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This paper is focused on the optimization approach to the solution of inverse problems. We
introduce a stochastic dynamical system in which the parameter-to-data map is embedded,
with the goal of employing techniques from nonlinear Kalman filtering to estimate the
parameter given the data. The extended Kalman filter (which we refer to as ExKI in the
context of inverse problems) can be effective for some inverse problems approached this
way, but is impractical when the forward map is not readily differentiable and is given
as a black box, and also for high dimensional parameter spaces because of the need to
propagate large covariance matrices. Application of ensemble Kalman filters, for example
use of the ensemble Kalman inversion (EKI) algorithm, has emerged as a useful tool which
overcomes both of these issues: it is derivative free and works with a low-rank covariance
approximation formed from the ensemble. In this paper, we work with the ExKI, EKI, and
a variant on EKI which we term unscented Kalman inversion (UKI).
The paper contains two main contributions. Firstly, we identify a novel stochastic
dynamical system in which the parameter-to-data map is embedded. We present theory in
the linear case to show exponential convergence of the mean of the filtering distribution
to the solution of a regularized least squares problem. This is in contrast to previous
work in which the EKI has been employed where the dynamical system used leads to
algebraic convergence to an unregularized problem. Secondly, we show that the application
of the UKI to this novel stochastic dynamical system yields improved inversion results, in
comparison with the application of EKI to the same novel stochastic dynamical system.
The numerical experiments include proof-of-concept linear examples and various applied
nonlinear inverse problems: learning of permeability parameters in subsurface flow;
learning the damage field from structure deformation; learning the Navier-Stokes initial
condition from solution data at positive times; learning subgrid-scale parameters in a
general circulation model (GCM) from time-averaged statistics.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Overview

This paper is devoted to optimization approaches to calibrating models with observational data. The basic problem is 
formulated as recovering unknown model parameters θ ∈RNθ from noisy observation y ∈ RNy given by
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y = G(θ) + η; (1)

here G denotes the parameter-to-data map which, for the applications we have in mind, generally requires solving partial 
differential equations, and η ∼ N (0, �η) denotes the Gaussian observation error. Consider now the stochastic dynamical 
system

evolution: θn+1 = αθn + (1− α)r0 + ωn+1, ωn+1 ∼ N (0,�ω), (2a)

observation: yn+1 = G(θn+1) + νn+1, νn+1 ∼ N (0,�ν). (2b)

We assume that the artificial evolution error covariance �ω � 0, the artificial observation error covariance �ν � 0, and the 
regularization parameter α ∈ (0, 1], whilst r0 is an arbitrary vector.1 We study methods to determine θ from y given by (1)
by employing filtering methods to find θn given Yn := {y�}n�=1, in the setting where y� ≡ y for all � ∈N .

Note that dynamical system (2a) for θn has, for α ∈ (0, 1), statistical equilibrium given by the Gaussian N (r0, (1 −
α2)−1�ω). The output of this statistical model is then repeatedly exposed to the observations, expressed via (2b) with yn+1
set to the data y, and hence it is intuitive that filtering methods will deliver an estimate of θ solving (1) as n → ∞. Such 
a method, in the special case α = 1, �ω = 0, �ν = �η , is the basis of the ensemble Kalman inversion (EKI) algorithm as 
proposed in [1]. The two main takeaway messages of this paper are firstly to highlight the benefits of choosing α ∈ (0, 1)
and �ω � 0, and secondly to demonstrate that application of the unscented Kalman filter improves on the ensemble Kalman 
filter, leading to unscented Kalman inversion (UKI).

The primary issue with the choice α = 1 is that it leads to over-fitting for problems in which Nθ > Ny , as shown in [1]. 
One approach to deal with this is to use an adaptive modification of the basic EKI algorithm, based on an analogy with the 
Levenberg-Marquardt algorithm, as developed in [2]; however, this leads to a need for stopping criterion and the area is still 
being developed [3]. Another approach is to build Tikhonov regularization directly into the inverse problem, before applying 
a filtering algorithm to (2) with α = 1, �ω = 0, an approach introduced in [4]. However, this leads to an algorithm which 
requires the inversion of covariance matrices on spaces of dimension Nθ + Ny which is undesirable for many problems 
concerning inference about fields, where Nθ 	 1. This issue is removed if the continuum limit of the algorithm is used [4]. 
However, practical experience with using time-steppers for continuum limits of ensemble Kalman filtering algorithms is in 
its infancy and current implementations of the methods in [4–8] are not competitive with algorithms which start directly 
from a discrete time formulation.

Central to both the optimization and probabilistic approaches to inversion is the regularized objective function 	R (θ)

defined by

	R(θ) := 	(θ) + 1

2
‖�− 1

2
0 (θ − r0)‖2, (3a)

	(θ) := 1

2
‖�− 1

2
η (y − G(θ))‖2, (3b)

where �η � 0 normalizes the model-data misfit 	 by means of the known error statistics of the noise, prior mean r0
encodes prior information about θ , and prior covariance �0 � 0 normalizes the prior information. We will connect the 
parameters of (2) for θ to a form of regularization of the inverse problem. In this context it is worth noticing that, for linear 
problems, the implied Tikhonov regularization has implied mean r0, whilst the implied covariance �0 of the regularization 
term is defined implicitly via limit of an iterative procedure. Parameter α ∈ (0, 1) controls the size of the regularization 
effect; and when α = 1 the regularization effect disappears, along with dependence of (2a) on r0. Thus α = 1 is useful 
primarily for over-determined problems.

1.2. Our contributions

We make the following contributions to the study of the solution of inverse problems by means of filtering methods:

• we introduce a filtering-based approach to solving the inverse problem (1), based on the novel stochastic dynamical 
system formulation (2);

• by studying linear problems we demonstrate that the methodology induces a form of Tikhonov regularization and we 
prove an exponential convergence of the algorithm to the minimizer of the Tikhonov-regularized problem, in the linear 
case;

• we introduce a Gaussian approximation for the filtering distribution defined by (2) and, from it, derive extended Kalman, 
ensemble Kalman and unscented Kalman (ExKI, EKI and UKI respectively) algorithms for the inverse problem (1), appli-
cable in the general nonlinear case;

1 We write A � 0 when A is strictly positive-definite, and will also write A ≺ B when B − A is strictly positive-definite and A � B when B − A is positive 
semi-definite.
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• the algorithms are tested on a wide range of problems, including linear test problems, inversion for spatial fields in 
a variety of continuum mechanics applications, and the learning of parameters in chaotic dynamical systems, using 
time-averaged data;

• we show that UKI outperforms EKI, with both employed in the context of the stochastic dynamical model (2), for a 
wide range of inverse problems with unknown parameter space of moderate dimension.

Taken together, the theoretical framework we develop and the numerical results we present show that the UKI, applied to 
the stochastic dynamical system (2), is a competitive methodology for solving inverse problems and parameter estimation 
problems defined by an expensive black-box forward model; indeed the UKI is shown to outperform the EKI in settings 
where the number of parameters Nθ is of moderate size and the black-box is not readily differentiable so that ExKI methods 
are not applicable. Other ensemble filters, such as the ensemble adjustment and ensemble transform Kalman filters could 
also be used in place of unscented Kalman filters, and similar performance is to be expected. This issue is explored in detail 
in [9] where ideas introduced in this paper are developed further in order to approximate the Bayesian posterior distribution 
for inverse problem (1). We note that, as with the use of most nonlinear variants of the Kalman filter, rigorous justification 
beyond the linear setting is not currently available, but that our numerical results demonstrate effectiveness in a wide 
range of nonlinear inverse problems. The use of interacting particle systems to solve inverse problems with multimodal 
distributions, far from Gaussian, is considered in [10] and the derivation of mean-field limits of ensemble Kalman methods 
for inversion, viewed as interacting particle systems is established in [11,12].

We conclude this introductory section with a deeper literature review relating to the contributions we make in this paper, 
in Subsection 1.3. Then, in Section 2 we introduce a conceptual algorithm based on a Gaussian approximation of the filtering 
distribution associated with (2); we then derive the ExKI, UKI, and EKI algorithms as approximations to this conceptual 
Gaussian algorithm. In Section 3 we study the methodology for linear problems, obtaining insight into the regularization 
conferred by (2a); we study the relationship of the methodology to other gradient-based optimization techniques; we derive 
continuous-time limits in the nonlinear setting. Section 4 describes variants on the basic conceptual algorithm that may be 
useful in some settings, and in Section 5 we present numerical results demonstrating the performance of the inversion 
methodology introduced in this paper. The code relating to numerical experiments presented in Section 5 is accessible 
online:

https://github .com /Zhengyu -Huang /InverseProblems .jl

1.3. Literature review

The focus of this paper is mainly on derivative-free inversion by means of iterative techniques aimed at solving the 
optimization problem defined by minimization of 	R , or variants of this problem [13]. However, even in the optimization 
setting, the methods introduced in this paper are closely related to iterative methods applied in Bayesian (probabilistic) 
inversion. In the Bayesian approach to the inverse problem (1) [14,15] the posterior distribution is given by

μ(dθ) = 1

Z
exp

(−	(θ)
)
μ0(dθ), (4)

where μ0 =N (r0, �0) is the prior and μ is the posterior. A commonly adopted iterative approach to solving the problem of 
sampling from μ is the finite time approach known as sequential Monte Carlo (SMC) – see [16,17], and [18] for applications 
to inverse problems. The basic idea, upon which there are many variants, is to consider the sequence of measures μn

defined by

μn+1(dθ) = 1

Zn
exp

(−h	(θ)
)
μn(dθ). (5)

Note, then, that if Nh = 1 it follows that μN = μ. Each step μn 
→ μn+1 may be approximated by a particle-based filtering 
algorithm, leading to a variety of algorithms used in practice, involving a fixed finite number of steps N . Furthermore, 
continuous-time limits of this methodology may also be derived by taking N → ∞ and h → 0 with Nh = 1, giving insight 
into the algorithms; see [19,8].

On the other hand, if h = 1 is fixed and the measures μn are studied in the limit n → ∞, they will tend to concentrate 
on minimizers of 	, restricted to the support of μ0, as the following identity shows:

μn(dθ) = 1(

n−1

�=0 Z�

) exp(−n	(θ)
)
μ0(dθ). (6)

This corresponds to an infinite time approach.
The finite time approach was developed for probabilistic problems; the infinite time approach is focused on optimization. 

This paper will build on the latter, optimization, approach to the problem. However, we note that, other than restriction of 
μn to the support of μ0, regularization is lost in this approach since it focuses on minimizing 	(·) and not 	R(·). To 
introduce regularization we consider the iteration
3
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μn+1(dθ) = 1

Zn
exp

(−	(θ)
)
Pnμn(dθ). (7)

To address the issue of regularization, we will choose Pn to be the Markov kernel associated with a first-order autoregres-
sive (AR1) process as defined by (2a); it is thus independent of n : Pn ≡ P . The resulting dynamic on measures μn defined 
by (7) corresponds to the filtering distribution for θn|Yn defined by the stochastic dynamical system (2). We note that within 
SMC Pn is also introduced in a similar fashion in (5), but in that context it is chosen to be a μn-invariant Markov kernel so 
that Pnμn = μn , typically from MCMC; in this setting Pn is indeed n-dependent. Note that μn is not invariant with respect 
to P with the AR1 choice we make: thus the introduction of Pn in our setting differs from its use in SMC; this is because 
we are solving an optimization problem via iteration over n, and not the sampling problem which morphs the prior at time 
n = 0 into the posterior at time n = N . The specific choice of Pn made in our work, namely the Markov kernel P defined by 
an AR1 process, is made in order to regularize the iterative optimization approach to inversion encapsulated in (6). Once we 
apply particle methods, the presence of P plays the role of avoiding ensemble collapse [5,6,4]. We also note that, in contrast 
to SMC, the initial measure μ0 in (7) does not need to be the prior distribution – it may be chosen arbitrarily, although a 
natural choice is the stationary measure for the AR1 process.

In the case where G is linear, (7) delivers a sequence of measures, which are defined through a Kalman filter. Our 
analysis of the underlying filtering problem in Subsection 3.1, which considers the linear Gaussian setting, thus constitutes 
an analysis of the Kalman filter for a specific state-space model with a specific choice of data. In order to deal with a range 
of cases, including exponential convergence, algebraic convergence and divergence of the mean/covariances of the filter, we 
introduce an explicit unified analysis of the Kalman filter in our setting. We note, however, that this is a well-trodden field 
and that variants on some of our results can be obtained from the existing literature [20,21].

The method we introduce and study in this paper arises from the application of ideas from Kalman filtering to the 
problem of approximating the distribution of θn|Yn . The Kalman filter itself applies to the case of linear G [22,23]. When G
is nonlinear the methods can be generalized by use of the extended Kalman filter (ExKF) [24] which is based on linearization 
and application of Kalman methodology. However this method suffers from two drawbacks which hamper its application 
in many large-scale applications: (a) it requires a derivative of the forward map G(·); and (b) the approach scales poorly 
to high dimensional parameter spaces where Nθ 	 1, because of the need to sequentially update covariances in RNθ ×Nθ . 
Thus, despite an early realization that Kalman-based methods could be useful for large-scale filtering problems arising in the 
geosciences [25], the methods did not become practical in this context until the work of Evensen [26]. This revolutionary 
paper introduced the ensemble Kalman filter (EnKF) the essence of which is to avoid the linearization of the dynamics and 
sequential updating of the covariance, and instead use a low-rank approximation of the covariance found by maintaining 
an ensemble of estimates for θn|Yn at every step n. These ensemble Kalman methods have been widely adopted in the 
geosciences, not only because they are effective for high dimensional parameter spaces, but also because they are derivative-
free, requiring only G as a black box. Their use in the solution of inverse problems via iterative methods was pioneered in 
subsurface inversion [27,28] where the perspective of fixing h � 1 and iterating until n = N = 1/h was used, so that μN
is viewed as an approximation of the posterior, provided μ0 is chosen as the prior. These papers thus view the ensemble 
methodology as a way of sampling from the posterior and have elements in common with SMC; this idea is also implicit in 
the paper [19], which is focused on data assimilation, and addresses the solution of a Bayesian inverse problem each time 
new data is received.

