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Abstract. Sea level rise and coastal erosion have inundated
large areas of Arctic permafrost. Submergence by warm
and saline waters increases the rate of inundated permafrost
thaw compared to sub-aerial thawing on land. Studying the
contact between the unfrozen and frozen sediments below
the seabed, also known as the ice-bearing permafrost table
(IBPT), provides valuable information to understand the evo-
lution of sub-aquatic permafrost, which is key to improving
and understanding coastal erosion prediction models and po-
tential greenhouse gas emissions. In this study, we use data
from 2D electrical resistivity tomography (ERT) collected in
the nearshore coastal zone of two Arctic regions that differ
in their environmental conditions (e.g., seawater depth and
resistivity) to image and study the subsea permafrost. The
inversion of 2D ERT data sets is commonly performed us-
ing deterministic approaches that favor smoothed solutions,
which are typically interpreted using a user-specified resis-
tivity threshold to identify the IBPT position. In contrast, to
target the IBPT position directly during inversion, we use a
layer-based model parameterization and a global optimiza-
tion approach to invert our ERT data. This approach results
in ensembles of layered 2D model solutions, which we use to
identify the IBPT and estimate the resistivity of the unfrozen
and frozen sediments, including estimates of uncertainties.
Additionally, we globally invert 1D synthetic resistivity data
and perform sensitivity analyses to study, in a simpler way,
the correlations and influences of our model parameters. The
set of methods provided in this study may help to further ex-
ploit ERT data collected in such permafrost environments as
well as for the design of future field experiments.

1 Introduction

In Arctic coastal regions, contemporary subsea permafrost
thawing starts following the inundation caused by sea level
rise and coastal erosion. Seawater is typically warmer than
mean annual air temperatures, and the presence of saltwa-
ter (mostly through diffusive processes) lowers the freezing
point of the seabed (Harrison and Osterkamp, 1978; Are,
2003). Additionally, groundwater flow of freshwater from
inland areas might play an important role in thawing per-
mafrost (Frederick and Buffett, 2015; Pedrazas et al., 2020),
comparable to warm discharge from large rivers (Shakhova
et al., 2017). Subsea permafrost is estimated to contain
a large quantity of organic carbon (Sayedi et al., 2020),
which can decompose microbially to generate carbon diox-
ide and/or methane after the permafrost thaws. Furthermore,
gas hydrates are present in subsea permafrost and may act
as an additional source of methane if they dissociate (Ruppel
and Kessler, 2017). Understanding the development of per-
mafrost degradation rates helps to fine-tune predictive mod-
els of greenhouse gas emissions that may represent a positive
feedback for climate warming (Schuur et al., 2015). Further-
more, the correlation between permafrost degradation and
coastal erosion proposed by Are (2003) and Overduin et al.
(2012, 2016) might be used to refine coastal dynamics mod-
els.

Subsea permafrost is a perennially cryotic (< 0 ◦C) layer
or body of sediments underneath a marine water column (An-
gelopoulos et al., 2020a). These sediments can be frozen or
unfrozen. A layer of unfrozen ground in a permafrost area is
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known as talik, and in particular, the perennially cryotic un-
frozen sediments forming part of the permafrost are known
as cryopegs (Permafrost Subcommittee, 1988). Cryopegs can
be isolated pockets or layers and are commonly found along
Arctic coasts in saline marine sediments that are exposed fol-
lowing a marine regression, for example, due to isostatic up-
lift (O’Neill et al., 2020). Offshore, cryotic unfrozen sedi-
ment in between the water column and frozen ground is still
generally referred to as a talik (Osterkamp, 2001). The sub-
sea permafrost that contains ice is known as ice-bearing per-
mafrost, and when the soil particles are cemented together
by ice, it is termed ice-bonded permafrost (Permafrost Sub-
committee, 1988). Because traditional geophysical methods
such as electrical resistivity tomography (ERT) and seismic
techniques can only distinguish between sediments with no
or low ice content from those with high ice content (note that
direct sampling is required for a quantitative estimation of ice
content), we refer to them as unfrozen and frozen sediments
in this study, and the interface that separates them is the ice-
bearing permafrost table (IBPT). Imaging and determining
the position of the IBPT (e.g., using geophysical or borehole
data) is important for a better process understanding of sub-
sea permafrost evolution and to infer degradation rates. For
example, dividing the depth to the IBPT by the time since
inundation results in the mean annual degradation rate (e.g.,
Are, 2003; Overduin et al., 2012, 2016).

Among the most used geophysical imaging techniques to
study the subsea permafrost are different electromagnetic
and seismic methods as well as ERT (Scott et al., 1990;
Kneisel et al., 2008; Hubbard et al., 2013). Electromag-
netic induction (EMI) methods are promising techniques to
map both the top and bottom boundaries of the permafrost
and might be used for a wide range of water depths (e.g.,
Sherman et al., 2017). EMI methods can properly work un-
der low-resistivity seawater layers, while the use of ground-
penetrating radar (GPR) is limited to freshwater bottom-fast
ice environments characterized by high electrical resistivity
values as found in delta areas (e.g., Stevens et al., 2009).
Seismic methods have been employed widely in deep-water
environments (e.g., Rekant et al., 2015; Brothers et al., 2016),
and, more recently, researchers have used recordings of am-
bient seismic noise in shallow waters to map the IBPT (e.g.,
Overduin et al., 2015a). The ERT method is a suitable tool
to investigate the resistivity distribution of the unfrozen sed-
iments (e.g., talik and cryopeg) and for studying and delin-
eating the IBPT position (e.g., Sellmann et al., 1989; Over-
duin et al., 2012, 2016; Angelopoulos et al., 2019, 2020b;
Angelopoulos, 2022; Pedrazas et al., 2020).

In marine ERT surveying, floating electrodes are typically
used to inject a current and measure potential differences that
are used to calculate apparent electrical resistivity data. In the
summer season of the Arctic, the measured values are often
influenced by the resistivity and thickness of the water layer
and by the unfrozen and frozen sediments. The ERT method
can detect the IBPT but does not necessarily distinguish non-

cryotic from cryotic taliks above the IBPT. The resistivity of
seawater depends mainly on the amount of dissolved salts
and temperature. The dissolved salts are mostly affected by
water inflows from rivers and the cycles of sea ice melting,
freezing, and brine release. The resistivity of the seawater is
commonly in the range of 0.1 to 40�m (e.g., Sellmann et al.,
1989; Lantuit et al., 2011). On the other hand, the resistivity
of the underlying sediments is influenced by porosity, pore
size, grain size, water and ice content, porewater salinity, and
temperature (Kneisel et al., 2008; Wu et al., 2017). For ex-
ample, the resistivity of unfrozen sediments typically ranges
from 1 to 25�m (e.g., Sellmann et al., 1989; Overduin et al.,
2012; Angelopoulos et al., 2019), while the resistivities of
frozen sediments might vary from 10�m up to more than
1000�m (e.g., Overduin et al., 2012, 2016; Pedrazas et al.,
2020; Rangel et al., 2021). The higher the ice content is, the
more resistive the medium is (Pearson et al., 1986; Fortier
et al., 1994; Kang and Lee, 2015). In cases where the re-
sistivity of the frozen sediments is several orders of magni-
tude higher than the resistivity of the overlying unfrozen sed-
iments, the electrical current injected through the electrodes
is expected to be channeled through the less resistive layers
(e.g., Spitzer, 1998), resulting in a limited penetration of the
current system into the frozen sediment layers.

When analyzing ERT data collected in subsea permafrost
environments, defining an appropriate inversion and model
parameterization strategy is critical for deriving reliable re-
sistivity models and interpreting these models in terms of
the IBPT position. For example, when a priori information
suggests that the nature of the contact between the unfrozen
and frozen sediments is gradual, a grid-based model param-
eterization and a local inversion algorithm favoring vertical
and/or horizontal smoothness in the final models might be
an appropriate choice (e.g., Loke and Barker, 1996; Günther
et al., 2006). Here, the experience of the interpreter might
help to guess a specific resistivity threshold value to de-
fine the IBPT position (e.g., Overduin et al., 2016; Sherman
et al., 2017; Angelopoulos et al., 2021). Additionally, one
may also consider different gradient-based image-processing
approaches to extract interfaces from the inverted resistivity
model (e.g., Hsu et al., 2010; Chambers et al., 2012). Finally,
when we have ample evidence of a sharp contact between the
unfrozen and frozen sediments (e.g., Overduin et al., 2015b;
Angelopoulos et al., 2020a), a layer-based model parameter-
ization combined with a local and/or global inversion algo-
rithms might be more suitable (e.g., Auken and Christiansen,
2004; Akça and Basokur, 2010; De Pasquale et al., 2019;
Arboleda-Zapata et al., 2022).

