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Abstract. The development of data-informed predictive models for dynamical sys-
tems is of widespread interest in many disciplines. We present a unifying framework
for blending mechanistic and machine-learning approaches to identify dynamical sys-
tems from noisily and partially observed data. We compare pure data-driven learning
with hybrid models which incorporate imperfect domain knowledge, referring to the
discrepancy between an assumed truth model and the imperfect mechanistic model
as model error. Our formulation is agnostic to the chosen machine learning model, is
presented in both continuous- and discrete-time settings, and is compatible both with
model errors that exhibit substantial memory and errors that are memoryless.

First, we studymemoryless linear (w.r.t. parametric-dependence)model error from
a learning theory perspective, defining excess risk and generalization error. For ergodic
continuous-time systems, we prove that both excess risk and generalization error are
bounded above by terms that diminishwith the square-root of 𝑇, the time-interval over
which training data is specified.

Secondly, we study scenarios that benefit from modeling with memory, proving
universal approximation theorems for two classes of continuous-time recurrent neu-
ral networks (RNNs): both can learn memory-dependent model error, assuming that
it is governed by a finite-dimensional hidden variable and that, together, the observed
and hidden variables form a continuous-time Markovian system. In addition, we con-
nect one class of RNNs to reservoir computing, thereby relating learning of memory-
dependent error to recent work on supervised learning between Banach spaces using
random features.

Numerical results are presented (Lorenz ’63, Lorenz ’96Multiscale systems) to com-
pare purely data-driven and hybrid approaches, finding hybrid methods less data-
hungry and more parametrically efficient. We also find that, while a continuous-time
framing allows for robustness to irregular sampling and desirable domain-
interpretability, a discrete-time framing can provide similar or better predictive perfor-
mance, especially when data are undersampled and the vector field defining the true
dynamics cannot be identified. Finally, we demonstrate numerically how data assim-
ilation can be leveraged to learn hidden dynamics from noisy, partially-observed data,
and illustrate challenges in representing memory by this approach, and in the training
of such models.
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1. Introduction

1.1. Background and literature review. The modeling and prediction of dynam-
ical systems and time-series is an important goal in numerous domains, including
biomedicine, climatology, robotics, and the social sciences. Traditional approaches
to modeling these systems appeal to careful study of their mechanisms, and the de-
sign of targeted equations to represent them. These carefully builtmechanistic models
have impacted humankind in numerous arenas, including our ability to land space-
craft on celestial bodies, provide high-fidelity numerical weather prediction, and ar-
tificially regulate physiologic processes, through the use of pacemakers and artificial
pancreases, for example. This paper focuses on the learning ofmodel error: we assume
that an imperfectmechanisticmodel is known, and that data are used to improve it. We
introduce a framework for this problem, focusing on distinctions between Markovian
and non-Markovianmodel error, providing a unifying review of relevant literature, de-
veloping some underpinning theory related to both theMarkovian and non-Markovian
settings, and presenting numerical experiments which illustrate our key findings.
To set our work in context, we first review the use of data-driven methods for time-

dependent problems, organizing the literature review around four themes comprising
Sections 1.1.1 to 1.1.3 and 1.1.5; these are devoted, respectively, to pure data-driven
methods, hybrid methods that build on mechanistic models, non-Markovian models
that describememory, and applications of the various approaches. Having set thework
in context, in Section 1.2 we detail the contributions we make, and describe the orga-
nization of the paper.

1.1.1. Data-driven modeling of dynamical systems. A recent wave of machine learning
successes in data-driven modeling, especially in imaging sciences, has shown that we
can demand even more from existing models, or that we can design models of more
complex phenomena than heretofore. Traditional models built from, for example, low
order polynomials and/or linearizedmodel reductions, may appear limited when com-
pared to the flexible function approximation frameworks provided by neural networks
and kernel methods. Neural networks, for example, have a long history of success in
modeling dynamical systems [50,83,86,112,139–141] and recent developments in deep
learning for operators continue to propel this trend [12, 92, 93, 102].
The success of neural networks arguably relies on balanced expressivity and gen-

eralizability, but other methods also excel in learning parsimonious and generaliz-
able representations of dynamics. A particularly popular methodology is to perform
sparse regression over a dictionary of vector fields, including the use of thresholding ap-
proaches (SINDy) [19] and 𝐿1-regularized polynomial regression [145–147,159]. Non-
parametric methods, like Gaussian process models [136], have also been used widely
for modeling nonlinear dynamics [27, 46, 81, 165]. While a good choice of kernel is of-
ten essential for the success of these methods, recent progress has been made towards
automatic hyperparameter tuning via parametric kernel flows [61]. Successes with
Gaussian process models were also extended to high dimensional problems by using
random feature map approximations [131] within the context of data-driven learning
of parametric partial differential equations (PDEs) and solution operators [113]. Ad-
vancements to data-driven methods based on Koopman operator theory and dynamic
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mode decomposition also offer exciting new possibilities for predicting nonlinear dy-
namics from data [1, 82, 160].
It is important to consider whether tomodel in discrete- or continuous-time, as both

have potential advantages. The primary positive for continuous-time modeling lies in
its flexibility and interpretability. In particular, continuous-time approaches are more
readily and naturally applied to irregularly sampled time-series data, e.g. electronic
health record data [142], than discrete-timemethods. Furthermore, this flexibilitywith
respect to timestep enables simple transferability of a model learnt from discrete-time
data at one timestep, to new settings with a different timestep and indeed to variable
timestep settings; the learned right-hand-side can be used to generate numerical so-
lutions at any timestep. On the other hand, applying a discrete-time model to a new
timestep either requires exact alignment of subsampled data or some post-processing
interpolation step. Continuous-time models may also provide greater interpretability
than discrete-timemethods when the right-hand-side of the ordinary differential equa-
tion (ODE) is a more physically interpretable object than the Δ𝑡-solution operator (e.g.
for equation discovery [72]).
Traditional implementations of continuous-time learning require accurate estima-

tion of time-derivatives of the state, but this may be circumvented using approaches
that leverage autodifferentiation software [73, 118, 142] or methods which learn from
statistics derived from time-series, such as moments or correlation functions [150].
Keller and Du [77], Du et al. [39] provide rigorous analysis demonstrating how infer-
ence of a continuous-timemodel from discrete-time datamust be conductedwith great
care; they prove how stable and consistent linear multistep methods for continuous-
time integration may not possess the same guarantees when used for the inverse prob-
lem, i.e. discovery of dynamics. Queiruga et al. [128] provide pathological illustrations
of this phenomenon in the context of Runge-Kutta methods.
Discrete-time approaches, on the other hand, are easily deployed when train and

test data sample rates are the same. For applications in which data collection is eas-
ily configured (e.g. simulated settings, available automatic sensors, etc.), discrete-time
methods are typically much easier to implement and test than continuous-time meth-
ods. Moreover, they allow for “nonintrusive”model correction, as additions are applied
outside of the numerical integrator; this may be relevant for practical integration with
complex simulation software. In addition, discrete-time approaches can be preferable
when there is unavoidably large error in continuous-time inference Chorin and Lu
[30], Lu et al. [100].
Both nonparametric and parametric model classes are used in the learning of dy-

namical systems, with the latter connecting to the former via the representer theorem,
when Gaussian process regression [136] is used [20, 49, 62].

1.1.2. Hybrid mechanistic and data-driven modeling. Attempts to transform domains
that have relied on traditional mechanistic models, by using purely data-driven (i.e.
de novo or “learn from scratch”) approaches, often fall short. Now, there is a growing
recognition by machine learning researchers that these mechanistic models are very
valuable [110], as they represent the distillation of centuries of data collected in count-
less studies and interpreted by domain experts. Recent studies have consistently found
advantages of hybridmethods that blendmechanistic knowledge and data-driven tech-
niques; Willard et al. [169] provide a thorough review of this shift amongst scientists
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and engineers. Not only do these hybrid methods improve predictive performance
[121], but they also reduce data demands [129] and improve interpretability and trust-
worthiness, which is essential for many applications. This is exemplified by work in
autonomous drone landing [153] and helicopter flying [130], as well as predictions for
COVID-19 mortality risk [155] and COVID-19 treatment response [127].
The question of how best to use the power of data and machine learning to lever-

age and build upon our existing mechanistic knowledge is thus of widespread current
interest. This question and research direction has been anticipated over the last thirty
years of research activity at the interface of dynamical systems with machine learn-
ing [98, 141, 170], and now a critical mass of effort is developing. A variety of studies
have been tackling these questions in weather and climate modeling [43, 76]; even in
the imaging sciences, where pure machine learning has been spectacularly successful,
emerging work shows that incorporating knowledge of underlying physical mecha-
nisms improves performance in a variety of image recognition tasks [5].
As noted and studied by Ba et al. [5], Freno and Carlberg [45] and others, there are

a few common high-level approaches for blending machine learning with mechanis-
tic knowledge: (1) use machine learning to learn additive residual corrections for the
mechanistic model [43, 62, 72, 99, 101, 144, 153, 174]; (2) use the mechanistic model
as an input or feature for a machine learning model [14, 89, 121]; (3) use mechanistic
knowledge in the form of a differential equation as a final layer in a neural network
representation of the solution, or equivalently define the loss function to include ap-
proximate satisfaction of the differential equation [25,134,135,154]; and (4) use mech-
anistic intuition to constrain or inform the machine learning architecture [59, 106].
Many other successful studies have developed specific designs that further hybridize
these and other perspectives [45, 60, 70, 173]. In addition, parameter estimation for
mechanistic models is a well-studied topic in data assimilation, inverse problems, and
other mechanistic modeling communities, but recent approaches that leverage ma-
chine learning for this task may create new opportunities for accounting for temporal
parameter variations [109] and unknown observation functions [95].
An important distinction should bemade between physics-informed surrogatemod-

eling and what we refer to as hybrid modeling. Surrogate modeling primarily focuses
on replacing high-cost, high-fidelity mechanistic model simulations with similarly ac-
curate models that are cheap to evaluate. These efforts have shown great promise by
trainingmachine learningmodels on expensive high-fidelity simulation data, and have
been especially successful when the underlying physical (or other domain-specific)
mechanistic knowledge and equations are incorporated into the model training [134]
and architecture [106]. Weuse the termhybridmodeling, on the other hand, to indicate
when the final learned system involves interaction (and possibly feedback) between
mechanism-based and data-driven models [121].
In this work, we focus primarily on hybrid methods that learn residuals to an im-

perfectmechanisticmodel. We closely follow the discrete-timehybridmodeling frame-
work developed by [62], while providing new insights from the continuous-time mod-
eling perspective. The benefits of this form of hybrid modeling, which we and many
others have observed, are not yet fully understood in a theoretical sense. Intuitively,
nominalmechanistic models aremost useful when they encode key nonlinearities that
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are not readily inferred using general model classes and modest amounts of data. In-
deed, classical approximation theorems for fitting polynomials, Fourier modes, and
other common function bases directly reflect this relationship by bounding the error
with respect to ameasure of complexity of the target function (e.g. Lipschitz constants,
moduli of continuity, Sobolev norms, etc.) [36, Chapter 7]. Recent work by E et al. [41]
provides a priori error bounds for two-layer neural networks and kernel-based regres-
sions, with constants that depend explicitly on the norm of the target function in the
model-hypothesis space (a Barron space and a reproducing kernel Hilbert space, resp.).
At the same time, problems forwhichmechanisticmodels only capture low-complexity
trends (e.g. linear) may still be good candidates for hybrid learning (over purely data-
driven), as an accurate linear model reduces the parametric burden for the machine-
learning task; this effect is likely accentuated in data-starved regimes. Furthermore,
even in cases where data-driven models perform satisfactorily, a hybrid approach may
improve interpretability, trustworthiness, and controllability without sacrificing per-
formance.
Hybridmodels are often cast inMarkovian, memory-free settings where the learned

dynamical system (or its learned residuals) is solely dependent on the observed states.
This approach can be highly effective when measurements of all relevant states are
available or when the influence of the unobserved states is adequately described by
a function of the observables. This is the perspective employed by Shi et al. [153],
where they learn corrections to physical equations of motion for an autonomous ve-
hicle in regions of state space where the physics perform poorly— these residual er-
rors are driven by un-modeled turbulence during landing, but can be predicted using
the observable states of the vehicle (i.e. position, velocity, and acceleration). This
is also the perspective taken in applications of high-dimensional multiscale dynam-
ical systems, wherein sub-grid closure models parameterize the effects of expensive
fine-scale interactions (e.g. cloud simulations) as functions of the coarse variables
[11,18,55,79,117,137,150,158]. The result is a hybrid dynamical systemwith a physics-
based equation defined on the coarse variables with a Markovian correction term that
accounts for the effects of the expensive fine scale dynamics.

1.1.3. Non-Markovian data-driven modeling. Unobserved and unmodeled processes
are often responsible for model errors that cannot be represented in a Markovian fash-
ion within the observed variables alone. This need has driven substantial advances in
memory-based modeling. One approach to this is the use of delay embeddings [157].
These methods are inherently tied to discrete time representations of the data and, al-
though very successful in many applied contexts, are of less value when the goal of
data-driven learning is to fit continuous-time models; this is a desirable modeling goal
in many settings.
An alternative to understandingmemory is via theMori-Zwanzig formalism, which

is a fundamental building block in the presentation of memory and hidden variables
and may be employed for both discrete-time and continuous-time models. Although
initially developed primarily in the context of statistical mechanics, it provides the
basis for understanding hidden variables in dynamical systems, and thus underpins
many generic computational tools applied in this setting [31, 54, 178]. It has been suc-
cessfully applied to problems in fluid turbulence [40, 119] and molecular dynamics
[66, 90]. Lin and Lu [94] demonstrate connections between Mori-Zwanzig and delay
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embedding theory in the context of nonlinear autoregressive models using Koopman
operator theory. Indeed, Gilani et al. [49] shows a correspondence between the Mori-
Zwanzig representation of the Koopman operator and Taken’s delay-embedding flow
map. Studies by Ma et al. [105], Wang et al. [166] demonstrate how the Mori-Zwanzig
formalism motivates the use of recurrent neural networks (RNNs) [51, 143] as a deep
learning approach to non-Markovian closure modeling. Harlim et al. [62] also use
the Mori-Zwanzig formalism to deduce a non-Markovian closure model, and evaluate
RNN-based approximations of the closure dynamics. Closure modeling using RNNs
has recently emerged as a new way to learn memory-based closures [24, 62, 75].
Although the original formulation of Mori-Zwanzig as a general purpose approach

to modeling partially observed systems was in continuous-time [31], many practical
implementations adopt a discrete-time picture [30, 35, 94]. This causes the learned
memory terms to depend on sampling rates, which, in turn, can inhibit flexibility and
interpretability.
Recent advances in continuous-timememory-basedmodeling, however, may be ap-

plicable to these non-Markovian hybridmodel settings. The theory of continuous-time
RNNs (i.e. formulated as differential equations, rather than a recurrence relation) was
studied in the 1990s [8,47], albeit for equations with a specific additive structure. This
structure was exploited in a continuous-time reservoir computing (RC) approach by
Lu et al. [103] for reconstructing chaotic attractors from data. Comparisons between
RNNs andRC (a subclass of RNNswith randomparameters fixed in the recurrent state)
in discrete-time have yielded mixed conclusions in terms of their relative efficiencies
and ability to retain memory [23, 48, 126, 164]. Recent formulations of continuous-
time RNNs have departed slightly from the additive structure, and have focused on
constraints and architectures that ensure stability and accuracy of the resulting dy-
namical system [22, 42, 115, 118, 142, 152]. In addition, significant theoretical work
has been performed for linear RNNs in continuous-time [91]. Nevertheless, these var-
ious methods have not yet been formulated within a hybrid modeling framework, nor
has their approximation power been carefully evaluated in that context. A recent step
in this direction, however, is the work by Gupta and Lermusiaux [58], which tackles
non-Markovian hybrid modeling in continuous-time with neural network-based delay
differential equations (DDEs).

1.1.4. Noisy observations and data assimilation. For this work we consider settings in
which the observations may be both noisy and partial; the observations may be partial
either because the system is undersampled in time or because certain variables are not
observed at all. We emphasize that ideas from statistics can be used to smooth and/or
interpolate data to remove noise and deal with undersampling [33] and to deal with
missing data [108]; and ideas from data assimilation [3,88,138] can be used to remove
noise and to learn about unobserved variables [26,52,53]. In some of our experiments
we will use noise-free data in continuous-time, to clearly expose issues separate from
noise/interpolation; but in other experiments we will use methodologies from data as-
similation to enhance our learning [26].

1.1.5. Applications of data-drivenmodeling. In order to deploy hybridmethods in real-
world scenarios, we must also be able to cope with noisy, partial observations. Accom-
modating the learning of model error in this setting, as well as state estimation, is an
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active area of research in the data assimilation (DA) community [13, 43, 125]. Learn-
ing dynamics from noisy data is generally nontrivial for nonlinear systems—there is
a chicken-and-egg problem in which accurate state estimation typically relies on the
availability of correct models, and correct models are most readily identified using ac-
curate state estimates. Recent studies have addressed this challenge by attempting
to jointly learn the noise and the dynamics. Gottwald and Reich [53] approach this
problem from a data assimilation perspective, and employ an Ensemble Kalman Fil-
ter (EnKF) to iteratively update the parameters for their dynamics model, then filter
the current state using the updated dynamics. A recent follow-up to this work ap-
plies the DA-approach to partially-observed systems, and learns a model on a space
of discrete-time delay-embeddings [52]. Similar studies were performed by Brajard et
al. [16], and applied specifically in model error scenarios [15, 43, 168]. Ayed et al. [4]
focus on learning a continuous-time neural network representation of an ODE from
partial observations, and learning a separate encoder neural network to map a histor-
ical warmup sequence to likely initial conditions in the un-observed space. Kaheman
et al. [72] approach this problem from a variational perspective, performing a single
optimization over all noise sequences and dynamical parameterizations. Nguyen et
al. [114] use an Expectation-Maximization (EM) perspective to compare these varia-
tional and ensemble-based approaches, and further study is needed to understand the
trade-offs between these styles of optimization. Chen et al. [26] study an EnKF-based
optimization scheme that performs joint, rather than EM-based learning, by running
gradient descent on an architecture that backpropagates through the data assimilator.
We note that data assimilators are themselves dynamical systems, which can be

tuned (using optimization and machine learning) to provide more accurate state up-
dates and more efficient state identification. However, while learning improved DA
schemes is sometimes viewed as a strategy for coping with model error [177], we see
the optimization of DA and the correction of model errors as two separate problems
that should be addressed individually.
When connecting models of dynamical systems to real-world data, it is also essen-

tial to recognize that available observables may live in a very different space than the
underlying dynamics. Recent studies have shown ways to navigate this using autoen-
coders and dynamical systemmodels to jointly learn a latent embedding and dynamics
in that latent space [21]. Proof of concepts for similar approaches primarily focus on
image-based inputs, but have potential for applications inmedicine [95] and reduction
of nonlinear PDEs [106].

1.2. Our contributions. Despite this large and recent body of work in data-driven
learning methods and hybrid modeling strategies, many challenges remain for under-
standing how to best combine mechanistic and machine-learned models; indeed, the
answer is highly dependent on the application. Here, we construct a mathematical
framework that unifiesmany of the common approaches for blendingmechanistic and
machine learning models; having done so we provide strong evidence for the value of
hybrid approaches. Our contributions are listed as follows:

(1) We provide an overarching framework for learning model error from (pos-
sibly noisy) data in dynamical systems settings, studying both discrete- and
continuous-time models, together with both memoryless (Markovian) and
memory-dependent representations of the model error. This formulation is
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agnostic to choice of mechanistic model and class of machine learning func-
tions.

