⊙ miℓ ; equivalently
mj

S =
∏

i∈S mj
i . (In particular m∅ = 1.)

This construction originated recently in learning theory [3],
[8] where it is arises naturally and unavoidably when we wish
to perform source identification (i.e., parameter estimation)
given data from a mixture (convex combination) of k product
distributions on n binary random variables. We explain the
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connection further in Section II. Motivated by this application,
we are interested in the following two questions:

(1) If H(m) has full column rank, must there exist a subset
R of the rows, of bounded size, such that H(m|R) has full
column rank?

(2) In each row of m, assign distinct colors to the distinct
real values. Is there a condition on the coloring that ensures
H(m) has full column rank?

In answer to the first question we show:

Theorem 2. If H(m) has full column rank then there is a set
R of no more than k−1 of the rows of m, such that H(m|R)
has full column rank.

Considering the more combinatorial second question, ob-
serve that if m possesses two identical columns then the same
is true of H(m), and so the latter cannot have full column
rank. Extending this further, suppose there are three columns
C in which only one row r has more than one color. Then
rowspaceH(m|C) is spanned by 1|C and r|C , so again H(m)
cannot have full column rank. Motivated by these necessary
conditions, set:

Definition 3. For a matrix Q let NAE(Q) be the set of
nonconstant rows of Q (NAE=“not all equal”); let ε(Q|C) =
|NAE(Q|C)| − |C|; and let ε(Q) = minC ̸=∅ ε(Q|C). If
ε(Q) ≥ −1 we say Q satisfies the NAE condition.

In answer to the second question we have the following:

Theorem 4. If m satisfies the NAE condition then
(a) There is a restriction of m to some k − 1 rows R such

that ε(m|R) = −1.
(b) H(m) is full column rank.

(As a consequence also H(m|R) is full column rank.)

Apparently the only well-known example of the NAE
condition is when m contains k − 1 rows which are iden-
tical and whose entries are all distinct. Then the vectors
m∅,m{1},m{1,2}, . . . ,m{1,...,k−1} form a nonsingular Van-
dermonde matrix. This example shows that the bound of k−1
in (a) is best possible.

For another example in which the NAE condition ensures
that rankH(m) = k, take the (k−1)-row matrix with mj

i = 1
for i ≤ j and mj

i = 1/2 for i > j. Here the NAE condition
is only minimally satisfied, in that for every ℓ ≤ k there are ℓ
columns C s.t. ε(m|C) = −1.

For k > 3 the NAE condition is no longer necessary in order
that H(m) have full column rank. E.g., for k = 2ℓ, the ℓ× k
“Hamming matrix” mj

i = (−1)ji where j is an ℓ-bit string
j = (j1, . . . , jℓ), forms H(m) = the Fourier transform for the
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group (Z/2)ℓ (often called a Walsh or Hadamard transform),
which is invertible.

Furthermore, for k ≤ 2ℓ, almost all (in the sense of
Lebesgue measure) ℓ×k matrices m form a full-column-rank
H(m). (For k = 2ℓ this is because detH(m) is a polynomial
in the entries of m, and the Walsh example shows that this
polynomial is nonzero. For k < 2ℓ, consideration of the same
2ℓ × 2ℓ Walsh transform implies that there are some k rows
of H(m) such that the determinant of the minor they form is
a nonzero polynomial.) Despite this observation, the Vander-
monde case, in which k−1 rows are required, is very typical,
as it is what arises in H(m) for a mixture model of observables
Xi that are iid conditional on a hidden variable. Another class
of examples that is far from Lebesgue-typical, and furthermore
also far from being “separated” (see next section), is this.
There are two possible coins, with biases p1 ̸= p2. A hidden
variable H is sampled in {0, . . . , k−1}, and then the process is
that you observe the result of H independent tosses of coin 1,
followed by k−1−H independent tosses of coin 2. The NAE
condition implies that here H(m) has full column rank. As a
consequence (applying [8]) the following model is identifiable:
a hidden H is sampled (from unknown prior) in {0, . . . , k−1},
and then you observe the result of 2H independent tosses of
coin 1 followed by 2k − 1 − 2H independent tosses of coin
2. A similar class of examples (sometimes identifiable but in
general not) are the “subcube mixtures” studied in [3], where
all coin biases must be one of {0, 1/2, 1}.