In this study, we adapt the inversion and ensemble inter-
pretation strategies as proposed by Arboleda-Zapata et al.
(2022) to study submarine permafrost environments of the
Arctic in terms of the resistivity distribution of the unfrozen
and frozen sediments and the position of the IBPT, includ-
ing estimates of uncertainties. We analyze and compare ERT
data collected at two field sites in the Arctic characterized by
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different environmental conditions regarding seawater depth
and resistivity, coastal erosion rate, and the sediment porewa-
ter chemistry. Additionally, we generate and interpret ensem-
bles of globally inverted 1D electrical data to get a deeper
understanding of the inverse problem for typical resistivity
distributions in these kinds of environments. Finally, we also
implement local and global sensitivity analyses to recognize
the most influential parameters during 2D and 1D inversions.

2 Study sites

Our field data were collected at two field sites: one off-
shore of the southern part of the Bykovsky Peninsula in the
Siberian Laptev Sea (Fig. 1a) and the other one offshore of
Drew Point in the Alaskan Beaufort Sea (Fig. 1d). To relate
these data sets to the site-specific environmental settings, we
summarize the main characteristics of each study area in a
regional framework.

2.1 Regional setting of Bykovsky Peninsula

The Bykovsky Peninsula is located in northeastern Siberia
in the vicinity of the Lena River Delta. The peninsula is
mainly characterized by the presence of ice-rich sediments
(volumetric ice content exceeding 80 %, also known as the
Yedoma Ice Complex) that accumulated during the Late
Pleistocene (Schirrmeister et al., 2002; Grosse et al., 2007).
The Yedoma deposits extend to 15 m below sea level (Grig-
oriev, 2008). The sediments at or below sea level are com-
posed of silt, sand, and gravel with variable grain size dis-
tributions (Grosse et al., 2007). During the Early to Mid-
dle Holocene, a general landscape transformation started, re-
sulting in a thermokarst-dominated relief characterized by
thermo-erosional valleys and thermokarst lakes (Schirrmeis-
ter et al., 2002; Grosse et al., 2007). The mean coastal erosion
rates at different locations of the peninsula typically range
between 0.4 and 1.5 m yr−1, with maximum values of up to
10 m yr−1 mainly caused by storms and thermomechanical
erosion of ice-rich sediments (Lantuit et al., 2011). The sea-
water around the peninsula is strongly influenced by freshwa-
ter and sediments originating from the Lena River (Lantuit
et al., 2011). Additionally, the resistivity of the seawater is
influenced by seasonal sea ice freezing and melting as shown
by Lantuit et al. (2011), who report resistivity values for the
eastern shore of the Bykovsky Peninsula of less than 1�m
in winter and above 10�m in summer. Similar water resis-
tivity values are also reported by Overduin et al. (2016) for
the seawater near Muostakh Island. The depth of the seawater
for the southern part of the Bykovsky Peninsula deepens 2 m
within a distance of 100 m from the shoreline and increases
to 5 m at about 2000 m from the coast (Lantuit et al., 2011;
Fuchs et al., 2021).

2.2 Regional setting of Drew Point

Drew Point is located on the coast of the Alaskan Beau-
fort Sea. The local geology is characterized by glacioma-
rine, fine-grained, ice-rich sediments deposited in the Late
Pleistocene (Black, 1964; Ping et al., 2011). The inland ge-
omorphology is characterized by 3–5 m high coastal bluffs,
thermokarst channels and lakes, and ice-wedge polygons on
tundra plains with maximum elevations of ∼ 10 m (Barnhart
et al., 2014; Jones et al., 2018). The average coastal ero-
sion rate between 1979 and 2002 was around 9 m yr−1 (Jones
et al., 2009) and increased for the period 2002 to 2016 up
to approximately 20 m yr−1 (Jones et al., 2018). Lück (2020)
reports brackish water resistivities observed during fieldwork
in July 2018 of 0.4–0.5�m, with weak stratification visi-
ble in the water column profiles. The depth of the seawater
offshore of Drew Point deepens to 2 m within a distance of
500 m from the shoreline and increases to 3 m at distances of
about 2000 m from the coast (Jones et al., 2018).

3 Data acquisition

In marine ERT data acquisition, there is typically an excellent
coupling between the floating electrodes and the seawater.
This allows us to perform voltage measurements while the
boat pulling the electrode streamer is in motion (preferably
at constant speed) and, thus, to also efficiently measure pro-
files with a length on the order of kilometers. The sources of
errors during data acquisition are mainly related to misalign-
ments of the electrode streamer (e.g., due to water currents),
the precision of electrode positioning (which is given rela-
tive to boat position), vertical oscillation of electrodes (e.g.,
due to wavy conditions), and surface area limitation of injec-
tion voltage. Furthermore, due to the large variety of envi-
ronmental settings, one must tailor the survey parameters to
each field site, which includes varying the electrode spacing,
the transmitter voltage, the measurement duration, the boat
speed, the digital resolution of the potential measurements,
and the sampling frequency.

In Table 1, we compare the acquisition parameters for
our ERT data from Bykovsky and Drew Point, which were
collected during two fieldwork campaigns in July 2017 and
July 2018, respectively. The two ERT data sets were col-
lected using an Iris™ Syscal Pro Deep Marine system em-
ploying a streamer cable with 13 equally spaced floating
electrodes. The resistivity measurements were acquired us-
ing a reciprocal Wenner–Schlumberger array configuration,
where current was injected through the inner pair of elec-
trodes and quasi-symmetric voltages were measured simulta-
neously with 10 channels using the outer pairs of electrodes
(e.g., Overduin et al., 2012). The transmitter voltage was set
at approximately 48 V at Bykovsky, while at Drew Point it
was reduced to 24 V to avoid exceeding the electrode surface
area limits. Additionally, different electrode spacings were
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Figure 1. Location and ERT data of our field studies. (a) Bykovsky field site located at the coast of the Laptev Sea in northern Siberia
(Sakha Republic, Russian Federation) and (d) Drew Point field site located at the coast of the Beaufort Sea in northern Alaska (AK, USA),
where the red lines indicate ERT profile locations and the black dashed line in panel (d) indicates the position of the 1955 coastline for Drew
Point (Jones et al., 2008). (b) The recorded bathymetric profile along the ERT profile for Bykovsky and (e) for Drew Point indicating the
1969 (Schirrmeister et al., 2018) and 1955 coastline positions, respectively. The current coast position for both profiles is at x ≈−10 m.
(c) Pseudosection of the recorded raw ERT data for Bykovsky and (f) for Drew Point. Bykovsky satellite image: WorldView-3 satellite
product from 2 September 2016; © Digital Globe. Drew Point satellite image: Planet satellite image from 3 September 2017.

used. The Bykovsky data were recorded using a 10 m spac-
ing between electrodes, while at Drew Point 5 m spacing was
chosen because the rapid coastal erosion rates suggested that
the IBPT position at this field site should be shallower than at
our Siberian field site for a given distance offshore. To collect
the data along every profile, a cable was towed behind a small
inflatable boat and voltages were measured as the boat moved
at approximately constant speed of ∼ 1 m s−1 perpendicular
to the shore. The Bykovsky soundings were collected at spac-
ings of ∼ 7.7 m along a 418 m long profile, resulting in 540
measurements. At Drew Point, the soundings were collected
at spacings of ∼ 4.7 m along a 854 m long profile, resulting
in 1830 measurements. At both field sites, the electrode posi-
tions were estimated relative to the position of a GPS aboard
the boat assuming a straight streamer cable. Complementary
to the ERT measurements, we also recorded the water depth
at each sounding location using a Garmin echo sounder at-
tached to the boat (Fig. 1b, and e). Furthermore, we mea-
sured during each field campaign water resistivity and tem-
perature at different depths close to our ERT profiles (the
mean values are shown in the last two rows of Table 1) using

a SonTek™ CastAway device also known as CTD. In gen-
eral, at our Drew Point field site, the seawater was shallower,
less resistive, and slightly cooler than at our Bykovsky field
site. Furthermore, the CTD measurements suggest low ver-
tical and horizontal variations in the resistivity of the water
layer at both field sites. For example, the largest variations
are in the horizontal direction and are on the order of 1 and
0.04�m for our Bykovsky and Drew Point data sets, respec-
tively.

The measured apparent resistivities ρa are presented as
pseudosections in Fig. 1c and f. Here the x coordinates rep-
resent the center position of each quadripole, and the vertical
axes represent the relative penetration also known as levels;
i.e., level = 1 is the shortest quadripole, while level = 10 is
the quadripole with maximum electrode spacing. The range
of ρa for Bykovsky is 5.9 to 43�m and for Drew Point 0.9
to 7.6�m. The lower ρa values at Drew Point are mainly due
to the lower resistivity of the seawater at the Alaskan coast,
which is less influenced by freshwater discharge from large
rivers than at our Bykovsky field site. Additionally, we no-
tice that levels larger than seven in our Bykovsky data set are
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Table 1. Acquisition parameters for our ERT data sets and further
site-specific information for our two field sites.