In [1] the Kalman methodology for inversion was revisited from the optimization perspective, based on fixing h = 1 and 
iterating in n, leading to an algorithm we will refer to as ensemble Kalman inversion (EKI). The paper [2] introduced a 
novel approach to regularizing the iterative method, by drawing an analogy with the Levenberg-Marquardt algorithm (LMA) 
[29]; see also [3]. Subsequent variants on the iterative optimization approach demonstrate how to introduce Tikhonov reg-
ularization into the EKI algorithm [4] and the paper [6] shows that adding noise to the iteration can lead to approximate 
Bayesian inversion, a method we will refer to as ensemble Kalman sampling (EKS) and which is further analyzed in [7,30]. 
The EKS provides a different approach to the problem of Bayesian inversion from the ones pioneered in [27,28] since it does 
not require starting with draws from the prior μ0, but instead relies on ergodicity and iteration to large n; the methods 
in [27,28] must be started with draws from the prior μ0 and iterated for precisely n = 1/h steps, and are hence more 
rigid in their requirements. Since the ensemble methods do not, in general, accurately approximate the true posterior dis-
tribution [31,32] outside Gaussian scenarios, the derivative-free optimization perspective is arguably a more natural avenue 
within which to analyze ensemble inversion. However recent work demonstrates how a derivative-free multiscale stochastic 
sampling method can usefully take the output of EKS as a preconditioner for a method which provably approximates the 
true posterior distribution [33]; in that context, the EKS is central to making the method efficient. Furthermore, in recent 
interesting work, it has been shown how to reweight ensemble Kalman methods to recover statistical consistency in the 
non-Gaussian setting [8]; however computation of the weights requires gradients of G and hence is not practical for many 
of the problems where ensemble methods are most useful.

Within the control theory literature, and parallel to the development of the ensemble Kalman filter, the unscented 
Kalman filter (UKF) was introduced [34,35]. Like the ensemble Kalman methods, this method also sidesteps the need to 
sequentially update the derivative of the forward model as part of the covariance update; but, in the primary difference from 
ensemble Kalman methods, particles (sigma points) are chosen deterministically, and a quadrature rule is applied within a 
Gaussian approximation of the filter. This paper is to establish a framework for the development of unscented Kalman 
methods for inverse problems, based on (2): we formalize and demonstrate the power of unscented Kalman inversion (UKI) 
4
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techniques. We also formalize extended Kalman inversion (ExKI) as a general purpose methodology for parameter learning 
and derive ExKI, UKI, and UKI as different approximations of a conceptual Gaussian methodology for the (in general non-
Gaussian) filtering problem defined by (2).

Inverse and parameter estimation problems are ubiquitous in engineering and scientific applications. Applications that 
motivate this work include global climate model calibration [36–38], material constitutive relation calibration [39–41], seis-
mic inversion in geophysics [42,43], and medical tomography [44,45]. These problems are generally highly nonlinear, may 
feature multiple scales, and may include chaotic and turbulent phenomena. Moreover, the observational data is often noisy 
and the inverse problem may be ill-posed. We note, also, that a number of inverse problems of interest may involve a 
moderate number of unknown parameters Nθ , yet may involve the solution of a very expensive forward model G depend-
ing on those parameters; furthermore, G may not be differentiable with respect to the parameters, or may be complex to 
differentiate as it is given as a black box.

In the nonlinear setting of state estimation, there are three primary types of Kalman filters [46–48]: the extended Kalman 
filter (ExKF), the unscented Kalman filter (UKF), and the ensemble Kalman filter (EnKF). The use of Kalman based methodol-
ogy as a non-intrusive iterative method for parameter estimation originates in the papers [49,50] which were based on the 
ExKF, hence requiring derivative dG , and its adjoint, to propagate covariances; the use of derivative-free ensemble methods 
was then developed systematically in the papers [27,28], in the SMC context, followed by the iterate for optimization EKI ap-
proach [1]. Derivative-free ensemble inversion and parameter estimation are particularly suitable for complex multiphysics 
problems requiring coupling of different solvers, such as fluid-structure interaction [51–54] and general circulation mod-
els [55] and methods containing discontinuities such as the immersed/embedded boundary method [56–59] and adaptive 
mesh refinement [60,61]. Furthermore, derivative-free ensemble inversion and parameter estimation has been demonstrated 
to be effective in the context of forward models defined by chaotic dynamical systems [62] where adjoint-based methods 
fail to deliver meaningful sensitivities [63,64]. These wide-ranging potential applications form motivation for developing 
other derivative-free Kalman based inversion and parameter estimation techniques, and in particular, the unscented Kalman 
methods developed here.

There is already some work in which unscented Kalman methods are used for parameter inversion. Extended, ensemble 
and unscented Kalman inversions have been applied to train neural networks [49,50,35,65] and EKI has been applied in the 
oil industry [66,27,28]. Dual and joint Kalman filters [67,35] have been designed to simultaneously estimate the unknown 
states and the parameters [67,68,35,69,70] from noisy sequential observations. However, whilst the EKI has been system-
atically developed and analyzed as a general purpose methodology for the solution of inverse and parameter estimation 
problems, the same is not the case for UKI.

Continuous-time limits and gradient flow structure of the EKI have been introduced and studied in [19,71,5,72,73,11,12]. 
This work led to the development of variants on the EKI, such as the Tikhonov-EKI (TEKI) [4] and the EKS [6]. We will 
develop study of continuous-time limits for the UKI, and variants including an unscented Kalman sampler (UKS), in this 
paper. There are interesting links to the Levenberg–Marquardt Algorithm (LMA) [74,29], as introduced in [2] and developed 
further in [75,76,3]. We will further refine the idea, which provides insights into understanding and improving the nonlinear 
Kalman inversion methodology as introduced here.

Finally, we mention that there are other derivative-free optimization techniques which are based on interacting particle 
systems, but are not Kalman based. Rather these methods are based on consensus-forming mean-field models, and their 
particle approximations, leading to consensus-based optimization [77] and consensus-based sampling [78]. The paper [33]
also provides an alternative derivative-free approach to optimization and sampling for inverse problems, using ideas from 
multiscale dynamical systems.

2. Nonlinear Kalman inversion algorithms

Recall that the basic approach to inverse problems that we adopt in this paper is to pair the parameter-to-data relation-
ship encoded in (1) with a stochastic dynamical system for the parameter, resulting in (2). We then employ techniques from 
filtering to approximate the distribution μn of θn|Yn . A useful way to think of updating μn is through the prediction and 
analysis steps [79,80]: μn 
→ μ̂n+1, and then μ̂n+1 
→ μn+1, where μ̂n+1 is the distribution of θn+1|Yn . In Subsection 2.1 we 
first introduce a Gaussian approximation of the analysis step, leading to an algorithm which maps the space of Gaussian 
measures into itself at each step of the iteration; it is not implementable in general, but it is a useful conceptual algorithm. 
Subsection 2.2 shows how this algorithm can be made practical, for low to moderate dimension Nθ and assuming that dG is 
available, by means of the ExKF, a form of linearization of the conceptual algorithm; we refer to this as ExKI. In Subsection 
2.3 we show how the UKI algorithm may be derived by applying a quadrature rule to evaluate certain integrals appearing 
in the conceptual Gaussian approximation. Subsection 2.4 connects the conceptual algorithm with the EKI, an approach in 
which ensemble approximation of the integrals is used.

2.1. Gaussian approximation

This conceptual algorithm maps Gaussians into Gaussians, and henceforth it is referred to as the Gaussian Approximation 
Algorithm (GAA). Assume that μn ≈ N (mn, Cn). The GAA is a mapping from (mn, Cn) into (mn+1, Cn+1) which reduces 
to the Kalman filter in the linear setting. The algorithm proceeds by determining the joint distribution of θn+1, yn+1|Yn , 
5
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assuming that θn|Yn is Gaussian N (mn, Cn). We then project2 this joint distribution onto a Gaussian by computing its mean 
and covariance. And finally, we compute the conditional distribution of this joint Gaussian on observed yn+1 to obtain a 
Gaussian approximation N (mn+1, Cn+1) to μn+1, the distribution of θn+1|Yn+1.

The projection of the joint distribution of {θn+1, yn+1}|Yn onto a Gaussian distribution has the form

N
([m̂n+1

ŷn+1

]
,

[
Ĉn+1 Ĉθ y

n+1

Ĉθ y
n+1

T Ĉ yy
n+1

])
; (8)

we now define all the components of the mean and covariance. Note that, under (2a), μ̂n+1 is also Gaussian if μn is 
Gaussian. The use of (2a) shows that

m̂n+1 = E[θn+1|Yn] = αmn + (1− α)r0,

Ĉn+1 = Cov[θn+1|Yn] = α2Cn + �ω.
(9)

Then, with E denoting expectation with respect to θn+1|Yn ∼N (m̂n+1, ̂Cn+1), we have

ŷn+1 =E[G(θn+1)|Yn],
Ĉθ y
n+1 =Cov[θn+1,G(θn+1)|Yn],

Ĉ yy
n+1 =Cov[G(θn+1)|Yn] + �ν.

(10)

Computing the conditional distribution of the joint Gaussian in (8) to find θn+1|{Yn, yn+1} = θn+1|Yn+1 gives the following 
expressions for the mean mn+1 and covariance Cn+1 of the approximation to μn+1:

mn+1 = m̂n+1 + Ĉθ y
n+1(̂C

yy
n+1)

−1(yn+1 − ŷn+1),

Cn+1 = Ĉn+1 − Ĉθ y
n+1(̂C

yy
n+1)

−1Ĉθ y
n+1

T .
(11)

Equations (9), (10) and (11) define the GAA. As a method for solving the inverse problem (1), the GAA is implemented 
by assuming all observations {yn} are identical to y and iterating in n. With this assumption, we may write the algorithm 
as

(mn+1,Cn+1) = F (mn,Cn;G, r0,�ω), (12)

noting that the mapping is dependent on G and on the mean and covariance of the assumed auto-regressive dynamics for 
{θn}.3

In the setting where G is linear, the Gaussian ansatz used in the derivation of the conceptual algorithm is exact, the 
integrals appearing in (10) have closed form, and the algorithm reduces to the Kalman filter applied to (2), with a particular 
assumption on the data stream {yn}. In Subsection 3.1 we will show, again in the setting where G is linear, that the mean of 
this iteration converges to a minimizer of 	R given by (3), in which the prior covariance of the regularization �0 is defined 
by solution of a linear equation depending on the choices of α, �ω , and �ν , as well as on G .

In the nonlinear setting, to make an implementable algorithm from the GAA encapsulated in equations (9) to (11), it 
is necessary to approximate the integrals appearing in (10). When extended, unscented and ensemble Kalman filters are 
applied, respectively, to make such approximation, we obtain the ExKI, UKI, and EKI algorithms. The extended, unscented, 
and ensemble approaches to this are detailed in the following three subsections. Underlying all of them is the following 
property of the GAA encapsulated in Proposition 1.

We recall the idea of affine invariance, introduced for MCMC methods in [82], motivated by the attribution of the 
empirical success of the Nelder-Mead algorithm [83] for optimization to a similar property; further development of the 
method in the context of sampling algorithms may be found in [84,7]. In words an iteration is affine invariant if an invertible 
linear transformation of the variable being iterated makes no difference to the algorithm and hence to the convergence 
properties of the algorithm; this has the desirable consequence that performance of the method is independent of the 
aspect ratio in highly anisotropic objective functions.

Consider the invertible mapping from x ∈ RNθ to ∗x ∈ RNθ defined by ∗x = Ax + b. Then define ∗G(θ) = G
(
A−1(θ − b)

)
, 

∗r0 = Ar0 + b and ∗�ω = A�ω AT .

Proposition 1. Define, for all n ∈Z0+ ,

∗mn = Amn + b ∗Cn = ACn A
T .

2 We refer to this as “projection” because it corresponds to finding the closest Gaussian p to the joint distribution of θn+1, yn+1|Yn with respect to 
variation in the second argument of the (nonsymmetric) Kullback-Leibler divergence [81][Theorem 4.5].
3 F also depends on α and �ν but we suppress this dependence for economy of notation; the highlighted dependence is what is relevant in Proposition 1.
6
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Then

(∗mn+1,
∗Cn+1) = F (∗mn,

∗Cn; ∗G, ∗r0, ∗�ω). (13)

Proof. The proof is in Appendix A. �
The key observation of the previous theorem is that the same map F applies in the new coordinates. This establishes 

the property of affine invariance, noting that only G, r0, �ω need to be transformed as the affine map applies only on the 
signal space for {θn} and not the observation space for {yn}.
2.2. Extended Kalman inversion

Consider the GAA defined by equations (9) to (11). The ExKI algorithm follows from invoking the approximations

G(θn+1) ≈ G(m̂n+1) + dG(m̂n+1)(θn+1 − m̂n+1) (14)

in the analysis updates for the mean and covariance respectively. In particular both the mean and the covariances in (10)
can be evaluated in closed form with the approximation (14). The approximations are valid if the fluctuations around the 
mean state are small, say of O(ε) � 1, and all the covariances are O(ε2). This results in the following algorithm:

• Prediction step:

m̂n+1 =αmn + (1− α)r0,

Ĉn+1 =α2Cn + �ω.
(15)

• Analysis step:

ŷn+1 = G(m̂n+1),

Ĉθ y
n+1 = Ĉn+1dG(m̂n+1)

T ,

Ĉ yy
n+1 = dG(m̂n+1)̂Cn+1dG(m̂n+1)

T + �ν,

mn+1 = m̂n+1 + Ĉθ y
n+1(̂C

yy
n+1)

−1(y − ŷn+1
)
,

Cn+1 = Ĉn+1 − Ĉθ y
n+1(̂C

yy
n+1)

−1Ĉθ y
n+1

T .

(16)

This is a map of the form (12), but with a different definition of F , now depending on dG as well as G .

2.3. Unscented Kalman inversion

Like the ExKI, the UKI also approximates the GAA; but it approximates the integrals appearing in Equations (10) by 
means of deterministic quadrature rules which are exact when evaluating means and covariances of variables defined as 
linear transformations of the random variable in question. Both the ExKI and the UKI recover the Kalman filter when G is 
linear. We need the definition of the unscented transform [34,35]:

Definition 1 (Modified unscented transform). Consider Gaussian random variable θ ∼ N (m, C) ∈ RNθ . Define the 2Nθ + 1
symmetric sigma points {θ j}2Nθ +1

j=0 by

θ0 =m,

θ j =m + c j[
√
C] j (1 ≤ j ≤ Nθ ),

θ j+Nθ =m − c j[
√
C] j (1 ≤ j ≤ Nθ ),

(17)

where [√C] j is the jth column of the Cholesky factor of C . Let Gi, i = 1, 2 denote any pair of real vector-valued functions 
on RNθ . Then the quadrature rule approximating the mean and covariance of the transformed variables G1(θ) and G2(θ) is 
given by

E[Gi(θ)] ≈ Gi(θ
0) Cov[G1(θ),G2(θ)] ≈

2Nθ∑
j=1

Wc
j (G1(θ

j) −EG1(θ))(G2(θ
j) −EG2(θ))T . (18)

Here these constant weights are, for any a ∈ R,

c j = a
√
Nθ ( j = 1, · · · ,Nθ ) Wc

j = 1
2

( j = 1, · · · ,2Nθ ).