(2) We study theMarkovian learning problem in the context of ergodic continuous-
time dynamics, proving bounds on excess risk and generalization error.

(3) We present a simple approximation theoretic approach to learning memory-
dependent (non-Markovian) model error in continuous-time, proving a form
of universal approximation for two families ofmemory-dependentmodel error
defined using recurrent neural networks.

(4) Wedescribe numerical experimentswhich: (a) demonstrate the utility of learn-
ing model error in comparison both with pure data-driven learning and with
pure (but slightly imperfect) mechanistic modeling; (b) compare the benefits
of learning discrete- versus continuous-time models; (c) demonstrate the util-
ity of autodifferentiable data assimilation to learn dynamics from partially ob-
served, noisy data; (d) explain issues arising inmemory-dependentmodel error
learning in the (typical) situation where the dimension of thememory variable
is unknown.

In Section 2, we address contribution (1) by defining the general settings of interest
for dynamical systems in both continuous- and discrete-time. We then link these un-
derlying systems to amachine learning framework in Sections 3 and 4; in the formerwe
formulate the problem in the setting of statistical learning, and in the latter we define
concrete optimization problems found from finite parameterizations of the hypothe-
sis class in which the model error is sought. Section 5 is focused on specific choices
of architectures, and underpinning theory for machine learning methods with these
choices: we analyze linear methods from the perspective of learning theory in the con-
text of ergodic dynamical systems (contribution (2)); andwedescribe an approximation
theorem for continuous-time hybrid recurrent neural networks (contribution (3)). Fi-
nally, Section 6 presents our detailed numerical experiments; we apply the methods
in Section 5 to exemplar dynamical systems of the forms outlined in Section 2, and
highlight our findings (contribution (4)).

2. Dynamical systems setting

In the following, we use the phraseMarkovian model error to describe model error
expressible entirely in terms of the observed variable at the current time, the memory-
less situation; non-Markovian model error refers to the need to express the model error
in terms of the past history of the observed variable.
We present a general framework for modeling a dynamical system with Markov-

ian model error, first in continuous-time (Section 2.1) and then in discrete-time (Sec-
tion 2.2). We then extend the framework to the setting of non-Markovian model er-
ror (Section 2.3), including a parameter 𝜀 which enables us to smoothly transition
from scale-separated problems (where Markovian closure is likely to be accurate) to
problems where the unobserved variables are not scale-separated from those observed
(where Markovian closure is likely to fail and memory needs to be accounted for).
It is important to note that the continuous-time formulation necessarily assumes

an underlying data-generating process that is continuous in nature. The discrete-time
formulation can be viewed as a discretization of an underlying continuous system, but
can also represent systems that are truly discrete.
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The settings that we present are all intended to represent and classify common situa-
tions that arise in modeling and predicting dynamical systems. In particular, we stress
two key features. First, we point out that mechanistic models (later referred to as a
vector field 𝑓0 or flow map Ψ0) are often available and may provide predictions with
reasonable fidelity. However, these models are often simplifications of the true system,
and thus can be improved with data-driven approaches. Nevertheless, they provide a
useful starting point that can reduce the complexity and data-hunger of the learning
problems. In this context, we study trade-offs between discrete- and continuous-time
framings. While we beginwith fully-observed contexts inwhich the dynamics areMar-
kovian with respect to the observed state 𝑥, we later note that we may only have access
to partial observations 𝑥 of a larger system (𝑥, 𝑦). By restricting our interest to predic-
tion of these observables, we show how a latent dynamical process (e.g. a RNN) has
the power to reconstruct the correct dynamics for our observables.

2.1. Continuous-time. Consider the following dynamical system

(2.1) ̇𝑥 = 𝑓†(𝑥), 𝑥(0) = 𝑥0,

and define 𝖷𝑠 ≔ 𝐶([0, 𝑠]; ℝ𝑑𝑥). If 𝑓† ∈ 𝐶1(ℝ𝑑𝑥 ; ℝ𝑑𝑥) then (2.1) has solution 𝑥(⋅) ∈ 𝖷𝑇
for any 𝑇 < 𝑇max = 𝑇max(𝑥0) ∈ ℝ+, the maximal interval of existence.
The primary model error scenario we envisage in this section is one in which the

vector field 𝑓† can only be partially known or accessed: we assume that
𝑓† = 𝑓0 +𝑚†,

where 𝑓0 is known to us and 𝑚† is not known. For any 𝑓0 ∈ 𝐶1(ℝ𝑑𝑥 ; ℝ𝑑𝑥) (regardless
of its fidelity), there exists a function 𝑚†(𝑥) ∈ 𝐶1(ℝ𝑑𝑥 ; ℝ𝑑𝑥) such that (2.1) can be
rewritten as
(2.2) ̇𝑥 = 𝑓0(𝑥) + 𝑚†(𝑥).
However, for this paper, it is useful to think of 𝑚† as being small relative to 𝑓0; the
function𝑚† accounts formodel error. While the approach in (2.2) is targeted at learn-
ing residuals of 𝑓0, 𝑓† can alternatively be reconstructed from 𝑓0 through a different
function𝑚†(𝑥) ∈ 𝐶1(ℝ2𝑑𝑥 ; ℝ𝑑𝑥) using the form
(2.3) ̇𝑥 = 𝑚†(𝑥, 𝑓0(𝑥)).
Both approaches are defined on spaces that allow perfect reconstruction of𝑓†. How-

ever, the first formulation hypothesizes that the missing information is additive; the
second formulation provides no such indication. Because the first approach ensures
substantial usage of 𝑓0, it has advantages in settings where 𝑓0 is trusted by practitioners
and model explainability is important. The second approach will likely see advantages
in settings where there is a simple nonadditive form of model error, including coor-
dinate transformations and other (possibly state-dependent) nonlinear warping func-
tions of the nominal physics 𝑓0. Note that the use of 𝑓0 in representing the model error
in the augmented-input setting of (2.3) includes the case of not leveraging 𝑓0 at all. It
is, hence, potentially more useful than simply adopting an 𝑥−dependent model error;
but it requires learning a more complex function.
The augmented-input method also has connections to model stacking [172] or bag-

ging [17]; this perspective can be useful when there are 𝑁 model hypotheses:
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̇𝑥 = 𝑚†(𝑥, 𝑓(1)0 (𝑥), . . . 𝑓(𝑁)
0 (𝑥); 𝜃).

The residual-based design in (2.2) relates more to model boosting [149].
Our goal is to use machine learning to approximate these corrector functions 𝑚†

using our nominal knowledge 𝑓0 and observations of a trajectory {𝑥(𝑡)}𝑇𝑡=0 ∈ 𝖷𝑇 , for
some 𝑇 < 𝑇max(𝑥0), from the true system (2.1). In this work, we consider only the
case of learning 𝑚†(𝑥) in equation (2.2). For now the reader may consider {𝑥(𝑡)}𝑇𝑡=0
given without noise so that, in principle, { ̇𝑥(𝑡)}𝑇𝑡=0 is known and may be leveraged. In
practice this will not be the case, for example if the data are high-frequency but discrete
in time; we address this issue in what follows.

2.2. Discrete-time. Consider the following dynamical system

(2.4) 𝑥𝑘+1 = Ψ†(𝑥𝑘)
and define 𝖷𝐾 ≔ ℓ∞({0, . . . , 𝐾}; ℝ𝑑𝑥). If Ψ† ∈ 𝐶(ℝ𝑑𝑥 ; ℝ𝑑𝑥), the map yields solution
{𝑥𝑘}𝑘∈ℤ+ ∈ 𝖷∞ ≔ ℓ∞(ℤ+; ℝ𝑑𝑥).1 As in the continuous-time setting, we assume we
only have access to an approximate mechanistic model Ψ0 ∈ 𝐶(ℝ𝑑𝑥 ; ℝ𝑑𝑥), which can
be corrected using an additive residual term𝑚† ∈ 𝐶(ℝ𝑑𝑥 ; ℝ𝑑𝑥):
(2.5) 𝑥𝑘+1 = Ψ0(𝑥𝑘) + 𝑚†(𝑥𝑘),
or by feeding Ψ0 as an input to a corrective warping function𝑚† ∈ 𝐶(ℝ2𝑑𝑥 ; ℝ𝑑𝑥)

𝑥𝑘+1 = 𝑚†(𝑥𝑘, Ψ0(𝑥𝑘));
we focus our experiments on the additive residual framing in (2.5).
Note that the discrete-time formulation can be made compatible with continuous-

time data sampled uniformly at rate Δ𝑡 (i.e. 𝑥(𝑘Δ𝑡) = 𝑥𝑘 for 𝑘 ∈ ℕ). To see this, let
Φ†(𝑥0, 𝑡) ≔ 𝑥(𝑡) be the solution operator for (2.1) (and Φ0 defined analogously for 𝑓0).
We then have

Ψ†(𝑣) ≔ Φ†(𝑣, Δ𝑡),(2.6a)
Ψ0(𝑣) ≔ Φ0(𝑣, Δ𝑡),(2.6b)

which can be obtained via numerical integration of 𝑓†, 𝑓0, respectively.
2.3. Partially observed systems (continuous-time). The framework in Sections 2.1
and 2.2 assumes that the system dynamics are Markovian with respect to observable
𝑥. Most of our experiments are performed in the fully-observedMarkovian case. How-
ever, this assumption rarely holds in real-world systems. Consider a block-on-a-spring
experiment conducted in an introductory physics laboratory. In principle, the system
is strictly governed by the position and momentum of the block (i.e. 𝑓0), along with
a few scalar parameters. However (as most students’ error analysis reports will note),
the dynamics are also driven by a variety of external factors, like a wobbly table or a
poorly greased track. Themagnitude, timescale, and structure of the influence of these
different factors are rarely known; and yet, they are somehow encoded in the discrep-
ancy between the nominal equations of motion and the (noisy) observations of this
multiscale system.

1Here we define ℤ+ = {0, . . . , }, the non-negative integers, including zero.
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Thus we also consider the setting in which the dynamics of 𝑥 is not Markovian. If
we consider 𝑥 to be the observable states of a Markovian system in dimension higher
than 𝑑𝑥, then we can write the full system as

̇𝑥 = 𝑓†(𝑥, 𝑦), 𝑥(0) = 𝑥0,(2.7a)

̇𝑦 = 1
𝜀 𝑔

†(𝑥, 𝑦), 𝑦(0) = 𝑦0.(2.7b)

Here 𝑓† ∈ 𝐶1(ℝ𝑑𝑥 × ℝ𝑑𝑦 ; ℝ𝑑𝑥), 𝑔† ∈ 𝐶1(ℝ𝑑𝑥 × ℝ𝑑𝑦 ; ℝ𝑑𝑦), and 𝜀 > 0 is a constant
measuring the degree of scale-separation (which is large when 𝜀 is small). The system
yields solution2 𝑥(⋅) ∈ 𝖷𝑇 , 𝑦(⋅) ∈ 𝖸𝑇 for any 𝑇 < 𝑇max(𝑥(0), 𝑦(0)) ∈ ℝ+, the maximal
interval of existence. We view 𝑦 as the complicated, unresolved, or unobserved aspects
of the true underlying system.
For any 𝑓0 ∈ 𝐶1(ℝ𝑑𝑥 ; ℝ𝑑𝑥) (regardless of its fidelity), there exists a function𝑚†(𝑥, 𝑦)

∈ 𝐶1(ℝ𝑑𝑥 × ℝ𝑑𝑦 ; ℝ𝑑𝑥) such that (2.7) can be rewritten as
̇𝑥 = 𝑓0(𝑥) + 𝑚†(𝑥, 𝑦),(2.8a)

̇𝑦 = 1
𝜀 𝑔

†(𝑥, 𝑦).(2.8b)

Now observe that, by considering the solution of equation (2.8b) as a function of the
history of 𝑥, the influence of 𝑦(⋅) ∈ 𝖸𝑡 on the solution 𝑥(⋅) ∈ 𝖷𝑡 can be captured by a
parameterized (w.r.t. 𝑡) family of operators𝑚†

𝑡 ∶ 𝖷𝑡×ℝ𝑑𝑦 ×ℝ+ ↦ ℝ𝑑𝑥 on the historical
trajectory {𝑥(𝑠)}𝑡𝑠=0, unobserved initial condition 𝑦(0), and scale-separation parameter
𝜀 such that

(2.9) ̇𝑥(𝑡) = 𝑓0(𝑥(𝑡)) + 𝑚†
𝑡 ({𝑥(𝑠)}𝑡𝑠=0; 𝑦(0), 𝜀).

Our goal is to use machine learning to find a Markovian model, in which 𝑥 is part
of the state variable, using our nominal knowledge 𝑓0 and observations of a trajectory
{𝑥(𝑡)}𝑇𝑡=0 ∈ 𝖷𝑇 , for some 𝑇 < 𝑇max(𝑥0, 𝑦0), from the true system (2.7); note that 𝑦(⋅) is
not observed and nothing is assumed known about the vector field 𝑔† or the parameter
𝜀.
Note that equations (2.7), (2.8) and (2.9) are all equivalent formulations of the same

problem and have identical solutions. The third formulation points towards two in-
trinsic difficulties: the unknown “function” to be learned is in fact defined by a family
of operators 𝑚†

𝑡 mapping the Banach space of path history into ℝ𝑑𝑥 ; secondly the op-
erator is parameterized by 𝑦(0) which is unobserved. We will address the first issue
by showing that the operators 𝑚†

𝑡 can be arbitrarily well-approximated from within
a family of differential equations in dimension ℝ2𝑑𝑥+𝑑𝑦 ; the second issue may be ad-
dressed by techniques from data assimilation [3,88,138] once this approximating fam-
ily is learned. We emphasize, however, that we do not investigate the practicality of
this approach to learning non-Markovian systems and much remains to be done in
this area.
It is also important to note that these non-Markovian operators 𝑚†

𝑡 can sometimes
be adequately approximated by invoking aMarkovianmodel for 𝑥 and simply learning
function 𝑚†(⋅) as in Section 2.1. For example, when 𝜀 → 0 and the 𝑦 dynamics, with

2With 𝖸𝑇 defined analogously to 𝖷𝑇 .
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𝑥 fixed, are sufficiently mixing, the averaging principle [9, 122, 161] may be invoked to
deduce that

lim
𝜀→0

𝑚†
𝑡 ({𝑥(𝑠)}𝑡𝑠=0; 𝑦(0), 𝜀) = 𝑚†(𝑥(𝑡))

for some𝑚† as in Section 2.1. This fact is used in section 3 of [71] to study the learning
of closure models for linear Gaussian stochastic differential equations (SDEs).
It is highly advantageous to identify settings where Markovian modeling is suffi-

cient, as it is a simpler learning problem. We find that learning 𝑚†
𝑡 is necessary when

there is significant memory required to explain the dynamics of 𝑥; learning 𝑚† is suf-
ficient when memory effects are minimal. In Section 6, we show that Markovian clo-
sures can perform well for certain tasks even when the scale-separation factor 𝜀 is not
small. In Section 3 we demonstrate how the family of operators 𝑚†

𝑡 may be repre-
sented through ODEs, appealing to ideas which blend continuous-time RNNs with an
assumed known vector field 𝑓0.

2.4. Partially observed systems (discrete-time). The discrete-time analog of the
previous setting considers a mapping

𝑥𝑘+1 = Ψ†
1(𝑥𝑘, 𝑦𝑘),(2.10a)

𝑦𝑘+1 = Ψ†
2(𝑥𝑘, 𝑦𝑘)(2.10b)

with Ψ†
1 ∈ 𝐶(ℝ𝑑𝑥 × ℝ𝑑𝑦 ; ℝ𝑑𝑥), Ψ†

2 ∈ 𝐶(ℝ𝑑𝑥 × ℝ𝑑𝑦 ; ℝ𝑑𝑦), yielding solutions {𝑥𝑘}𝑘∈ℤ+ ∈
𝖷∞ and {𝑦𝑘}𝑘∈ℤ+ ∈ 𝖸∞. We assume unknown Ψ†

1, Ψ†
2, but known approximate model

Ψ0 to rewrite (2.10) as

𝑥𝑘+1 = Ψ0(𝑥𝑘) + 𝑚†(𝑥𝑘, 𝑦𝑘),(2.11a)

𝑦𝑘+1 = Ψ†
2(𝑥𝑘, 𝑦𝑘).(2.11b)

We can, analogously to (2.9), write a solution in the space of observables as

(2.12) 𝑥𝑘+1 = Ψ0(𝑥𝑘) + 𝑚†
𝑘({𝑥𝑠}𝑘𝑠=0, 𝑦0)

with 𝑚†
𝑘 ∶ 𝖷𝑘 × ℝ𝑑𝑦 → ℝ𝑑𝑥 , a function of the historical trajectory {𝑥𝑠}𝑘𝑠=0 and the un-

observed initial condition 𝑦0. If this discrete-time system is computed from the time
Δ𝑡 map for (2.1) then, for 𝜀 ≪ 1 and when averaging scenarios apply as discussed in
Section 2.3, the memoryless model in (2.5) may be used.

3. Statistical learning for ergodic dynamical systems

Here, we present a learning theory framework within which to consider methods
for discoveringmodel error from data. We outline the learning theory in a continuous-
time Markovian setting (using possibly discretely sampled data), and point to its
analogs in discrete-time and non-Markovian settings.
In the discrete-time settings, we assume access to discretely sampled training data

{𝑥𝑘 = 𝑥(𝑘Δ𝑡)}𝐾𝑘=0, where Δ𝑡 is a uniform sampling rate and we assume that 𝐾Δ𝑡 = 𝑇.
In the continuous-time settings, we assume access to continuous-time training data
{ ̇𝑥(𝑡), 𝑥(𝑡)}𝑇𝑡=0; Section 6.2.1 discusses the important practical question of estimating
̇𝑥(𝑡), 𝑥(𝑡) from discrete (but high frequency) data. In either case, consider the problem
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of identifying 𝑚 ∈ ℳ (whereℳ represents the model, or hypothesis, class) that min-
imizes a loss function quantifying closeness of 𝑚 to 𝑚†. In the Markovian setting we
choose a measure 𝜇 on ℝ𝑑𝑥 and define the loss

ℒ𝜇(𝑚,𝑚†) ≔ ∫
ℝ𝑑𝑥

‖𝑚(𝑥) − 𝑚†(𝑥)‖22𝑑𝜇(𝑥).

If we assume that, at the true𝑚†, 𝑥(⋅) is ergodic with invariant density 𝜇, then we can
exchange time and space averages to see, for infinitely long trajectory {𝑥(𝑡)}𝑡≥0,

ℐ∞(𝑚) ≔ lim
𝑇→∞

1
𝑇 ∫

𝑇

0
‖𝑚(𝑥(𝑡)) − 𝑚†(𝑥(𝑡))‖22𝑑𝑡

= ∫
ℝ𝑑𝑥

‖𝑚(𝑥) − 𝑚†(𝑥)‖22𝑑𝜇(𝑥)

= ℒ𝜇(𝑚,𝑚†).
Since we may only have access to a trajectory dataset of finite length 𝑇, it is natural to
define

ℐ𝑇(𝑚) ≔
1
𝑇 ∫

𝑇

0
‖𝑚(𝑥(𝑡)) − 𝑚†(𝑥(𝑡))‖22𝑑𝑡

and note that, by ergodicity,
lim
𝑇→∞

ℐ𝑇(𝑚) = ℒ𝜇(𝑚,𝑚†).