Bykovsky, Drew Point,
Siberia Alaska

Number of electrodes 13 13
Electrode spacing (m) 10 5
Transmitter voltage (V) 48 24
Mean sounding separation (m) 7.7 4.7
Length of profile (m) 418 854
Number of data points 540 1830
Water resistivity (�m) 13.7 0.5
Water temperature (◦C) 7 5.5

characterized by higher variations due to noise or 3D subsur-
face structures. In contrast, the Drew Point data do not show
obvious variations depending on the level number.

4 Methodology

In this study, we follow the workflow of Arboleda-Zapata
et al. (2022), who propose a layer-based model parameteri-
zation to globally invert 2D ERT data, which is used to gener-
ate an ensemble of representative model solutions. For com-
pleteness, we present a brief summary of this workflow in the
following. For a more detailed analysis, we will also address
complementary strategies such as 1D inversion tests as well
as local and global sensitivity analyses.

4.1 Two-dimensional layer-based model
parameterization

One of the most important steps in any geophysical inver-
sion workflow is defining a model parameterization that can
properly represent the studied geological environment. Be-
cause a priori information suggests a layered subsurface (i.e.,
unfrozen sediments overlying frozen sediments) at both of
our field sites, we choose a layer-based model parameteriza-
tion considering an unstructured mesh with local refinements
along the interfaces separating individual layers. Addition-
ally, because resistivity variations within each layer are neg-
ligible compared to the variations between different layers,
we assume homogeneous layers; i.e., each layer is charac-
terized by one resistivity value. For more complex geologi-
cal settings, one might allow for lateral and/or vertical vari-
ations within the layers (e.g., Auken and Christiansen, 2004;
Akça and Basokur, 2010). To parameterize the interface ge-
ometry that defines the contact between the individual layers,
we may use different strategies, for example, based on spline
interpolation (e.g., Koren et al., 1991), Fourier coefficients
(e.g., Roy et al., 2021), or sums of arctangent functions (Ge-
brande, 1976).

Allowing for abrupt changes along the interfaces is consid-
ered to be a critical point in subsea permafrost environments

where high structural variability is often found. In such envi-
ronments, we expect sharp boundaries and variations along
the interfaces due to inundated thermokarst structures (An-
gelopoulos et al., 2021), pingo-like features, bottom-fast ice
versus floating ice regime transitions in winter, or changes in
the ratio of coastal erosion vs. degradation rate; i.e., chang-
ing from a period of fast thawing and low coastal erosion
to a period of fast coastal erosion and slow thawing can re-
sult in a heterogeneous structure of the IBPT (e.g., Over-
duin et al., 2016). Because we expect some of these pro-
cesses and structures at our field sites, we adopt a strategy
based on the sums of arctangent functions because it allows
for abrupt and smooth changes along the interfaces (e.g.,
Roy et al., 2005; Rumpf and Tronicke, 2015). Following
Arboleda-Zapata et al. (2022), the sums of arctangent func-
tions for a single interface can be written as

z(x)= z0+

nnod∑
j=0

1zj

(
0.5+

1
π

tan−1
(
x−

xj

bj

))
, (1)

where z is the depth, nnod is the number of arctangent nodes,
z0 is the average depth of the interface, xj is the horizon-
tal location of an arctangent node, and 1zj is the vertical
throw attained asymptotically over a horizontal distance of
bj . Such sets of coefficients are used to obtain z(x) at hori-
zontal distances x. Increasing the number of nodes allows us
to resolve more complex interfaces. During preliminary ex-
periments and parameter testing, we noticed that using three
to seven nodes allows us to model rather complex interfaces.
For both of our field studies, we fix the number of nodes to
five, which results in 16 model parameters (1+ 3nnod) per
interface. Because we consider two interfaces, one for the
seabed and the other for the IBPT separating three layers with
homogeneous resistivities, our parameterization strategy re-
sults in a total of 35 model parameters.

4.2 Inversion strategy

During inversion, we search for a combination of model pa-
rameters (i.e., those describing the geometry of interfaces
using Eq. 1 and the resistivities of the homogeneous lay-
ers) that minimizes the root mean squared logarithmic er-
ror (RMSLE). To reduce the space of possible solutions, we
consider some constraints in our layer-based parameteriza-
tion approach. For both case studies, we constrain the seabed
position (Fig. 1b and e) allowing vertical variations of up to
±0.15 m, which is the approximate error level of our echo
sounder data for water depths < 5 m. Considering our CTD
measurements, we allow the resistivity of the water to vary
between 11 and 15�m for our Bykovsky data and between
0.2 and 2�m for our Drew Point data. Note that we con-
sider additional freedom beyond the variabilities reported in
Sect. 3 (1�m for Bykovsky and 0.04�m for Drew Point)
to account for additional variations related to the different
sensitivities and resolutions of our CTD and ERT data. Ad-
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ditionally, we set our search parameter range for the resistiv-
ity of the talik from 1 to 100�m and that for the resistivity
of the ice-bearing permafrost from 1 to 300 000�m for both
field studies.

Because we aim to find an inverse model independent
of a reference or starting model, we use a global inversion
strategy based on the particle swarm optimization (PSO)
technique, which was originally introduced by Kennedy and
Eberhart (1995). Over the last decade, the PSO algorithm has
been widely used to invert different types of geophysical data
sets because it has proven to be an effective tool for find-
ing different local minima in objective functions with com-
plicated topography (e.g., Tronicke et al., 2012; Fernández-
Martínez et al., 2017).

In a first step, the PSO requires defining a set of particles
where each particle represents a different model. The parti-
cles are initialized with random parameters bounded within
realistic physical ranges. This defines our model space. The
position of each particle is updated iteratively considering the
best global position found so far by the entire swarm (i.e.,
the particle with the best fit performance in terms of the RM-
SLE), the best local position (i.e., the best fit performance in
the history of each particle), and the inertia (i.e., the direc-
tion in which the particle is moving). These parameters are
weighted and perturbed with random numbers drawn from
a uniform distribution, which helps avoid getting trapped in
a local minimum. For every particle and every iteration, we
calculate the forward response using the Python library py-
GIMLi (Rücker et al., 2017). Note that each particle contains
model parameters that result in two different interface ge-
ometries: one representing the seabed and the other the IBPT.
Thus, adding these interfaces to our finite-element mesh re-
sults in a different mesh geometry for each particle. To en-
sure good mesh quality, we constrain the minimum angle
within each cell to 33.5◦ (Shewchuk, 1996). This parameter-
ization strategy allows us to calculate the forward response
with high precision and with a reasonable amount of time
(Arboleda-Zapata et al., 2022). At the end, when the op-
timization reaches the maximum number of iterations or a
minimum threshold in the objective function, we save the fi-
nal best model. Using different seeds of the random number
generator, we repeat this process until we obtain an ensemble
MF0 consisting of several hundred independent models and
an ensemble of corresponding residuals δF0. In this study,
each residual vector is calculated as the difference between
the observed and the corresponding modeled log-apparent re-
sistivity values.

4.3 Ensemble interpretation

In a first step, to ease our ensemble analysis and interpre-
tation in a pixel-wise fashion, all models in MF0 are inter-
polated using the nearest-neighbor algorithm on a densely
discretized structured mesh (note that we use a unstructured
mesh during inversion, Sect. 4.1). In a second step, we per-

form a cluster analysis using the k-means algorithm (Mac-
Queen, 1967) and consideringMF0 and δF0 as input to group
similar solutions from our ensembles. To find an optimal
number of clusters nk , we use the criterion proposed by
Caliński and Harabasz (1974) supported by a visual inspec-
tion of the clustering results. Finally, we characterize in a
pixel-wise fashion each found cluster MFi and δFi (where
i = 0,1, . . . , nk , note i = 0 correspond to the whole ensem-
ble and i > 0 to the clustered ensembles) by the median val-
ues µ1/2(MFi) and µ1/2(δFi) and the interquartile ranges
IQR(MFi) and IQR(δFi). Additionally, we describe δFi in an
overall fashion assessing the RMSLE(δFi), the IQR(δFi), and
the quantile 90 % q90(δFi).

4.4 One-dimensional inversion

Often, we prefer 2D inversion algorithms in comparison to
1D strategies – especially for field data where the subsurface
situation and its complexity are largely unknown. However,
to investigate and understand, for example, the relationship
between specific model parameters and the influence of a pri-
ori information and constraints, 1D approaches (also consid-
ering synthetic data examples) represent helpful interpreta-
tion tools (e.g., Sen and Stoffa, 1996; Malinverno, 2002).

In this study, we use 1D models consisting of five param-
eters, the depth of the seawater zw, the depth of the contact
between unfrozen and frozen sediments zpt (i.e., IBPT), the
water resistivity ρw, the resistivity of the unfrozen sediments
ρuf, and the resistivity of the ice-bearing permafrost ρp. As
for our 2D examples, we also consider PSO to invert our 1D
synthetic data. Because for such 1D inversions the compu-
tational cost is significantly lower than for 2D problems, we
can run several tests and create larger model ensembles. We
use such a 1D approach to tackle some specific questions
regarding the considered application. For example, we inves-
tigate how constraining the depth of the water layer and its
resistivity affects the final ensemble of 1D model solutions.
Additionally, the limited number of parameters in our 1D
model parameterization strategy allows us to study in a sim-
pler way the posterior correlation matrix as proposed by Sen
and Stoffa (2013). Although in this study we do not consider
cluster analysis to classify our 1D ensembles as implemented
for our 2D analyses, this step may be adapted in future stud-
ies (e.g., investigating more complex model scenarios).