2a Nθ

7
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Lemma 1. Let Gi, i = 1, 2 denote any pair of real vector-valued functions on RNθ . If θ ∼N (m, C) then

E[Gi(θ)] = Gi(m) +O(‖C‖),

Cov[G1(θ),G2(θ)] =
2Nθ∑
j=1

Wc
j (G1(θ

j) −EG1(θ))(G2(θ
j) −EG2(θ))T +O(‖C‖2);

thus the modified unscented transform is first and second order accurate in approximating means and covariances of G1(θ) and G2(θ)

with respect to small ‖C‖. Furthermore, if G1 and G2 are linear then the modified unscented transform is exact for these quantities.

Proof. The proof is in Appendix A. �
Remark 1. The first and second order high order error terms, appearing in the expressions for the mean and covariance 
respectively, depend on derivatives of Gi at m and hence, through these derivatives and through C , on the parameter 
dimension Nθ . The original unscented transform leads to second order accuracy in the mean as well as covariance [85]. 
The modification we employ here replaces the original second order approximation of the E[Gi(θ)] with its first order 
counterpart. We do this to avoid negative weights; it also has ramifications for the optimization process which we discuss 

in Remark 9. In this paper, the hyper-parameter is chosen to be a = min{
√

4

Nθ

, 1}. We note that the papers [85,35,48], 

suggest using a small positive value of a. We find in the numerical examples considered in this paper that our proposed 
choice of a outperforms the choice a = min{

√
4
Nθ

, 0.01}), which builds in the idea of using a small positive value of a.

Consider the algorithm defined by equations (9) to (11). By utilizing the aforementioned quadrature rule, we obtain the 
following UKI algorithm:

• Prediction step:

m̂n+1 =αmn + (1− α)r0,

Ĉn+1 =α2Cn + �ω.
(19)

• Generate sigma points:

θ̂0
n+1 = m̂n+1,

θ̂
j
n+1 = m̂n+1 + c j[

√
Ĉn+1] j (1 ≤ j ≤ Nθ ),

θ̂
j+Nθ

n+1 = m̂n+1 − c j[
√
Ĉn+1] j (1 ≤ j ≤ Nθ ).

(20)

• Analysis step:

ŷ j
n+1 = G(θ̂

j
n+1) ŷn+1 = ŷ0n+1,

Ĉθ y
n+1 =

2Nθ∑
j=1

Wc
j (θ̂

j
n+1 − m̂n+1)(̂y

j
n+1 − ŷn+1)

T ,

Ĉ yy
n+1 =

2Nθ∑
j=1

Wc
j (̂y

j
n+1 − ŷn+1)(̂y

j
n+1 − ŷn+1)

T + �ν,

mn+1 = m̂n+1 + Ĉθ y
n+1(̂C

yy
n+1)

−1(y − ŷn+1),

Cn+1 = Ĉn+1 − Ĉθ y
n+1(̂C

yy
n+1)

−1Ĉθ y
n+1

T .

(21)

This is again a map of the form (12), but with a different definition of F ; unlike the ExKF there is no dependence on dG , 
only on G .

2.4. Ensemble Kalman inversion

This method differs fundamentally from the ExKI and UKI in that it does not map the mean and covariance. Rather it 
works with a set of particles whose dynamics at each step is predicted using (2a) and then used to compute empirical 
8
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approximations of covariances. These in turn are used in the analysis step. The entire algorithm maps the collection {θ j
n } J

j=1

into {θ j
n+1} J

j=1. However, in the large J limit the mean and covariance updates match those of the GAA.
Consider the algorithm defined by equations (9) to (11). The EKI approach to making this implementable is to work with 

an ensemble of parameter estimates and approximate the covariances Ĉθ y
n+1 and Ĉ yy

n+1 empirically:

• Prediction step:

θ̂
j
n+1 = αθ

j
n + (1− α)r0 + ω

j
n+1,

m̂n+1 = 1

J

J∑
j=1

θ̂
j
n+1.

(22)

• Analysis step:

ŷ j
n+1 = G(θ̂

j
n+1) ŷn+1 = 1

J

J∑
j=1

ŷ j
n+1,

Ĉθ y
n+1 = 1

J − 1

J∑
j=1

(θ̂
j
n+1 − m̂n+1)(̂y

j
n+1 − ŷn+1)

T ,

Ĉ yy
n+1 = 1

J − 1

J∑
j=1

(̂y j
n+1 − ŷn+1)(̂y

j
n+1 − ŷn+1)

T + �ν,

θ
j
n+1 = θ̂

j
n+1 + Ĉθ y

n+1

(
Ĉ yy
n+1

)−1
(y − ŷ j

n+1 − ν
j
n+1),

mn+1 = 1

J

J∑
j=1

θ
j
n+1.

(23)

Here the superscript j = 1, · · · , J is the ensemble particle index, ω j
n+1 ∼ N (0, �ω) and ν j

n+1 ∼ N (0, �ν) are independent 
and identically distributed random variables with respect to both j and n.

Remark 2. In [1], where the iterative EKI was introduced, a slightly different stochastic dynamical formulation is used, 
extending the parameter space to include the image of the parameters under G and then making a linear observation 
operator on the extended space. The resulting method reduces to our setting with α = 1, �ω = 0, and �ν = �η in the 
preceding algorithm. In the next section we will demonstrate theoretically that choosing α ∈ (0, 1) and �ω � 0 is beneficial 
and hence that the version of EKI proposed in this paper is superior to that in [1].

3. Theoretical insights

Recall that we view the GAA as an underlying conceptual algorithm which gives insight into the ExKI, UKI, and EKI 
algorithms. The ExKI is itself an approximation of the GAA, found by linearizing G around the predictive mean and the 
UKI and EKI algorithms are approximations of the resulting ExKI. Thus study of the GAA and ExKI gives insights into the 
UKI and EKI algorithms. This section is devoted to such studies. In Subsection 3.1 we consider behaviour of the GAA in the 
linear setting. In Subsection 3.2, we show that the ExKI may be viewed as a generalization of the LMA for optimization. 
Subsection 3.3 exhibits an averaging property induced by the unscented approximation, indicating how this may help in 
solving problems with rough energy landscapes. And in Subsection 3.4 we study a continuous-time limit of the GAA, which 
may itself be approximated to obtain continuous-time limits of the ExKI, UKI, and EKI algorithms; this provides insight into 
the discrete algorithms as implemented in practice.

3.1. The linear setting

In the linear setting the stochastic dynamical system for state {θn} and observations {yn} is given by

evolution: θn+1 = αθn + (1− α)r0 + ωn+1, ωn+1 ∼ N (0,�ω), (24a)

observation: yn+1 = Gθn+1 + νn+1, νn+1 ∼ N (0,�ν). (24b)

Thanks to the linearity, equations (10) reduce to
9
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ŷn+1 = Gmn, Ĉθ y
n+1 = Ĉn+1G

T , and Ĉ yy
n+1 = GĈn+1G

T + �ν. (25)

The update equations (11) become

m̂n+1 = αmn + (1− α)r0,

Ĉn+1 = α2Cn + �ω,
(26)

and

mn+1 = m̂n+1 + Ĉn+1G
T (GĈn+1G

T + �ν)−1
(
y − Gm̂n+1

)
, (27a)

Cn+1 = Ĉn+1 − Ĉn+1G
T (GĈn+1G

T + �ν)−1GĈn+1. (27b)

We have the following theorem about the convergence of the GAA in the setting of the linear forward model:

Theorem 1. Assume that �ω � 0 and �ν � 0. Consider the iteration (26), (27) mapping (mn, Cn) into (mn+1, Cn+1). Assume further 
that α ∈ (0, 1) or that α = 1 and Range(GT ) =RNθ . Then the steady state equation of equation (27b)

C−1∞ = GT�−1
ν G + (α2C∞ + �ω)−1 (28)

has a unique solution C∞ � 0. The pair (mn, Cn) converges exponentially fast to limit (m∞, C∞). Furthermore the limiting mean m∞
is the minimizer of the Tikhonov regularized least squares functional 	R given by

	R(θ) := 1

2
‖�− 1

2
ν (y − Gθ)‖2 + 1− α

2
‖Ĉ− 1

2∞ (θ − r0)‖2, (29)

where

Ĉ∞ = α2C∞ + �ω. (30)

Proof. The proof is in Appendix A. �
Remark 3. When α ∈ (0, 1), the exponential convergence rates of the mean and covariance are independent of the condition 
number of GT �−1

ν G . Furthermore, Ĉ∞ is bounded above and below:

�ω � Ĉ∞ � �ω

1− α2
,

since 0 � C∞ � α2C∞ + �ω .

Remark 4. Despite the clear parallels between equation (29) and Tikhonov regularization [13], there is an important differ-
ence: the matrix Ĉ∞ defining the implied prior covariance in the regularization term depends on the forward model. This 
may be seen by noting that it is defined by (30) in terms of the steady state covariance C∞ satisfying (28). To get some 
insight into the implications of this, we consider the over-determined linear system in which GT �−1

η G is invertible and we 
may define

C∗ = (GT�−1
η G)−1. (31)

If we choose the artificial evolution and observation error covariances

�ν = 2�η, (32a)

�ω = (
2 − α2)C∗, (32b)

then straightforward calculation with (28), (30) shows that

C∞ = C∗, Ĉ∞ = 2C∗.
From (29) it follows that

	R(θ) = 1

4

∥∥∥∥�− 1
2

η (y − Gθ)

∥∥∥∥2 + (1 − α)

4

∥∥∥∥�− 1
2

η (Gr0 − Gθ)

∥∥∥∥2 . (33)

This calculation clearly demonstrates the dependence of the second (regularization) term on the forward model and that 
choosing α ∈ (0, 1] allows different weights on the regularization term. In contrast to Tikhonov regularization, the regular-
ization term (33) scales similarly with respect to G as does the data misfit, providing a regularization between the prior 
mean r0 and an overfitted parameter θ∗ : y = Gθ∗ . Therefore, despite the differences from standard Tikhonov regularization, 
the implied regularization resulting from the proposed stochastic dynamical system is both interpretable and controllable; 
in particular, the single parameter α measures the balance between prior and the overfitted solution.
10
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Remark 5. Theorem 1 holds for any Kalman inversions that fulfill equations (9) and (25) exactly, which include ExKI, UKI, 
and these square root Kalman inversions [86,9], but not the EKI.

We contrast Theorem 1 with the behaviour of the filtering distribution for the stochastic dynamical system used in the 
derivation of the standard form of the EKI [1], which corresponds to the choices α = 1, �ω = 0, and �ν = �η . To study this 
case we will assume that C0 � 0 and define

C ′
n = C

− 1
2

0 CnC
− 1

2
0 , m′

n = C
− 1

2
0 mn, G ′ = GC

1
2
0 , S = (G ′)T�−1

ν G ′. (34a)

We note that the nullspace of S is equal to the nullspace of G ′ , and that the nullspace of G ′ is found from the nullspace of 

G by application of C− 1
2

0 . Let Q denote orthogonal projection onto the nullspace of S , and P the orthogonal complement of 
Q . We then have the following characterization of the filtering distribution for the stochastic dynamical system underlying 
the form of the EKI introduced in [1].

Theorem 2. Assume that α = 1, �ω = 0 and consider the iteration (26), (27) mapping (mn, Cn) into (mn+1, Cn+1). Assume further 
that �ν � 0 and that C0 � 0. Then Cn � 0 for all n ∈N and

(C ′
n)

−1 = I + nS, (35a)

(I + nS)m′
n =m′

0 + n(G ′)T�−1
ν y. (35b)

Thus, as n → ∞, with S+ denoting the Moore-Penrose pseudo-inverse of S,

n−1P (C ′
n)

−1 = S +O(n−1), Q (C ′
n)

−1 = Q , (36a)

Pm′
n = S+(G ′)T�ν y +O(n−1), Qm′

n = Qm′
0. (36b)

Proof. The proof is in Appendix A. �
Remark 6. Consider Theorem 2, in which α = 1 and �ω = 0, and note that S � 0 in PRNθ . The theorem shows that the 
covariance of the filtering distribution of the stochastic dynamical system underlying the original implementation of EKI 
exhibits collapse to zero at algebraic rate in the observed subspace PRNθ , and is unchanged in the unobserved subspace 
QRNθ . The mean converges algebraically slowly at rate O(n−1) in PRNθ and is unchanged in QRNθ .

Remark 7. Theorem 1-2 suggests the importance of choosing α ∈ (0, 1) and �ω � 0 in the stochastic dynamical systems 
that we propose here, as this ensures exponential convergence of the filtering distribution to a regularized least squares 
problem. However, if the forward operator has empty null-space, the situation arising when the inversion problem is well-
determined or over-determined, then α = 1 may be chosen but it is again important to ensure �ω � 0 to avoid the algebraic 
convergence exhibited in Theorem 2. In the case α ∈ (0, 1) Theorem 1 demonstrates the regularization which underlies the 
proposed iterative method. In the case α = 1, the regularization term vanishes.

Remark 8. The behaviour of the finite particle size EKI, in the case α = 1, �ω = 0, is fully analyzed in [5]. Theorem 2 is a 
mean-field counterpart of that theory.

The following proposition is relevant to understanding some of the numerical experiments presented later in the paper 
and, taken together with Theorems 1 and 2, it also completes our analysis of the filtering distribution for the novel stochastic 
dynamical system introduced in this paper.

Proposition 2. Assume that α = 1 and �ω � 0 and consider the setting where the forward operator G has non-trivial null space (thus 
violating the assumption Range(GT ) = RNθ in Theorem 1). Assume further that �ν � 0 and that C0 � 0. Then Cn � 0 for all n ∈ N

and mn converges to a minimizer of 12‖�− 1
2

ν (y − Gθ)‖2 exponentially fast. However C−1
n converges to a singular matrix and hence 

‖Cn‖ diverges to +∞; the rate of divergence is bounded by

Cn � C0 + n�ω. (37)

Proof. The proof is in Appendix A. �

11
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3.2. ExKI: Levenberg–Marquardt connection

In the nonlinear setting, our numerical results will demonstrate the implicit regularization and linear (sometimes super-
linear) convergence of ExKI and UKI. This desirable feature can be understood by the analogy with the Levenberg–Marquardt 
Algorithm (LMA). We focus this discussion on the particular case α = 1 as we find that, for over-determined problems, this 
choice often produces the best results.