Finally, we can use (2.2) to get

(3.1) ℐ𝑇(𝑚) =
1
𝑇 ∫

𝑇

0
‖ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)) − 𝑚(𝑥(𝑡))‖22𝑑𝑡.

This, possibly regularized, is a natural loss function to employ when continuous-time
data is available, and should be viewed as approximatingℒ𝜇(𝑚,𝑚†). We can use these
definitions to frame the problem of learning model error in the language of statistical
learning [162].
If we letℳ denote the hypothesis class over which we seek to minimize ℐ𝑇(𝑚) then

we may define
𝑚∗
∞ = argmin

𝑚∈ℳ
ℒ𝜇(𝑚,𝑚†) = argmin

𝑚∈ℳ
ℐ∞(𝑚), 𝑚∗

𝑇 = argmin
𝑚∈ℳ

ℐ𝑇(𝑚).

The risk associated with seeking to approximate 𝑚† from the class ℳ is defined by
ℒ𝜇(𝑚∗

∞, 𝑚†), noting that this is 0 if𝑚† ∈ ℳ. The risk measures the intrinsic error in-
curred by seeking to learn𝑚†𝑔𝑒𝑟 from the restricted classℳ, which typically does not
include𝑚†𝑔𝑒𝑟; it is an approximation theoretic concept which encodes the richness of
the hypothesis classℳ. The risk may be decreased by increasing the expressiveness of
ℳ. Thus risk is independent of the data employed. Empirical risk minimization refers
to minimizing ℐ𝑇 (or a regularized version) rather than ℐ∞, and this involves the spe-
cific instance of data that is available. To quantify the effect of data volume on learning
𝑚† through empirical risk minimization, it is helpful to introduce the following two
concepts. The excess risk is defined by
(3.2) 𝑅𝑇 ≔ ℐ∞(𝑚∗

𝑇) − ℐ∞(𝑚∗
∞)
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and represents the additional approximation error incurred by using data defined over
a finite time horizon 𝑇 in the estimate of𝑚†. The generalization error is

(3.3) 𝐺𝑇 ≔ ℐ𝑇(𝑚∗
𝑇) − ℐ∞(𝑚∗

𝑇)
and represents the discrepancy between training error, which is defined using a finite
trajectory, and idealized test error, which is defined using an infinite length trajectory
(or, equivalently, the invariant measure 𝜇), when evaluated at the estimate of the func-
tion 𝑚† obtained from finite data. We return to study excess risk and generalization
error in the context of linear (in terms of parametric-dependence) models for𝑚†, and
under ergodicity assumptions on the data generating process, in Section 5.2.
We have introduced a machine learning framework in the continuous-time Mar-

kovian setting, but it may be adopted in discrete-time and in non-Markovian settings.
In Section 4, we define appropriate objective functions for each of these cases.

Remark 3.1. The developments we describe here for learning in ODEs can be extended
to the case of learning SDEs; see [10,85]. In that setting, consistency in the large𝑇 limit
is well-understood. It would be interesting to build on the learning theory perspective
described here to study statistical consistency for ODEs; the approaches developed in
the work by McGoff et al. [107], Su and Mukherjee [156] are potentially useful in this
regard.

4. Parameterization of the loss function

In this section, we define explicit optimizations for learning (approximate) model
error functions 𝑚† for the Markovian settings, and model error operators 𝑚†

𝑡 for the
non-Markovian settings; both continuous- and discrete-time formulations are given.
We defer discussion of specific approximation architectures to the next section. Here
wemake a notational transition fromoptimization over (possibly nonparametric) func-
tions𝑚 ∈ ℳ to functions parameterized by 𝜃 that characterize the classℳ.
In all the numerical experiments in this paper, we study the use of continuous- and

discrete-time approaches to model data generated by a continuous-time process. The
setup in this section reflects this setting, in which two key parameters appear: 𝑇, the
continuous-time horizon for the data; and Δ𝑡, the frequency of the data. The latter
parameter will always appear in the discrete-time models; but it may also be implicit
in continuous-time models which need to infer continuous-time quantities from dis-
cretely sampled data. We relate 𝑇 and Δ𝑡 by 𝐾Δ𝑡 = 𝑇. We present the general forms
of 𝒥𝑇(𝜃) (with optional regularization terms 𝑅(𝜃)). Optimization via derivative-based
methodology requires either analytic differentiation of the dynamical system model
with respect to parameters or the use of autodifferentiable ODE solvers [142].

4.1. Continuous-timeMarkovian learning. Here, we approximate the Markovian
closure term in (2.2) with a parameterized function𝑚(𝑥; 𝜃). Assuming full knowledge
of ̇𝑥(𝑡), 𝑥(𝑡), we learn the correction term for the flowfield byminimizing the following
objective function of 𝜃:

𝒥𝑇(𝜃) =
1
𝑇 ∫

𝑇

0

‖
‖ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)) − 𝑚(𝑥(𝑡); 𝜃)‖‖

2
𝑑𝑡 + 𝑅(𝜃).(4.1)
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Note that 𝒥𝑇(𝜃) = ℐ𝑇(𝑚( ⋅ ; 𝜃)) + 𝑅(𝜃); thus the proposed methodology is a regular-
ization of the empirical risk minimization described in the preceding section.
Notable examples that leverage this framing include: the paper [72], where 𝜃 are

coefficients for a library of low-order polynomials and 𝑅(𝜃) is a sparsity-promoting reg-
ularization defined by the SINDy framework; the paper [174], where 𝜃 are parameters
of a deep neural network (DNN) and 𝐿2 regularization is applied to the weights; the pa-
per [153], where 𝜃 are DNN parameters and 𝑅(𝜃) encodes constraints on the Lipschitz
constant for𝑚 provided by spectral normalization; and the paper [167] which applies
this approach to the Lorenz ’96 Multiscale system using neural networks with an 𝐿2
regularization on the weights.

4.2. Discrete-time Markovian learning. Here, we learn the Markovian correction
term in (2.5) by minimizing:

𝒥𝑇(𝜃) =
1
𝐾

𝐾−1
∑
𝑘=0

‖
‖𝑥𝑘+1 − Ψ0(𝑥𝑘) − 𝑚(𝑥𝑘; 𝜃)‖‖

2
+ 𝑅(𝜃).(4.2)

This is the natural discrete-time analog of (4.1) and may be derived analogously, start-
ing from a discrete analog of the loss ℒ𝜇(𝑚,𝑚†) where now 𝜇 is assumed to be an
ergodic measure for (2.4). If a discrete analog of (3.1) is defined, then parameteriza-
tion of 𝑚, and regularization, leads to (4.2). This is the underlying model assumption
in the work by Farchi et al. [43].

4.3. Continuous-time non-Markovian learning. We can attempt to recreate the
dynamics in 𝑥 for (2.9) by modeling the non-Markovian residual term. A common
approach is to augment the dynamics space with a variable 𝑟 ∈ ℝ𝑑𝑟 leading to a model
of the form

̇𝑥 = 𝑓0(𝑥) + 𝑓1(𝑟, 𝑥; 𝜃),(4.3a)
̇𝑟 = 𝑓2(𝑟, 𝑥; 𝜃).(4.3b)

We then seek a 𝑑𝑟 large enough, and then parametric models {𝑓𝑗(𝑟, 𝑥; ⋅)}2𝑗=1 expressive
enough, to ensure that the dynamics in 𝑥 are reproduced by (4.3). Note that, although
themodel error in 𝑥 is non-Markovian, as it depends on the history of 𝑥, we are seeking
to explain observed𝑥 data by an enlargedmodel, including hidden variables 𝑟, inwhich
the dynamics of [𝑥, 𝑟] is Markovian.
When learning hidden dynamics frompartial observations, wemust jointly infer the

missing states 𝑟(𝑡) and the, typically parameterized, governing dynamics 𝑓1, 𝑓2. Fur-
thermore, when the family of parametric models is not closed with respect to transla-
tion of 𝑟 it will also be desirable to learn 𝑟0; when 𝑥 is observed noisily, it is similarly
important to learn 𝑥0.
To clarify discussions of (4.3) and its training from data, let 𝑢 = [𝑥, 𝑟] and 𝑓 be the

concatenation of the vector fields given by 𝑓0, 𝑓1, 𝑓2 such that

(4.4) 𝑢̇ = 𝑓(𝑢; 𝜃),

with solution 𝑢(𝑡; 𝑣, 𝜃) solving (4.4) (and, equivalently, (4.3)) with initial condition 𝑣
(i.e. 𝑢(0; 𝑣, 𝜃) = 𝑣). Consider observation operators 𝐻𝑥, 𝐻𝑟, such that 𝑥 = 𝐻𝑥𝑢, and
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𝑟 = 𝐻𝑟𝑢, and further define noisy observations of 𝑥 as
𝑧(𝑡) = 𝑥(𝑡) + 𝜂(𝑡),

where 𝜂 is i.i.d. observational noise. We now outline three optimization approaches to
learning from noisily, partially observed data 𝑧.

4.3.1. Optimization; hard constraint for missing dynamics. Since (4.3) is deterministic,
it may suffice to jointly learn parameters and initial condition 𝑢(0) = 𝑢0 byminimizing
[142]:

(4.5) 𝒥𝑇(𝜃, 𝑢0) =
1
𝑇 ∫

𝑇

0

‖
‖𝑧(𝑡) − 𝐻𝑥𝑢(𝑡; 𝑢0, 𝜃)‖‖

2
𝑑𝑡 + 𝑅(𝜃).

A similar approach was applied in [4], but where initial conditions were learnt as out-
puts of an additional DNN encoder network that maps observation sequences (of fixed
length and temporal discretization) to initial conditions.

4.3.2. Optimization; weak constraint for missing dynamics. The hard constraint mini-
mization is very sensitive for large 𝑇 in settings where the dynamics is chaotic. This
can be ameliorated, to some extent, by considering the objective function

(4.6)
𝒥𝑇(𝜃, 𝑢(𝑡)) =

1
𝑇 ∫

𝑇

0

‖
‖𝑧(𝑡) − 𝐻𝑥𝑢(𝑡)‖‖

2
𝑑𝑡

+ 𝜆 1𝑇 ∫
𝑇

0

‖
‖𝑢̇(𝑡) − 𝑓(𝑢(𝑡); 𝜃)‖‖

2
𝑑𝑡.

This objective function is employed in [118], where it is motivated by the weak-
constraint variational formulation (4DVAR) arising in data assimilation [88].

4.3.3. Optimization; data assimilation for missing dynamics. The weak constraint ap-
proach may still scale poorly with 𝑇 large, and still relies on gradient-based optimiza-
tion to infer hidden states. To avoid these potential issues, we follow the recent work of
[26], using filtering-based methods to estimate the hidden state. This implicitly learns
initializations and it removes noise fromdata. It allows computation of gradients of the
resulting loss function back through the filtering algorithm to learnmodel parameters.
We define a filtered state

𝑢̂𝑡,𝜏 ≔ 𝑢̂𝑡(𝜏; ̂𝑣, 𝜃DYN, 𝜃DA, {𝑧(𝑡 + 𝑠)}𝜏𝑠=0)

as an estimate of 𝑢(𝑡 + 𝜏)|{𝑧(𝑡 + 𝑠)}𝜏𝑠=0 when initialized at 𝑢̂𝑡,0 = ̂𝑣.3 In this formu-
lation, we distinguish 𝜃DYN as parameters for modeling dynamics via (4.3), and 𝜃DA
as hyperparameters governing the specifics of a data assimilation scheme. Examples
of 𝜃DA are the constant gain matrix 𝐾 that must be chosen for 3DVAR, or parameters
of the inflation and localization methods deployed within Ensemble Kalman Filter-
ing. By parameterizing these choices as 𝜃DA, we can optimize them jointly with model
parameters 𝜃DYN. To do this, let 𝜃 = [𝜃DYN, 𝜃DA] and minimize

(4.7) 𝒥𝑇(𝜃) =
1

(𝑇 − 𝜏1 − 𝜏2)𝜏2
∫

𝑇−𝜏1−𝜏2

𝑡=0
∫

𝜏2

𝑠=0

‖
‖𝑧(𝑡 + 𝜏1 + 𝑠) − 𝐻𝑥𝑢(𝑠; 𝑢̂𝑡,𝜏1 , 𝜃)

‖
‖
2
𝑑𝑠 𝑑𝑡.

3In practice we have found that setting ̂𝑣 = 0 works well.
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Here, 𝜏1 denotes the length of assimilation time used to estimate the state which initial-
izes a parameter-fitting over window of duration 𝜏2; this parameter-fitting leads to the
inner-integration over 𝑠. This entire picture is then translated through 𝑡 time units and
the objective function is found by integrating over 𝑡. Optimizing (4.7) can be under-
stood as aminimization over short-term forecast errors generated from all assimilation
windows. The inner integral takes a fixed start time 𝑡, applies data assimilation over a
window [𝑡, 𝑡+𝜏1] to estimate an initial condition 𝑢̂𝑡,𝜏1 , then computes a short-term (𝜏2)
prediction error resulting from this DA-based initialization. The outer integral sums
these errors over all available windows in long trajectory of data of length 𝑇.
In our work, we perform filtering using a simple 3DVAR method, whose constant

gain can either be chosen as constant or can be learnt from data. When constant, a nat-
ural choice is 𝐾 ∝ 𝐻𝑇

𝑥 , and this approach has a direct equivalence to standard warmup
strategies employed in RNN and RC training [121, 164]. The paper [26] suggests min-
imization of a similar objective, but considers more general observation operators ℎ,
restricts the outer integral to non-overlapping windows, and solves the filtering prob-
lem with an EnKF with known state-covariance structure.

Remark 4.1. Tomotivate learning parameters of the data assimilation wemake the fol-
lowing observation: for problems in which the model is known (i.e. 𝜃DYN is fixed) we
observe successes with the approach of identifying 3DVAR gains that empirically out-
perform the theoretically derived gains in [87]. Similar is to be expected for parameters
defining inflation and localization in the EnKF.

Remark 4.2. Specific functional forms of 𝑓1, 𝑓2 (and their corresponding parameter in-
ference strategies) reduce (4.3) to various approaches. For the continuous-time RNN
analysis that we discuss in Section 5 we will start by considering settings in which 𝑓1
and 𝑓2 are approximated from expressive function classes, such as neural networks. We
will then specify to models in which 𝑓1 is linear in 𝑟 and independent of 𝑥, while 𝑓2 is a
single layer neural network. It is intuitive that the former may be more expressive and
allow a smaller 𝑑𝑟 than the latter; but the latter connects directly to reservoir comput-
ing, a connection we make explicitly in what follows. Our numerical experiments in
Section 6 will be performed in both settings: we will train models from the more gen-
eral setting; and by carefully designed experiments we will shed light on issues arising
from over-parameterization, in the sense of choosing to learn a model in dimension
higher than that of the true observed-hidden model, working in the setting of linear
coupling term 𝑓1, depending only on 𝑟.

Remark 4.3. The recent paper [58] proposes an interesting, and more computationally
tractable, approach to learning model error in the presence of memory. It proposes to
learn a closure operator𝑚𝜏(⋅ ; 𝜃)∶ 𝖷𝜏 → ℝ𝑑𝑥 for a DDE with finite memory 𝜏:

(4.8) ̇𝑥(𝑡) = 𝑓0(𝑥(𝑡)) + 𝑚𝜏({𝑥(𝑡 − 𝑠)}𝜏𝑠=0; 𝜃);

neural networks are used to learn the operator 𝑚𝜏. Alternatively, Gaussian processes
are used to fit a specific class of stochastic delay differential equation (SDDE) (4.8) in
[150]. However, although delay-based approaches have seen some practical success, in
many applications they present issues for domain interpretability andMarkovian ODE
or PDE closures are more desirable.
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4.4. Discrete-time non-Markovian learning. In similar spirit to Section 4.3, we
can aim to recreate discrete-time dynamics in 𝑥 for (2.12) with model

𝑥𝑘+1 = Ψ0(𝑥𝑘) + Ψ1(𝑟𝑘, 𝑥𝑘; 𝜃),(4.9a)
𝑟𝑘+1 = Ψ2(𝑟𝑘, 𝑥𝑘; 𝜃)(4.9b)

and objective function

(4.10)
𝒥𝑇(𝜃, 𝑟0) =

1
𝐾

𝐾−1
∑
𝑘=0

‖
‖𝑥𝑘+1 − Ψ0(𝑥𝑘) − Ψ1(𝑟𝑘, 𝑥𝑘; 𝜃)‖‖

2
+ 𝑅(𝜃)

s.t. {𝑟𝑘}𝐾−1𝑘=1 solves (4.9b).
Observe that estimation of initial condition 𝑟0 is again crucial, and the data assimila-
tion methods discussed in Section 4.3 can be adapted to this discrete-time setting. The
functional forms of Ψ1, Ψ2 (and their corresponding parameter inference strategies)
reduce (4.9) to various approaches, including recurrent neural networks, latent ODEs,
and delay-embedding maps (e.g. to get a delay embedding map, Ψ2 is a shift operator).
Pathak et al. [121] use reservoir computing (a random features analog to RNN, de-
scribed in the next section) with 𝐿2 regularization to study an approach similar to (4.9),
but included Ψ0(𝑥𝑘) as a feature in Ψ1 and Ψ2 instead of using it as the central model
upon which to learn residuals. The data-driven super-parameterization approach in
[24] also appears to follow the underlying assumption of (4.9). Harlim et al. [62] eval-
uate hybrid models of form (4.9) both in settings where delay embedding closures are
employed and where RNN-based approximations via LSTMs are employed.

5. Underpinning theory

In this section we identify specific hypothesis classesℳ. We do this using random
feature maps [131] in the Markovian settings (Section 5.1), and using recurrent neural
networks in the memory-dependent setting. We then discuss these problems from a
theoretical standpoint. In Section 5.2 we study excess risk and generalization error in
the context of linear models (a setting which includes the random features model as
a special case). And we conclude by discussing the use of RNNs [51, Chapter 10] for
the non-Markovian settings (discrete- and continuous-time) in Section 5.3; we present
an approximation theorem for continuous-time hybrid RNNmodels. Throughout this
section, the specific use of random feature maps and of recurrent neural networks is
for illustration only; other models could, of course, be used.

5.1. Markovian modeling with random feature maps. In principle, any hypoth-
esis class can be used to learn𝑚†. However, we focus on models that are easily trained
on large-scale complex systems and yet have proven approximation power for functions
between finite-dimensional Euclidean spaces. For the Markovian modeling case, we
use random feature maps; like traditional neural networks, they possess arbitrary ap-
proximation power [132,133], but further benefit from a quadratic minimization prob-
lem in the training phase, as do kernel or Gaussian process methods. In our case stud-
ies, we found random feature models sufficiently expressive, we found optimization
easily implementable, and we found the learned models generalized well. Moreover,
their linearity with respect to unknown parameters enables a straightforward analy-
sis of excess risk and generalization error in Section 5.2. Details on the derivation and
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specific design choices for our random featuremodeling approach can be found in Sec-
tion 8.4, where we explain how we sample 𝐷 random feature functions 𝜑 ∶ ℝ𝑑𝑥 → ℝ
and stack them to form a vector-valued featuremap 𝜙∶ ℝ𝑑𝑥 → ℝ𝐷. Given this random
function 𝜙, we define the hypothesis class
(5.1) ℳ = {𝑚∶ ℝ𝑑𝑥 → ℝ𝑑𝑥 | ∃ 𝐶 ∈ ℝ𝑑𝑥×𝐷 ∶ 𝑚(𝑥) = 𝐶𝜙(𝑥)}.