4.5 Sensitivity analysis

Sensitivity analysis is a powerful tool that can provide addi-
tional information to improve system or process understand-
ing (Wainwright et al., 2014). In the context of subsea per-
mafrost applications, several studies have shown the poten-
tial of the ERT method to image the IBPT position (e.g., Sell-
mann et al., 1989; Overduin et al., 2012). However, the sen-
sitivity distribution of the ERT model parameters for such
environments characterized by resistivity contrasts up to sev-
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eral orders of magnitude between unfrozen and frozen sed-
iments is poorly understood. Adding sensitivity analysis to
the interpretation workflow helps investigate the impact of
our chosen model parameterization and the used constraints.
Furthermore, such sensitivity studies might also help opti-
mize ERT acquisition geometries and strategies before a field
campaign.

In this study, we use 2D-local and 1D-global sensitivity
analyses. To investigate which regions of the 2D discretized
model have the greatest influence on our objective function,
we consider the difference-based local sensitivity method
of Günther et al. (2006), which is available within the py-
GIMLi library (Rücker et al., 2017). For example, we as-
sess the sensitivity of the shortest electrode configurations
to understand if the corresponding measurements are influ-
enced by both the water layer and the underlying unfrozen
sediments. In turn, this helps to evaluate the reliability of
imaging the uppermost water layer (e.g., for measurements
where no CTD measurements are available). Furthermore,
the longest electrode spreads (corresponding to the deepest
levels in 2D pseudosections) and/or cumulative sensitivity
distributions provide information on whether our ERT data
are sensitive to the IBPT and/or the frozen sediments. For
1D model parameterizations and synthetic studies (consider-
ing zw, zpt, ρw, ρuf, and ρp as described in Sect. 4.4), we
use the variance-based global sensitivity method of Sobol
(Sobol, 2001; Saltelli et al., 2008) as implemented in the
Python library SALib (Herman and Usher, 2017). Using this
approach, we aim to understand how the total influence of
the considered parameters might be affected by variations in
ρp and zpt.

5 Results

In the following, we present the 2D inversion results for the
Bykovsky and Drew Point data sets in two separate sub-
sections. Each subsection is complemented with 1D inver-
sion results of synthetic data simulated considering the site-
specific environmental and electrode settings as well as with
a 2D-local and a 1D-global sensitivity analysis.

5.1 Bykovsky

The geological and environmental settings of the Bykovsky
area are described in Sect. 2.1, and a summary of the acqui-
sition parameters and measured seawater properties is pro-
vided in Table 1. We invert the 540 apparent resistivity mea-
surements recorded along a 418 m long profile (Fig. 1c) us-
ing a layer-based model parameterization as described in
Sect. 4.1 and a PSO-based inversion strategy as outlined in
Sect. 4.2. In the PSO, we use 60 particles and a maximum
of 600 iterations as stopping criterion. To obtain a single in-
verted model (i.e., after one inversion run), we have to eval-
uate the forward response 36000 times, which takes on aver-

age ∼ 40 h on a single core of a modern desktop computer.
We repeat these inversion runs considering different initial
seeds of the random number generator (note that this ap-
proach allows for a straightforward parallelization when mul-
tiple cores are available) until we obtain an ensemble MF0
consisting of 690 models.

5.1.1 Ensemble analysis

After the inversion, we interpolated all models to a re-
fined structured mesh before performing any posterior sta-
tistical analyses (see Sect. 4.3). In Fig. 2a and b, we show
the µ1/2(MF0) and IQR(MF0) models calculated from the
Bykovsky model ensemble. The µ1/2(MF0) model indicates
that ρuf is ∼ 4�m and ρp is ∼ 60000�m. However, when
analyzing individual models, we note a bimodal distribution
of ρp (some models with ρp < 2000�m and others with
ρp > 100000�m), which is also illustrated by increased
IQR(MF0) values for the lowermost layer. These observa-
tions already indicate different groups of models with distinct
resistivity characteristics.

In the next step, we performed cluster analysis (Sect. 4.3)
and found that our ensemble MF0 can be divided into two
model families MF1 and MF2. In Fig. 2b–c and e–f, we
present the µ1/2(MFi) and IQR(MFi) models (where i =
1,2). Comparing these models illustrates that MF1 and MF2
show a similar IBPT shape dipping toward the open sea
(i.e., depth of the IBPT increases with increasing profile dis-
tances). However, the IBPT position in MF1 is shallower
than in MF2. We learn from this that for models favoring
larger ρp values, the depth of the IBPT increases, highlight-
ing the trade-off between these two parameters that cause
model variations along the IBPT. According to the depth of
the IBPT and its gradients in the profile direction, we lat-
erally subdivide the models into three main parts. The first
part is found at x < 130 m and is characterized by a gentle
dipping slope with minor convexities and concavities. The
second part is found at 130< x < 280 m, where the IBPT is
relatively flat with a minor change in depth at x ∼ 200 m. Fi-
nally, the abrupt change at x = 280 m marks the transition to
the third part, where the IBPT reaches its deepest point and
extends until the end of the profile at depths > 20 m.

We assess the fit performance in a pixel-wise and in an
overall fashion for the residuals associated with the ensem-
ble containing all models δF0, as well as for the two clus-
tered model families δF1 and δF2 (Fig. 3). Thus, we calcu-
late µ1/2(δFi) and IQR(δFi) (where i = 0,1,2) in a pixel-
wise fashion and present them as pseudosections in Fig. 3a–
f. When comparing these pseudosections to each other, we
notice that the µ1/2(δFi) and IQR(δFi) indicate similar fits
of the data in terms of amplitudes and pseudosection pat-
terns. The abrupt change from positive to negative residuals
at x ' 200 m coincides with the highest point of the bathy-
metric profile for x > 150 m, which also corresponds to a
general change in the gradients of the bathymetric profile

https://doi.org/10.5194/tc-16-4423-2022 The Cryosphere, 16, 4423–4445, 2022



4430 M. Arboleda-Zapata et al.: Exploring the capabilities of electrical resistivity tomography

Figure 2. Inversion results for the Bykovsky data set illustrated as summary statistics for all obtained modelsMF0 and for two model families
MF1 and MF2 as found by cluster analysis. (a–c) Median and (d–f) interquartile range models. For each MFi, nm represents the number of
models in the corresponding ensemble.

(Fig. 1b). Therefore, a 3D subsurface structure (which can-
not be explained by our 2D inversion strategy) and related
3D effects are a reasonable explanation of the discussed fea-
tures in the residuals. For example, because the landscape
was partly covered by lakes (which acted as a source of
heat) prior to seawater submergence, lateral temperature gra-
dients and heterogeneous sediment properties could affect
subsurface resistivity and its 3D variations. The overall statis-
tics RMSLE(δFi), IQR(δFi), and q90(δFi) (where i = 0,1,2)
are presented as histograms in Fig. 3g–i. The histograms
are characterized by bimodal distributions, especially evident
in all shown RMSLE(δFi) histograms. When comparing the
histograms of δF1 and δF2, we notice that they follow similar
distributions (although in δF1 there are less models). From
these analyses of the residuals, we are not able to prefer one
of the model families, and, thus, we perform some synthetic
exercises to deepen our understanding of this inverse prob-
lem and the found model solutions.

5.1.2 One-dimensional inversion of synthetic data

To complement our understanding of the formulated in-
verse problem, we perform 1D inversions of a synthetic data
set created considering a 1D subsurface model (see “In-
put model” in Table 2) as described in Sect. 4.4. The 1D
subsurface model parameters were chosen by analyzing our
2D model solutions (e.g., Fig. 2b–c at x ' 150 m). We cal-
culate the forward response of 10 quadripoles considering
the same electrode configurations as used for recording the
Bykovsky field data (Table 1). We invert the simulated ap-
parent resistivity data using two scenarios for constraining
zw and ρw, while the constraints for all other parameters re-
main unchanged (see Table 2). The resulting inverted mod-
els are shown in Fig. 4a and c. For all models, we have
achieved RMSLE < 0.028, which is equivalent to the noise
level applied to the calculated synthetic data and comparable
to the RMSLE achieved for the 2D inversion results of the
Bykovsky field data. Comparing the results shown in Fig. 4a
and c illustrates that constraining the water layer significantly
decreases the non-uniqueness of the inverse problem. We
also notice that the median model represents a good approx-
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Figure 3. Summary statistics of the residuals for the Bykovsky data set corresponding to all models δF0 and for the two clustered families δF1
and δF2. (a–c) Median and (d–f) interquartile range calculated in a pixel-wise fashion. (g–i) Histograms illustrating the overall distribution
of different statistical measures including RMSLE(δ), IQR(δ), and q90(δ).

imation to the input model except for ρp, which is overes-
timated as illustrated by the larger ρp of the quantile 25 %
model compared to the input ρp. Additionally, from all mod-
els visualized in Fig. 4a and c, we calculate the corresponding
posterior correlation matrices (Fig. 4b and d). For both cases,
we see that [ρuf, zpt] is the model parameter pair with the
highest positive correlation, while the rest of the model pa-
rameter pairs are characterized by negative correlations with
different amplitudes (except for pairs with ρp which show
correlations approaching zero).