II. MOTIVATION

Consider observable random variables X1, . . . , Xn that are
statistically independent conditional on H , a hidden or latent
random variable H supported on {1, . . . , k}. (See causal
diagram.)

X1 X2
. . . Xi

. . . Xn

H

The most fundamental case is that the Xi are binary.
Then we denote mj

i = Pr(Xi = 1|H = j). The model
parameters are m along with a probability distribution (the
mixture distribution) π = (π1, . . . , πk) on H .

The study of finite mixture models was pioneered in the late
1800s in [13], [14]. The problem of learning such distributions
has drawn a great deal of attention. For surveys see, e.g., [5],
[17], [11], [12]. For some algorithmic papers on discrete-
valued Xi, see [9], [4], [7], [2], [6], [1], [15], [10], [3], [8].
The source identification (or parameter estimation) problem
is that of computing (m, π) from the joint statistics of the
Xi. Put another way, the problem is to invert the multilinear
moment map

µ : (m, π) → R2[n]

µ(m, π)S = Pr(XS = 1) where S ⊆ [n], XS =
∏

i∈S
Xi

= mS · π⊤

Since mj
S = Pr(XS = 1|H = j), this shows the essential

role of H(m) in the mixture model.

Connection to rankH(m)

In general µ is not injective (even allowing for permutation
among the values of π and columns of m). For instance it is
clearly not injective if m has two identical columns (unless π
places no weight on those). More generally, and assuming all
πj > 0, it cannot be injective unless H(m) has full column
rank. (Suppose α ∈ Rk is nonzero s.t. H(m)α = 0. Since
(H(m)α)|{∅} = 0,

∑
j αj = 0. So for sufficiently small δ > 0,

π+δα is a mixture distribution, distinct from π, with identical
statistics.)

One sufficient condition for injectivity, due to [16], is that
there be 2k − 1 “separated” observables Xi. Xi is separated
if all mj

i are distinct, or in our terminology, if no color
recurs in mi. (Further it is shown in [8], Theorem 1, that
one can lower bound the distance between µ(m, π) and any
µ(m′, π′) in terms of ζ = mini minj ̸=j′ |mj

i −mj′

i | and the
distance between (m, π) and (m′, π′).) There are examples
with X1, . . . , X2k−1 where the mapping is injective but is no
longer so if any single Xi is omitted [15].

A weaker and still sufficient condition for injectivity of µ,
due to [8], is that for every i ∈ [n] there exist two disjoint
sets A,B ⊆ [n] − {i} such that H(m|A) and H(m|B) have
full column rank. (It is not known whether two disjoint such
A,B are strictly necessary.)

Observable Xi with larger finite range

If each Xi can take on one of say L values, m can be
considered as a nonnegative n×k×L real array, with mj

i,ℓ =

Pr(Xi = ℓ|H = j),
∑L

ℓ=1 m
j
i,ℓ = 1; the multivariate moments

are indexed not by sets S but by mappings S : [n] → [L], with
mS = mS(1) ⊙ · · · ⊙mS(n) and

µ : (m, π) → R[L][n]

µ(m, π)S = Pr(XS = 1) where XS =
∏n

i=1
δXi,S(i)

(Kronecker delta)

= mS · π⊤

For any given k, if L is sufficiently large and m satisfies a
certain nonsingularity condition, the mixture learning problem
becomes easier; this insight is due to [1]. It will be interesting
to explore what conditions exactly m must satisfy for identi-
fiability (for positive π), for arbitrary L. But in this paper we
study only the most extreme, and hardest for identification,
case L = 2.