5.1.1. Continuous-time. In the continuous-time framing, our Markovian closure
model uses hypothesis class (5.1) and thus takes the form

̇𝑥 = 𝑓0(𝑥) + 𝐶𝜙(𝑥(𝑡)).
We rewrite (4.1) for this particular case with an 𝐿2 regularization parameter 𝜆 ∈ ℝ+:

(5.2) 𝒥𝑇(𝐶) =
1
2𝑇 ∫

𝑇

0

‖
‖ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)) − 𝐶𝜙(𝑥(𝑡))‖‖

2
𝑑𝑡 + 𝜆

2‖𝐶‖
2.

We employ the notation 𝐴⊗ 𝐵 ≔ 𝐴𝐵𝑇 for the outer-product between matrices 𝐴 ∈
ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑙×𝑛, and the following notation for time-average

𝐴𝑇 ≔
1
𝑇 ∫

𝑇

0
𝐴(𝑡)𝑑𝑡

of 𝐴 ∈ 𝐿1([0, 𝑇], ℝ𝑚×𝑛). The objective function in (5.2) is quadratic and convex in 𝐶
and thus is globally minimized for the unique 𝐶∗ which makes the derivative of 𝒥𝑇
zero. Consequently, the minimizer 𝐶∗ satisfies the following linear equation (derived
in Section 8.5):
(5.3) (𝑍 + 𝜆𝐼)(𝐶∗)𝑇 = 𝑌.
Here, 𝐼 ∈ ℝ𝐷×𝐷 is the identity and

(5.4)
𝑍 = [𝜙 ⊗ 𝜙]𝑇 ∈ ℝ𝐷×𝐷,

𝑌 = [𝜙 ⊗𝑚†]𝑇 ∈ ℝ𝐷×𝑑𝑥 .
Of course𝑚† is not known, but𝑚†(𝑡) = ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)) can be computed from data.
To summarize, the algorithm proceeds as follows: (1) create a realization of random

feature vector 𝜙; (2) compute the integrals in (5.4) to obtain 𝑍, 𝑌 ; and (3) solve the
linear matrix equation (5.3) for 𝐶∗. Together this leads to our approximation𝑚†(𝑥) ≈
𝑚∗
𝑇(𝑥; 𝜃) ≔ 𝐶∗𝜙(𝑥).

5.1.2. Discrete-time. In discrete-time, our Markovian closure model is
𝑥𝑘+1 = Ψ0(𝑥𝑘) + 𝐶𝜙(𝑥𝑘),

and is learnt by minimizing

(5.5) 𝒥𝑇(𝜃) =
1
𝐾

𝐾−1
∑
𝑘=0

‖
‖𝑥𝑘+1 − Ψ0(𝑥𝑘) − 𝐶𝜙(𝑥(𝑡))‖‖

2
+ 𝜆
2‖𝐶‖

2.

The objective function in (5.5) is quadratic in 𝐶 and thus globally minimized at 𝐶∗. As
in Section 5.1.1, we can compute 𝑍, 𝑌 and solve a linear system for 𝐶∗ to approximate
𝑚†(𝑥) ≈ 𝑚∗

𝑇(𝑥; 𝜃) ≔ 𝐶∗𝜙(𝑥). This formulation closely mirrors the fully data-driven
linear regression approach in [53].
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5.2. Learning theory for Markovian models with linear hypothesis class. In
this subsection we provide estimates of the excess risk and generalization error in the
context of learning𝑚† in (2.2) from a trajectory over time horizon 𝑇. We study ergodic
continuous-time models in the setting of Section 4.1. To this end we consider the very
general linear hypothesis class given by

(5.6) ℳ = {𝑚∶ ℝ𝑑𝑥 → ℝ𝑑𝑥 | ∃ 𝜃 ∈ ℝ𝑝 ∶ 𝑚(𝑥) =
𝑝
∑
ℓ=1

𝜃ℓ𝑓ℓ(𝑥)};

we note that if the {𝑓ℓ} are i.i.d. draws of function 𝜙 in the case 𝐷 = 𝑑𝑥 then this too
reduces to a random features model, but that our analysis in the context of statistical
learning does not rely on the random features structure. In fact our analysis can be used
to provide learning theory for other linear settings, where {𝑓ℓ} represents a dictionary
of hypothesized features whose coefficients are to be learnt from data. Nonetheless,
universal approximation for random features [131] provides an important example of
an approximation class for which the loss function ℐ∞ may be made arbitrarily small
by choice of 𝑝 large enough and appropriate choice of parameters, and the reader may
find it useful to focus on this case. We also note that the theory we present in this
subsection is readily generalized to working with hypothesis class (5.1).
We make the following ergodicity assumption about the data generation process:

AssumptionA1. Equation (2.2) possesses a compact attractor𝒜 supporting invariant
measure 𝜇. Furthermore the dynamical system on 𝒜 is ergodic with respect to 𝜇 and
satisfies a central limit theorem of the following form: for all Hölder continuous 𝜑 ∶
ℝ𝑑𝑥 ↦ ℝ, there is 𝜎2 = 𝜎2(𝜑) such that

(5.7) √𝑇( 1𝑇 ∫
𝑇

0
𝜑(𝑥(𝑡))𝑑𝑡 −∫

ℝ𝑑𝑥
𝜑(𝑥)𝜇(𝑑𝑥)) ⇒ 𝑁(0, 𝜎2),

where⇒ denotes convergence in distribution with respect to 𝑥(0) ∼ 𝜇. Furthermore a
law of the iterated logarithm holds: almost surely with respect to 𝑥(0) ∼ 𝜇,

(5.8) limsup𝑇→∞(
𝑇

log log 𝑇 )
1
2 ( 1𝑇 ∫

𝑇

0
𝜑(𝑥(𝑡))𝑑𝑡 −∫

ℝ𝑑𝑥
𝜑(𝑥)𝜇(𝑑𝑥)) = 𝜎.

Remark 5.1. Note that in both (5.7) and (5.8) 𝜑(⋅) is only evaluated on (compact)𝒜 ob-
viating the need for any boundedness assumptions on 𝜑(⋅). In the work of Melbourne
and co-workers, Assumption A1 is proven to hold for a class of differential equations,
including the Lorenz ’63 model at, and in a neighbourhood of, the classical parame-
ter values: in [68] the central limit theorem is established; and in [7] the continuity
of 𝜎 in 𝜑 is proven. While it is in general very difficult to prove such results for any
given chaotic dynamical system, there is strong empirical evidence for such results in
many chaotic dynamical systems that arise in practice. This combination of theory
and empirical evidence justifies studying the learning of model error under Assump-
tion A1. Tran and Ward [159] were the first to make use of the theory of Melbourne
and coworkers to study learning of chaotic differential equations from time-series.

Given𝑚 from hypothesis classℳ defined by (5.6) we define

(5.9) 𝜃∗∞ = argmin𝜃∈ℝ𝑝 ℐ∞(𝑚(⋅ ; 𝜃)) = argmin𝜃∈ℝ𝑝 ℒ𝜇(𝑚(⋅ ; 𝜃))
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and
(5.10) 𝜃∗𝑇 = argmin𝜃∈ℝ𝑝 ℐ𝑇(𝑚(⋅ ; 𝜃)).
(Regularization is not needed in this setting because the data is plentiful—a continuous-
time trajectory—and the number of parameters is finite.) Then 𝜃∗∞, 𝜃∗𝑇 solve the linear
systems

𝐴∞𝜃∗∞ = 𝑏∞, 𝐴𝑇𝜃∗𝑇 = 𝑏𝑇 ,
where

(𝐴∞)𝑖𝑗 = ∫
ℝ𝑑𝑥

⟨𝑓𝑖(𝑥), 𝑓𝑗(𝑥)⟩ 𝜇(𝑑𝑥), (𝑏∞)𝑗 = ∫
ℝ𝑑𝑥

⟨𝑚†(𝑥), 𝑓𝑗(𝑥)⟩ 𝜇(𝑑𝑥),

(𝐴𝑇)𝑖𝑗 =
1
𝑇 ∫

𝑇

0
⟨𝑓𝑖(𝑥(𝑡)), 𝑓𝑗(𝑥(𝑡))⟩ 𝑑𝑡, (𝑏𝑇)𝑗 =

1
𝑇 ∫

𝑇

0
⟨𝑚†(𝑥(𝑡)), 𝑓𝑗(𝑥(𝑡))⟩ 𝑑𝑡.

These facts can be derived analogously to the derivation in Section 8.5. Given 𝜃∗∞ and
𝜃∗𝑇 we also define

𝑚∗
∞ = 𝑚(⋅ ; 𝜃∗∞), 𝑚∗

𝑇 = 𝑚(⋅ ; 𝜃∗𝑇).
Recall that it is assumed that 𝑓†, 𝑓0, and𝑚† are𝐶1. Wemake Assumption A2 regarding
the vector fields defining hypothesis classℳ.

AssumptionA2. The functions {𝑓ℓ}𝑝ℓ=0 appearing in definition (5.6) of the hypothesis
classℳ are Hölder continuous on ℝ𝑑𝑥 . In addition, the matrix 𝐴∞ is invertible.

Theorem 5.2. Let Assumptions A1 and A2 hold. Then the scaled excess risk √𝑇𝑅𝑇 in
(3.2) (resp. scaled generalization error√𝑇|𝐺𝑇 | in (3.3)) is bounded above by ‖ℰ𝑅‖ (resp.
‖ℰ𝐺‖), where random variable ℰ𝑅 ∈ ℝ𝑝 (resp. ℰ𝐺 ∈ ℝ𝑝+1) converges in distribution
to 𝑁(0, Σ𝑅) (resp. 𝑁(0, Σ𝐺)) w.r.t. 𝑥(0) ∼ 𝜇 as 𝑇 → ∞. Furthermore, there is constant
𝐶 > 0 such that, almost surely w.r.t. 𝑥(0) ∼ 𝜇,

limsup𝑇→∞(
𝑇

log log 𝑇 )
1
2 (𝑅𝑇 + |𝐺𝑇 |) ≤ 𝐶.

The proof is provided in Section 8.1.

Remark 5.3. The convergence in distribution shows that, with high probability with
respect to initial data, the excess risk and the generalization error are bounded above
by terms of size 1/√𝑇. This can be improved to give an almost sure result, at the cost
of the factor of√log log 𝑇. Theorem 5.2 shows that (ignoring log factors and acknowl-
edging the probabilistic nature of any such statements) trajectories of length𝒪(𝜖−2) are
required to produce bounds on the excess risk and generalization error of size 𝒪(𝜖).
The bounds on excess risk and generalization error also show that empirical risk

minimization (of ℐ𝑇 ) approaches the theoretically analyzable concept of risk mini-
mization (of ℐ∞) over hypothesis class (5.6). The sum of the excess risk 𝑅𝑇 and the
generalization error 𝐺𝑇 gives

𝐸𝑇 ≔ ℐ𝑇(𝑚∗
𝑇) − ℐ∞(𝑚∗

∞).
We note that ℐ𝑇(𝑚∗

𝑇) is computable, once the approximate solution𝑚∗
𝑇 has been iden-

tified; thus, when combined with an estimate for 𝐸𝑇 , this leads to an estimate for the
risk associated with the hypothesis class used.
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If the approximating space ℳ is rich enough, then approximation theory may be
combined with Theorem 5.2 to estimate the trajectory error resulting from the learned
dynamical system. Such an approach is pursued in Proposition 3 of [175] for SDEs.
Furthermore, in that setting, knowledge of rate of mixing/decay of correlations for
SDEs may be used to quantify constants appearing in the error bounds. It would be in-
teresting to pursue such an analysis for chaotic ODEs with known mixing rates/decay
of correlations. Such results on mixing are less well-developed, however, for chaotic
ODEs; see discussion of this point in [68], and the recent work [7].
Work by Zhang et al. [176] demonstrates that error bounds on learned model error

terms can be extended to bound error on reproduction of invariant statistics for ergodic
SDEs. Moreover, E et al. [41] provide a direction for proving similar bounds on model
error learning using nonlinear function classes (e.g. two-layer neural networks).
Finally we remark on the dependence of the risk and generalization error bounds

on the size of the model error. It is intuitive that the amount of data required to learn
model error should decrease as the size of the model error decreases. This is demon-
strated numerically in Section 6.2.3 (cf. Figure 2(a) and 2(b)). Here we comment that
Theorem 5.2 also exhibits this feature: examination of the proof in Appendix 8.1 shows
that all upper bounds on terms appearing in the excess and generalization error are pro-
portional to𝑚† itself or to𝑚∗

∞, its approximation given an infinite amount of data; note
that𝑚∗

∞ = 𝑚† if the hypothesis class contains the truth.

5.3. Non-Markovianmodelingwith recurrentneuralnetworks. RecurrentNeu-
ral Networks (RNNs) are one of the de facto tools for modeling systems with memory.
Here, we show straightforward residual implementations of RNNs for continuous- and
discrete-time, with the goal of modeling non-Markovian model error.

5.3.1. General case. Equation (4.3b), and its coupling to (4.3a), constitutes a very gen-
eral way to account for memory-dependent model error in the dynamics of 𝑥. In fact,
for 𝑓1, 𝑓2 sufficiently expressive (e.g. random feature functions, neural networks, poly-
nomials), and 𝑑𝑟 ≥ 𝑑𝑦, solutions to (4.3) can approximate solutions to (2.8) arbitrarily
well. Wemake this type of universal approximation theorem concrete in Theorems 5.4
and 5.6. We start by proving Theorem 5.4, which rests on Assumptions A3–A6:

Assumption A3. Functions 𝑓†, 𝑔†, 𝑓0, 𝑓1, 𝑓2 are all globally Lipschitz.

Note that this implies that𝑚† is also globally Lipschitz.

Assumption A4. Fix 𝑇 > 0. There exist 𝜌0 ∈ ℝ, 𝜌𝑇 ∈ ℝ such that, for equation (2.8),
(𝑥(0), 𝑦(0)) ∈ 𝐵(0, 𝜌0) implies that (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝐵(0, 𝜌𝑇) ∀ 𝑡 ∈ [0, 𝑇].

Assumption A5. The hidden state in (4.3), 𝑟 ∈ ℝ𝑑𝑟 , has the same dimension as the
true hidden state 𝑦 in (2.8); that is 𝑑𝑟 = 𝑑𝑦.

AssumptionA6. Let functions𝑓1(⋅ ; 𝜃) ∈ 𝐶1(ℝ𝑑𝑥×ℝ𝑑𝑦 ; ℝ𝑑𝑥) and𝑓2(⋅ ; 𝜃) ∈ 𝐶1(ℝ𝑑𝑥×
ℝ𝑑𝑦 ; ℝ𝑑𝑦) be parameterized4 by 𝑛 ∈ ℕ and 𝜃 ∈ ℝ𝑛. Then, for any 𝛿 > 0, there exists
𝑛 > 0 and 𝜃 ∈ ℝ𝑛 such that

sup
𝑥,𝑦∈𝐵(0,𝜌𝑇 )

‖𝑓†(𝑥, 𝑦) − 𝑓1(𝑥, 𝑦; 𝜃)‖ ≤ 𝛿

4Here we define ℕ = {1, 2, . . . , }, the strictly positive integers.
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and
sup

𝑥,𝑦∈𝐵(0,𝜌𝑇 )
‖𝑔†(𝑥, 𝑦) − 𝑓2(𝑥, 𝑦; 𝜃)‖ ≤ 𝛿.

Note that Assumption A6 can be satisfied by any parametric function class pos-
sessing a universal approximation property for maps between finite-dimensional Eu-
clidean spaces, such as neural networks, polynomials and random feature methods.
Theorem 5.4 transfers this universal approximation property for maps between Eu-
clidean spaces to a universal approximation property for representation of model error
with memory; this is a form of infinite dimensional approximation since, via its own
dynamics, the memory variable 𝑟 maps the past history of 𝑥 into the model error cor-
rection term in the dynamics for 𝑥.

Theorem 5.4. Let Assumptions A3-A6 hold. Fix any 𝑇 > 0 and 𝜌0 > 0, let 𝑥(⋅), 𝑦(⋅)
denote the solution of (2.8) with 𝜀 = 1 and let 𝑥𝛿(⋅), 𝑟𝛿(⋅) denote the solution of (4.3)
with parameters 𝜃 ∈ ℝ𝑛. Then, for any 𝛿 > 0 and any 𝑇 > 0, there is a parame-
ter dimension 𝑛 = 𝑛𝛿 ∈ ℕ and parameterization 𝜃 = 𝜃𝛿 ∈ ℝ𝑛𝛿 with the property
that, for any initial condition (𝑥(0), 𝑦(0)) ∈ 𝐵(0, 𝜌0) for (2.8), there is initial condition
(𝑥𝛿(0), 𝑟𝛿(0)) ∈ ℝ𝑑𝑥+𝑑𝑦 for (4.3), such that

sup
𝑡∈[0,𝑇]

‖𝑥 − 𝑥𝛿‖ ≤ 𝛿.

The proof is provided in Section 8.2; it is a direct consequence of the approximation
power of 𝑓1, 𝑓2 and the Gronwall Lemma.

Remark 5.5. Note that this existence theorem also holds for 𝑑𝑟 > 𝑑𝑦 by freezing the
dynamics in the excess dimensions and initializing it at, for example, 0. However it is
possible for augmentations with 𝑑𝑟 > 𝑑𝑦 to introduce numerical instability when im-
perfectly initialized in the excess dimensions, despite their provable correctness when
perfectly initialized (see Section 6.4). Nevertheless, we did not encounter such issues
when training the general model class on the examples considered in this paper – see
Section 6.3).

5.3.2. Linear coupling. We now study a particular form RNN in which the coupling
term 𝑓1 appearing in (4.3) is linear and depends only on the hidden variable:

̇𝑥 = 𝑓0(𝑥) + 𝐶𝑟,(5.11a)
̇𝑟 = 𝜎(𝐴𝑟 + 𝐵𝑥 + 𝑐).(5.11b)

Here 𝜎 is an activation function. The specific linear coupling form is of particular in-
terest because of the connection we make (see Remark 5.9) to reservoir computing.
The goal is to choose𝐴, 𝐵, 𝐶, 𝑐 so that output {𝑥(𝑡)}𝑡≥0matches output of (2.8), without
observation of {𝑦(𝑡)}𝑡≥0 or knowledge of𝑚† and 𝑔†. As in the general case from the pre-
ceding subsection, inherent in choosing these matrices 𝐴, 𝐵, 𝐶 and vector 𝑐 is a choice
of embedding dimension for variable 𝑟 which will typically be larger than dimension
of 𝑦 itself. The idea is to create a recurrent state 𝑟 of sufficiently large dimension 𝑑𝑟
whose evolution equation takes 𝑥 as input and, after a final linear transformation, ap-
proximates the missing dynamics𝑚†(𝑥, 𝑦).
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There is existing approximation theory for discrete-time RNNs [148] showing that a
discrete-time analog of our linear coupling setup can be used to approximate discrete-
time systems arbitrarily well; see also Theorem 3 of [62]. There is also a general approx-
imation theorem using continuous-time RNNs proved in [47], but it does not apply to
the linear-coupling setting. We thus extend the work in these three papers to the con-
text of residual-based learning as in (5.11). We state the theorem after making three
assumptions upon which it rests:

Assumption A7. Functions 𝑓†, 𝑔†, 𝑓0 are all globally Lipschitz.
Note that this implies that𝑚† is also globally Lipschitz.