5.1.3 Sensitivity analysis

To understand the sensitivity distribution for our three-
layer model (representing seawater and unfrozen sediments
overlying frozen sediments), we calculate the cumulative
sensitivity and the sensitivity for the shortest and widest
quadripoles considering two model scenarios (Fig. 5). In the
first scenario, we consider the same input model as for the
1D inversion exercise (Table 2). In the second scenario, we
set zpt = 25 m while all other parameters remain unchanged.
From the cumulative sensitivity plots (Fig. 5a and d), we
learn that areas of sensitivities extend throughout the layer
of unfrozen sediments for both scenarios. This suggests that
we could interpret our inverted models even underneath the
outer electrode positions; i.e., if the boat together with the

electrode streamer is moving toward the right (i.e., increased
x coordinates) to collect additional sounding curves, our in-
terpretation of the inverted model should start at x ∼−60 m.
Note that a more conservative model interpretation might
start at x ∼−25 m, where we start having more significant
cumulative sensitivities. When analyzing Fig. 5b and e, we
see that the shortest quadripole is sensitive to both the water
layer and the unfrozen sediments. For a wider electrode spac-
ing and an IBPT located at a depth of 15 m (Fig. 5c), the sen-
sitivities are focused around the inner electrodes but also with
some minor contributions from the outer electrodes (note the
reddish colors in the unfrozen sediments at x <−60 m and at
x > 60 m), which may be critical when significant 2D or 3D
resistivity variations are present. For a deeper IBPT (Fig. 5f),
we notice that we are still sensitive at depths of∼ 25 m; how-
ever, the lateral extensions of the sensitivity patterns within
the unfrozen sediments appear to be reduced.

As noticed in our 2D sensitivity analysis, the high resis-
tivity contrast between the unfrozen and frozen sediments
seems to limit the penetration depth down to the IBPT. To
complement and better understand our results of 2D sensitiv-
ity analysis, we investigate the global sensitivities (Sect. 4.5)
of different 1D model parameterizations. Specifically, we use
models where zw = 4.5 m, ρw = 13.7�m, and ρuf = 4�m
are fixed, while ρp varies between 10 and 10 000�m (eight
values in total) and the IBPT is located at three different
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Table 2. Parameters of the 1D synthetic model of Bykovsky and for two scenarios indicating the lower and upper bound parameter constraints.

Input model Scenario 1 Scenario 2

Depth seawater zw (m) 4.5 3, 6 4, 5
Depth IBPT zpt (m) 15 6.5, 25 6.5, 25
Resistivity seawater ρw (�m) 13.7 1, 50 11, 15
Resistivity unfrozen sediments ρuf (�m) 4 1, 100 1, 100
Resistivity permafrost ρp (�m) 4000 1, 200000 1, 200000

Figure 4. One-dimensional inversion results of synthetic data for
1D subsurface scenarios developed for the Bykovsky field site.
(a) Ensemble with nm model solutions and (b) the corresponding
symmetric correlation matrix for scenario 1 (water layer parameters
with large freedom during inversion) and (c–d) the same for sce-
nario 2 (with constrained zw and ρw). Black lines in panels (a) and
(c) are plotted with transparency, and, therefore, the darker areas
indicate higher densities model. The numbers in panels (b) and (d)
are the corresponding correlation values.

depths; i.e., zpt = 25, zpt = 15, and zpt = 5 m (Fig. 6a–c).
Note that defining eight different values for ρp and three for
zpt results in 24 different 1D models. For the calculation of
the total sensitivity for each of our five parameters in these
24 models, we set the parameters ranges to zw = [4,6]m,
zpt = [6.5,30]m, ρw = [0.2,20]�m, ρuf = [1,20]�m, and
ρp = [5,20000]�m. For these specific models and parame-
ter ranges, our results (Fig. 6) suggest ρw is the most influen-

tial parameter followed by ρuf, which shows approximately
half of the influence compared to ρw. The influence of zpt is
slightly larger than zw, although zpt is set up with a wider
range than zw. Furthermore, although we allow ρp to vary
over 3 orders of magnitude, the result of this sensitivity anal-
ysis demonstrates that ρp is the parameter with the lowest
influence, but it is not null as indicated by the results of our
2D sensitivity analyses (Fig. 5a and d). Such low sensitivity
values help to explain the large variation of ρp in our 1D and
2D ensembles. Interestingly, we also notice in Fig. 6a–c that
in general when increasing ρp (for ρp < 100�m) the total
sensitivity index of the other parameters tends to decrease.

5.2 Drew Point

The geological and environmental settings of the Drew Point
area are described in Sect. 2.2, and a summary of the acqui-
sition parameters and measured seawater properties is pro-
vided in Table 1. We invert the 1830 apparent resistivity mea-
surements recorded along an 854 m long profile (Fig. 1f) con-
sidering a layer-based model parameterization as described
in Sect. 4.1 and a PSO-based inversion strategy as outlined
in Sect. 4.2. In the PSO, because we notice that the inversion
of the Drew Point data set converges much faster than in our
Bykovsky example, we decide to lower the number of parti-
cles to 30 and the number of iterations to 400, thus allowing
us to save some computational cost. Considering these set-
tings, to obtain a single inverted model, we have to evaluate
the forward response 12000 times, which takes on average
57 h on a single core of a modern desktop computer. We re-
peat these inversion runs considering different initial seeds of
the random number generator (using different processors in
parallel) until we obtain an ensemble MF0 consisting of 416
models.

5.2.1 Ensemble analysis

After the inversion, we interpolate all models to a re-
fined structured mesh before performing any posterior sta-
tistical analyses (Sect. 4.3). In Fig. 7a and b, we present
the µ1/2(MF0) and IQR(MF0) models calculated from the
Drew Point model ensemble. The irregular variations in the
IQR(MF0) model and the bimodal distribution of ρp (some
models with ρp < 500�m and others with ρp > 100000

The Cryosphere, 16, 4423–4445, 2022 https://doi.org/10.5194/tc-16-4423-2022



M. Arboleda-Zapata et al.: Exploring the capabilities of electrical resistivity tomography 4433

Figure 5. Two-dimensional normalized sensitivities for two different model scenarios developed for the Bykovsky field site. Position of the
IBPT at a depth of (a–c) 15 m and (d–f) 25 m. From top to bottom, we show the cumulative sensitivity and the sensitivity for the shortest and
widest quadripole, respectively.

Figure 6. Global sensitivity results for the Bykovsky field site considering different 1D model scenarios with an IBPT at a depth of (a) 25 m,
(b) 15 m, and (c) 5 m.

�m) already indicate different groups of models with dis-
tinct resistivity characteristics and IBPT positions.

In the next step, we performed cluster analysis (Sect. 4.3)
and found that our ensemble MF0 can be divided into three
model families (MF1, MF2, and MF3). In Fig. 7b–d and f–
h, we present the µ1/2(MFi) and IQR(MFi) models (where
i = 1,2,3). Comparing these models illustrates thatMF1 and
MF2 present a similar IBPT shape dipping toward the open
sea. However, for MF3 the IBPT position is dipping toward
the coast, which is not in agreement with our background
knowledge of this field site. When comparing the MF1 and
MF2 models in more detail, we note that the IBPT position in
MF1 is shallower than in MF2. Comparable to the Bykovsky
example, models favoring high ρp values tend to show in-
creased depths of the IBPT, resulting in thicker unfrozen sed-
iments also near the coast. According to the depth of the
IBPT and its gradients in the profile direction for MF1 and
MF2, we laterally subdivide the model into four main parts.
The first part is found at x < 100 m, and it is characterized

by an intermediate convex slope. The second part is found at
100< x < 500 m, and the IBPT shows a gentle convex slope,
whereas in the third part (at 500< x < 700 m) the IBPT is
almost flat. Finally, the fourth part is found at x > 750 m,
where the IBPT may be located at depths ≥ 20 m.