Consider the non-regularized nonlinear least-squares objective function 	, defined in (3b). The key step in the 
Levenberg–Marquardt Algorithm (LMA) is to solve the minimization problem for (3b) by a preconditioned gradient descent 
procedure which maps θn to θn + δθn and where δθn solves

(dG(θn)
T�−1

ν dG(θn) + λnI)δθn = dG(θn)
T�−1

ν (y − G(θn)). (38)

Here I is the identity matrix on RNθ and λn is the (non-negative) damping factor, often chosen adaptively. Because of the 
damping matrix λnI, the LMA is found to be more robust than the Gauss–Newton Algorithm and exhibits linear (or even 
superlinear) convergence in practice. The use of LMA for inverse problems is discussed in [29].

The ExKI procedure solves the optimization problem for (3b) by a different preconditioned gradient descent procedure, 
defined by the update(

dG(θn)
T�−1

ν dG(θn) + (Cn + �ω)−1
)
δθn = dG(θn)

T�−1
ν (y − G(θn)) . (39)

This may be viewed as a generalization of the LMA in which the adaptive damping term is now a matrix Cn + �ω and 
the adaptation is automated through the covariance updates; furthermore this matrix is lower bounded (in the sense of 
quadratic forms) by �ω , regardless of the adaptation through the covariance, ensuring some damping of the Gauss-Newton 
approximate Hessian. We may expect that the UKI and EKI, which approximate the linearization dG in the ExKI, to benefit 
from this generalized LMA. Connections between the LMA and EKI were first systematically explored in [2] and more 
recently in [76].

3.3. UKI: unscented approximation and averaging

Here we explain that the unscented transform may be viewed as smoothing the energy landscape of UKI, in comparison 
with ExKI; this helps to explain the improved behaviour of UKI over ExKI on rough landscapes, such as those we will show 
in section 5 when performing parameter estimation for chaotic differential equations. To understand this smoothing effect 
we first introduce a useful averaging property [87, Theorem 1].4

Lemma 2. Let θ denote Gaussian random vector θ ∼ N (m, C) ∈ RNθ . For any nonlinear function G : RNθ → RNy , we define the 
associated averaged function FG : RNθ × RNθ ×Nθ�0 → RNy and averaged gradient function FdG : RNθ × RNθ ×Nθ�0 → RNy×Nθ as 
follows:

FG(m,C) := E[G(θ)] FdG(m,C) := Cov[G(θ), θ] · C−1. (40)

Then we have 
∂FG(m,C)

∂m
=FdG(m, C).

Proof. The proof is in Appendix A. �
Note that in the linear case FG(m, C) = G(m) and FdG(m, C) = G; the averaged derivative is exact. This averaging 

procedure is useful to understand the conceptual GAA precisely because (40) may be used to express Cov[G(θ), θ], which 
appears in the conceptual GAA, in terms of the averaged derivative FdG(m, C). In order to use this idea in the context of 
the UKI it is useful to understand related averaging operations when the modified unscented transform (Definition 1) is 
employed to approximate Gaussian expectations. To this end we define, using (19)–(21),

FuGn := ŷn,

FudGn := Ĉθ y
n

T Ĉ−1
n ,

(41)

noting that FuGn and FudGn then correspond to approximation of (40) at step n of the algorithm, using the modified 
unscented transform from Definition 1.

Proposition 3. The UKI algorithm (19)–(21) may be written in the following form:

4 In what follows, the suffix �0 denotes positive semi-definite matrix and ∂
∂m denotes gradient with respect to m.
12
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• Prediction step:

m̂n+1 =αmn + (1− α)r0,

Ĉn+1 =α2Cn + �ω.
(42)

• Analysis step:

ŷn+1 = FuGn+1,

Ĉθ y
n+1 = Ĉn+1FudGT

n+1,

Ĉ yy
n+1 = FudGn+1Ĉn+1FudGT

n+1 + �ν + �̃ν,n+1,

mn+1 = m̂n+1 + Ĉθ y
n+1(̂C

yy
n+1)

−1(y − ŷn+1
)
,

Cn+1 = Ĉn+1 − Ĉθ y
n+1(̂C

yy
n+1)

−1Ĉθ y
n+1

T .

(43)

Here ̃�ν,n+1 � 0. Furthermore, ‖�̃ν,n+1‖ =O(‖Ĉn+1‖2) and ̃�ν,n+1 = 0 when G is linear.

Proof. The proof is in Appendix A. �
Remark 9. Comparison of the original UKI algorithm (19)–(21) with its rewritten form (42)-(43) demonstrates that, in the 
regime where the covariance is small, or the forward model is linear, the UKI algorithm behaves like the ExKI algorithm 
(15)-(16) but with the nonlinear function G and its associated gradient dG having been averaged according to unscented 
approximations of the averaging operations defined in Lemma 2. From the preceding subsection, it follows that the UKI is 
also related to a modified LMA applied to an averaged objective function. Note that, by using the unscented approximation of 
the averaging procedure defined in Lemma 2, we essentially remove the averaging of G and retain it only on dG . Averaging 
of the gradient dG alone will be demonstrated to have an important positive effect on parameter estimation for chaotic 
dynamical systems in Subsections 5.8, 5.9, and 5.10.

3.4. Continuous time limit

To derive a continuous-time limit we set α = 1 − α0h, �ω 
→ h�ω , and �ν 
→ h−1�ν . The algorithm defined by Equa-
tions (9) to (11) then has the form of a first order accurate (in h) approximation of the dynamical system

ṁ = −α0(m − r0) + Cθ y�−1
ν

(
y −EG(θ)

)
, (44a)

Ċ = −2α0C + �ω − Cθ y�ν
−1Cθ y T , (44b)

where θ ∼N (m, C), expectation E is with respect to this distribution and

Cθ y = E
((

θ −m
)⊗ (

G(θ) −EG(θ)
))

.

This continuous-time dynamical system may be used as the basis for practical algorithms by discretizing in time, for exam-
ple, using forward Euler with an adaptive time-step as in [65], and applying the same ideas used in the ExKF, UKI or EKI to 
approximate the expectations.

The steady state m∞, C∞ of the differential equations (44) are implicitly defined in a somewhat complicated fashion. 
However, any such steady state always has non-singular covariance as we now state and prove.

Lemma 3. For any steady state (m∞, C∞) of equation (44), the steady covariance C∞ is non-singular.

Proof. The proof is in Appendix A. �
4. Variants on the basic algorithm

4.1. Enforcing constraints

Kalman inversion requires solving forward problems at every iteration. Failure of the forward problem to deliver phys-
ically meaningful solutions can lead to failure of the inverse problem. Adding constraints to the parameters (for example, 
dissipation is non-negative) significantly improves the robustness of Kalman inversion. Within the EKI there is a natural 
way to impose constraints, using the fact that each iteration of the algorithm may be interpreted as solving a set of coupled 
quadratic optimization problems, with coupling arising from empirical covariances. These optimization problems are read-
ily appended with convex constraints, such as box (inequality) constraints [88]; see also [2,4]. The UKI does not have this 
optimization interpretation and so we adopt a different approach to enforcing box constraints.
13
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In this paper there are occasions where we impose element-wise box constraints of the form

0 ≤ θ or θmin ≤ θ ≤ θmax.

These are enforced by change of variables writing θ = ϕ(θ̃) where, for example, respectively,

ϕ(θ̃) = |θ̃ | or ϕ(θ̃) = θmin + θmax − θmin

1+ |θ̃ | .

The inverse problem is then reformulated as

y = G(ϕ(θ̃)) + η,

and the UKI methods and variants are employed with G 
→ G ◦ ϕ .

4.2. Unscented Kalman sampler

Consider the following stochastic dynamical system, in which W is a standard unit Brownian motion in RNθ :

θ̇ = Cθ y�−1
η

(
y − G(θ)

)− C�−1
0 (θ − r0) + √

2C
1
2 Ẇ , (45a)

Cθ y = E
((

θ −m
)⊗ (

G(θ) −EG(θ)
))

(45b)

and all expectations are computed under the law of θ , with respect to which the mean and covariance are denoted as 
m and C respectively. This Itò-McKean diffusion process can be approximated by an interacting particle system, and the 
law of θ approximated using the resulting empirical Gaussian approximation, leading to the EKS [6]; we now generalize 
this to an unscented version. First consider the following evolution equations for the mean and covariance of the Gaussian 
approximation to the law of θ :

ṁ = Cθ y�−1
η

(
y −EG(θ)

)− C�−1
0 (m − r0), (46a)

Ċ = −2Cθ y�−1
η Cθ y T − 2C�−1

0 C + 2C . (46b)

Note that the expectations are computed under the law of (45) and so this is not, in general, a closed system for (m, C).
To obtain a closed system for (m, C), we consider a Gaussian evolving according to the equations (46), with matrix 

Cθ y again given by (45b), but now expectation E is computed with respect to the distribution N (m, C) so that a closed 
system for (m, C) is obtained. The UKS is defined by approximating the expectations in this system by use of an unscented 
transform.

In the case where G is linear and the solution is initialized at a Gaussian then the system (46) with expectations 
computed under N (m, C) is consistent with the solution of the Itò-McKean diffusion (45) governing θ – that latter has 
Gaussian distribution evolving according to (46). Furthermore, the analysis in [6] shows that then the system converges to 
the posterior distribution (4) at a rate exp(−t) independent of the problem being solved; this independence of the rate on 
the problem conditioning may be viewed as a consequence of affine invariance. We also mention that the analysis in [89]
shows that, when initialized at a non-Gaussian, the Gaussian dynamics is an attractor. It is thus natural to consider using 
numerical simulations of (46) to generate approximate samples from the posterior distribution. Illustrative examples are 
presented in Appendix B.

5. Numerical results

In this section, we present numerical results for Kalman-based inversion using the proposed stochastic dynamical sys-
tem equation (2).

5.1. Choice of hyperparameters

We make choices of �ω and �ν guided by the discussion in Remark 4. However, for general nonlinear problems C∗ is 
not explicitly defined. Thus we modify the prescription given in (32) and instead choose

�ν = 2�η (47a)

�ω = (
2 − α2)γ I (47b)

for some γ > 0. For over-determined problems, when the observational noise is absent or negligible, we take α = 1. For 
under-determined problems, to avoid overfitting in the presence of noise, we generally choose α ∈ (0, 1); but we also 
present some under-determined problems with choice α = 1 to demonstrate undesirable effects from doing so. In general, 
cross-validation should be invoked to determine an optimal choice of α. However in this paper, we have simply used the 
values 0.0, 0.5, 0.9, 1.0 for illustrative purposes. To be concrete we initialize with m0 = r0 and C0 = γ I. Specific choices of 
r0 and γ will differ between examples and will be spelled out in each case.
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5.2. Classes of problems studied

For all applications, we focus mainly on the UKI; some comparisons between the UKI and EKI (specifically, as applied 
to the novel stochastic dynamical system (2) proposed here) are also presented; and computational difficulties inherent in 
the rough misfit landscape experienced by the ExKI for chaotic dynamical systems are illustrated, and are demonstrably 
overcome by deploying the UKI. The applications cover a wide range of problems. They include three categories:

1. Noiseless linear problems, where over-determined, under-determined, and well-determined systems are considered.
• Linear 2-parameter model problem: this problem serves as a proof-of-concept example, which demonstrates the 

convergence of the mean and the covariance matrix discussed in Subsection 3.1. In this case, the UKI is exact, as a 
consequence of Lemma 1; numerics are performed using only the UKI.

• Hilbert matrix problem: this problem illustrates the performance of the EKI and UKI when solving ill-conditioned 
inverse problems. The EKI suffers from divergence as it is iterated. However the UKI behaves well, again reflecting the 
exactness for linear problems, highlighted in Lemma 1, and the theory of Subsection 3.1 characterizing the behaviour 
of the filtering distribution in the linear setting.

2. Noisy field recovery problems, in which we add 0%, 1%, and 5% Gaussian random noise to the observation, as follows:

yobs = yref + ε � ξ, ξ ∼ N (0, I), (48)

where yref = G(θref ), ε = 0%yref , 1%yref , and 5%yref , and � denotes element-wise multiplication. It is important to 
distinguish between the added Gaussian random noise appearing in the data and the observation error model η ∼
N (0, �η) used in the development of the inversion algorithm; in essence we assume imperfect knowledge of the noise 
model.5 Comparison of UKI and EKI is presented. EKI is shown to suffer from finite ensemble size effects, and in some 
cases diverges; in contrast, UKI behaves well. Thus we observe that what we have learned from the linear setting carries 
across to the setting of nonlinear inverse problems. This category of inversion for fields also serves to demonstrate the 
value of the Tikhonov regularization parameter α ∈ (0, 1) in the prevention of overfitting. We consider three examples, 
now listed.
• Darcy flow problem: to find permeability parameters in subsurface flow from measurements of pressure (or piezo-

metric head).
• Damage detection problem: determining the damage field in an elastic body from displacement observations on the 

surface of the structure.
• Navier-Stokes problem: we study a two dimensional incompressible fluid, using the vorticity-streamfunction formu-

lation, and recover the initial vorticity from noisy observations of the vorticity field at later times.
3. Chaotic problems, in which the parameters are learned from time-averaged statistics. For these problems, which are 

over-determined, we demonstrate that choosing α = 1 is satisfactory, relying on the implicit regularization inherent in 
the approximate LMA interpretation of ExKI and UKI, as discussed in Subsection 3.2. The three examples considered are 
now listed.
• Lorenz63 model problem: we present a discussion of why adjoint based methods including ExKI, fail; we then demon-

strate that the UKI succeeds. We attribute the success of the UKI to the averaging effect induced by the unscented 
transform and discussed in Subsection 3.3.

• Multiscale Lorenz96 problem: we study a scale-separated setting, in which the closure for the fast dynamics is learned 
from time-averaged statistics.

• Idealized general circulation model problem: this is a 3D Navier-Stokes problem with a hydrostatic assumption, and 
simple parameterized subgrid-scale models; we learn the parameters of the subgrid-scale model from time-averaged 
data. This problem demonstrates the potential of applying the UKI for large scale chaotic inverse problems.

5.3. Linear 2-parameter model problem

Consider the 2-parameter linear inverse problem to find θ ∈ R2 from y ∈ RNy where y = Gθ with G ∈ RNy×2 and no 
noise is present in the data. We explore the following three scenarios corresponding to Ny = 3, 2 and 1:

• non-singular (well-determined) system (NS) Ny = 2

y =
[
3
7

]
G =

[
1 2
3 4

]
θref =

[
1
1

]
;

5 See section 7.1 of [90] for an example with a similar set-up; see also discussion around equation (55) in [91] where the additive Gaussian noise used 
in the data is carefully constructed to scale relative to the truth underlying it.
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Fig. 1. L2 error ‖mn − θref ‖2 of the linear 2-parameter model problem. NS: non-singular system, OD: over-determined system, UD: under-determined 
system.