Assumption A8. Let 𝜎0 ∈ 𝐶1(ℝ;ℝ) be bounded and monotonic, with bounded first
derivative. Then 𝜎(𝑢) defined by 𝜎(𝑢)𝑖 = 𝜎0(𝑢𝑖) satisfies 𝜎 ∈ 𝐶1(ℝ𝑝; ℝ𝑝).
Assumption A9. Fix 𝑇 > 0. There exist 𝜌0 ∈ ℝ, 𝜌𝑇 ∈ ℝ such that, for equation (2.8),
(𝑥(0), 𝑦(0)) ∈ 𝐵(0, 𝜌0) implies that (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝐵(0, 𝜌𝑇) ∀ 𝑡 ∈ [0, 𝑇].
Theorem 5.6. Let Assumptions A7-A9 hold. Fix any 𝑇 > 0 and 𝜌0 > 0, let 𝑥(⋅), 𝑦(⋅)
denote the solution of (2.8) with 𝜀 = 1 and let 𝑥𝛿(⋅), 𝑟𝛿(⋅) denote the solution of (5.11)
with parameters 𝜃 ∈ ℝ𝑛. Then, for any 𝛿 > 0 and any 𝑇 > 0, there is embedding
dimension 𝑑𝑟 ∈ ℕ, parameter dimension 𝑛 = 𝑛𝛿 ∈ ℕ and parameterization 𝜃 = 𝜃𝛿 =
{𝐴𝛿 , 𝐵𝛿 , 𝐶𝛿 , 𝑐𝛿} with the property that, for any initial condition (𝑥(0), 𝑦(0)) ∈ 𝐵(0, 𝜌0)
for (2.8), there is initial condition (𝑥𝛿(0), 𝑟𝛿(0)) ∈ ℝ𝑑𝑥+𝑑𝑟 for (5.11), such that

sup
𝑡∈[0,𝑇]

‖𝑥 − 𝑥𝛿‖ ≤ 𝛿.

The complete proof is provided in Section 8.3; here we describe its basic structure.
Define 𝑚(𝑡) ≔ 𝑚†(𝑥(𝑡), 𝑦(𝑡)) and, with the aim of finding a differential equation for
𝑚(𝑡), recall (2.8) with 𝜀 = 1 and define the vector field
(5.12) ℎ†(𝑥, 𝑦) ≔ ∇𝑥𝑚†(𝑥, 𝑦)[𝑓0(𝑥) + 𝑚†(𝑥, 𝑦)] + ∇𝑦𝑚†(𝑥, 𝑦)𝑔†(𝑥, 𝑦).
Since 𝑚̇(𝑡) is the time derivative of𝑚†(𝑥(𝑡), 𝑦(𝑡)), when (𝑥, 𝑦) solve (2.8) we have

𝑚̇ = ℎ†(𝑥, 𝑦).
Motivated by these observations, we now introduce a new systemof autonomousODEs
for the variables (𝑥, 𝑦,𝑚) ∈ ℝ𝑑𝑥 × ℝ𝑑𝑦 × ℝ𝑑𝑥 :

̇𝑥 = 𝑓0(𝑥) + 𝑚,(5.13a)
̇𝑦 = 𝑔†(𝑥, 𝑦),(5.13b)

𝑚̇ = ℎ†(𝑥, 𝑦).(5.13c)
To avoid a proliferation of symbols we use the same letters for (𝑥, 𝑦) solving equation
(5.13) as for (𝑥, 𝑦) solving equation (2.8). We now show 𝑚 = 𝑚†(𝑥, 𝑦) is an invariant
manifold for (5.13); clearly, on this manifold, the dynamics of (𝑥, 𝑦) governed by (5.13)
reduces to the dynamics of (𝑥, 𝑦) governed by (2.8). Thus 𝑚(𝑡) must be initialized at
𝑚†(𝑥(0), 𝑦(0)) to ensure equivalence between the solution of (5.13) and (2.8).
The desired invariance of manifold𝑚 = 𝑚†(𝑥, 𝑦) under the dynamics (5.13) follows

from the identity

(5.14) 𝑑
𝑑𝑡 (𝑚 −𝑚†(𝑥, 𝑦)) = −∇𝑥𝑚†(𝑥, 𝑦)(𝑚 −𝑚†(𝑥, 𝑦)).
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The identity is derived by noting that, recalling (5.12) for the definition of ℎ†, and then
using (5.13),

𝑑
𝑑𝑡𝑚 = ℎ†(𝑥, 𝑦)

= ∇𝑥𝑚†(𝑥, 𝑦)[𝑓0(𝑥) + 𝑚†(𝑥, 𝑦)] + ∇𝑦𝑚†(𝑥, 𝑦)𝑔†(𝑥, 𝑦)
= ∇𝑥𝑚†(𝑥, 𝑦)[𝑓0(𝑥) + 𝑚)] + ∇𝑦𝑚†(𝑥, 𝑦)𝑔†(𝑥, 𝑦)

− ∇𝑥𝑚†(𝑥, 𝑦)(𝑚 −𝑚†(𝑥, 𝑦))

= 𝑑
𝑑𝑡𝑚

†(𝑥, 𝑦) − ∇𝑥𝑚†(𝑥, 𝑦)(𝑚 −𝑚†(𝑥, 𝑦)).

We emphasize this calculation is performed under the dynamics defined by (5.13).
The proof of the RNN approximation property proceeds by approximating vector

fields 𝑔†(𝑥, 𝑦), ℎ†(𝑥, 𝑦) by neural networks and introducing linear transformations of
𝑦 and 𝑚 to rewrite the approximate version of system (5.13) in the form (5.11). The
effect of the approximation of the vector fields on the true solution is then propagated
through the system and its effect controlled via a straightforward Gronwall argument.
Remark 5.7. The details of training continuous-time RNNs to ensure accuracy and
long-time stability are a subject of current research [22, 26, 42, 118] and in this paper
we confine the training of RNNs to an example in the general setting, and not the case
of linear coupling. Discrete-time RNN training, on the other hand, is much more ma-
ture, and has produced satisfactory accuracy and stability for settings with uniform
sample rates that are consistent across train and testing scenarios [62]. The form with
linear coupling is widely studied in discrete time models. Furthermore, sophisticated
variants onRNNs, such as Long-Short TermMemory (LSTM)RNNs [67] andGated Re-
current Units (GRU) [28], are often more effective, although similar in nature RNNs.
However, the potential formulation, implementation and advantages of these variants
in the continuous-time setting [115] are not yet understood. We refer readers to [51]
for background on discrete RNN implementations and backpropagation through time
(BPTT). For implementations of continuous-time RNNs, it is common to leverage the
success of the automatic BPTT code written in PyTorch and Tensorflow by discretizing
(5.11) with an ODE solver that is compatible with these autodifferentiation tools (e.g.
torchdiffeq by [142], NbedDyn by [118], and AD-ENKF by [26]). This compatibility
can also be achieved by use of explicit Runge-Kutta schemes [128]. Note that the dis-
cretization of (5.11) can (and perhaps should) be much finer than the data sampling
rate Δ𝑡, but that this requires reliable estimation of 𝑥(𝑡), ̇𝑥(𝑡) from discrete data.
Remark 5.8. The need for data assimilation [3,88,138] to learn the initialization of re-
current neural networks may be understood as follows. Since𝑚† is not known and 𝑦 is
not observed (and in particular 𝑦(0) is not known) the desired initialization for (5.13),
and thus also for approximations of this equation in which 𝑔† and ℎ† are replaced by
neural networks, is not known. Hence, if an RNN is trained on a particular trajectory,
the initial condition that is required for accurate approximation of (2.8) fromanunseen
initial condition is not known. Furthermore the invariant manifold𝑚 = 𝑚†(𝑥, 𝑦)may
be unstable under numerical approximation. However if some observations of the tra-
jectory starting at the new initial condition are used, then data assimilation techniques
can potentially learn the initialization for theRNNand also stabilize the invariantman-
ifold. Ad hoc initialization methods are common practice [6, 29, 64, 120], and rely on
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forcing the learnedRNNwith a short sequence of observed data to synchronize the hid-
den state. The success of these approaches likely relies on RNNs’ abilities to emulate
data assimilators [63]; however, a more careful treatment of the initialization problem
may enable substantial advances.

Remark 5.9. Reservoir computing (RC) is a variant on RNNs which has the advantage
of leading to a quadratic optimization problem [56, 69, 104]. Within the context of the
continuous-time RNN (5.11) they correspond to randomizing (𝐴, 𝐵, 𝑐) in (5.11b) and
then choosing only parameter 𝐶 to fit the data. To be concrete, this leads to

𝑟(𝑡) = 𝒢𝑡({𝑥(𝑠)}𝑡𝑠=0; 𝑟(0), 𝐴, 𝐵, 𝑐);
here 𝒢𝑡may be viewed as a random function of the path-history of 𝑥 up to time 𝑡 and of
the initial condition for 𝑟. Then 𝐶 is determined by minimizing the quadratic function

𝒥𝑇(𝐶) =
1
2𝑇 ∫

𝑇

0
‖ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)) − 𝐶𝑟(𝑡)‖2 𝑑𝑡 + 𝜆

2‖𝐶‖
2.

This may be viewed as a random feature approach on the Banach space 𝖷𝑇 ; the use of
random features for learning of mappings between Banach spaces is studied by Nelsen
and Stuart [113], and connections between random features and reservoir computing
were introduced by Dong et al. [37]. In the specific setting described here, care will be
needed in choosing probability measure on (𝐴, 𝐵, 𝑐) to ensure a well-behaved map 𝒢𝑡;
furthermore data assimilation ideas [3, 88, 138] will be needed to learn an appropriate
𝑟(0) in the prediction phase, as discussed in Remark 5.8 for RNNs.

6. Numerical experiments

In this section, we present numerical experiments intended to test different hy-
potheses about the utility of hybrid mechanistic and data-driven modeling. We sum-
marize our findings in Section 6.1. We define the overarching experimental setup in
Section 6.2.1, then introduce our criteria for evaluating model performance in Sec-
tion 6.2.2. In the Lorenz ’63 (L63) experiments (Section 6.2.3), we investigate how a
simple Markovian random features model error term can be recovered using discrete
and continuous-timemethods, and how thosemethods scale with themagnitude of er-
ror, data sampling rate, availability of training data, and number of learned parameters.
In the Lorenz ’96 Multiscale (L96MS) experiments (Section 6.2.4), we take this a step
further by learning a Markovian random features closure term for a scale-separated
system, as well as systems with less scale-separation. As expected, we find that the
Markovian closure approach is highly accurate for a scale-separated regime. We also
see that the Markovian closure has merit even in cases with reduced scale-separation.
However, this situation would clearly benefit from learning a closure term with mem-
ory, a topic we turn to in Section 6.3, where we demonstrate that non-Markovian clo-
sure models can be learnt from noisy, partially observed data; for low-dimensional
cases (e.g. L63), our method of training converges to return a good model with high
short-term accuracy and long-term statistical validity. For higher-dimensional cases
(e.g. L96MS), we find the method to hold promise, but further research is required in
this general area. In Section 6.4, we demonstrate why non-Markovian closures must
be carefully initialized and/or controlled (e.g. via data assimilation) in order to ensure
their long-term stability and short-term accuracy.
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6.1. Summary of findings from numerical experiments.
(1) We find that hybrid modeling has better predictive performance than purely

data-driven methods in a wide range of settings (see Figure 2(a) and 2(b) of
Section 6.2.3): this includes scenarios where 𝑓0 is highly accurate (but imper-
fect) and scenarios where 𝑓0 is highly inaccurate (but nevertheless faithfully
encodes much of the true structure for 𝑓†).

(2) We find that hybrid modeling is more data-efficient than purely data-driven
approaches (Figure 3 of Section 6.2.3).

(3) We find that hybrid modeling is more parameter-efficient than purely data-
driven approaches (Figure 4 of Section 6.2.3).

(4) Purely data-driven discrete-time modeling can suffer from instabilities in the
small timestep limitΔ𝑡 ≪ 1; hybrid discrete-time approaches can alleviate this
issue when they are built from an integratorΨ0, as this will necessarily encode
the correct parametric dependence on Δ𝑡 ≪ 1 (Figure 5 of Section 6.2.3).

(5) In order to leverage standard supervised regression techniques, continuous-
timemethods require good estimates of derivatives ̇𝑥(𝑡) from the data. Figure 5
of Section 6.2.3 quantifies this estimation as a function of data sample rate.

(6) Non-Markovian model error can be captured by Markovian terms in scale-
separated cases. Section 6.2.4 demonstrates this quantitatively in Figure 6, and
qualitatively in Figure 7. Beyond the scale-separation limit, Markovian terms
will fail for trajectory forecasting. However, Markovian terms may still repro-
duce invariant statistics in dissipative systems (for example, in cases with short
memory-length). Section 6.2.4 demonstrates this quantitatively in Figure 6;
Figure 7 offers intuition for these findings.

(7) Non-Markovian description of model error is needed to accurately represent
problems where the hidden dynamics is not scale-separated from the observed
dynamics. Section 6.3 shows how partial and noisy observations can be ex-
ploited by augmented ODE models of form (4.3) when the noise and hidden
dynamics are learnt implicitly by autodifferentiable data assimilation. We ob-
serve high-quality reconstruction of the L63 system along its first-component
when choosing a correct (Figure 8) or overly enlarged (Figure 9) hidden di-
mension. We also observe promising reconstruction of the L96MS system in
its slow components (Figure 10); however, long-time solutions to the learnt
model exhibited instabilities inconsistent with the true system.

(8) Non-Markovian models must be carefully initialized, and indeed data assimi-
lation is needed, in order to ensure accuracy (Section 6.4) of invariant statistics
(Figure 12), long-term stability (Figure 13), and accurate short-term predic-
tions (Figure 14). We explain observed phenomena in terms of the properties of
the desired lower-dimensional invariant manifold which is embedded within
the higher dimensional system used as the RNN’s basis of approximation.

6.2. Learning Markovian model errors from noise-free data.

6.2.1. Experimental setup. In the Markovian error modeling experiments described in
Sections 6.2.3 and 6.2.4, whether using continuous- or discrete-timemodels, we train a
random features model on noise-free trajectories from the true system (an ODE). The
problems we study provably have a compact global attractor and are provably (L63)
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or empirically (L96MS) ergodic; the invariant distribution is supported on the global
attractor and captures the statistics of long-time trajectories which, by ergodicity, are
independent of initial condition. The data trajectories are generated using scipy’s im-
plementation of Runge-Kutta 5(4) (via 𝚜𝚘𝚕𝚟𝚎_𝚒𝚟𝚙) with absolute and relative toler-
ances both 10−9 and maximum step size 10−4 [38, 163]. In order to obtain statistical
results, we create 5 training trajectories from the true systemof interest with initial con-
ditions sampled independently from its attractor. Note that each training trajectory is
long enough to explore the attractor, and each is used to train a separate model; the
purpose is to observe the variance in learnt models with respect to randomly sampled
paths through the attractor. We use the same sampling procedure to generate short
independent validation and testing trajectories—we use 7 validation trajectories and
10 testing trajectories (these are short because we only use them to evaluate a model’s
short term forecast performance; when assessing long-term statistics of a learnt model,
we compare to very long simulations from the true system). All plots use error bars to
represent empirical estimates of themean and standard deviation of the presented per-
formancemetric, as computed by ensembling the performance of the 5models (one per
training trajectory) over the 10 testing trajectories for a total of 70 random performance
evaluations.
Each training procedure also involves an independent draw of the random feature

functions as defined in (8.9). A validation step is subsequently performed to optimize
the hyperparameters 𝜔, 𝛽, as well as the regularization parameter 𝜆. We automate this
validation using Bayesian Optimization [111, 116], and find that it typically identifies
good hyperparameters within 30 iterations. The entire process of entraining amodel to
a single, long training trajectory (including hyperparameter validation) typically takes
approximately 30minutes on a single core of a 2.1GHz Skylake CPU with an allocated
1GB RAM. Given a realization of random features and an optimal 𝜆, we obtain the
minimizer 𝐶∗ using the Moore-Penrose Pseudoinverse implemented in scipy (𝚙𝚒𝚗𝚟𝟸).
This learned 𝐶∗, paired with its random feature realization, is then used to predict 10
unseen testing trajectories (it is given the true initial condition for each of these testing
trajectories).
When implementing in continuous-time, given high frequency but discrete-time

data, two computational issues must be addressed: (i) extrapolation of the data to
continuous-time; (ii) discretization of the resulting integrals. The approach we adopt
avoids “inverse crimes” in which favorable behavior is observed because of agreement
between the data generation mechanism (with a specific integrator) and the approx-
imation of the objective functions [32, 74, 171]; see Queiruga et al. [128] for further
illustration of this issue and Keller and Du [77], Du et al. [39] for a rigorous analy-
sis of this inversion process in the context of linear multistep integration methods for
deep learning. We interpolate the data with a spline, to obtain continuous-time tra-
jectories, and then discretize the integrals using a simple Riemann sum; this strikes a
desirable balance between robustness and efficiency and avoids inverse crimes. The
discrete-time approaches, however, are able to learn not only model-discrepancy, but
also integrator-based discrepancies; hence, the discrete-time methods may artificially
appear to outperform continuous-time approaches, when, in fact, their performances
might simply be considered to be comparable.
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6.2.2. Evaluation criteria. Models are evaluated against the test set for their ability to
predict individual trajectories, as well as invariant statistics (the invariant measure and
the autocorrelation function).
TrajectoryValidity Time: Given threshold 𝛾 > 0, we find the first time 𝑡𝛾 at which

the norm of discrepancy between true and approximate solutions reaches 𝛾:

𝑡𝛾 = argmin𝑡∈[0,𝑇] {𝑡∶ ‖𝑥(𝑡) − 𝑥𝑚(𝑡)‖ ≥ 𝛾‖𝑥(𝑡)‖},

where 𝑥(𝑡) is the true solution to (2.2), 𝑥𝑚(𝑡) is the learned approximation, and the
normed time average ‖𝑥(𝑡)‖ is approximated from training data. If the threshold is not
violated on [0, 𝑇], we define 𝑡𝛾 ≔ 𝑇; this is rare in practice. We take 𝛾 = 0.05 (i.e. 5%
relative divergence).
Invariant Distribution: To quantify errors in our reconstruction of the invariant

measure, we consider the Kullback-Leibler (KL) divergence [84] between the true in-
variant measure 𝜇 and the invariant measure produced by our learned model 𝜇𝑚. We
approximate the divergence

𝑑KL(𝜇, 𝜇𝑚) ≔ ∫
ℝ
log ( 𝑑𝜇

𝑑𝜇𝑚
)𝑑𝜇

by integrating kernel density estimates with respect to the Lebesgue measure.
Autocorrelation: We compare the autocorrelation function (ACF) with respect to

the invariant distribution of the true and learnedmodels. We approximate the ACF us-
ing a fast-Fourier-transform for convolutions Seabold and Perktold [151], and compare
them via a normalized 𝐿2 norm of their difference.