We assess the fit performance for the residuals associated
with the ensemble containing all models δF0, as well as for
the three clustered model families δF1, δF2, and δF3 (Fig. 8).
We calculate µ1/2(δFi) and IQR(δFi) (where i = 0,1,2,3) in
a pixel-wise fashion and present them as pseudosections in
Fig. 8a–h. When comparing these pseudosections to each
other, we notice that µ1/2(δFi) indicate similar fits of the
data in terms of amplitudes and pseudosection patterns (al-
though with slightly higher values for δF3). When compar-
ing the IQR(δFi) plots, we note that IQR(δF0) is character-
ized by several patches which are less prominent in the clus-
tered residuals Fig. 8f–h. This indicates that our clustering
results are properly grouping models with similar residuals.
Furthermore, we associate the vertical feature at x = 400 m
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Figure 7. Inversion results for the Drew Point data set illustrated as summary statistics for all obtained models MF0 and for three model
familiesMF1,MF2, andMF3 as found by cluster analysis. (a–d) Median and (e–h) interquartile range models. For eachMFi, nm represents
the number of models in the corresponding ensemble.

in Fig. 8e–h to the variation in our models to locate the left
edge of a bulge structure of the seabed (see Fig. 1e). This
illustrates the applicability of exploring such residual statis-
tics to identify possible drawbacks in our inversion results
and, thus, allow us to re-evaluate our parameterization strat-
egy. For example, we might consider to improve the inver-
sion results by adding a node to our sums of arctangent func-
tions around x = 400 m. The overall statistics RMSLE(δFi),
IQR(δFi), and q90(δFi) (where i = 0,1,2,3) are presented as
histograms in Fig. 8i–l. The histograms in Fig. 8i are char-
acterized by bimodal distributions. Such bimodal distribu-
tions are less pronounced for the clustered families (Fig. 8j–
l); however, small tails to the right are also evident for δF1
and δF2. One may tend to reject the models falling in these
tails, especially, when using the mean to estimate the central
trend. However, because we consider robust statistical mea-

sures (e.g., median and IQR), we do not expect a significant
impact from these models on our results and conclusions.

5.2.2 One-dimensional inversion of synthetic data

Following Sects. 4.4 and 5.1.2, we perform 1D inversions
of a synthetic data set created considering a 1D subsurface
model (see “Input model” in Table 3). The 1D model pa-
rameters were chosen by analyzing our 2D model solutions
(e.g., Fig. 7b–c at x ≈ 600 m). Note ρp is the same as in the
1D synthetic example from Sect. 5.1.2, which allows us to
better compare the results of our 1D synthetic exercises. We
calculate the forward response of 10 quadripoles consider-
ing the same electrode configurations as used for recording
the Drew Point field data (Table 1). We invert the simulated
apparent resistivity data considering two scenarios for con-
straining zw, ρw, and ρuf, while the constraints for zpt and
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Figure 8. Summary statistics of the residuals for the Drew Point data set corresponding to all models δF0 and for the three clustered families
δF1, δF2, and δF3. (a–d) Median and (e–h) interquartile range calculated in a pixel-wise fashion. (i–l) Histograms illustrating the overall
distributions of different statistical measures including RMSLE(δ), IQR(δ), and q90(δ).

Table 3. Parameters of the 1D synthetic model of Drew Point and for two scenarios indicating the lower and upper bound parameter
constraints.

Input model Scenario 1 Scenario 2

Depth seawater zw (m) 2 1.5, 2.5 1.9, 2.1
Depth IBPT zpt (m) 12 3.5, 20 3.5, 20
Resistivity seawater ρw (�m) 0.4 0.2, 2 0.2, 0.6
Resistivity unfrozen sediments ρuf (�m) 5 0.2, 100 0.2, 20
Resistivity permafrost ρp (�m) 4000 1, 200000 1, 200000

ρp remain unchanged (see Table 3). The resulting inverted
models are shown in Fig. 9a and c. For all models, we have
achieved RMSLE < 0.007, which is equivalent to the noise
level applied to the calculated synthetic data and compara-
ble to the RMSLE achieved for the 2D inversion results of
the Drew Point field data. Comparing the results shown in
Fig. 9a and c illustrates that the applied constraints improve
the median model. However, we also observe an increase in
the variability of the models around zpt in Fig. 9c. Addition-
ally, from all the models visualized in Fig. 9a and c, we cal-

culate the corresponding posterior correlation matrix (Fig. 9b
and d). For both cases, we see that the largest negative cor-
relations are found for the model parameter pairs [ρuf, ρw]
and [ρw, zpt], while the most significant positive correlation
is found for [ρuf, zpt]. Note that the absolute correlations of
these model parameter pairs are larger in Fig. 9d compared
to Fig. 9c. Finally, we want to point out that the signs for the
most significant parameter correlations are the same as the
ones found for Bykovsky in Fig. 4d.
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Figure 9. One-dimensional inversion results of synthetic data for
1D subsurface scenarios developed for the Drew Point field site.
(a) Ensemble with nm model solutions and (b) the corresponding
symmetric correlation matrix for scenario 1 (water layer parameters
with large freedom during inversion) and (c–d) the same for sce-
nario 2 (with constrained zw, ρw, and ρuf). Black lines in panels (a)
and (c) are plotted with transparency, and, therefore, the darker ar-
eas indicate higher densities model. The numbers in panels (b) and
(d) are the corresponding correlation values.

5.2.3 Sensitivity analysis

For the sensitivity analysis, we consider the two model sce-
narios indicated in Fig. 10. In the first scenario, we consider
the same input model as for the 1D inversion exercise (Ta-
ble 3). In the second scenario, we set zpt = 16 m while all
other parameters remain unchanged. From analyzing the cu-
mulative sensitivity plots (Fig. 10a and d), we infer that an in-
terpretation of our inversion results should focus on the area
around the inner electrodes; i.e., if the boat is moving toward
the right to collect additional sounding curves, our interpre-
tation of the inverted model should start at x ∼−10 m. When
analyzing Fig. 10b and e, we see that we are most sensitive
to the water layer. Interestingly, when comparing Fig. 10c
and f in detail, we realize that the sensitivity distribution in
Fig. 10c reaches the IBPT interface while the sensitivity dis-
tribution in Fig. 10f is almost null for depths > 12 m.

We perform the global sensitivity analyses (Sect. 4.5) con-
sidering 1D models described by five model parameters as
used for the above-presented 1D inversions. We consider
models where zw = 2 m, ρw = 0.4�m, and ρuf = 5�m are
fixed, while ρp varies between 10 and 10 000�m (eight
values in total), and the IBPT is located at three different
depths; i.e., zpt = 16, zpt = 10, and zpt = 4 m (Fig. 11a–c).
For the calculation of the total sensitivity for each of our
five parameters in the resulting 24 models, we set the pa-
rameter ranges to zw = [0.5,3]m, zpt = [3.5,20]m, ρw =

[0.2,20]�m, ρuf = [1,20]�m, and ρp = [5,20000]�m.
For these specific models and parameters ranges, our results
(Fig. 11) suggest that ρw and ρuf are the most influential pa-
rameters, and the other three parameters (zpt, zw and ρp) are
characterized in all cases by rather low total sensitivities. Fur-
thermore, we also notice in Fig. 11a–c that ρw is the param-
eter showing the most significant changes when varying ρp
and zpt.

6 Discussion

Knowledge of how fast permafrost thaws would improve pre-
dictive models of greenhouse gas release and coastal erosion,
as well as coastal infrastructure design. The ERT method
has been successfully used to image the unfrozen sediments
overlying the permafrost layer in subsea permafrost environ-
ments, especially using smooth inversion approaches (e.g.,
Overduin et al., 2012; Pedrazas et al., 2020). In typical sub-
sea permafrost environments, there might be a gradual tran-
sition zone consisting of a mixture of water and ice between
fully unfrozen and frozen ice-bonded sediments. However,
during ERT inversion, the nature of this transition can be ei-
ther enlarged when using smooth inversion approaches or re-
duced to a single interface when using layer-based strategies.
Whether we have a smooth or sharp transition between un-
frozen and frozen sediments, there must be a threshold in
the ice content that creates sufficient contrast in resistivity
also influencing the penetration of the injected current and,
thus, our apparent resistivity measurements (e.g., Kang and
Lee, 2015). Because we wanted to target the interface de-
fined by such a resistivity contrast (interpreted here as the
IBPT), we considered a layer-based model parameterization
to invert our ERT data. Additionally, we obtained estimates
of uncertainties using an ensemble approach. For the sake of
completeness, we provide the smooth inversion models for
both of our field studies in Appendix A.

6.1 Insights from our parameterization and inversion
strategies

We used a 2D layer-based model parameterization to glob-
ally invert marine ERT data and obtain different ensembles
(e.g., after cluster analysis) of model solutions. We demon-
strated with the two case studies that such ensembles allow
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Figure 10. Two-dimensional normalized sensitivities for two different model scenarios developed for the Drew Point field site. Position of
the IBPT at a depth of (a–c) 12 m and (d–f) 16 m. From top to bottom, we show the cumulative sensitivity and the sensitivity for the shortest
and widest quadripole, respectively.