Fig. 2. Frobenius norm ‖Cn −C∞‖F (left) for non-singular (NS) and over-determined (OD) systems, and ‖Cn‖F (right) for the under-determined (UD) system 
of the linear 2-parameter model problem.

• over-determined system (OD) Ny = 3

y =
⎡⎣ 3

7
10

⎤⎦ G =
⎡⎣1 2
3 4
5 6

⎤⎦ θref =
[

1/3
17/12

]
;

• under-determined system (UD) Ny = 1

y = [
3
]

G = [
1 2

]
θref =

[
1
1

]
+ c

[
2

−1

]
, c ∈R.

Since there is no noise in the data we have �η = 0 and 	 is undefined. To proceed we apply our methodology as if 
�η = 0.12I, corresponding to a misspecified model. Then we may set

θref = argmin
θ

	(θ) = argmin
θ

1

2
‖(y − Gθ)‖2.

Note that for the OD and NS cases θref is a single point, whereas in the UD case, θref comprises a one-parameter (c ∈ R) 
family of possible solutions.

We choose r0 = 0, γ = 0.52 and also initialize the UKI at θ0 ∼N (0, γ I). In both the NS and OD cases Range(GT ) =RNθ

and so we set α = 1, guided by Theorem 1. In the UD case Range(GT ) �= RNθ and we consider both α = 1 and α = 0.5, 
illustrating Proposition 2 and Theorem 1 respectively. The convergence of the parameter vectors {mn} is depicted in Fig. 1. 
In all scenarios, the mean vectors converge to a limiting value exponentially fast. In the cases of NS and OD this is as 
predicted by Theorem 1 and, since α = 1, 	R and 	 coincide so that m∞ = θref . For UD with α = 1 and α = 0.5, the mean 
vectors converge to [0.6 1.2]T and [0.597 1.195]T respectively, following Proposition 2 and Theorem 1. However, the 
limiting mean for α = 1 depends on the initial conditions for the algorithm, whereas for α = 0.5 it is uniquely determined. 
The convergence of the covariance matrices {Cn} to C∞ is depicted in Fig. 2, with NS, OD, and UD (α = 0.5) on the left 
16
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Fig. 3. L2 error ‖mn − θref ‖2 of the Hilbert inverse problem with Nθ = 10 (left) and Nθ = 100 (right).

and UD (α = 1.0) on the right. In the cases NS, OD, and UD (α = 0.5), the estimated covariance matrices converge to the 
desired values (the steady state of equation (28), as predicted by Theorem 1). In the case UD, the covariance matrices {Cn}
diverge to +∞ (see Proposition 2); nonetheless, this divergence of the covariance matrix does not affect the exponential 
convergence of the mean vector. In general, we advocate the use of α ∈ (0, 1) for under-determined problems and have set 
α = 1 for problem UD here only to illustrate some of the issues that arise from doing so.

5.4. Hilbert matrix problem

In this example Ny = Nθ . We define the Hilbert matrix G ∈ RNθ ×Nθ by its entries

Gi, j = 1

i + j − 1
.

The condition number of G grows as O
(
(1 + √

2)4Nθ /
√
Nθ

)
[92]. We consider the inverse problem of finding θ ∈RNθ from 

y ∈ RNy where y = Gθref and we define θref := 1. The ill-conditioning of G makes the determination of θ from y difficult. 
Traditional linear solvers fail for such a problem.6

We consider two scenarios: Nθ = 10 and Nθ = 100. As in the previous linear case study we assume a model misspeci-
fication setting in which �η = 0.12I, even though the data itself contains no noise, and we take α = 1. We set r0 = 0 and 
γ = 0.52. Thus θ0 ∼ N (0, 0.52I). Both UKI and EKI are applied. For the EKI, the ensemble sizes are set to J = 2Nθ + 1 and 
J = 100Nθ + 1. The convergence of the parameter vector mn is depicted in Fig. 3. The UKI converges, but the convergence 
rate depends on the condition number of G , slowing as it grows. The EKI converges to a certain accuracy as fast as the UKI 
and then diverges. This divergence is related to the finite ensemble size, and is delayed by use of the larger J . Indeed in 
the mean-field limit J = ∞ the EKI will coincide with the UKI. This example clearly demonstrates the benefits of the UKI 
over the EKI.

5.5. Darcy flow problem

Consider the Darcy flow equation on the two-dimensional spatial domain D = [0, 1]2. The forward model is to find the 
pressure field p(x) in a porous medium defined by a positive permeability field a(x, θ):

−∇ · (a(x, θ)∇p(x)) = f (x), x ∈ D,

p(x) = 0, x ∈ ∂D.

For simplicity, we have imposed homogeneous Dirichlet boundary conditions on the pressure at the boundary ∂D . The fluid 
source field f is defined as

f (x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
1000 0 ≤ x2 ≤ 4

6

2000 4
6 < x2 ≤ 5

6

3000 5
6 < x2 ≤ 1

.

6 G\y in Julia leads to an L2 error of 4250.142 for Nθ = 100.
17
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Fig. 4. The pressure field of the Darcy flow problem and the 49 equidistant pointwise measurements (black dots). (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

We study the inverse problems of finding a from noisy measurements of p. We place a prior on the permeability field 
a(x, θ) by assuming that loga(x, θ) is a centred Gaussian with covariance

C = (−� + τ 2)−d;
here −� denotes the Laplacian on D subject to homogeneous Neumann boundary conditions on the space of spatial-mean 
zero functions, τ > 0 denotes the inverse length scale of the random field and d > 0 determines its regularity (τ = 3 and 
d = 2 in the present study). See [4,93,6,94] for examples. The parameter θ represents the countable set of coefficients in the 
Karhunen-Loève (KL) expansion of the Gaussian random field:

loga(x, θ) =
∑
l∈K

θ(l)

√
λlψl(x), (49)

where K =Z0+ ×Z0+ \ {0, 0}, θ(l) ∼N (0, 1) i.i.d. and the eigenpairs are of the form

ψl(x) =

⎧⎪⎨⎪⎩
√
2cos(π l1x1) l2 = 0√
2cos(π l2x2) l1 = 0

2cos(π l1x1) cos(π l2x2) otherwise

, λl = (π2|l|2 + τ 2)−d.

The KL expansion equation (49) can be rewritten as a sum over Z0+ rather than a lattice:

loga(x, θ) =
∑

k∈Z0+
θ(k)

√
λkψk(x), (50)

where the eigenvalues λk are in descending order. In practice, we truncate this sum to Nθ terms, based on the largest Nθ

eigenvalues, and hence θ ∈ RNθ . The forward problem is solved by a finite difference method on an 80 × 80 grid.
For the inverse problem, the observation yref consists of pointwise measurements of the pressure value p(x) at 49

equidistant points in the domain (see Fig. 4). We generate a truth random field logaref (x) with θ ∼ N (0, I) in R256 (i.e. 
we use the first 256 KL modes) to construct the observation yref ; different levels of noise are added to make data yobs
as explained in (48). Using this data, we consider two incomplete parameterization scenarios: solving for the first 32 KL 
modes (Nθ = 32) and for the first 8 KL modes (Nθ = 8). EKI and UKI are both applied. We take r0 = 0 and γ = 1 so that 
θ0 ∼N (0, I). The observation error satisfies η ∼N (0, I). For the EKI, the ensemble size is set to be J = 100, which is larger 
than the number of σ -points used in UKI (2Nθ + 1).

For the Nθ = 32 case, the convergence of the log-permeability fields loga(x, mn) and the optimization errors (3) at each 
iteration for different noise levels are depicted in Fig. 5; the top row shows the relative L2 errors in the estimate of loga
and the bottom row shows the optimization errors (data-misfit), left to right corresponds to different noise levels in the 
data. Without explicit regularization (α = 1.0), both UKI and EKI suffer from overfitting for noisy scenarios: the optimization 
errors keep decreasing, but the parameter errors show the “U-shape” characteristic of overfitting. Adding regularization (α =
0.5) relieves the overfitting. The estimated log-permeability fields loga(x, mn) at the 50th iteration and the truth random 
field are depicted in Fig. 6. Both UKI and EKI deliver similar results and these estimated log-permeability fields capture main 
features of the truth random field.

For the Nθ = 8 case, the convergence of the log-permeability fields loga(x, mn) and the optimization errors at each 
iteration for different noise levels are depicted in Fig. 7. Even without explicit regularization (α = 1.0), none of these 
Kalman inversions suffer from overfitting. Both UKI and EKI lead to similar parameter errors and optimization errors. The 
18
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Fig. 5. Relative error ‖loga(x,mn) − logaref (x)‖2
‖logaref (x)‖2 (top) and the optimization error 1

2
‖�− 1

2
η (yobs − ŷn)‖2 (bottom) of the Darcy problem (Nθ = 32) with 

different noise levels: noiseless (left), 1% error (middle), and 5% error (right).

Fig. 6. Log-permeability fields loga(x, mn) with Nθ = 32 obtained by UKI, EKI, and the truth (left to right) for different noise levels: noiseless α = 1 (top), 
1% noise α = 0.5 (middle), 5% noise α = 0.5 (bottom).

estimated log-permeability fields loga(x, mn) at the 50th iteration for different noise levels, obtained by the UKI and the 
truth random field, are depicted in Fig. 8. Comparing with the Nθ = 32 case, all Kalman inversions with Nθ = 8 perform 
better for the 5% noise scenario. This indicates the possibility of regularizing the inverse problem by reducing the parameter 
dimensionality.
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Fig. 7. Relative error ‖loga(x,mn) − logaref (x)‖2
‖logaref (x)‖2 (top) and the optimization error 1

2
‖�− 1

2
η (yobs − ŷn)‖2 (bottom) of the Darcy problem (Nθ = 8) with 

different noise levels: noiseless (left), 1% error (middle), and 5% error (right).

Fig. 8. Log-permeability fields loga(x, mn) with Nθ = 8 obtained by the UKI and the truth (right) for different noise levels: noiseless α = 1 (left), 1%
noise α = 1 (middle-left), 5% noise α = 1 (middle-right).

Finally we observe the smoothness, as a function of the iteration number, of the UKI in comparison to EKI. This may be 
seen in all the experiments undertaken in the Darcy flow example.

5.6. Damage detection problem

Consider a thin linear elastic arch-like plate, which is fixed on the bottom edges �u . A traction boundary condition is 
applied on the top edge �t1 , with distributed load t̄ = (2, −20), and a traction free boundary condition is applied on the 
remaining edges �t2 . See Fig. 9 The equations of linear elastostatics with plane stress assumptions are expressed in terms 
of the (Cauchy) stress tensor σ and take the form

∇ · σ + b = 0 in �,

u = 0 on �u,

σ · n = t̄ on �t1 ,

σ · n = 0 on �t2 .

(51)

Here u is the displacement vector, b = 0 is the body force vector, � ∈ R2 is the bounded domain occupied by the plate. The 
strain tensor is

εmn = 1( ∂un + ∂um
)
. (52)
2 ∂xm ∂xn
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Fig. 9. The damaged Young’s modulus (left) and the displacement magnitude field (right) with 46 measurement locations on the surface of the bound-
aries (black dots). The five unlabelled edges comprise �t2 ; see equation (51).

The linear constitutive relation between strain and stress is written as

σi j = Ci jmn(E, ν)εmn. (53)

Here Ci jmn are the constitutive tensor components, which depend on the Young’s modulus E and Poisson’s ratio ν; through-
out this study, we fix ν = 0.4 and focus on learning the spatially-dependent damage information present in the field E . The 
damage is assumed to be isotropic elasticity-based damage with

E(x, θ) = (
1 − ω(x, θ)

)
E0.

Throughout this study, we fix E0 = 1000, and ω(x, θ) is the scalar-valued damage variable, which varies between zero (no 
damage) to one (complete damage). The truth damage field (see Fig. 9-left) is

ωref (x) = a1e
− 1

2 (x−x1)�
−1
1 (x−x1) + a2e

− 1
2 (x−x2)�

−1
2 (x−x2) + a3e

− 1
2 (x−x3)�

−1
3 (x−x3),

a1 = 0.8, a2 = 0.6, a3 = 0.5,

x1 =
[
50
50

]
, x2 =

[
250
160

]
, x3 =

[
380
100

]
, �1 =

[
200 0
0 200

]
, �2 =

[
800 0
0 400

]
, �3 =

[
100 0
0 400

]
,

and may be seen to exhibit three flaws. Noise is added to the observations on the boundary as in (48). The forward 
equation is solved by the finite element method with 384 quadratic quadrilateral elements (1649 nodes) using the NNFEM
library [39,40].

For the inverse problem, the damage field is parameterized in terms of field θ(x) as follows

ω(θ(x)) = 0.9
1− e−θ(x)

1+ 9e−θ(x)
∈ (−0.1,0.9).

Field θ(x) is itself discretized and represented by 24 quadratic quadrilateral elements (Nθ = 125).7 The observations are x1
and x2 displacements measured at 46 (Ny = 92) locations on the surface boundaries (see Fig. 9-right). We consider both 
α = 0.5 and α = 1.0, and we set r0 = 0 and γ = 1. The UKI and EKI are both applied, initialized with θ0 ∼ N (0, I). The 
observation error model used in the algorithm is η ∼ N (0, 0.12I). For this problem the prior information ω(θ = 0) = 0
corresponds to an undamaged plate, and is expected to be reasonable for most of the domain. For the EKI, the ensemble 
size is set to J = 500, which is larger than the number of σ -points used in UKI (2Nθ + 1).

The convergence of the damage field ω(θ(x, mn)) and the optimization errors at each iteration are depicted in Fig. 10; 
the organization of the information is the same as in the Darcy flow example. In the noiseless scenario, the EKI exhibits 
divergence without regularization (α = 1.0) due to the ill-posedness, however, the UKI converges.8

For noisy scenarios, the effect of overfitting is significant. At 1% noise level, setting α = 0.5 eliminates overfitting; how-
ever at 5% noise level, setting α = 0.5 does not eliminate overfitting. Therefore, the results obtained with α = 0.0 are also 
reported for the 5% noise scenario. The estimated damaged Young’s modulus fields E(x, θ) and the truth are depicted in 
Fig. 11. Both Kalman inversion methods perform comparably, and these three flaw areas are captured; however at 5% noise 

7 It is worth mentioning that increasing the parameter dimensionality by refining the parameter mesh exacerbates the ill-posedness and, therefore, 
deteriorates the performance of both Kalman inversions.
8 We will see the same phenomenon in Subsection 5.7.
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Fig. 10. Relative error ‖ω(θ(x,mn)) − ωref ‖2
‖ωref ‖2 (top) and the optimization error 1

2
‖�− 1

2
η (yobs − ŷn)‖2 (bottom) of the damage detection problem with 

different noise levels: noiseless (left), 1% error (middle), and 5% error (right).