6.2.3. Lorenz ’63 (L63).
Setting. The L63 system [97] is described by the following ODE

(6.1)
𝑢̇𝑥 = 𝑎(𝑢𝑦 − 𝑢𝑥),
𝑢̇𝑦 = 𝑏𝑢𝑥 − 𝑢𝑦 − 𝑢𝑥𝑢𝑧,
𝑢̇𝑧 = −𝑐𝑢𝑧 + 𝑢𝑥𝑢𝑦

whose solutions are known to exhibit chaotic behavior for parameters 𝑎 = 10, 𝑏 =
28, 𝑐 = 8

3 . We align these equations with our framework, starting from equation (2.1),
by letting 𝑥 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)𝑇 and defining 𝑓†(𝑥) to be the vector field appearing on the
right-hand-side in (6.1). We define a discrete solution operator Ψ† by numerical inte-
gration of 𝑓† over a fixed time window Δ𝑡 corresponding to a uniform data sampling
rate, so that the true system is given by (2.1) in continuous-time and (2.6a) in discrete-
time.
To simulate scenarios in which our available physics are good, but imperfect, we

assume there exists additive unknown model error of form

(6.2) 𝑚†(𝑥) = 𝜖 𝑚1(𝑥)
with function 𝑚1 determining the structure of model error, and scalar coefficient 𝜖
determining its magnitude. Recall that 𝑓† = 𝑓0+𝑚† and we assume 𝑓0 is known to us.
Our task is then to learn 𝑓† by learning 𝑚† and adding it to 𝑓0. The discrete solution
operator Ψ0 is obtained as in (2.6b) by numerical integration of 𝑓0 over a fixed time
window Δ𝑡.
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To simplify exposition, we explicitly define 𝑚†, then let 𝑓0 ≔ 𝑓† − 𝑚†. We first
consider the setting where

(6.3) 𝑚1(𝑥) ≔ [
0
𝑏𝑢𝑥
0
]

(as in [121]) and modulate 𝜖 in (6.2) to control the magnitude of the error term. In this
case, 𝑓0 can be viewed as the L63 equations with perturbed parameter ̃𝑏 = 𝑏(1 − 𝜖),
where 𝑏 is artificially decreased by 100𝜖%.
Then, we consider a more general case of heterogeneous, multidimensional resid-

ual error by drawing 𝑚1 from a zero-mean Gaussian Process (GP) with a radial basis
kernel (lengthscale 10). We form a map from ℝ3 into itself by constructing three inde-
pendent draws from a scalar-valued GP on ℝ3. The resulting function is visualized in
two-dimensional projections in Figure 1.

Figure 1. Here we visualize an example of the function𝑚1 in (6.2),
which is obtained as a single random draw from a zero-mean Gauss-
ian Process mapping ℝ3 → ℝ3. We have plotted its output surface
as three scalar functions (left to right) of the first two inputs (the plot
axes) with the third input component fixed at 0.

Observe that in the continuous-time framing, changes to 𝜖 do not impact the com-
plexity of the learned error term; however, it does grow the magnitude of the error
term. In the discrete-time framing, larger values of 𝜖 can magnify the complexity of
the discrepancy Ψ0(𝑥) − Ψ†(𝑥).
Results. We perform a series of experiments with the L63 system in order to illus-
trate key points about using data to learn model errors in dynamical systems. First,
we demonstrate that hybrid modeling tends to outperform data-only and physics-only
methods in terms of prediction quality. We first consider model error as in (6.3); see
Figure 2(a) in which we study performance (validity time) versus model error ampli-
tude (𝜖), using random feature maps with 𝐷 = 200, and a single trajectory of length
𝑇 = 100 sampled at timestep Δ𝑡 = 0.001. Unless otherwise specified, this is also the
configuration used in subsequent experiments.
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(a) (b)

Figure 2. These plots show the temporal length of the forecast va-
lidity of our learnt models of L63 (6.1), each as a function of model
error, as parameterized by 𝜖 (6.2) (with 𝐷 = 200, 𝑇 = 100, and Δ𝑡 =
0.001). Continuous-time methods are shown in blue, discrete-time
approaches in orange. Dotted lines indicate purely data-drivenmeth-
ods to learn the entire vector field defining the dynamics; solid lines
indicate methods that learn perturbations to the imperfect mecha-
nistic models 𝑓0 or Ψ0. Integration using the imperfect mechanistic
model, without recourse to data, is shown in green. In Figure 2(a),
we employ the linear form of model error𝑚1 defined in (6.3). In Fig-
ure 2(b), we let 𝑚1 be a single draw from a Gaussian Process, whose
structure is shown in Figure 1. Here, we plot means, with error bars
as 1 standard deviation.

We see identical trends in Figure 2(b) for a more general case with the nonparamet-
ric model error term constructed from Gaussian processes. Interestingly, we see that
for small and moderate amounts of model error 𝜖, the hybrid methods substantially
outperform data-only and physics-only methods. Eventually, for large enough model
discrepancy, the hybrid-methods and data-only methods have similar performance;
indeed the hybrid-method may be outperformed by the data-only method at large dis-
crepancies. For the simple model error this appears to occur when the discrepancy
term is larger in magnitude than 𝑓0 (e.g. for 𝑏 = 28 and 𝜖 = 2, the model error term
𝜖𝑏𝑢𝑥 can take on values larger than 𝑓† itself).
Figure 2(b) also shows that a continuous-time approach is favored over discrete-time

when using data-only methods, but suggests the converse in the hybrid modeling con-
text. We suspect this is an artifact of the different integration schemes used in data gen-
eration, training, and testing phases; the data are generated with a higher-fidelity inte-
grator than the one available in training and testing. For the continuous-time method,
this presents a fundamental limitation to the forecast quality (we chose this to avoid
having artificially high forecast validity times). However, the discrete-time method
can overcome this by not only learning the mechanistic model discrepancy, but also
the discrepancy term associated with a mismatched integrator. This typically happens
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when a closure is perfectly learnable and deterministic (i.e. our Lorenz ’63 example);
in this case, the combination of physics-based and integrator-sourced closures can be
learned nearly perfectly. In later experiments with a multiscale system, the closures
are considered approximate (they model the mean of a noisy underlying process) and
the discrete- and continuous-time methods perform more similarly, because the in-
evitable imperfections of the learned closure term dominate the error rather than the
misspecified integrator. Note that approximate closures driven by scale-separation are
much more realistic; thus we should not expect the hybrid discrete-time method to
dramatically outperform hybrid continuous-timemethods unless other limitations are
present (e.g. slow sampling rate).
Importantly, the parameter regime for which hybrid methods sustain advantage

over the imperfect physics-only method is substantial; the latter has trajectory pre-
dictive performance which drops off rapidly for very small 𝜖. This suggests that an
apparently uninformativemodel can be efficientlymodified, bymachine learning tech-
niques, to obtain a useful model that outperforms a de novo learning approach.
Next, we show that hybrid methods simplify the machine learning task in terms of

complexity of the learned function and, consequently, the amount of data needed for
the learning. Figure 3 examines prediction performance (validity time) as a function of
training data quantity using random feature maps with 𝐷 = 2000 and a fixed paramet-
ric model error (𝜖 = 0.2 in (6.2)) and sampling rate Δ𝑡 = 0.01. We see that the hybrid
methods substantially outperform the data-only approaches in regimes with limited
training data. For the continuous-time example, we see an expected trend, where the
data-only methods are able to catch up to the hybrid methods with the acquisition of
more data. The discrete-time models do not exhibit this behavior, but we expect the
data-only discrete-time model to eventually catch up, albeit with additional training
data and number of parameters. Note that greater expressivity is also required from
data-only methods—our choice of a large 𝐷 = 2000 aims to give all methods ample
expressivity, and thus test convergence with respect to training data quantity alone.
These results demonstrate that the advantage of hybrid modeling is magnified when
training data are limited and cannot fully inform de novo learning. Figure 4 further
studies the impact of expressivity by again fixing a parametric model error (𝜖 = 0.05 in
(6.2)), training length 𝑇 = 100, and sampling rate Δ𝑡 = 0.001. We see that all meth-
ods improve with a larger number of random features, but that relative superiority of
hybrid methods is maintained even for 𝐷 = 10000.
Finally, we study trade-offs between learning in discrete- versus continuous-time

for the L63 example (6.1). Figure 5 examines prediction performance (validity time)
as a function of data sampling rate Δ𝑡 using random feature maps with 𝐷 = 200 with
a fixed parametric model error (𝜖 = 0.05 in (6.2)) and an abundance of training data
𝑇 = 1000. We observe that for fast sampling rates (Δ𝑡 < 0.01), the continuous-time
and discrete-time hybridmethods have similar performance. ForΔ𝑡 > 0.01, derivatives
become difficult to estimate from the data and the performance of the continuous-time
methods rapidly decline. However, the discrete-time methods sustain their predictive
performance for slower sampling rates (Δ𝑡 ∈ (0.01, 0.1)). At some point, the discrete-
time methods deteriorate as well, as the discrete map becomes complex to learn at
longer terms because of the sensitivity to initial conditions that is a hallmark of chaotic
systems. Here, the discrete-time methods begin to fail around Δ𝑡 = 0.2; note that they
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Figure 3. Here we examine the performance of the proposed meth-
ods as a function of the length of the interval over which the training
data is provided, whereΔ𝑡 = 0.01, (𝜖 = 0.2 in (6.2)), and𝐷 = 2000 are
held constant for the L63 example (6.1). See description of Figure 2
for explanation of legend. We observe that all methods improve with
increasing training lengths. We see that, in continuous-time, the pri-
mary benefit in hybridmodeling is when the training data are limited.

can be extended to longer time intervals by increasing 𝐷 and amount of training data,
but returns diminish quickly.

6.2.4. Lorenz ’96 Multiscale (L96MS) System.
Setting. Here, we consider the multiscale system [96] of form (2.7), where each vari-
able 𝑋𝑘 ∈ ℝ is coupled to a subgroup of fast variables 𝑌 𝑘 ∈ ℝ𝐽 . We have 𝑋 ∈ ℝ𝐾 and
𝑌 ∈ ℝ𝐾×𝐽 . For 𝑘 = 1 . . . 𝐾 and 𝑗 = 1 . . . 𝐽, we write

̇𝑋𝑘 = 𝑓𝑘(𝑋) + ℎ𝑥𝑌𝑘,(6.4a)

̇𝑌 𝑘,𝑗 =
1
𝜀 𝑟𝑗(𝑋𝑘, 𝑌 𝑘),(6.4b)

𝑌𝑘 =
1
𝐽

𝐽
∑
𝑗=1

𝑌 𝑘,𝑗 ,(6.4c)

𝑓𝑘(𝑋) = −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹,(6.4d)
𝑟𝑗(𝑋𝑘, 𝑌 𝑘) = −𝑌 𝑘,𝑗+1(𝑌 𝑘,𝑗+2 − 𝑌 𝑘,𝑗−1) − 𝑌 𝑘,𝑗 + ℎ𝑦𝑋𝑘,(6.4e)

𝑋𝑘+𝐾 = 𝑋𝑘, 𝑌 𝑘+𝐾,𝑗 = 𝑌 𝑘,𝑗 , 𝑌 𝑘,𝑗+𝐽 = 𝑌 𝑘+1,𝑗 ,(6.4f)

where 𝜀 > 0 is a scale-separation parameter, ℎ𝑥, ℎ𝑦 ∈ ℝ govern the couplings between
the fast and slow systems, and 𝐹 > 0 provides a constant forcing. We set 𝐾 = 9, 𝐽 =
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Figure 4. Here we examine the performance of the proposed meth-
ods as a function of model complexity, where Δ𝑡 = 0.001, 𝜖 = 0.05,
and 𝑇 = 100 are held constant for the L63 example (6.1). See descrip-
tion of Figure 2 for explanation of legend. We observe that all meth-
ods improve with increasing number of parameters, and that hybrid
methods are especially beneficial when available complexity is lim-
ited.

8, ℎ𝑥 = −0.8, ℎ𝑦 = 1, 𝐹 = 10; this leads to chaotic dynamics for 𝜀 small. When
studying scale-separation, we consider 𝜀 ∈ {2−7, 2−5, 2−3, 2−1}.
We consider the setting in which we learn Markovian random features models in

variable 𝑋 alone, from 𝑋 data generated by the coupled (𝑋, 𝑌) system. Large scale-
separation between the observed (𝑋) and unobserved (𝑌 ) spaces can simplify the prob-
lem of accounting for the unobserved components; in particular, for sufficient scale-
separation, we expect a Markovian term to recover a large majority of the residual er-
rors. In fact, we further simplify this problem by learning a scalar-valued model error
𝑀 that is applied to each 𝑋𝑘 identically in the slow system:

̇𝑋𝑘 ≈ 𝑓𝑘(𝑋) + 𝑀(𝑋𝑘).

This choice stems from observations about statistical interchangeability amongst the
slowvariables of the system; these properties of theL96MSmodel in the scale-separated
regime are discussed in [44]. We can directly align our reduction of (6.4) with theMar-
kovian hybrid learning framework in (2.2) as follows:

̇𝑋 ≈ 𝑓0(𝑋) + 𝑚(𝑋),
𝑓0(𝑋) ≔ [𝑓1(𝑋), ⋯ , 𝑓𝐾(𝑋)]𝑇 ,
𝑚(𝑋) ≔ [𝑀(𝑋1), ⋯ ,𝑀(𝑋𝐾)]𝑇 .
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Figure 5. This shows temporal forecast validity as a function of the
step size of training data for the tested methods in the L63 example
(6.1). We hold fixed𝐷 = 200, 𝜖 = 0.05, and 𝑇 = 1000. See description
of Figure 2 for explanation of legend. We see that while purely data-
driven discrete-time methods struggle at short time steps, the hybrid
version thrives in this scenario. All approaches, of course, eventually
decay as large time steps create more complex forward maps, due to
sensitivity to initial conditions. We also see continuous-time meth-
ods work well for small time steps, then deteriorate in tandem with
quality of estimated derivatives.

Results. We plot the performance gains of our hybrid learning approaches in Figure 6
by considering validity times of trajectory forecasts, estimation of the invariant mea-
sure, and ACF estimation. In all three metrics (and for all scale-separations 𝜀), de novo
learning in discrete (Ψ† ≈ 𝑚) and continuous-time (𝑓† ≈ 𝑚) is inferior to using the
nominal mechanistic model 𝑓0. We found that the amount of data used in these exper-
iments is insufficient to learn the full system from scratch. On the other hand, hybrid
models in discrete (Ψ† ≈ Ψ0 + 𝑚) and continuous-time (𝑓† ≈ 𝑓0 + 𝑚) noticeably
outperformed the nominal physics.
Surprisingly, Figure 6 shows that the Markovian closure methods still qualitatively

reproduce the invariant statistics even for large 𝜀 settings where we would expect sub-
stantial memory effects. Figure 6 also demonstrates this quantitatively using KL-
divergence between invariant measures and mean-squared-error between ACFs. It
seems that for this dissipative system, memory effects tend to average out in the invari-
ant statistics. However, the improvements in validity time for trajectory-based fore-
casting deteriorate for 𝜀 = 2−1.
To visualize this non-Markovian structure, and how it might be exploited, we exam-

ine the residuals from 𝑓0 in Figure 7 and observe that there are discernible trajectories
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walking around the Markovian closure term. For small 𝜀, these trajectories oscillate
rapidly around the closure term. For large 𝜀 (e.g. 2−1), however, we observe a slow-
moving residual trajectory around theMarkovian closure term. This indicates the pres-
ence of a stronger memory component, and thus would benefit from a non-Markovian
approach to closure modeling.
Jiang andHarlim [71] show that thememory component in this settingwith 𝜀 = 2−1

can be described using a closure term with a simple delay embedding of the previous
state at lag 0.01. They learn the closure using a kernel method cast in an RKHS frame-
work, for which random feature methods provide an approximation.

6.3. Learning from partial, noisy observations. In this section, we focus on the
non-Markovian setting outlined in Section 2.3, and attempt to model the dynamics of
the observable using (4.3), with 𝑓1, 𝑓2 given by two-layer, fully connected neural net-
works with GeLU activations [65], and perform the learning by minimizing (4.7) from
Section 4.3.3, using 3DVAR for the data assimilation [87, 88], with the ADAM opti-
mizer [80]. The learning rate was initialized at 0.01 and tuned automatically using
a scheduler that halved the learning rate if the training error had not decreased over
10 (mini-batched) epochs. Data were sampled at Δ𝑡 = 0.01 in all cases, and normal-
ized to have mean zero and unit variance. Numerical integration was performed with
the torchdiffeq implementation of the Dormand-Prince adaptive fifth-order Runge-
Kutta method: for the L63 example, simple backpropagated autodifferentiation was
performed through this solver; for the L96MS example, we used the adjoint method
provided by [142].

6.3.1. Lorenz ’63. We first consider modeling the dynamics of the first-component of
the L63 system in (6.1), where we noisily observe the first-component – that is, we
observe a noisy trajectory of 𝑢𝑥 (i.i.d. additive zero-mean, variance-one Gaussian), but
do not observe the remaining components𝑢𝑦, 𝑢𝑧. We jointly trained on 100 trajectories,
each of length 𝑇 = 10, and randomly initialized from a box around the attractor; we
chose this approach to ensure that we had data coverage both on and off the attractor
although we note that similar success is obtained with a single trajectory of length 𝑇 =
1000. The neural network had width 50. We chose an assimilation time of 𝜏1 = 3 and a
forecast time of 𝜏2 = 0.1. The optimization ran for approximately 200 epochs, and took
roughly 24hrs on a single GPU. Adequate results were obtained using a fixed 3DVAR
gain matrix 𝐾 = [0.5, 0, 0]𝑇 . However, we present results using the algorithm in which
𝐾 = 𝜃DA is jointly learned along with parameters 𝜃DYN, as described in Section 4.3.3;
this demonstrates that the gain need not be known a priori.
First, we present results using knowledge that the correct hidden dimension 𝑑𝑟 = 2:

in Figure 8a, we show an example of the trainedmodel being assimilated (using 3DVAR
with learnt 𝐾) during the first 3 time units, then predicting for another 7 time units;
recall that training was performed using only a 𝜏2 = 0.1 forecasting horizon, but we
evaluate on a longer time horizon to provide a robust test metric. Observe that the
learnt hidden dynamics in gray are synchronized with the data, then used to perform
the forecast. In Figure 8b and 8c, we show that by solving the system for long time
(here, 𝑇 = 104), we are able to accurately reproduce invariant statistics (invariant
measure and autocorrelation, resp.) for the true system. In Figure 8d, we show the
evolution of the learnt 𝐾.
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Figure 6. This figure shows the performance of different approaches
to modeling the L96MS slow subsystem (6.4). In 𝑓† ≈ 𝑓0, we only use
the nominal physics 𝑓0. InΨ† ≈ 𝑚 and 𝑓† ≈ 𝑚, we try to learn the en-
tire right-hand-side using only data (in discrete- and continuous-time
settings, respectively). In Ψ† ≈ Ψ0 + 𝑚 and 𝑓† ≈ 𝑓0 + 𝑚, we focus
on learning Markovian residuals for the known physics (in discrete-
and continuous-time settings, respectively). The residual-based cor-
rectors substantially outperform thenominal physics andpurely data-
drivenmethods according to all presentedmetrics: invariantmeasure
(shown qualitatively in the first row and quantitatively in the third
row), ACF (shown qualitatively in the second row and quantitatively
in the fourth row), and trajectory forecasts (shown in the final row).
The boxplots show the distributions of quantitative metrics (e.g. KL-
divergence, squared errors, validity time), which come from different
models, each trained on a different trajectory, and generated using an
independent random feature set. Notably, the Markovian residual-
based methods’ performance deteriorates for small scale-separation
(𝜀 = 2−1), where the Markovian assumption breaks down.