Figure 11. Global sensitivity results for the Drew Point field site considering different 1D model scenarios with an IBPT at a depth of (a) 16,
(b) 10, and (c) 4 m.

us to reliably image the IBPT position with its associated un-
certainties. The main advantage of using a layer-based model
parameterization strategy is that we do not assume an arbi-
trary resistivity threshold or gradient to interpret the IBPT
position, as we would need to do for our smooth inversion
results (see Fig. A1a–b). This may be advantageous to com-
pare ERT profiles collected at the same position in different
years to track changes along the IBPT or in environments
where the freezing point of the sediment porewater changes
spatially. For example, offshore surveys that encounter sub-
merged hypersaline lagoon deposits may show relatively low
resistivity values for partially frozen sediments compared
to colder ice-bonded permafrost with fresh porewater (An-
gelopoulos et al., 2021). Indeed, this interface may be related
to a threshold in ice content. However, associating the IBPT

with a certain ice content requires calibration by using bore-
hole data or by additional geophysical information; e.g., by
using the joint inversion approach of ERT and seismic refrac-
tion data of Wagner et al. (2019). Such thresholds may vary
from site to site depending on properties of the sediments in-
cluding temperature, grain size distribution, and the salinity
of the porewater. Furthermore, we consider it convenient to
use the sum of arctangent functions to parameterize the IBPT
because there may be cases where the IBPT position varies
steeply (as the ones we identified at the end of the median
models in Figs. 2a–c and 7a–c) associated, for example, with
submerged thermokarst structures or changes in the ratio of
coastal erosion vs. degradation rate.

To find reliable and stable 2D model solutions, we per-
formed experiments in which we ran the PSO several times
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to find the appropriate parameter settings for our layer-based
ERT inversion. In a first stage, when performing our 2D
inversions without considering any constraints, we found
model solutions that were unrealistic according to our prior
knowledge of our field sites. Therefore, we constrained our
inversions considering our bathymetric and CTD measure-
ments (see Sect. 4.2). Although the 2D inverted models with-
out considering constraints are not shown in this study, we
demonstrated with our 1D inversions how such constraints
significantly improved the inversion results while reducing
the number of possible solutions. Another exercise in the ex-
perimental phase consisted in using more than three layers
in our parameterization strategy. However, we did not ob-
serve any significant improvement in the final median mod-
els when increasing the number of layers and, thus, restricted
our inversion and analyses to three-layer scenarios.

One disadvantage of using a layer-based model parameter-
ization relying on homogeneous layers is that it is not possi-
ble to resolve small-scale resistivity variations (e.g., horizon-
tal heterogeneities at a spatial scale of meters). However, our
workflow allowed us to inspect and evaluate model perfor-
mance including the appropriateness of the model parameter-
ization. For example, in the Bykovsky and Drew Point case
studies, we observed in the residual pseudosections some
regular lateral variations (see Figs. 3 and 8). This indicates
that we were not completely explaining the data, because of
either lateral subsurface resistivity variations or 3D effects.
To tackle this problem, it could be beneficial to measure 3D
bathymetric data around each ERT profile and collect addi-
tional parallel and perpendicular ERT profiles to better un-
derstand 3D resistivity variations at our field sites. Further-
more, direct measurement of the resistivity of water and un-
frozen sediments (e.g., using additional water samples and
drilling cores) might help to inform the model parameteriza-
tion (e.g., account for lateral variations) and inversion strate-
gies. We should notice that adding complexity to our model
parameterization comes with the trade-off of increased com-
putational cost to solve the inverse problems. An alterna-
tive to obtaining more complex resistivity models is to use
our layer-based global inversion results as reference models
to perform smoothness-constrained inversions (e.g., Günther
et al., 2006).

The error level of ERT data is usually unknown – espe-
cially for marine data, where repeated or reciprocal measure-
ments are not practical because the data are acquired while
the boat is moving. This represents a challenge during the
inversion when specifying an appropriate fit level. One al-
ternative to get insights into the noise level is to perform re-
peated measurements in a static fashion (avoiding bending
of the cable by wind or swells) for a certain section of the
profile. For example, this can be achieved at the coast on a
calm day where one end of the cable is secured to the beach
and the other end is fastened to an anchored boat. However,
such repeat measurements were not available for our field
sites. Therefore, we set our stopping criterion by consider-

ing a fixed number of iterations rather than using a minimum
threshold in our objective function. With this approach, we
obtained model solutions characterized by different fit lev-
els. For example, for the Bykovsky data, we found RMSLE
values between 0.025 and 0.038 (Fig. 3g–i), while for our
Drew Point data, we found RMSLE values between 0.007
and 0.016 (Fig. 8i–l). Although the RMSLE values for Drew
Point are significantly lower than for Bykovsky, we found a
family of models in the Drew Point study, which was con-
sidered as geologically unrealistic (Fig. 7d). This highlights
the importance of estimating different ensembles of solutions
with different fit levels and having an accurate estimate of
data noise. Because the misfits for the model in Fig. 7d were
higher, this family of models could potentially be discarded
if they were found to exceed expected error levels without
considering any prior knowledge of the environmental set-
ting.

6.2 Parameter learning from 1D inversion

Our 2D inversion results showed large variations in the mod-
eled resistivities of the permafrost, and we also noticed that,
typically, the variabilities of IBPT position increase with
depth. These observations indicate decreasing resolution ca-
pabilities of our ERT data with depth and limited penetration
of the injected current in the frozen permafrost layers. To bet-
ter understand these results in a more quantitative fashion, we
reduced the number of parameters to five and performed se-
lected 1D inversion experiments using synthetic data inspired
by our 2D inversion results. Because such 1D inversions are
significantly faster than 2D inversions, they represent an ef-
ficient way to explore the influence of constraining differ-
ent parameters. For example, we noticed from our 1D in-
version results that constraining the water layer significantly
decreased the non-uniqueness of the inverse problem. This is
essential for a reliable estimation of the IBPT position and for
establishing petrophysical relations, for example, to estimate
porewater salinity and ice content. Additionally, we noticed
that the 1D inversion results for the Bykovsky data (Fig. 4c)
provided similar uncertainties around the IBPT as the 2D in-
version results at x = 150 m (Fig. 2d–f). However, the 1D
inversion results for the Drew Point data (Fig. 9c) showed
uncertainties around the IBPT 3 times larger compared to the
2D inversion results at x ≈ 600 m (Fig. 7f and g). This indi-
cates that there is no general best way of using the results of
such complementary synthetic 1D studies; the success and
feasibility rather depends on the characteristics of the field
site and analyzed data set. On the other hand, we can use our
1D inversion results to assess the posterior correlation matrix
that, as we showed in our examples, can be helpful to iden-
tify interactions between the model parameters. Furthermore,
comparing the changes across different posterior correlation
matrices (e.g., associated with different model constraints)
can help us detect changes in the parameters interactions
and, thus, quantify the impact of our model constraints. Such
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straightforward but informative analysis provides a deeper
understanding of the inversion process and the suitability of
the entire inversion strategy.

Our 1D inversion results indicated some problems if we
want to infer relative permafrost characteristics from ERT
measurements. The 1D input models for our 1D synthetic ex-
amples (see Tables 2 and 3) assumed identical resistivities of
the ice-bearing permafrost layer (ρp = 4000�m) and simi-
lar resistivities for the unfrozen sediments as found by our
2D inversion results. In contrast, the resistivity and depth of
the seawater layer between both models were set according
to field measurements at our field sites. Although the resis-
tivities of the unfrozen and frozen layers were similar in both
models, we noticed that for model scenarios derived from the
Bykovsky site, the inverted ρp values were generally over-
estimated where already the q25 model indicates ρp values
larger than the input ρp (Fig. 4c). On the contrary, for set-
tings inspired by the Drew Point field site, the input ρp fell
within the range defined by q25 and q75 models but showed
more significant variabilities than our 1D Bykovsky experi-
ment (Fig. 9c). These results demonstrated the influence of
the depth and resistivity of the seawater layer in the inverted
models which may be critical for subsequent interpretations.
For example, assuming the same temperature and porewa-
ter salinity, the resistivity of the sediments increases with
ice content (e.g., Pearson et al., 1986; Fortier et al., 1994;
Kang and Lee, 2015). Thus, our results may lead us to con-
clude that the ice-bearing permafrost layer holds higher ice
content at Bykovsky compared to Drew Point. Over- or un-
derestimating the ice-bearing permafrost resistivity may lead
to potentially erroneous interpretations, for example, related
to the sediment’s ice content, temperature, and composition.
We would need complementary field information or further
analyses like sensitivity assessments to avoid misleading in-
terpretations.

6.3 System understanding with sensitivity analysis

We obtained an additional model understanding (e.g., in view
of delineating confident and reliable model areas) by per-
forming sensitivity analyses. From our examples, we learned
that if the resistivity of the seawater were higher than the re-
sistivity of the unfrozen sediments (as in the Bykovsky case
study, Fig. 5), this would result in increased sensitivities in-
side the unfrozen sediments and, thus, to changes along the
IBPT position. This type of situation may be prevalent in sub-
sea permafrost areas affected by freshwater river discharge in
summer. On the other hand, if the seawater were less resistive
than the unfrozen sediments (e.g., as in the Drew Point case
study, Fig. 10), we would be more sensitive to the water layer
and, therefore, to bathymetric changes. This emphasizes the
importance of accurate water depth measurements. We high-
light the fact that although the local 2D sensitivities for the
Drew Point data were rather small for the unfrozen sedi-
ments, the IQR of the models (Fig. 7f–g) showed equivalent

variability around the depth of IBPT (1.5 to 2 m for depths
∼ 12 m) in comparison to the Bykovsky example (Fig. 2d–f),
where the sensitivities showed a more pronounced influence
within the unfrozen sediments.