Fig. 11. Damaged Young’s modulus fields (1 − ω(x, mn))E0 obtained by UKI, EKI, and the truth (left to right) at different noise levels: noiseless α = 1, 1%
noise α = 0.5, 5% noise α = 0.5, and 5% noise α = 0 (top to bottom).

level noticeable bias is visible in the flaws to the left and right of the domain. As in the Darcy flow case, the convergence 
histories of the UKI are smoother than for the EKI.
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5.7. Navier-Stokes problem

We consider the 2D Navier-Stokes equation on a periodic domain D = [0, 2π ] × [0, 2π ]:
∂v

∂t
+ (v · ∇)v + ∇p − ν�v = 0,

∇ · v = 0,

with initial condition chosen to imply the conservation law

1

4π2

∫
v = vb.

Here v and p denote the velocity vector and the pressure, ν = 0.01 denotes the dynamic viscosity, and vb = (2π, 2π)

denotes the non-zero mean background velocity. The forward problem is rewritten in the vorticity-streamfunction (ω − ψ ) 
formulation:

∂ω

∂t
+ (v · ∇)ω − ν�ω = 0,

ω = −�ψ
1

4π2

∫
ψ = 0,

v =
( ∂ψ

∂x2
,− ∂ψ

∂x1

)
+ vb,

and solved by the pseudo-spectral method [95] on a 128 × 128 grid. To eliminate aliasing error, the Orszag 2/3-Rule [96] is 
applied and, therefore there are 852 Fourier modes (padding with zeros). Time-integration is performed using the Crank–
Nicolson method with �T = 2.5 × 10−4.

We study the problem of recovering the initial vorticity field from measurements at positive times. We parameterize 
this field as ω0(x, θ), defined by parameters θ ∈ RNθ , and modeled a priori as a Gaussian field with covariance operator 
C = �−2, subject to periodic boundary conditions, on the space of spatial-mean zero functions. The KL expansion of the 
initial vorticity field is given by

ω0(x, θ) =
∑
l∈K

θ c
(l)

√
λlψ

c
l + θ s

(l)

√
λlψ

s
l , (54)

where K = {(kx, ky)|kx + ky > 0 or (kx + ky = 0 and kx > 0)}, and the eigenpairs are of the form

ψc
l (x) = cos(l · x)√

2π
ψ s
l (x) = sin(l · x)√

2π
λl = 1

|l|4 ,

and θ c
(l), θ

s
(l) ∼N (0, 2π2) i.i.d. The KL expansion equation (54) can be rewritten as a sum over Z0+ rather than a lattice:

ω0(x, θ) =
∑

k∈Z0+
θ(k)

√
λkψk(x), (55)

where the eigenvalues λk are in descending order.
For the inverse problem, we recover the initial condition, specifically the initial vorticity field of the Navier-Stokes equa-

tion, given pointwise observations yref of the vorticity field at 16 equidistant points (Ny = 32) at T = 0.25 and T = 0.5 (see
Fig. 12). The observations yobs are defined as in (48). The initial vorticity field ω0,ref is generated with all 852 Fourier 
modes, and the first Nθ = 100 KL modes of equation (55) are recovered. We take α = 1.0 and α = 0.9, and fix r0 = 0 and 
γ = 10. Both UKI and EKI are applied with θ0 ∼ N (0, 10I) and the observation error assumed for inversion purposes is 
η ∼N (0, I). For the EKI, the ensemble size is set to be J = 201, which equals the number of σ -points in UKI (2Nθ + 1).

The convergence of the initial vorticity field ω0(x, mn) and the optimization errors for different noise levels at each 
iteration are depicted in Fig. 13; the organization of the figure is the same as in the Darcy case. In all scenarios, the UKI 
outperforms EKI. Moreover, without regularization (α = 1.0), EKI exhibits slight divergence. This inverse problem is not 
sensitive to added Gaussian random noise, and the behaviour of any given Kalman inversion, with respect to different noise 
levels, are almost indistinguishable. The estimated initial vorticity fields ω0(x, mn) at the 50th iteration for different noise 
levels obtained by the Kalman inversions and the truth random field are depicted in Fig. 14. Both Kalman inversions capture 
main features of the truth random initial field, but not the detailed small features, due to the irreversibility of the diffusion 
process (ν = 0.01).
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Fig. 12. The vorticity fields of the Navier-Stokes problem and the 16 equidistant pointwise measurements (black dots) at two observation times (T = 0.25
and T = 0.5).

Fig. 13. Relative error ‖ω0(x,mn)−ω0,ref ‖2
‖ω0,ref ‖2 (top) and the optimization error 1

2
‖�− 1

2
η (yobs − ŷn)‖2 (bottom) of the Navier-Stokes problem with different noise 

levels: noiseless (left), 1% error (middle), and 5% error (right).

5.8. Lorenz63 model problem

Consider the Lorenz63 system, a simplified mathematical model for atmospheric convection [97]:

dx1
dt

= σ(x2 − x1),

dx2
dt

= x1(r − x3) − x2,

dx3
dt

= x1x2 − βx3;

the system is parameterized by σ , r, β ∈ R+ . We consider learning various subsets of these parameters from time-averaged 
data. To be concrete, the observation consists of the time-average of the various moments over time windows of size T = 20, 
with an initial spin-up period T = 30 to eliminate the influence of the initial condition; if f : R3 
→R computes a moment, 
then we define

f (x) = 1

20

50∫
f
(
x(t)

)
dt. (56)
30
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Fig. 14. Initial vorticity fields ω0(x, mn) recovered by UKI, EKI, and the truth (left to right) for different noise levels: noiseless α = 1, 1% noise α = 0.9, 5%
noise α = 0.9 (top to bottom).

We view this as an approximation of the ergodic average

E f (x) = lim
τ→∞

1

τ

τ∫
0

f
(
x(t)

)
dt.

If the observation operator comprises finite time averages of the form (56) for a collection of moments f (x) then we may 
reformulate the inverse problem as

y = G(r) + η (57)

with η a Gaussian which may be estimated from a long time trajectory (we use T = 200) by appealing to the central limit 
theorem [98]. In this interpretation G is the ergodic average. Note, however, that when we run any algorithm we will only 
use finite-time average approximations of G .

The truth observation is computed with parameters (σ , r, β) = (10, 28, 8/3) over a time window of size T = 200, also 
with an initial spin-up period T = 30. To estimate the statistics of η we split the observation time-series into 10 windows 
of size T = 20 and compute covariance of the observation error η following [62]. We set r0 = 5.01 and γ = 1. The UKI is 
initialized with θ0 ∼N (5.01, I), and α is set to 1.

We start with the following one-parameter inverse problem with fixed σ = 10 and β = 8/3:

y = G(r) + η with y = x3. (58)

The UKI is applied, and the estimated r and the associated 3-σ confidence intervals at each iteration are depicted in 
Fig. 15. The confidence intervals give an indication of the evolving covariance Cn . The estimation of r at the 20th iteration 
is r ∼N (28.03, 0.22).

The landscape of G and sensitivity of G(·) with respect to the input for observations, derived from chaotic problems 
such as equation (58), are widely studied [63,64]. We study them further, here, and the results are depicted in Fig. 16. The 
function G is characterized by a sudden change at r ≈ 22 and the landscape is highly oscillatory for r > 22; furthermore, 
the sensitivity dG(r) computed with the discrete adjoint method blows up:

|dG(r)| ∝ O(eλT ),

with the value of the exponent λ consistent with the first global Lyapunov exponent [63,99]. This illustrates the challenges 
inherent in parameter estimation and sensitivity analyses for chaotic systems. In particular, the ExKI method suffers from the 
large derivatives of G . Based on Lemma 2, it is natural to study the landscape of the averaged function FG and its associated 
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Fig. 15. Convergence of the 1-parameter Lorenz63 inverse problem with UKI (α = 1.0); the true parameter value is represented by the dashed grey line.

Fig. 16. Landscape (left) and sensitivity (right) of G in the 1-parameter Lorenz63 inverse problem equation (58).

Fig. 17. Landscape (left) and sensitivity (right) of FG in the 1-parameter Lorenz63 inverse problem equation (58) smoothed and viewed by UKI.

gradient FdG , with the standard deviation σr = √
0.22 fixed; this gives an indication of the landscape as perceived by the 

UKI. In particular, we have:

FG(r) =
∫

G(x)
1√
2πσr

e
− (x−r)2

2σ2
r dx, FdG(r) =

∫
(x− r)(G(x) − G(r)) 1√

2πσr
e
− (x−r)2

2σ2
r dx

∫
(x− r)2 1√

2πσr
e
− (x−r)2

2σ2
r dx

.

These functions are depicted in Fig. 17, which should be compared with Fig. 16. We see that FG is smooth (except the 
transition point), and FdG does not suffer from blow-up in the way dG does; furthermore, FdG represents the averaged 
gradient dG(r) ≈ 0.96 well, away from the blow-up regions. This explains why the adjoint/gradient-based methods, including 
ExKI, fail, but the UKI succeeds for this chaotic inverse problem.
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Fig. 18. Convergence of the 3-parameter Lorenz63 inverse problem with UKI (α = 1.0); true parameter values are represented by dashed grey lines.

Next, we consider a three-parameter inverse problem, using the ideas in Subsection 4.1. Let θ = (θ(1), θ(2), θ(3)) and let 
(σ , r, β) = (|θ(1)|, |θ(2)|, |θ(3)|). The map G(θ) is found by computing time-averages of all three components of x, as described 
above, for given input parameter θ . The use of the modulus helps ensure solution trajectories which do not blow-up. We 
have

y = G(θ) + η with y = (x1, x2, x3, x21, x
2
2, x

2
3). (59)

All other aspects of the setup are the same as the aforementioned one-parameter inverse problem. The estimated parameters 
and associated 3-σ confidence intervals for each component at each iteration are depicted in Fig. 18. The estimation of the 
parameters at the 20th iteration is

(σ r β) = (10.28 27.90 2.63)

For both scenarios, the UKI converges efficiently, thanks to the linear (or superlinear) convergence rate of the LMA and the 
averaging property.

5.9. Multiscale Lorenz96 problem

Consider the multi-scale Lorenz96 system, a simplified mathematical model for the midlatitude atmosphere [100], with 
K slow variables X (k) which are each coupled with J fast variables Y ( j,k) , given by:

dX (k)

dt
= −X (k−1)(X (k−2) − X (k+1)) − X (k) + F − hc

b

J∑
j=1

Y ( j,k),

dY ( j,k)

dt
= −cbY ( j+1,k)(Y ( j+2,k) − Y ( j−1,k)) − cY ( j,k) + hc

b
Xk.

(60)

To close the system, it is appended with the cyclic boundary conditions X (k+K ) = X (k) , Y ( j,k+K ) = Y ( j,k) and Y ( j+ J ,k) =
Y ( j,k+1) . The time scale separation is parameterized by the coefficient c and the large-scales are subjected to external 
forcing F . We choose here as parameters K = 8, J = 32, F = 20, c = b = 10 and h = 1 as in [101–104]. As time-integrator, 
we use the 4th-order Runge Kutta method with �T = 5 × 10−3.

Our goal is to learn the closure model ψ(X) of the fast dynamics for a reduced model of the form

dX (k)

dt
= −X (k−1)(X (k−2) − X (k+1)) − X (k) + F + ψ(X (k)).

The closure model ψ : D ⊂ R 
→ R is parameterized by the finite element method with cubic Hermite polynomials. The 
domain is set to be D = [−20, 20] and decomposed into 5 elements and, therefore, Nθ = 12.

For the inverse problem, the observations consist of the time-average of the first and second moments of X (1), X (2), X (3) , 
and X (4) over a time window of size T = 1000 and, therefore Ny = 14. The same central limit theorem arguments are used 
to formulate the problem as in the Lorenz63 model. The truth observation yref is computed with the multiscale chaotic 
system equation (60) with a random initial condition X (k) ∼N (0, 1) and Y ( j,k) ∼N (0, 0.012). And 1%, 2%, and 5% Gaussian 
random noises are added to the observation following equation (48).

We set r0 = 0 and γ = 1; the UKI is thus initialized with θ0 ∼ N (0, I). The observation error is set to be η =
N (0, diag{0.052 yobs � yobs}), and we take α = 1, since the system is over-determined. Moreover, these simulations start 
with another random initialization of X (k) ∼ N (0, 1). The learned closure models at the 20th iteration are reported in 
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Fig. 19. Closure terms ψ(X) for the multi-scale Lorenz96 system obtained from the truth (grey dots) and polynomial data-fitting by Wilks [102] and 
Arnold [103], compared with what is learned using the UKI approach (α = 1) with different noise levels.

Fig. 20. Empirical probability density functions of the slow variables X (k) obtained from the full multi-scale Lorenz96 system (Truth), the initial closure 
model (Prior), and the closure models learned by the UKI (α = 1) at different noise levels.

Fig. 19. The estimated empirical probability density functions of the slow variables are reported in Fig. 20. For all scenar-
ios, although the learned closure models show non-trivial variability with respect to those published in [102,103] at the 
left most extreme of D , the predicted probability density functions match well with the reference, obtained from a full 
multiscale simulation. It is worth mentioning this problem is not sensitive with respect to the added Gaussian random 
noise.

5.10. Idealized general circulation model

Finally, we consider an idealized general circulation model. The model is based on the 3D Navier-Stokes equations, 
making the hydrostatic and shallow-atmosphere approximations common in atmospheric modeling. Specifically, we test 
UKI on the well-known Held-Suarez test case [105], in which a detailed radiative transfer model is replaced by Newtonian 
relaxation of temperatures toward a prescribed “radiative equilibrium” Teq(φ, p) that varies with latitude φ and pressure p. 
Specifically, the thermodynamic equation for temperature T

∂T

∂t
+ · · · = Q

(dots denoting advective and pressure work terms) contains a diabatic heat source

Q = −kT (φ, p, ps)
(
T − Teq(φ, p)

)
,
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Fig. 21. Zonal mean profile of temperature (a), radiative equilibrium temperature (b), zonal wind velocity (c), and meridional wind velocity (d), all from a 
1000-day average. The horizontal coordinate is latitude and the vertical coordinate is the nondimensional σ coordinate of the model.

with relaxation coefficient (inverse relaxation time)

kT = ka + (ks − ka)max
(
0,

σ − σb

1− σb

)
cos4 φ.