320 MATTHEW E. LEVINE AND ANDREWM. STUART

Figure 7. This figure shows the observed and estimated residuals
of the nominal physics model 𝑓0 for the L96MS slow subsystem (6.4)
at different scale-separation factors. The first row shows the density
of these residuals (yellow is high density, blue is low), as well as the
fit of our closure terms in continuous- (blue) and discrete- (orange)
time (the discrete model was normalized by dividing by Δ𝑡). The sec-
ond row shows temporal structure in the errors of our residual fit by
superimposing a short (T=1) one-dimensional trajectory (this repre-
sents ∼ 0.1% of training data).

Next, we let 𝑑𝑟 = 10, exceeding the true dimension of the hidden states; thus we
are able to explore issues caused by learning an overly expressive (in terms of dimen-
sion of hidden states) dynamical model. Figure 9 shows dynamics for a learnt model in
this setting; we found its reproduction of invariant statistics to be similar to the cases
in Figure 8b and 8c, but omit the plots for brevity. This success aligns with the ap-
proximation theory, as discussed in Remark 5.5, and provides empirical reassurance
that the methodology can behave well in situations where the dimension of the hidden
variable is unknown and dimension 𝑑𝑟 used in learning exceeds its true dimension.
Nevertheless, we construct an example in Section 6.4 in which a specific embedding
of the true dynamics in a system of higher dimension can lead to poor approximation;
this is caused by an instability in the model which allows departure from the invariant
manifold on which the true dynamics is accurately captured. However, we empha-
size that this phenomenon is not observed empirically in the experiment reported here
with 𝑑𝑟 = 10. Nonetheless we also note expected decreases in efficiency caused by
over-estimating the dimension of the hidden variable, during both model training and
testing; thus determining the smallest choice for 𝑑𝑟, compatible with good approxima-
tion, is important. Recent research has addressed this challenge in the discrete-time
setting by applyingmanifold learning to a delay-embedding space, thenusing the learnt
manifold to inform initialization and dimensionality of LSTM hidden states [78].
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Note that our early attempts at achieving these numerical results, using the opti-
mization ideas in Sections 4.3.1 and 4.3.2, yielded unstablemodels that exhibited blow-
up on shorter time scales (e.g. 𝑇 < 1000); however, by incorporating data assimilation
as in [26], and further tuning the optimization to achieve lower training errors, wewere
able to obtain a model that, empirically, did not exhibit blow-up, even when solved for
very long time (e.g. 𝑇 = 105). We also note that we were unable to achieve such high-
fidelity results using themethods of [118] onneural networkswith nonlinear activation
functions; this may be explained by noting that Ouala et al. [118] achieved their results
using linear, identity-based activations, resulting in inference of polynomial models
containing the true L63 model.

6.3.2. Lorenz ’96 Multiscale (𝜀 = 2−1). Recall that Markovian closures fail to capture
autocorrelation statistics for the slow components of this model in the case of 𝜀 = 2−1
(see top right panel of Figure 6). As evidenced by the slow-moving trajectory around
the Markovian closure in Figure 7, this is a case ripe for non-Markovian modeling. We
investigate the applicability of our continuous-time ODE formulation in (4.3), using
a neural network of width of 1000. We applied the above described methodology for
minimizing (4.7), under the data setting described in Section 6.2.4, to learn hidden
dynamics. Similarly to the previous section, we jointly trained on 100 trajectories, each
of length 𝑇 = 20 and randomly initialized from a box around the attractor. We chose
an assimilation time of 𝜏1 = 2 and a forecast time of 𝜏2 = 1; note that longer times
can become quite costly, especially for high-dimensional systems; nevertheless, the
assimilation time 𝜏1 appears intrinsically tied to the amount of memory present in the
system.
In Figure 10a and 10b, we plot comparisons of the true and learnt (via (4.3)) ACF and

invariant measure, and observe substantial improvement over the Markovian closure.
However, this learntmodel exhibited instabilities when solved for longer than𝑇 = 500.
We expect that this can be remedied via further training (as was found for the L63
example); however, the incorporation of stability constraints into themodel, as in [150],
would be valuable. In order to train this larger model for longer time, further studies
of efficient optimization must also be performed in this setting ([26] has begun highly
relevant investigation in this direction).
In Figure 11, we visualize the learnt 3DVAR gain (which encodes the learnt model’s

covariance structure), inwhich each rowcorresponds to the gain for a given component
of the learnt model as a function of observed components (indexed in the columns);
trends are elucidated via hierarchical clustering and a row-based normalization of the
learnt matrix 𝐾. It clearly learns a consistent diagonal covariance structure for the
observables. More impressively, it illustrates cross-covariances between observed and
hidden components that mirror the compartmentalized structure of themodel in (6.4);
note that each observed component has a distinct grouping of hidden variables which
havehigh correlation (white) primarilywith that component and lowcorrelation (black)
with other observables. This type of analysis may provide greater interpretability of
learnt models of hidden dynamics.

6.4. Initializing and stabilizing the RNN. As mentioned in Remark 5.8 the RNN
approximates an enlarged systemwhich contains solutions of the original systemas tra-
jectories confined to the invariantmanifold𝑚 = 𝑚†(𝑥, 𝑦); see identity (5.14). However,
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Figure 8. This figure concerns learning of a continuous-time RNN
to model the L63 system (6.1), based on noisy observation of only the
first component; it uses an augmented state space 𝑑𝑟 = 2. Figure 8a
shows how the trained model can be used for forecasting—by first
synchronizing to data using 3DVAR, then forecasting into the future.
The top-half depicts dynamics of the observed component (model-
solutions in blue; observations in yellow); the bottom-half depicts the
augmented state space (both hidden components are shown in gray).
We observed a validity time of roughly 3 model time units. Figure
8b and 8c shows that long-time solutions of the learnt model accu-
rately mirror invariant statistics (invariant measure and autocorrela-
tion, resp.) for the true system. Figure 8d shows the learning process
for estimating a 3DVAR gain 𝐾.

this invariant manifold may be unstable, either as a manifold within the continuous-
timemodel (5.13) or as a result of numerical instability. We now demonstrate this with
numerical experiments. This instability points to the need for data assimilation to be
used with RNNs if prediction of the original system is desired, not only to initialize
the system but also to stabilize the dynamics to remain near to the desired invariant
manifold.
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Figure 9. This figure concerns learning of a continuous-time RNN
to model the L63 system (6.1), based on noisy observation of only the
first component; it uses an augmented state space 𝑑𝑟 = 10. The top-
half depicts dynamics of the observed component (model-solutions in
blue; observations in yellow); the bottom-half depicts the augmented
state space (all 10 hidden components are shown in gray). In the first
3 time units, the model is assimilated to a sequence of observed data
using 3DVAR, then in the subsequent 7 time units, a forecast is issued.
We found thismodel to have similar short-term and long-termfidelity
when compared to the model presented in Figure 8a, 8b, 8c, and 8d,
which used the correct hidden dimension 𝑑𝑟 = 2.

To illustrate these challenges, we consider the problem of modeling evolution of a
single component of the L63 system (6.1). Consider this as variable 𝑥 in (2.7). As exhib-
ited in (5.13), model error may be addressed in this setting by learning a representation
that contains the hidden states 𝑦 in (2.7) (i.e. the other two unobserved components of
(6.1)), but since the dimension of the hidden states is typically not known a priori the
dimensions of the latent variables in the RNN (and the system it approximates) may
be greater than those of 𝑦; in the specific construction we use to prove the existence of
an approximating RNN we introduce a vector field for evolution of the error𝑚 as well
as 𝑦. We now discuss the implications of embedding the true dynamics in a higher di-
mensional system in the specific context of the embedded system (5.13). However the
observations apply to any embedding of the desired dynamics (2.7) (with 𝜖 = 1) within
any higher dimensional system.
We choose examples for which (5.14) implies that𝑚−𝑚† is constant in time. Then,

under (5.13),
(𝑚 −𝑚†(𝑥, 𝑦))(𝑡) = constant;

that is, it is constant in time. The desired invariant manifold (where the constant is 0)
is thus stable. However this stability only holds in a neutral sense: linearization about
the manifold exhibits a zero eigenvalue related to translation of𝑚−𝑚† by a constant.
We now illustrate that this embedded invariant manifold can be unstable; in this case
the instability is caused by numerical integration, which breaks the conservation of
𝑚−𝑚† in time.

Example 1. Consider equation (6.1) which we write in form (2.8) by setting 𝑥 = 𝑢𝑥
and 𝑦 = (𝑢𝑦, 𝑢𝑧). Then we let 𝑓0(𝑢𝑥) ≔ −𝑎𝑢𝑥 yielding 𝑚†(𝑢𝑦) = 𝑎𝑢𝑦. Thus 𝑓† =
𝑓0 + 𝑚† is defined by the first component of the right-hand side of (6.1). The function
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Figure 10. This figure concerns learning of a continuous-time RNN
to model the first 9 (slow) components of the L96MS system (𝜀 = 0.5
in (6.4)), based on noisy observations of these slow components; it
uses an augmented state space 𝑑𝑟 = 72. We trained using noised ob-
servations (standard deviation 0.01) of only the first 9 components
of the true 81−dimensional system. These plots show that this model
can accurately reproduce both the invariantmeasure (Figure 10a) and
ACF (Figure 10b) for these observed states. These statistics were cal-
culated by running the learnt model for 𝑇 = 500 model time units;
longer runs encountered instabilities that caused trajectories to leave
the attractor and blow-up.

𝑔†(𝑢𝑦, 𝑢𝑧) is then given by the second and third components of the right-hand side of
(6.1). Applying the methodology leading to (5.13) to (6.1) results in the following four
dimensional system:

𝑢̇𝑥 = 𝑓0(𝑢𝑥) + 𝑚, 𝑢𝑥(0) = 𝑥0,(6.5a)
𝑢̇𝑦 = 𝑏𝑢𝑥 − 𝑢𝑦 − 𝑢𝑥𝑢𝑧, 𝑢𝑦(0) = 𝑦0,(6.5b)
𝑢̇𝑧 = −𝑐𝑢𝑧 + 𝑢𝑥𝑢𝑦, 𝑢𝑧(0) = 𝑧0,(6.5c)
𝑚̇ = 𝑎(𝑏𝑢𝑥 − 𝑢𝑦 − 𝑢𝑥𝑢𝑧), 𝑚(0) = 𝑚†(𝑦0).(6.5d)

Here we have omitted the 𝑢𝑦-dependence from equation (6.1) for 𝑢𝑥, and aim to
learn this error term; we introduce the variable𝑚 in order to do so. This system, when
projected into 𝑢𝑥, 𝑢𝑦, 𝑢𝑧, behaves identically to (6.1) when 𝑚(0) = 𝑚†(𝑦0). Thus the
4−dimensional system in (6.5) has an embedded invariant manifold on which the dy-
namics is coincident with that of the 3−dimensional L63 system.
We numerically integrate the 4−dimensional system in (6.5) for 10000 model time

units (initialized at 𝑥0 = 1, 𝑦0 = 3, 𝑧0 = 1,𝑚0 = 𝑎𝑦0 = 30), and show in Figure 12 that
the resulting measure for 𝑢𝑥 (dashed red) is nearly identical to its invariant measure
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Figure 11. Here we visualize the learnt 3DVAR gain matrix 𝐾 (81
x 9) (𝜃DA in Section 4.3.3) associated with the non-Markovian learn-
ing of L96MS (6.4). We first compute entry-wise absolute values, then
apply a row-normalization; white indicates highest correlation, and
black indicates lowest correlation. The top 9 rows shown directly cor-
respond to the first 9 rows of 𝐾. The bottom 72 rows are re-ordered
(via hierarchical clustering) to illustrate associations between the 9
observed components and the 72 hidden variables.

in the traditional 3−dimensional L63 system in (6.1) (solid black). However, we re-
run the simulation for a perturbed 𝑚(0) = 𝑚†(𝑦0) + 1, and see in Figure 12 (dotted
blue) that this yields a different invariant measure for 𝑢𝑥. This result emphasizes the
importance of correctly initializing an RNNnot only for efficient trajectory forecasting,
but also for accurate statistical representation of long-time behavior.

Example 2. Now we consider (6.1) which we write in form (2.8) by setting 𝑥 = 𝑢𝑧
and 𝑦 = (𝑢𝑥, 𝑢𝑦). We let 𝑓0(𝑢𝑧) ≔ −𝑐𝑢𝑧 and 𝑚†(𝑢𝑥, 𝑢𝑦) ≔ 𝑢𝑥𝑢𝑦, so that 𝑓† = 𝑓0 + 𝑚†

corresponds to the third component of the right-hand side of (6.1). Function 𝑔†(𝑢𝑥, 𝑢𝑦)
is defined by the first two components of the right-hand side of (6.1). We again form
a 4−dimensional system corresponding to (6.1) using the methodology that leads to
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Figure 12. Here, we show that the invariant density for the first
component of L63 (black) can be reproduced by a correctly initialized
augmented 4−d system (dashed red) in (6.5). However, incorrect ini-
tialization of 𝑚(0) in (6.5) (dotted blue) yields a different invariant
density.

(5.13):

𝑢̇𝑥 = 𝑎(𝑢𝑦 − 𝑢𝑥), 𝑢𝑥(0) = 𝑥0,(6.6a)
𝑢̇𝑦 = 𝑏𝑢𝑥 − 𝑢𝑦 − 𝑢𝑥𝑢𝑧, 𝑢𝑦(0) = 𝑦0,(6.6b)
𝑢̇𝑧 = 𝑓0(𝑢𝑧) + 𝑚, 𝑢𝑧(0) = 𝑧0,(6.6c)
𝑚̇ = 𝑢𝑥𝑢̇𝑦 + 𝑢𝑦𝑢̇𝑥, 𝑚(0) = 𝑚†(𝑥0, 𝑦0).(6.6d)

We integrate (6.6) for 3000model time units (initialized at 𝑥0 = 1, 𝑦0 = 3, 𝑧0 = 1,𝑚0 =
𝑥0𝑦0 = 3), and show in Figure 13 that the 3−dimensional Lorenz attractor is unsta-
ble with respect to perturbations in the numerical integration of the 4−dimensional
system. The solutions for 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 eventually collapse to a fixed point after the grow-
ing discrepancy between 𝑚(𝑡) and 𝑚† becomes too large. The time at which collapse
occurs may be delayed by using smaller tolerances within the numerical integrator
(we employ Matlab rk45) demonstrating that the instability is caused by the numer-
ical integrator. This collapse is very undesirable if prediction of long-time statistics
is a desirable goal. On the other hand, Figure 14 shows short-term accuracy of the
4−dimensional system in (6.6) up to 12 model time units when correctly initialized
(𝑚0 = 𝑚†(𝑥0, 𝑦0), dashed red), and accuracy up to 8 model time units when initializa-
tion of 𝑚0 is perturbed (𝑚0 = 𝑚†(𝑥0, 𝑦0) + 1, dotted blue). This result demonstrates
the fundamental challenges of representing chaotic attractors in enlarged dimensions
and may help explain observations of RNNs yielding good short-term accuracy, but
inaccurate long-term statistical behavior. While empirical stability has been observed
in some discrete-time LSTMs [62, 164], the general problem illustrated above is likely
to manifest in any problems where the dimension of the learned model exceeds that
of the true model; the issue of how to address initialization of such models, and its
interaction with data assimilation, therefore merits further study.
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Figure 13. Here we show that the embedded 3−dimensional mani-
fold of L63, within the 4−dimensional system given by (6.6), is unsta-
ble. Indeed the correctly initialized 4−dimensional system (dashed
red) has solution which decays to a fixed point. The bottom fig-
ure shows divergence of the numerically integrated model error term
𝑚(𝑡) and the state-dependent term 𝑚†; this growing discrepancy is
likely responsible for the eventual collapse of the 4−dimensional sys-
tem.

7. Conclusions

In this work we evaluate the utility of blending mechanistic models of dynamical
systems with data-driven methods, demonstrating the power of hybrid approaches.
We provide a mathematical framework that is consistent across parametric and non-
parametric models, encompasses both continuous- and discrete-time, and allows for
Markovian and memory-dependent model error. We also provide basic theoretical re-
sults that underpin the adopted approaches. The unified framework elucidates com-
monalities between seemingly disparate approaches across various applied and the-
oretical disciplines. It would be desirable if the growing recognition of the need for
hybrid modeling were to motivate flexible incorporation of mechanistic models into
open-source software for continuous-time Markovian and non-Markovian modeling
of error [2, 22, 42, 58, 118, 142].
Our work is focused on immutable mechanistic models (𝑓0 andΨ0), but these mod-

els themselves often have tunable parameters. In principle one can jointly learn pa-
rameters for the mechanistic model and closure term. However, the lack of identifia-
bility between modifying the closure and modifying the physics brings up an interest-
ing question in explainability. Future work might focus on decoupling the learning of
parameters and closure terms so that maximal expressivity is first squeezed out of the
mechanistic model [123, 124].
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Figure 14. Here, we show short-term accuracy for the
4−dimensional system in (6.6). Predictions using the correct initial-
ization of𝑚0 (dashed red) remain accurate for nearly twice as long as
predictions that use a perturbed initialization (𝑚0 = 𝑚†(𝑢𝑥, 𝑢𝑦) + 1).
The bottom figure shows that𝑚(𝑡) diverges from the state-dependent
𝑚† more quickly for the poorly initialized model, but in both cases
errors accumulate over time.

Our numerical results demonstrate the superiority of hybridmodeling over learning
an entire system from scratch, even when the available mechanistic model has large
infidelities. Hybrid modeling also showed surprisingly large performance gains over
using mechanistic models with only small infidelities. We quantify these improve-
ments in terms of data hunger, demands for model complexity, and overall predictive
performance, and find that all three are significantly improved by hybrid methods in
our experiments.
We establish bounds on the excess risk and generalization error that decay as 1/√𝑇

when learning model discrepancy from a trajectory of length 𝑇 in an ergodic
continuous-time Markovian setting. We make minimal assumptions about the nomi-
nal physics (i.e. 𝑓0 ∈ 𝐶1); thus, our result equivalently holds for learning the entire vec-
tor field 𝑓† (i.e. 𝑓0 ≡ 0). However the upper bounds on excess risk and generalization
error scale with the size of the function being learned, hence going some way towards
explaining the superiority of hybrid modeling observed in the numerical experiments.
Future theoretical work aimed at quantifying the benefits of hybrid learning versus
purely data-driven learning is of interest. We also note that the ergodic assumption
underlying our theory will not be satisfied by many dynamical models, and alternate
statistical learning theories need to be developed in such settings.
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We illustrate trade-offs between discrete-time and continuous-time modeling ap-
proaches by studying their performance as a function of training data sample rate.
We find that hybrid discrete-time approaches can alleviate instabilities seen in purely
data-driven discrete-time models at small timesteps; this is likely due to structure in
the integrator Ψ0, which has the correct parametric dependence on timestep. In the
continuous-time setting, we find that performance is best when derivatives can accu-
rately be reconstructed from the data, and deteriorates in tandem with differentiation
inaccuracies (caused by large timesteps); continuous-time hybrid methods appear to
offer additional robustness to inaccurate differentiationwhen compared to purely data-
driven methods. In cases of large timesteps and poorly resolved derivatives, ensemble-
based data assimilation methods may still allow for accurate learning of residuals to
the flow field for continuous-time modeling [53].
Finally, we study non-Markovianmemory-dependentmodel error, through numeri-

cal experiments and theory, using RNNs. We prove universal approximation for
continuous-time hybrid RNNs and demonstrate successful deployment of the method-
ology. Future work focusing on the effective training of these models, for more com-
plex problems, would be of great value; ideas from data assimilation are likely to play
a central role [26]. Further work on theoretical properties of reservoir computing (RC)
variants on RNNs would also be of value: they benefit from convex optimization, and
may be viewed as random feature methods between Banach spaces. These RNN and
RCmethods will benefit from constraining the learning to ensure stability of the latent
dynamical model. These issues are illustrated via numerical experiments that relate
RNNs to the question of stability of invariant manifolds representing embedded de-
sired dynamics within a higher dimensional system.