III. SOME THEORY FOR HADAMARD PRODUCTS, AND A
PROOF OF THEOREM 2

For v ∈ Rk and U a subspace, extend the definition of v⊙
to

v⊙(U) = {u · v⊙ : u ∈ U}

and introduce the notation

v⊙̄(U) = span(U ∪ v⊙(U)).
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We want to understand which subspaces U are invariant
under v⊙̄. Let v have distinct values λ1 > . . . > λℓ for ℓ ≤ k.
Let the polynomials pv,i (i = 1, . . . , ℓ) of degree ℓ − 1 be
the Lagrange interpolation polynomials for these values, so
pv,i(λj) = δij (Kronecker delta). Let B(v) denote the partition
of [k] into blocks B(v)(i) = {j : vj = λi}. Let V(i) be the
space spanned by the elementary basis vectors in B(v)(i), and
P(i) the projection onto V(i) w.r.t. the standard inner product.
Since v⊙ is diagonal with entries λi in B(v)(i), we have the
matrix equation

pv,i(v⊙) = P(i), (1)

where pv,i is interpreted as a matrix polynomial. The col-
lection of all linear combinations of the matrices P(i) is a
commutative algebra, the B(v) projection algebra, which we
denote AB(v). The identity of the algebra is I =

∑
P(i).

Definition 5. A subspace of Rk respects B(v) if it has a basis
in which each vector lies in some V(i).

For a subspace U we let U⊥ be its orthogonal complement
w.r.t. the standard inner product.

For U respecting B(v) write U = span(
⋃
U(i)) for

U(i) ⊆ V(i). (Thus U =
⊕

U(i) and U(i) = P(i)U .) Let
D(i) = (U(i))

⊥ ∩ V(i). Then (U(i))
⊥ = D(i) ⊕

⊕
j ̸=i V(j).

Lemma 6. A subspace U⊥ respects B(v) if U does.

Proof. The subspaces of an inner product space form an
orthocomplemented lattice in which the meet operation is
intersection, and the negation operation is orthogonal comple-
ment. So for any subspaces W,W ′ we have De Morgan’s law
(span(W ∪W ′))⊥ = W⊥ ∩W ′⊥. Thus U⊥ =

⋂
(U(i))

⊥ =⊕
D(i).

Lemma 7. A subspace U respects B(v) iff U =
⊕

(P(i)U).

Proof. (⇐): Because this gives an explicit representation of
U as a direct sum of subspaces each restricted to some V(i).

(⇒): By definition U is spanned by some collection of
subspaces V ′

(i) ⊆ V(i); since these subspaces are necessarily
orthogonal, U =

⊕
V ′
(i). Moreover, since P(i) annihilates

V(j), j ̸= i, and is the identity on V(i), it follows that each
V ′
(i) = P(i)U .

Theorem 8. A subspace U is invariant under v⊙̄ iff U respects
B(v).

Proof. (⇐): Let w ∈ U and write w =
∑

wi for wi ∈ U(i).
Then v⊙wi = λiwi ∈ U(i). So v⊙w =

∑
v⊙wi ∈

⊕
U(i) =

U .
(⇒): If U = v⊙̄(U) then these also equal v⊙̄(v⊙̄(U)), etc.,

so U is an invariant space of AB(v), meaning, aU ⊆ U for any
a ∈ AB(v). In particular, applying (1), this holds for a = P(i).
So U ⊇

⊕
(P(i)U). On the other hand, since

∑
P(i) = I ,

U = (
∑

P(i))U ⊆
⊕

(P(i)U). So U =
⊕

(P(i)U). Now apply
Lemma 7.

The symbol ⊂ is reserved for strict inclusion.

Lemma 9. If R, T ⊆ [n] and rowspaceH(m|R) ⊂
rowspaceH(m|R∪T ), then there is a row t ∈ T such that
rowspaceH(m|R) ⊂ rowspaceH(m|R∪{t}).