Here, σ = p/ps , which is pressure p normalized by surface pressure ps , is the vertical coordinate of the model, and

Teq = max
{
200K ,

[
315K − �T y sin

2 φ − �θz log
( p

p0

)
cos2 φ

]( p

p0

)κ}
is the equilibrium temperature profile (p0 = 105 Pa is a reference surface pressure and κ = 2/7 is the adiabatic exponent). 
Default parameters are

ka = (40 day)−1, ks = (4 day)−1, �T y = 60 K, �θz = 10 K.

For the numerical simulations, we use the spectral transform method in the horizontal, with T42 spectral resolution (tri-
angular truncation at wavenumber 42, with 64 × 128 points on the latitude-longitude transform grid); we use 20 vertical 
levels equally spaced in σ . With the default parameters, the model produces an Earth-like zonal-mean circulation, albeit 
without moisture or precipitation. A single jet is generated with maximum strength of roughly 30 m s−1 near 45◦ latitude 
(Fig. 21).

Our inverse problem is constructed to learn parameters in the Newtonian relaxation term Q :

(ka, ks, �T y, �θz).

We do so in the presence of the following constraints:

0 day−1 < ka < 1 day−1, ka < ks < 1 day−1 + ka, 0 K < �T y, 0 K < �θz.

Conceptually, the setting is identical to that for the Lorenz63 example. We use the same overline notation to denote averag-
ing, which here in addition to the time average in the Lorenz models also includes a zonal average over longitude (because 
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Fig. 22. Convergence of the idealized general circulation model inverse problem with UKI (α = 1.0). The true parameter values are represented by dashed 
grey lines.

the model is statistically symmetric under rotations around the planet’s spin axis), and we apply the same central limit 
theorem arguments to formulate the inverse problem. To incorporate the imposition of the constraints, the inverse problem 
is formulated as follows (see Subsection 4.1 for details):

y = G(θ) + η with G(θ) = T (φ,σ ) (61)

with the parameter transformation

θ : (ka,ks,�T y,�θz) =
( 1

1+ |θ(1)| ,
1

1+ |θ(1)| + 1

1+ |θ(2)| , |θ(3)|, |θ(4)|
)
. (62)

The observation mapping is defined by mapping from the unknown θ to the 200-day zonal mean of the temperature as a 
function of latitude (φ) and height (σ ), after an initial spin-up of 200 days. The truth observation is the 1000-day zonal 
mean of the temperature (see Fig. 21-a), after an initial spin-up 200 days to eliminate the influence of the initial condition. 
Because the truth observations come from an average 5 times as long as the observation window used for parameter 
learning, the chaotic internal variability of the model introduces noise in the observations. As for the Lorenz63 setting, the 
central limit theorem may be invoked to model the observation error from internal variability.

To perform the inversion, we set r0 = [2 day, 2 day, 20 K, 20 K]T and γ = 1. Thus UKI is initialized with θ0 ∼N
(
r0, I

)
. 

Within the algorithm, we assume that the observation error satisfies η ∼ N (0 K, 32I K2). Because the problem is over-
determined, we set α = 1. The estimated parameters and associated 3-σ confidence intervals for each component at each 
iteration are depicted in Fig. 22. The estimation of model parameters at the 20th iteration is

(
ka ks �T y �θz

)=
(
0.0243 day−1 0.243 day−1 60.2 K 9.91 K

)
.

UKI converges to the true parameters in fewer than 10 iterations with 9 σ -points, demonstrating the potential of applying 
UKI for large-scale inverse problems.

6. Conclusion

We introduced a novel stochastic dynamical system, into which an arbitrary inverse problem may be embedded as an 
observation operator; by applying filtering methods to this stochastic dynamical system we obtain methods to solve in-
verse problems. In the linear case, we have demonstrated that this approach leads to an unusual Tikhonov regularized least 
squares solution, with prior covariance depending on the forward model, and a tunable parameter in the stochastic dynam-
ical system determining the level of regularization. We have also introduced unscented Kalman inversion (UKI) and shown 
that it outperforms the EKI, when applied to the same novel stochastic dynamical system. As well as outperforming EKI, UKI 
shares its advantages: it is derivative-free, black-box, embarrassingly parallel, and robust. Our numerical results demonstrate 
its theoretical properties and its applicability; in particular, it is demonstrated to outperform the EKI on large scale problems 
in which the number of unknown parameters is small. Because the methodology constitutes a novel approach to parameter 
estimation, there are many avenues for future research, including applications of the method, methodological improvements 
and extensions, and theoretical analysis.
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Appendix A. Proof of theorems

Proof of Proposition 1. An affine transformation is an invertible mapping from RNθ to RNθ of the form ∗x = Ax + b. When 
we apply the following affine transformation

∗mn = Amn + b ∗Cn = ACn A
T with ∗r0 = Ar0 + b ∗�ω = A�ω AT ,

keep yn and �ν unchanged, and define ∗G(θ) = G
(
A−1(θ − b)

)
. We prove

∗mn+1 = Amn+1 + b ∗Cn+1 = ACn+1A
T . (A.1)

Equation (9) leads to

∗m̂n+1 = α∗mn + (1− α)∗r0 = Am̂n+1 + b ∗Ĉn+1 = α2∗Cn + ∗�ω = AĈn+1A
T . (A.2)

Therefore, the distribution of ∗θn+1|Yn ∼N (∗m̂n+1
∗Ĉn+1) is the same as Aθn+1 + b|Yn and equation (10) becomes

∗ ŷn+1 = ŷn+1
∗Ĉθ y

n+1 = AĈθ y
n+1

∗Ĉ yy
n+1 = Ĉ yy

n+1. (A.3)

Finally, equation (11) leads to

∗mn+1 = ∗m̂n+1 + ∗Ĉθ y
n+1(

∗Ĉ yy
n+1)

−1(yn+1 − ∗ ŷn+1) = Amn+1 + b,
∗Cn+1 = ∗Ĉn+1 − ∗Ĉθ y

n+1(
∗Ĉ yy

n+1)
−1∗Ĉθ y

n+1
T = ACn+1A

T . � (A.4)

Proof of Lemma 1. In this proof recall that θ ∼ N (m, C). When both G1 = G1 and G2 = G2 are linear transformations, we 
have

E[Gi(θ)] = GiE[θ] = Gim = Gi(m),

Cov[G1(θ),G2(θ)] = G1Cov[θ, θ]GT
2 = G1CG

T
2 ,

2Nθ∑
j=1

Wc
j (G1(θ

j) −EG1(θ))(G2(θ
j) −EG2(θ))T = 1

2a2Nθ

2Nθ∑
j=1

(G1 · θ j − G1m)(G2 · θ j − G2m)T

= 1

2a2Nθ

2Nθ∑
j=1

2G1c j[
√
C] jc j[

√
C] jGT

2

= G1CG
T
2 .

In the following we use ∇kGi to denote the kth derivative of Gi evaluated at m. For the nonlinear case, Taylor’s expansion 
of Gi(·) at m is then

Gi(θ) = Gi(m) + ∇Giδθ + 1

2
∇2Giδθ ⊗ δθ + 1

6
∇3Giδθ ⊗ δθ ⊗ δθ + O (‖δθ‖4) with δθ = θ −m.
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The mean approximation is thus first-order accurate:

EGi(θ) = Gi(m) + O (‖C‖).
The covariance approximation is second-order accurate:

Cov[G1(θ),G2(θ)] =E (G1(θ) −EG1(θ)) (G2(θ) −EG2(θ))T

=E

(
∇G1δθ + 1

2
∇2G1(δθ ⊗ δθ − C)

)(
∇G2δθ + 1

2
∇2G2(δθ ⊗ δθ − C)

)T

+O(‖C‖2)

= ∇G1C∇GT
2 +O(‖C‖2),

whilst we also have
2Nθ∑
j=1

Wc
j (G1(θ

j) −EG1(θ))(G2(θ
j) −EG2(θ))T

=
2Nθ∑
j=1

Wc
j (G1(θ

j) − G1(m))(G2(θ
j) −EG2(m))T

=
Nθ∑
j=1

Wc
j (∇G1c j[

√
C] j + 1

2
∇2G1c j[

√
C] j ⊗ c j[

√
C] j)(∇G2c j[

√
C] j + 1

2
∇2G2c j[

√
C] j ⊗ c j[

√
C] j)T

+
Nθ∑
j=1

Wc
j (−∇G1c j[

√
C] j + 1

2
∇2G1c j[

√
C] j ⊗ c j[

√
C] j)(−∇G2c j[

√
C] j + 1

2
∇2G2c j[

√
C] j ⊗ c j[

√
C] j)T

+O(‖C‖2)

= 1

2a2Nθ

Nθ∑
j=1

2∇G1c j[
√
C] jc j[

√
C] j∇GT

2 +O(‖C‖2)

= ∇G1C∇GT
2 +O(‖C‖2). �

Proof of Theorem 1. In this proof we let B denote the Banach space of matrices in RNθ ×Nθ equipped with the operator 
norm induced by the Euclidean norm on RNθ . Furthermore, we let L denote the Banach space of bounded linear operators 
from B into itself, equipped with the standard induced operator norm. For simplicity we consider the case r0 = 0; a change 
of origin may be used to extend to the case r0 �= 0. We first prove that the precision operators converge: lim

n→∞C−1
n = C−1∞ ; 

we then study behaviour of the mean sequence {mn}n∈Z+ . For both the precision and the mean we first study α ∈ (0, 1)
and then α = 1. In what follows it is useful to note [80][Theorem 4.1] that the mean and covariance update equations (27)
can be rewritten as

C−1
n+1 = GT�−1

ν G + (α2Cn + �ω)−1,

C−1
n+1mn+1 = GT�−1

ν y + (α2Cn + �ω)−1αmn;
(A.5)

furthermore the iteration for the covariance remains in the cone of positive semi-definite matrices [80][Theorem 4.1]. Since 
�ω � 0, the sequence {C−1

n } is bounded:

GT�−1
ν G � C−1

n � GT�−1
ν G + �−1

ω , ∀n ∈Z+. (A.6)

Introducing (C ′
n)

−1 := �
1
2
ωC−1

n �
1
2
ω , we may rewrite the covariance update equation (A.5) in the form

(C ′
n+1)

−1 = �
1
2
ωGT�−1

ν G�
1
2
ω +

(
α2C ′

n + I
)−1

. (A.7)

We define the map

f (X;α) = �
1
2
ωGT�−1

ν G�
1
2
ω +

(
α2X−1 + I

)−1
(A.8)

noting that then (C ′
n+1)

−1 = f
(
(C ′

n)
−1; α). This iteration is well-defined for C ′

n in B satisfying (A.6) and hence for the 
iteration (A.5).
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We first consider α ∈ (0, 1). Then equation (A.7) leads to

C ′
n+1 � α2C ′

n + I � 1 − α2n+2

1− α2
I + α2n+2C ′

0 � 1

1− α2
I + α2n+2C ′

0, (A.9)

and hence there exists ε0 ∈ (0, 1 − α) such that, for n is sufficiently large, we have

(C ′
n+1)

−1 � (1− α2 − ε0)I. (A.10)

Let M ⊂ B denote the set of matrices B ∈ B satisfying B � (1 − α2 − ε0)I. Then M is absorbing and forward invariant 
under f . Thus to show the existence of a globally exponentially attracting steady state it suffices to show that f (·; α) is a 
contraction on M.9 The derivative of f (·; α) : M 
→ M is the element Df (X; α) ∈ L defined by its action on �X ∈ B as 
follows:

Df (X;α)�X = α2(X + α2I)−1�X(X + α2I)−1. (A.11)

Thus

‖Df (X;α)�X‖ =α2
∥∥∥(X + α2I)−1�X(X + α2I)−1

∥∥∥ .

≤ α2

(1 − ε0)2
‖�X‖ .

Therefore, since α ∈ (0, 1 − ε0),

sup
X∈M

‖Df (X;α)‖L < 1

and f is a contraction map on M. This establishes the exponential convergence of {(C ′
n)

−1}. Finally, the sequence {C−1
n }

converges exponentially fast to C−1∞ , the non-singular fixed point of equation (A.5); Equation (A.10) indicates that C−1∞ is 
indeed non-singular.

When α = 1 define mapping f (X) = f (X; 1) so that

(C ′
n+1)

−1 = f
(
(C ′

n)
−1).

The derivative Df (X) ∈L is defined by its action on �X ∈ B as follows:

Df (X)�X =(I + X)−1�X(I + X)−1. (A.12)

Thus, using the lower bound from (A.6) and Range(GT ) =RNθ ,

‖Df (X)�X‖ ≤∥∥(I + X)−1
∥∥2 ‖�X‖

≤
∥∥∥∥∥
(
I + �

1
2
ωGT�−1

ν G�
1
2
ω

)−1
∥∥∥∥∥
2

‖�X‖

≤(1+ ε1)
−2 ‖�X‖ ,

(A.13)

where ε1 > 0. Therefore, f is a contraction map on the whole of B and the sequence {C−1
n } converges. This completes the 

proof of exponential convergence of {C−1
n } to a limit; the sequence {C−1

n } converges to C−1∞ , the fixed point of equation (A.5), 
viewed as a mapping on precision matrices. That C∞ � 0 follows from (A.6). Because the convergence is global, the result 
also establishes the uniqueness of the steady state of equation (28).

We now prove that the mean {mn} converges exponentially fast to m∞ . Using (A.5) the update equation (27) of mn can 
be rewritten as

mn+1 = α(I − Cn+1G
T�−1

ν G)mn + Cn+1G
T�−1

ν y. (A.14)

Thus convergence to m∞ satisfying

m∞ = α(I − C∞GT�−1
ν G)m∞ + C∞GT�−1

ν y (A.15)

9 The use of contraction mapping arguments to study convergence of the Kalman filter is widespread, sometimes applied to the covariance and not the 
precision [20], and sometimes using Riemannian metric space structure on positive-definite matrices, rather than the vector space structure used here [21].
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is determined by the spectral radius of α(I − Cn+1GT�−1
ν G). The matrix I − Cn+1GT�−1

ν G has real spectrum; this may be 
established by showing the same for I−Cn+1(GT�−1

ν G +δI), for δ > 0, and letting δ → 0. If α ∈ (0, 1), using equation (A.6), 
it follows that

ρ(αI − αCn+1G
T�−1

ν G) ≤ α < 1

and, by using a vector norm on RNθ in which the induced operator norm on I − Cn+1GT�−1
ν G is less than one, it follows 

that {mn} converges exponentially fast to m∞ . If α = 1 then we use the fact that B := GT�−1
ν G is symmetric and that B � 0. 