This study used global sensitivity analysis considering
only five parameters as needed for our 1D inversion exam-
ples. The Sobol approach proved to be a powerful method to
distinguish the most influential parameters. After evaluating
how the permafrost resistivity and the IBPT position may in-
fluence the rest of the parameters in our 1D three-layer exam-
ples, we noted some relevant differences. For example, in the
Bykovsky example (Fig. 6), we noticed that for larger values
of ρp and shallower zpt the total influence of the rest of the
parameters decreased. On the other hand, for the Drew Point
example (Fig. 9), increasing ρp increased the total sensitivity
of the rest of the parameters, while varying zpt at shallower
depths mainly increased the influence of ρw. We also want
to highlight that ρw, ρuf, and zpt were the parameters with
the most significant total sensitivity in both examples and
were also the parameters that formed model parameter pairs
showing the largest correlation (see Figs. 4d and 9d). Encour-
agingly, ρw and ρuf can be informed from CTD casts and
shallow sediment sampling, respectively. We must be aware
that such a global sensitivity analysis is highly dependent on
the predefined constraining parameter range and should be
applied to address specific questions to allow, for example,
parameter reduction or to guide our sampling strategies and
experimental design.

6.4 Subsea permafrost features (Bykovsky vs. Drew
Point)

The inverted ERT profiles yielded new insights into how sub-
sea permafrost thaws because the Bykovsky Peninsula and
Drew Point are characterized by distinct seawater proper-
ties and geological histories. The Bykovsky 2D inversion re-
sults at x = 150 m, which corresponds to an inundation pe-
riod of 357 years assuming an erosion rate of 0.42 m yr−1

(e.g., Lantuit et al., 2011), showed a median depth to the
IBPT of ∼ 15 m (Fig. 2). This resulted in an average degra-
dation rate of ∼ 0.04 m yr−1. On the other hand, the Drew
Point 2D inversion results at x ≈ 600 m showed a median
depth to the IBPT of ∼ 12 m. Note that this location coin-
cides with the 1955 coastline position (see Fig. 1d–e), which
corresponds to 63 years of inundation, yielding an average
degradation rate of ∼ 0.19 m yr−1. At Bykovsky, 63 years of
inundation (again assuming an erosion rate of 0.42 m yr−1)
correspond to an offshore distance of ∼ 26 m, which corre-
sponds to a median IBPT depth in the 2D inversion results at
most 6 m (Fig. 2). Although the mean annual IBPT degrada-
tion rate slows with inundation time as the temperature gra-
dient driving diffusive heat fluxes weakens (Angelopoulos
et al., 2019), it is evident that the permafrost at Drew Point
may thaw faster, presumably because Drew Point sediments
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are primed with salts in the pore space prior to inundation
(Black, 1964; Sellmann, 1989).

Since salt diffusion is typically slower than heat diffu-
sion (Harrison and Osterkamp, 1978), the IBPT degradation
rate at Bykovsky should theoretically be faster than at Drew
Point, provided that the permafrost sediments are similar.
However, it appears that dissolved salts in the pore space of
the sediments at Drew Point play an important role in low-
ering the permafrost freezing point and resulting in higher
IBPT degradation rates than at Bykovsky. In fact, the top
of onshore cryotic and saline unfrozen sediment layers (cry-
opegs) were observed near the Drew Point shoreline during
coring (Bull et al., 2020; Bristol et al., 2021). This can lead
us to interpret a faster IBPT degradation rate at Drew Point
compared to Bykovsky in two ways: (1) a layer of submerged
Drew Point sediments was already unfrozen upon inundation
(e.g., MF2 in Fig. 7) and (2) the frozen layers at Drew Point
contained less ice and had a lower freezing point. Jones et al.
(2018) suggested that warming permafrost temperatures at
Drew Point (3 to 4 ◦C over the past several decades) have
made saline permafrost more susceptible to erosion, poten-
tially contributing to the enhanced coastal erosion rate (2.5
times that of the historical average) observed between 2007
and 2016. Warming by seawater submergence would pre-
sumably result in cryopeg spreading and IBPT degradation.

As shown in Fig. 1a and d, the coastal plains at our field
sites consist of numerous thermokarst lakes and drained lake
basins. When thermokarst lakes are breached by coastal ero-
sion, the unfrozen sediments underneath the lake become
integrated into the subsea permafrost environment, leading
to bowl-shaped electrical resistivity structures. For exam-
ple, Angelopoulos et al. (2021) showed steep IBPT gradi-
ents along ERT profiles parallel to the southern Bykovsky
shoreline that traverse submerged thermokarst and undis-
turbed permafrost. These authors also suggested that drained
lake basins, which have undergone thaw–refreeze cycles, are
more susceptible to quicker thaw compared to undisturbed
terrain. Comparing the first 400 m of our inverted median
models for our field sites, we noticed that, in general, the
IBPT at Drew Point is smoother than at Bykovsky. This
might be the result of the higher erosion rates at Drew Point
(> 10 m yr−1) than at Bykovsky (< 1 m yr−1) that expose
coastal areas to inundation in a shorter time. Because of the
longer inundation time at Bykovsky, we expect fluctuations
in different environmental controls (e.g., water temperature,
seawater salinity) that might result in step-like features as
the one at x ≈ 280 m. Furthermore, layered strata alternat-
ing between ice-rich and relatively ice-poor sediment may
also contribute to step-like IBPT features. Similarly, in the
Drew Point 2D inversion (Fig. 7a–c), there was a steep me-
dian IBPT decline observed at x ≈ 750 m, where the IBPT
deepened from ∼ 12 to ≥ 20 m. Although the resolution ca-
pabilities of our ERT data at these depths are limited, we
suggest that thermokarst processes prior to seawater submer-
gence may be responsible for the nature of this IBPT dip.

7 Conclusions

In this study, we illustrated how we could use ERT data to re-
liably estimate the IBPT position in shallow coastal areas of
the Arctic. We found that using a layer-based model parame-
terization helps us target the IBPT position directly from the
inversion of ERT data with the trade-off of omitting small-
scale heterogeneities. To improve the inversion result, we no-
ticed that constraining the water layer depth and resistivity
reduces the non-uniqueness of the ERT inverse problem, im-
proving the estimation of the resistivity of the unfrozen sed-
iments (talik and/or cryopeg) and the IBPT position. How-
ever, even when constraining the water layer, we still found
large variabilities in the resistivity of the frozen sediments.
We suggest that constraining the resistivity of the unfrozen
sediments (e.g., sediment sampling) during ERT inversion
could improve resistivity estimates of the frozen layer and,
thus, further permafrost’s physical properties (e.g., ice con-
tent). Properly imaging the IBPT position may allow us to
improve the estimation of the permafrost degradation rate,
which might be used to better understand greenhouse gas
emissions and coastal erosion processes. The workflow and
methods presented in this study can guide future field cam-
paigns and may be used as a reference for more detailed pa-
rameterizations and/or inversion strategies.

Appendix A: Smooth inversion

Although comparing different inversion strategies is beyond
the scope of this study, for the sake of completeness, we
show the smooth inversion results for our Bykovsky and
Drew Point data sets in Fig. A1a–b. To invert these data sets,
we use the inversion routine of the Python library pyGIMLi
(Rücker et al., 2017). For both cases, we constrain the seawa-
ter layer by using the bathymetric profile data as collected by
a Garmin echo sounder (see Sect. 3). The Bykovsky model
(Fig. A1a) shows the highest resistivities to the left (near the
coast), while resistivities drop in the offshore direction. For
our Drew Point model (Fig. A1b), the highest resistivities are
also present near the coast, but the resistivities decrease in
the offshore direction more gradually than in the Bykovsky
model. To derive the IBPT position from these models, we
would need to assume or measure (e.g., through borehole
data) the resistivity threshold that separates the talik from
the ice-bearing permafrost layer (e.g., Overduin et al., 2016;
Sherman et al., 2017; Angelopoulos et al., 2021). Because no
ground-truth data are available and to avoid assuming a resis-
tivity threshold, we decide to target such an interface using a
layer-based model parameterization approach as explained in
Sect. 4.1. Please refer to Angelopoulos et al. (2019), where a
smooth inversion of the Bykovsky data set presented in this
study is discussed in more detail, as well as Angelopoulos
et al. (2021), where laterally constrained inversions of addi-
tional data sets offshore of Bykovsky are shown.
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Figure A1. Smooth inversion models for (a) the Bykovsky and (b) Drew Point data sets. To enhance the resistivity contrast in our ERT
models presented in panels (a) and (b), we limited the lower and upper resistivities considering quantiles 0.04 and 0.96, respectively.
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