Proof. Without loss of generality R, T are disjoint. Let
T ′ ⊆ T be a smallest set s.t. ∃R′ ⊆ R s.t. mR′ ⊙
mT ′ /∈ rowspaceH(m|R). Select any t ∈ T ′ and write
mR′ ⊙ mT ′ = mR′ ⊙ mT ′−{t} ⊙ mt. By minimality
of T ′, mR′ ⊙ mT ′−{t} ∈ rowspaceH(m|R). But then
mR′⊙mT ′ ∈ rowspaceH(m|R∪{t}), so rowspaceH(m|R) ⊂
rowspaceH(m|R∪{t}).

Proof of Theorem 2. This is now a consequence of Lemma 9.
Start with R = ∅, and repeatedly use the Lemma to adjoin to
R a row from [n]\R which will increase the rank of H(m|R)
by at least 1.

Remark

rankH(m), along with a basis (using only rows of H(m))
for rowspaceH(m), can be computed in time O(nk3) using
Chen and Moitra’s “GrowByOne” procedure [3]. For com-
pleteness here is a version of that procedure: For ℓ ≥ 0 let
Wℓ = span(m|[ℓ]), and let rℓ = rankWℓ. Wℓ is spanned by
some vectors mSℓ,1

, . . . ,mSℓ,rℓ
, with all Sℓ,i ⊆ [ℓ], which we

compute as follows. For ℓ = 0 we have r0 = 1, S0,1 = ∅.
For ℓ > 1 form the matrix with rows mSℓ−1,1

, . . . ,mSℓ−1,rℓ−1

followed by rows mSℓ−1,1∪{ℓ}, . . . ,mSℓ−1,rℓ−1
∪{ℓ}. Perform

Gaussian elimination to zero-out all but rℓ−rℓ−1 of the second
batch of rows. The first batch, together with the non-eliminated
rows of the second batch, become mSℓ,1

, . . . ,mSℓ,rℓ
.

IV. COMBINATORICS OF THE NAE CONDITION: PROOF OF
THEOREM 4(A)

Recall we are to show: If ε(m) ≥ −1 then m has a
restriction to some k − 1 rows on which ε = −1.
Proof of Theorem 4(a). We induct on k. The (vacuous) base-
case is k = 1.

For k > 1, we proceed by way of contradiction. Suppose the
theorem fails for k, and let m be a k-column counterexample
with the least possible number of rows, n. So n > k− 1 ≥ 1.
Necessarily every row of m is in NAE(m). Our strategy is to
show m has a restriction m′ to n−1 rows, for which ε(m′) ≥
−1; this will imply a contradiction because, by minimality of
the number of rows of m, m′ has a restriction to k − 1 rows
on which ε = −1.

If ε(m) ≥ 0 then we can remove any single row of m and
still satisfy ε ≥ −1.

Otherwise, ε(m) = −1, so there is a nonempty S such
that |NAE(m|S)| = |S| − 1; choose a largest such S. It
cannot be that S = [k] (as then n = k − 1). Arrange the
rows NAE(m|S) as the bottom |S| − 1 rows of the matrix.
As discussed earlier, for the NAE condition one may regard
the distinct real values in each row of m simply as distinct
colors; relabel the colors in each row above NAE(m|S) so the
color above S is called “white.” (There need be no consistency
among the real numbers called white in different rows.) See
Fig. 1.

Due to the maximality of |S| and the fact that ε(m) ≥ −1,
there is no set of columns S′ with S ⊂ S′ such that for some
set of rows A ⊆ [n] − NAE(m|S), with |A| = n − |S′| + 1,
m|S′

A is all white. That is to say, if we form a bipartite graph
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Fig. 1. Argument for Theorem 4(a). Upper-left region is white. Entries (t, f(t)) (indicated with black dots) are not white.

on “right” vertices corresponding to the columns [k]−S, and
“left” vertices corresponding to the rows [n] − NAE(m|S),
with non-white cells being edges, then any subset of the right
vertices of size ℓ ≥ 1 has at least ℓ + 1 neighbors within the
left vertices.