From this it follows that I − Cn+1B has the same spectrum as I − B
1
2 Cn+1B

1
2 . Using the upper bound on C−1

n+1 appearing in 
(A.6) we deduce that

ρ(I − Cn+1B) = ρ
(
I − B

1
2 Cn+1B

1
2

)
≤ 1− ρ

(
B

1
2
(
B + �−1

ω

)−1
B

1
2

)
= 1− ε2,

for some ε2 ∈ (0, 1). Since the spectral radius of I − Cn+1B is less than one, there is again a norm on RNθ in which the 
operator norm on I − Cn+1B is less than one and exponential convergence follows. Equation (A.15) can be rewritten as

0 = C∞
(
GT�−1

ν (y − Gm∞) + (1− α)(GT�−1
ν G − C−1∞ )m∞

)
= C∞

(
GT�−1

ν (y − Gm∞) − (1− α)̂C−1∞ m∞
)
.

Finally we note that m∞ is the minimizer of equation (29). �
Proof of Theorem 2. In this setting where α = 1 and �ω = 0 it follows from (A.5) that

C−1
n+1 = GT�−1

ν G + C−1
n ,

C−1
n+1mn+1 = GT�−1

ν y + C−1
n mn;

(A.16)

so that

C−1
n = nGT�−1

ν G + C−1
0 ,

C−1
n mn = nGT�−1

ν y + C−1
0 m0.

(A.17)

This demonstrates that if C0 is positive definite so is Cn for all n ∈ N . In the variables (34) we obtain

(C ′
n)

−1 = n(G ′)T�−1
ν G ′ + I,

(C ′
n)

−1m′
n = n(G ′)T�−1

ν y +m′
0.

(A.18)

This gives (35) and the proof is completed by applying the projections P and Q , noting that PG ′ = G ′ and Q S = 0, Q G ′ =
0. �
Proof of Proposition 2. In this setting recall that we have α = 1 and �ω � 0. The covariance update equation (27b) can be 
rewritten as

C−1
n+1 = GT�−1

ν G + (Cn + �ω)−1,

C−1
n+1mn+1 = GT�−1

ν y + (Cn + �ω)−1mn.
(A.19)

Since �ω � 0, the sequence {C−1
n } is bounded: GT �−1

ν G � C−1
n � GT�−1

ν G + �−1
ω and Cn � 0. Let us denote

C ′
n = �

− 1
2

ω Cn�
− 1

2
ω , m′

n = �
− 1

2
ω mn, G ′ = G�

1
2
ω, S = (G ′)T�−1

ν G ′.
First we prove the convergence of {C−1

n }. Note that the update equation (A.19) becomes

(C ′
n+1)

−1 = f
(
(C ′

n)
−1) (A.20)

where

f (X) = S + (
X−1 + I

)−1
.

We note that the nullspace of S is equal to the nullspace of G ′ . Now consider the Ker(G ′) ⊗ Range(G ′T ) decomposition of 
the vector space, and the corresponding orthogonal projections P and Q . Constraining on Ker(G ′), we have
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(C ′
n+1)

−1 = (
C ′
n + I

)−1 ≺ (C ′
n)

−1. (A.21)

Since the sequence {(C ′
n)

−1} is strictly decreasing in the cone of positive-semidefinite matrices it must have limit 0. There-
fore, we have lim

n→∞(C ′
n)

−1 = 0 on Ker(G ′). Constraining on Range(G ′T ), where S � 0, the update function (A.20) satisfies∥∥∥∥df (X)

dX
�X

∥∥∥∥=∥∥(I + X)−1�X(I + X)−1
∥∥

≤∥∥(I + X)−1
∥∥2 ‖�X‖

≤∥∥(I + S)−1
∥∥2 ‖�X‖

≤(1+ ε1)
−2 ‖�X‖ ,

(A.22)

where ε1 > 0. Therefore, equation (A.20) is a contraction map on Range(G ′T ), which leads to the convergence of (C ′
n)

−1 on 
that space. Combining the convergence of (C ′

n)
−1 on both subspaces, we deduce that C−1

n converges to a singular matrix. 
We conclude the analysis of the covariance by noting that Equation (A.19) leads to Cn+1 � Cn + �ω , which implies that 
Cn+1 � C0 + n�ω as required for (37).

Now we establish the convergence of {m′
n}. The update equation of m′

n can be rewritten as

m′
n+1 =m′

n + C ′
n+1G

′T�−1
ν y − C ′

n+1Sm
′
n. (A.23)

Consider the Range(G ′T ) ⊗ Ker(G ′) decomposition m′
n = Pm′

n + Qm′
n , noting that in these coordinates the update equation 

can be rewritten as

Pm′
n+1 = Pm′

n + PC ′
n+1G

′T�−1
ν y − PC ′

n+1S Pm
′
n, (A.24a)

Qm′
n+1 = Qm′

n + Q C ′
n+1G

′T�−1
ν y − Q C ′

n+1S Pm
′
n. (A.24b)

Now consider the operator P − PC ′
n+1S P constrained to apply on Range(G ′T ). On this space S � 0 and, with I − S

1
2 C ′

n+1S
1
2

also viewed as acting on Range(G ′T ),

ρ(P − PC ′
n+1S P ) = ρ

(
I − S

1
2 C ′

n+1S
1
2

)
≤ 1− ρ

(
S

1
2 (S + I)−1S

1
2

)
= 1− ε0,

(A.25)

where ε0 ∈ (0, 1). Hence, we deduce that {Pm′
n} converges exponentially to θref := S+G ′T�−1

ν y where S+ denotes the 
Moore-Penrose inverse of S . Since S S+ = I on Range(G ′T ), the update equation (A.24b) for Qm′

n may be written as

Qm′
n+1 = Qm′

n + Q C ′
n+1S(θref − Pm′

n). (A.26)

It follows from (37) that ‖Q C ′
n+1S‖ is bounded above by a function which grows linearly in n in any norm. Furthermore 

lim
n→∞ Pm′

n − θref = 0 exponentially fast. Hence we deduce the exponential convergence of {Qm′
n} to a limit, depending on 

Qm′
0. Therefore, {mn} converges exponentially fast to a stationary point of 12‖�− 1

2
ν (y − Gθ)‖2. �

Proof of Lemma 2.

∂FG(m,C)

∂m
= ∂E[G(θ)]

∂m

=
∫

G(θ)
1√

(2π)Nθ |C | exp
(−1

2
‖C− 1

2 (θ −m)‖2)(C−1(θ −m)
)T

dθ

=
∫

G(θ)(θ −m)T
1√

(2π)Nθ |C | exp
(−1

2
‖C− 1

2 (θ −m)‖2)dθ · C−1

=
∫ (

G(θ) −EG(θ)
)
(θ −m)T

1√
(2π)Nθ |C | exp

(−1

2
‖C− 1

2 (θ −m)‖2)dθ · C−1

= FdG(m,C). �

(A.27)

Proof of Proposition 3. From equation (41) we have

ŷn+1 = FuGn+1,

Ĉθ y = Ĉ F dGT .
(A.28)
n+1 n+1 u n+1
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In what follow we use the modified unscented transform Definition 1, and specifically its use to derive (20) and (21). First 
note that

m̂n+1 = θ̂0
n+1, ŷn+1 = G(θ̂0

n+1) = ŷ0n+1, and w = Wc
1 = Wc

2 = · · · = Wc
2Nθ

.

Now define the matrices

Y1 = [̂y1n+1 − ŷn+1 ŷ2n+1 − ŷn+1 · · · ŷNθ

n+1 − ŷn+1],
Y2 = [̂yNθ +1

n+1 − ŷn+1 ŷNθ+2
n+1 − ŷn+1 · · · ŷ2Nθ

n+1 − ŷn+1],
� = [θ̂1

n+1 − m̂n+1 θ̂2
n+1 − m̂n+1 · · · θ̂

Nθ

n+1 − m̂n+1].
Then we have

Ĉθ y
n+1 =

2Nθ∑
j=1

Wc
j (θ̂

j
n+1 − m̂n+1)(̂y

j
n+1 − ŷn+1)

T = w�(Y T
1 −Y T

2 ), (A.29a)

Ĉ yy
n+1 =

2Nθ∑
j=1

Wc
j (̂y

j
n+1 − ŷn+1)(̂y

j
n+1 − ŷn+1)

T + �ν = w(Y1Y T
1 +Y2Y T

2 ) + �ν, (A.29b)

Ĉn+1 =
2Nθ∑
j=1

Wc
j (θ̂

j
n+1 − m̂n+1)(θ̂

j
n+1 − m̂n+1)

T = 2w��T . (A.29c)

Equation (A.29c) follows from the definition of the sigma points (20). Since Ĉn+1 � �ω � 0, the matrix � ∈ RNθ ×Nθ is 
non-singular. Thus we have

FudGn+1Ĉn+1FudGT
n+1 = Ĉθ y

n+1
T Ĉ−1

n+1Ĉn+1Ĉ
−1
n+1Ĉ

θ y
n+1

= Ĉθ y
n+1

T Ĉ−1
n+1Ĉ

θ y
n+1

= w(Y1 −Y2)�
T
(
2w��T

)−1
�(Y T

1 −Y T
2 )w

= w

2
(Y1Y T

1 +Y2Y T
2 −Y1Y T

2 −Y2Y T
1 ).

(A.30)

Using equation (A.30) in equation (A.29b) yields

Ĉ yy
n+1 = FudGn+1Ĉn+1FudGT

n+1 + �ν + �̃ν,n+1, (A.31)

where

�̃ν,n+1 := w

2
(Y1 +Y2)(Y1 +Y2)

T .

We note that �̃ν,n+1 is positive semi-definite. Furthermore, the i-th column of Y1 +Y2 satisfies

ŷin+1 + ŷi+Nθ

n+1 − 2 ŷn+1 = G(m̂n+1 + ci[
√
Ĉn+1] j) + G(m̂n+1 − ci[

√
Ĉn+1] j) − 2G(m̂n+1)

≈ d2G(m̂n+1)

d2θ
: [
√
Ĉn+1] j ⊗ [

√
Ĉn+1] j .

(A.32)

Hence �̃ν,n+1 = 0 when G is linear; otherwise ‖�̃ν,n+1‖ =O(‖Ĉ2
n+1‖), a second order term with small covariance Ĉn+1. �

Proof of Lemma 3. If the steady state C of equation (44b) is singular, then ∃v ∈ RNθ s.t. vT C v = 0. We have(
vT Cθ yu

)2 =
(
E[vT (θ −m) ⊗ (G(θ) − G(m))u]

)2
≤E[vT (θ −m) ⊗ (θ −m)v]E[uT (G(θ) − G(m)) ⊗ (G(θ) − G(m))u]
= 0,

for any u ∈ RNy . This implies that vT Cθ y = 0, and therefore,

−2α0v
T C v − vT Cθ y�ν

−1Cθ y T v = 0,

which contradicts the assumption that �ω � 0. �
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Fig. B.23. L2 error ‖mn −mref ‖2 (left) and Frobenius norm ‖Cn − Cref ‖F (right) obtained by UKS for non-singular (NS), over-determined (OD), and under-
determined (UD) systems of the linear 2-parameter model problem.

Appendix B. Illustrative examples for UKS

The primary focus of the paper is on using the UKI for optimization purposes. However the basic ingredients of the 
method, and the dynamical system (46) in particular, can also be used to perform approximate posterior sampling from the 
measure μ given by (4). In the case where μ is Gaussian, the posterior is exactly captured by the steady state of these 
equations; when the posterior is not Gaussian, then only an approximation is obtained. To illustrate the UKS, we consider, 
in Subsection Appendix B.1, application to three linear inverse problems from Subsection 3.1, for which the posterior is 
Gaussian if the prior is Gaussian; and then give a simple example of application to a non-Gaussian posterior in Subsection 
Appendix B.2.

The UKS equations (46) can be discretized by the following semi-implicit scheme

mn+1 −mn = h
(
Cθ y�−1

η

(
y −EG(θ)

)− C�−1
0 (mn+1 − r0)

)
,

Cn+1 − Cn = h
(

− 2Cθ y�−1
η Cθ y T − 2Cn�

−1
0 Cn + 2Cn+1

)
,

(B.1)

with a fixed time-step. The integrals defining Cθ y and EG(θ) are explicitly approximated by the modified unscented trans-
form (see Definition 1) using the Gaussian N (mn, Cn). Integration could also be performed using an adaptive time-step, as 
in [62]; however more work is needed to develop efficient methods stemming from the UKS as formulated here.

B.1. Linear 2-parameter model problem

The linear 2-parameter model problems discussed in Section 5.3 are used with prior

r0 = 0 and �0 = I.

Therefore, the posterior distribution is μ ∼N (mref , Cref ), where

mref =
(
�−1

0 + GT�−1
η G

)−1(
GT�−1

η y + �−1
0 r0

)
and Cref =

(
�−1

0 + GT�−1
η G

)−1
. (B.2)

The UKS is initialized with θ0 ∼ N (r0, �0). The convergence of the UKS, in terms of the posterior mean and covariance 
errors for t ∈ [0, 10], is reported in Fig. B.23. Both mean and covariance converge to the posterior mean and covariance. 
However, even with the semi-implicit scheme the maximum time step that allows for stable simulation is h = 5 × 10−5.

B.2. Nonlinear 2-parameter model problem

The following Bayesian logistic regression problem is considered,

y = 1

1+ exp(θ(1) + θ(2)x)
+ η.

Here Nθ = 2 and Ny = 1, and hence this is an under-determined problem. The prior distribution N (r0, �0) satisfies

r0 = [1 1]T and �0 = I.

The observation data yref = 0.08 is generated at x = 1 , with observation error η ∼N (0, 0.12) and θref = [2 2]T .
2
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Fig. B.24. Contour plot: posterior distributions obtained by UKS at t = 10; blue dots: reference posterior distribution obtained by MCMC for the nonlinear 
2-parameter model problem. x-axis is for θ(1) and y-axis is for θ(2) .

The UKS is initialized with θ0 ∼ N (r0, �0). The posterior distributions obtained by the UKS at t = 10 with a time step 
h = 5 × 10−5 and Markov chain Monte Carlo method (MCMC) with a step size 1.0 and 5 × 106 samples (with a 106 sample 
burn-in period) are presented in Fig. B.24. The estimated posterior distributions are in reasonably good agreement, but of 
course not as accurate as in the linear setting in the previous subsection, because of a Gaussian approximation being made 
to a non-Gaussian distribution. Specifically, the posterior mean and covariance estimated by the UKS are

[1.41 1.20]T and

[
0.526 −0.235

−0.235 0.884

]
,

whilst the posterior mean and covariance estimated by the MCMC are

[1.62 1.31]T and

[
0.619 −0.254

−0.254 1.00

]
.
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