By the induction on k (since S ̸= ∅), for the set of columns
[k] − S there is a set R′′ of k − |S| − 1 rows such that
ε(m|[k]−S

R′′ ) = −1. Together with the rows of NAE(m|S) this
amounts to at most k − 2 rows, so since n ≥ k, we can
find two rows outside this union; delete either one of them,
leaving a matrix m′ with n − 1 rows. This matrix has the
rows NAE(m|S) at the bottom, and n − |S| remaining rows
which we call R′. The lemma will follow by showing that
ε(m′) ≥ −1.

In m′, the induced bipartite graph on right vertices [k]− S
and left vertices R′ has the property that any right subset of
size ℓ ≥ 1 has a neighborhood of size at least ℓ in R′. Applying
Hall’s Marriage Theorem, there is an injective f : [k]−S → R′

employing only edges of the graph.
Now consider any nonempty set of columns T , and write

it as T = T1 ∪ T2 for T1 ⊆ [k]− S and T2 ⊆ S. We need to
show that ε(m′|T ) ≥ −1. Let R1 = NAE(m′|T1) ∩ R′′ and
R2 = NAE(m′|T2). We have that |R1| ≥ |T1| − 1 because
ε(m|[k]−S

R′′ ) = −1. We further have that |R2| ≥ |T2| − 1 be-
cause ε(m) ≥ −1 and because NAE(m|T2) ⊆ NAE(m|S) =
NAE(m′|S), so no row of NAE(m|T2) has been removed in
m′.

If T2 = ∅, the rows R1 witness that ε(m′|T ) ≥ −1.
Likewise if T1 = ∅, the rows R2 witness the same conclusion.

Lastly suppose both T1 and T2 are nonempty. Nonemptyness
of T2 gives |NAE(m|T2)| ≥ |T2| − 1. Now use the matching

f . The set of rows f(T1) lies in R′ and is therefore disjoint
from NAE(m|T2), which as noted is a subset of NAE(m′|S).
Moreover since T2 ̸= ∅, every entry (t, j) for t ∈ T2, j ∈ R′ is
white. On the other hand due to the construction of f , for every
t ∈ T1 the entry (t, f(t)) is non-white. Therefore every row in
f(T1) is in NAE(m′|T1∪T2). So |NAE(m′|T1∪T2)| ≥ |T2|−1+
|T1|, which is to say ε(m′|T ) ≥ −1. Thus ε(m′) ≥ −1.

V. FROM NAE TO RANK: PROOF OF THEOREM 4(B)

Recall we are to show: H(m) has full column rank if
ε(m) ≥ −1.
Proof of Theorem 4(b). The case k = 1 is trivial. Now suppose
k ≥ 2 and that Theorem 4(b) holds for all k′ < k. Any
constant rows of m affect neither the hypothesis nor the
conclusion, so remove them, leaving m with at least k − 1
rows. Now pick any set, C, of k − 1 columns of m. By
Theorem 4(a) there are some k − 2 rows of m, call them
R′, on which ε(m|CR′) = −1. Let v be a row of m outside
R′. Let R′′ denote the set of rows of m other than v. Since R′′

contains R′, by induction dim rowspaceH(m|CR′′) = k − 1.
Therefore U := rowspaceH(m|R′′) ⊆ Rk is of dimension at
least k − 1. We claim now that dim v⊙̄(U) = k. (Note that
v⊙̄(U) = rowspaceH(m).)

Suppose to the contrary that dim v⊙̄(U) = k − 1. It must
then be that dimU = k − 1 and v⊙̄(U) = U . So as proven
in Theorem 8, U respects B(v). Since v is nonconstant, B(v)
is a partition of [k] into ℓ ≥ 2 nonempty blocks B(v)(i),
and U =

⊕ℓ
i=1 U(i) with U(i) = P(i)U(i). So there is some

i0 for which U(i0) ⊂ V(i0); specifically, U(i) = V(i) for all
i ̸= i0, and dimU(i0) = dimV(i0) − 1. Since |B(v)(i0)| <
k, we know by induction that P(i0) rowspaceH(m) = V(i0).
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But since rowspaceH(m) = v⊙̄(U) = U , this means that
P(i0)U = V(i0). Contradiction.
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