8. Appendix

8.1. Proof of excess risk/generalization error theorem. Note that in both (5.7)
and (5.8)𝜑(⋅) is only evaluated on (compact)𝒜 obviating the need for any boundedness
assumptions on the functions {𝑓ℓ}𝑝ℓ=0 and𝑚† in what follows.

Lemma 8.1. Let Assumptions A1 and A2 hold. Then there is Σ positive semi-definite
symmetric in ℝ𝑝×𝑝 such that 𝜃∗𝑇 → 𝜃∗∞ almost surely, and√𝑇(𝜃∗𝑇 − 𝜃∗∞) ⇒ 𝑁(0, Σ) with
respect to 𝑥(0) ∼ 𝜇. Furthermore, there is constant 𝐶 ∈ (0,∞) such that, almost surely
w.r.t. 𝑥(0) ∼ 𝜇,

limsup𝑇→∞(
𝑇

log log 𝑇 )
1
2 ‖𝜃∗𝑇 − 𝜃∗∞‖ ≤ 𝐶.

Proof. By rearranging the equation for 𝜃∗∞ we see that
𝐴𝑇𝜃∗𝑇 = 𝑏𝑇 ,
𝐴𝑇𝜃∗∞ = 𝑏∞ + (𝐴𝑇 − 𝐴∞)𝜃∗∞.

Thus, subtracting,
(8.1) (𝜃∗𝑇 − 𝜃∗∞) = 𝐴−1𝑇 (𝑏𝑇 − 𝑏∞) − 𝐴−1𝑇 (𝐴𝑇 − 𝐴∞)𝜃∗∞.
Because {𝑓ℓ(⋅)} and𝑚†(⋅) are Hölder (Assumption A2, and discussion immediately

preceding it), so are ⟨𝑓𝑖(⋅), 𝑓𝑗(⋅)⟩ and ⟨𝑚†(⋅), 𝑓𝑗(⋅)⟩. Thus each entry of matrix𝐴𝑇 (resp.
vector 𝑏𝑇 ) converges almost surely to its corresponding entry in 𝐴∞ (resp. 𝑏∞), by the
ergodicity implied by Assumption A1, and the pointwise ergodic theorem. The almost
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sure convergence of 𝜃∗𝑇 to 𝜃∗∞ follows, after noting that 𝐴∞ is invertible. Furthermore,
also by Assumption A1, there are constants {𝜎𝑖𝑗}, {𝜎𝑗} such that

√𝑇((𝐴𝑇)𝑖𝑗 − (𝐴∞)𝑖𝑗) ⇒ 𝑁(0, 𝜎2𝑖𝑗),

√𝑇((𝑏𝑇)𝑗 − (𝑏∞)𝑗) ⇒ 𝑁(0, 𝜎2𝑗 ).

Since arbitrary linear combinations of the {(𝐴𝑇)𝑖𝑗}, {(𝑏𝑇)𝑗} are time-averages of Hölder
functions, it follows that√𝑇{𝐴𝑇−𝐴∞, 𝑏𝑇−𝑏∞} converges in distribution to aGaussian,
by the Cramér-Wold Theorem [57]. Weak convergence of √𝑇(𝜃∗𝑇 − 𝜃∗∞) to a Gaussian
follows from (8.1) by use of the Slutsky Lemma [57], since 𝐴𝑇 converges almost surely
to invertible 𝐴∞. Matrix Σ cannot be identified explicitly in terms of only the {𝜎𝑖𝑗}, {𝜎𝑖}
because of correlations between 𝐴𝑇 and 𝑏𝑇 . The almost sure bound on ‖𝜃∗𝑇 − 𝜃∗∞‖
follows from (8.1) after multiplying by (𝑇/ log log 𝑇)

1
2 , noting that 𝐴𝑇 → 𝐴∞ almost

surely, and the almost sure bounds on (𝑇/ log log 𝑇)
1
2 {‖𝐴𝑇 − 𝐴∞‖, ‖𝑏𝑇 − 𝑏∞‖}, using

Assumption A1. □

In what follows it is helpful to define

𝑅+𝑇 = (𝜃∗𝑇 − 𝜃∗∞)(‖𝜃∗𝑇‖ + ‖𝜃∗∞‖ + 1),
𝐺+
𝑇 = ℐ𝑇(𝑚∗

∞) − ℐ∞(𝑚∗
∞).

Lemma 8.2. Let AssumptionA2 hold. Then, assuming 𝑥(0) ∼ 𝜇, there is constant𝐶 > 0
such that the excess risk 𝑅𝑇 satisfies

𝑅𝑇 ≤ 𝐶‖𝑅+𝑇 ‖.
Furthermore the generalization error satisfies

|𝐺𝑇 | ≤ 2𝐶‖𝑅+𝑇 ‖ + |𝐺+
𝑇 |.

Proof. For the bound on the excess risk we note that

𝑅𝑇 = ℒ𝜇(𝑚∗
𝑇 , 𝑚†) − ℒ𝜇(𝑚∗

∞, 𝑚†)

= ∫
ℝ𝑑𝑥

⟨(𝑚∗
𝑇 −𝑚∗

∞)(𝑥), (𝑚∗
𝑇 +𝑚∗

∞ − 2𝑚†)(𝑥)⟩ 𝜇(𝑑𝑥)

≤ (∫
ℝ𝑑𝑥

‖
‖(𝑚

∗
𝑇 −𝑚∗

∞)(𝑥)‖‖
2
𝜇(𝑑𝑥))

1
2 (∫

ℝ𝑑𝑥

‖
‖(𝑚

∗
𝑇 +𝑚∗

∞ − 2𝑚†)(𝑥)‖‖
2
𝜇(𝑑𝑥))

1
2 .

The first follows from the boundedness of the {𝑓ℓ}𝑝ℓ=1 and𝑚†, since the first term in the
product above is bounded by a constant multiple of ‖𝜃∗𝑇 −𝜃∗∞‖ and the second term by
a constant multiple of ‖𝜃∗𝑇‖ + ‖𝜃∗∞‖ + sup𝒜 ‖𝑚†‖.
For the bound on the generalization error we note that

𝐺𝑇 = ℐ𝑇(𝑚∗
𝑇) − ℐ∞(𝑚∗

𝑇)
= ℐ𝑇(𝑚∗

𝑇) − ℐ𝑇(𝑚∗
∞)

+ ℐ𝑇(𝑚∗
∞) − ℐ∞(𝑚∗

∞)
+ ℐ∞(𝑚∗

∞) − ℐ∞(𝑚∗
𝑇)

= (ℐ𝑇(𝑚∗
𝑇) − ℐ𝑇(𝑚∗

∞)) + 𝐺+
𝑇 − 𝑅𝑇 .
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The third term in the final identity is the excess risk that we have just bounded; the
first termmay be bounded in the samemanner that we bounded the excess risk, noting
that integration with respect to 𝜇 is simply replaced by integration with respect to the
empirical measure generated by the trajectory data which, by assumption, is confined
to the attractor𝒜; the second term is simply 𝐺+

𝑇 . Thus the result follows. □

Proof of Theorem 5.2. By Assumption A1, with choice of 𝜑(𝑥) = ‖𝑚†(𝑥) − 𝑚∗
∞(𝑥)‖2,

√𝑇𝐺+
𝑇 converges in distribution to a scalar-valued centred Gaussian. By Lemma 8.1

and the Slutsky Lemma [57], √𝑇𝑅+𝑇 converges in distribution to a centred Gaussian
in ℝ𝑝. By the Cramer-Wold Theorem [57] √𝑇(𝑅+𝑇 , 𝐺+

𝑇 ) converges in distribution to a
centred Gaussian in ℝ𝑝+1.
The convergence in distribution results for excess risk 𝑅𝑇 and generalization error

|𝐺𝑇 | then follow from Lemma 8.2, under Assumption A1. Furthermore, by Lemma
8.1, there is constant 𝐶1 > 0 such that

limsup𝑇→∞(
𝑇

log log 𝑇 )
1
2 ‖𝑅+𝑇 ‖ ≤ 𝐶1;

similarly, possibly by enlarging 𝐶1, Assumption A1 gives

limsup𝑇→∞(
𝑇

log log 𝑇 )
1
2 |𝐺+

𝑇 | ≤ 𝐶1.

The desired almost sure bound on 𝑅𝑇 + |𝐺𝑇 | follows from Lemma 8.2. □

8.2. Proof of continuous-time ODE approximation theorem (general case).

Proof. Recall equation (5.13). ByAssumptionA6, for any 𝛿𝑜 > 0 there exist dimensions
𝑁𝑔 and 𝑁𝑚 and parameterizations 𝜃𝑔 ∈ ℝ𝑁𝑔 , 𝜃𝑚 ∈ ℝ𝑁𝑚 such that for any (𝑥, 𝑦) ∈
𝐵(0, 2𝜌𝑇), and in the maximum norm,

‖𝑔†(𝑥, 𝑦) − 𝑓2(𝑥, 𝑦; 𝜃𝑔)‖ ≤ 𝛿𝑜,
‖𝑚†(𝑥, 𝑦) − 𝑓1(𝑥, 𝑦; 𝜃𝑚)‖ ≤ 𝛿𝑜.

By using these, we can rewrite (5.13) as

(8.2)
̇𝑥 = 𝑓0(𝑥) + 𝑓1(𝑥, 𝑦; 𝜃𝑚) + 𝑒𝑥(𝑡),
̇𝑦 = 𝑓2(𝑥, 𝑦; 𝜃𝑔) + 𝑒𝑦(𝑡),

where, uniformly for (𝑥(0), 𝑦(0)) ∈ 𝐵(0, 𝜌0),
sup

𝑡∈[0,𝑇]
‖𝑒𝑦(𝑡)‖ ≤ 𝛿𝑜,

sup
𝑡∈[0,𝑇]

‖𝑒𝑥(𝑡)‖ ≤ 𝛿𝑜.

By removing the bounded error terms, we obtain the approximate system:

(8.3)
̇𝑥𝛿 = 𝑓0(𝑥𝛿) + 𝑓1(𝑥𝛿 , 𝑦𝛿 ; 𝜃𝑚),
̇𝑦𝛿 = 𝑓2(𝑥𝛿 , 𝑦𝛿 ; 𝜃𝑔).

Next, we obtain a stability bound on the discrepancy between the approximate system
(8.3) and the true system (originally written as (2.8) and re-formulated as (8.2)). First,
let 𝑤 = (𝑥, 𝑦), 𝑤𝛿 = (𝑥𝛿 , 𝑦𝛿) and define 𝐹 to be the concatenated right-hand-side
of (8.3). Note that 𝐹 is 𝐿−Lipschitz in the maximum norm on 𝐵(0, 2𝜌𝑇), for some 𝐿
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related to the Lipschitz continuity of 𝑓0, 𝑓1, and 𝑓2. Then we can write the true and
approximate systems, respectively, as (using the maximum norm)

𝑤̇ = 𝐹(𝑤) + 𝑒𝑤(𝑡),(8.4a)
𝑤̇𝛿 = 𝐹(𝑤𝛿),(8.4b)

where
sup

𝑡∈[0,𝑇]
‖𝑒𝑤(𝑡)‖ ≤ sup

𝑡∈[0,𝑇]
‖𝑒𝑦(𝑡)‖ + sup

𝑡∈[0,𝑇]
‖𝑒𝑥(𝑡)‖ ≤ 2𝛿𝑜.

Let 𝑃𝑤 = (𝑥, 𝑦). Then, for any 𝑡 ∈ [0, 𝑇], and for all 𝑃𝑤(0), 𝑃𝑤𝛿(0) ∈ 𝐵(0, 𝜌0)

‖𝑤(𝑡) − 𝑤𝛿(𝑡)‖ ≤ ‖
‖𝑤(0) − 𝑤𝛿(0)‖‖ +∫

𝑡

0

‖
‖𝑒𝑤(𝑠)

‖
‖𝑑𝑠 +∫

𝑡

0

‖
‖𝐹(𝑤(𝑠)) − 𝐹(𝑤𝛿(𝑠))‖‖𝑑𝑠.

This follows by writing (8.4) in integrated form, subtracting and taking norms. Using
the facts that ‖‖𝑒𝑤(𝑠)

‖
‖ ≤ 2𝛿𝑜 and 𝐹 is 𝐿−Lipschitz we obtain, for 𝑡 ∈ [0, 𝑇],

‖
‖𝑤(𝑡) − 𝑤𝛿(𝑡)‖‖ ≤

‖
‖𝑤(0) − 𝑤𝛿(0)‖‖ + 2𝛿𝑜𝑇 + 𝐿∫

𝑡

0

‖
‖𝑤(𝑠) − 𝑤𝛿(𝑠)‖‖𝑑𝑠.

By the integral form of the Gronwall Lemma, it follows that for all 𝑡 ∈ [0, 𝑇]:

‖
‖𝑤(𝑡) − 𝑤𝛿(𝑡)‖‖ ≤ [‖𝑤(0) − 𝑤𝛿(0)‖ + 2𝛿𝑜𝑇] exp(𝐿𝑡).

Thus,
sup

𝑡∈[0,𝑇]
‖
‖𝑤(𝑡) − 𝑤𝛿(𝑡)‖‖ ≤ [‖𝑤(0) − 𝑤𝛿(0)‖ + 2𝛿𝑜𝑇] exp(𝐿𝑇).

By choice of initial conditions and 𝛿𝑜 sufficiently small we can achieve a 𝛿 > 0 approx-
imation. Finally, we note that the approximate system (8.3) is a function of parameter
𝜃𝛿 = [𝜃𝑚, 𝜃𝑔] ∈ ℝ𝑁𝛿 with 𝑛𝛿 = 𝑁𝑔 + 𝑁𝑚. □

8.3. Proof of continuous-timeRNNapproximation theorem (linear in observa-
tion).

Proof. Recall equation (5.13). By approximation theory by means of two-layer feed-
forward neural networks [34], for any 𝛿𝑜 > 0 there exist embedding dimensions 𝑁𝑔
and 𝑁ℎ and parameterizations

𝜃𝑔 = {𝐶𝑔 ∈ ℝ𝑑𝑦×𝑁𝑔 , 𝐵𝑔 ∈ ℝ𝑁𝑔×𝑑𝑥 , 𝐴𝑔 ∈ ℝ𝑁𝑔×𝑑𝑦 , 𝑐𝑔 ∈ ℝ𝑁𝑔 },
𝜃ℎ = {𝐶ℎ ∈ ℝ𝑑𝑥×𝑁ℎ , 𝐵ℎ ∈ ℝ𝑁ℎ×𝑑𝑥 , 𝐴ℎ ∈ ℝ𝑁ℎ×𝑑𝑦 , 𝑐ℎ ∈ ℝ𝑁ℎ }

such that for any (𝑥, 𝑦) ∈ 𝐵(0, 2𝜌𝑇), and in the maximum norm,

‖𝑔†(𝑥, 𝑦) − 𝐶𝑔𝜎(𝐵𝑔𝑥 + 𝐴𝑔𝑦 + 𝑐𝑔)‖ ≤ 𝛿𝑜,
‖ℎ†(𝑥, 𝑦) − 𝐶ℎ𝜎(𝐵ℎ𝑥 + 𝐴ℎ𝑦 + 𝑐ℎ)‖ ≤ 𝛿𝑜.

Without loss of generality we may assume that 𝐶𝑔 and 𝐶ℎ have full rank since, if they
do not, arbitrarily small changes can be made which restore full rank. By using these
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parameterizations and embedding dimensions, we can rewrite (5.13) as

(8.5)
̇𝑥 = 𝑓0(𝑥) + 𝑚,
̇𝑦 = 𝐶𝑔𝜎(𝐵𝑔𝑥 + 𝐴𝑔𝑦 + 𝑐𝑔) + 𝑒𝑦(𝑡),

𝑚̇ = 𝐶ℎ𝜎(𝐵ℎ𝑥 + 𝐴ℎ𝑦 + 𝑐ℎ) + 𝑒𝑚†(𝑡).

where, uniformly for (𝑥(0), 𝑦(0)) ∈ 𝐵(0, 𝜌0),
sup

𝑡∈[0,𝑇]
‖𝑒𝑦(𝑡)‖ ≤ 𝛿𝑜,

sup
𝑡∈[0,𝑇]

‖𝑒𝑚†(𝑡)‖ ≤ 𝛿𝑜.

By removing the bounded error terms, we obtain the approximate system:

(8.6)
̇𝑥𝛿 = 𝑓0(𝑥𝛿) + 𝑚𝛿 ,
̇𝑦𝛿 = 𝐶𝑔𝜎(𝐵𝑔𝑥𝛿 + 𝐴𝑔𝑦𝛿 + 𝑐𝑔),

𝑚̇𝛿 = 𝐶ℎ𝜎(𝐵ℎ𝑥𝛿 + 𝐴ℎ𝑦𝛿 + 𝑐ℎ).

Here𝑚𝛿(𝑡) is initialized at𝑚†(𝑥(0), 𝑦(0)). Next, we obtain a stability bound on the dis-
crepancy between the approximate system (8.6) and the true system (originally written
as (2.8) and re-formulated as (8.5)). First, let 𝑤 = (𝑥, 𝑦,𝑚), 𝑤𝛿 = (𝑥𝛿 , 𝑦𝛿 , 𝑚𝛿) and de-
fine 𝐹 to be the concatenated right-hand-side of (8.6). Note that 𝐹 is 𝐿−Lipschitz in
the maximum norm, for some 𝐿 related to the Lipschitz continuity of 𝑓0, approxima-
tion parameterization 𝜃𝛿 , and regularity of nonlinear activation function 𝜎. Then we
can write the true and approximate systems, respectively, as

𝑤̇ = 𝐹(𝑤) + 𝑒𝑤(𝑡),(8.7a)
𝑤̇𝛿 = 𝐹(𝑤𝛿),(8.7b)

where
sup

𝑡∈[0,𝑇]
‖𝑒𝑤(𝑡)‖ ≤ sup

𝑡∈[0,𝑇]
‖𝑒𝑦(𝑡)‖ + sup

𝑡∈[0,𝑇]
‖𝑒𝑚†(𝑡)‖ ≤ 2𝛿𝑜.

Let 𝑃𝑤 = (𝑥, 𝑦) and 𝑃⟂𝑤 = 𝑚; recall that 𝑃⟂𝑤(0) is defined in terms of 𝑃𝑤(0). Then,
for any 𝑡 ∈ [0, 𝑇], and for all 𝑃𝑤(0), 𝑃𝑤𝛿(0) ∈ 𝐵(0, 𝜌0)

‖𝑤(𝑡) − 𝑤𝛿(𝑡)‖ ≤ ‖
‖𝑤(0) − 𝑤𝛿(0)‖‖ +∫

𝑡

0

‖
‖𝑒𝑤(𝑠)

‖
‖𝑑𝑠 +∫

𝑡

0

‖
‖𝐹(𝑤(𝑠)) − 𝐹(𝑤𝛿(𝑠))‖‖𝑑𝑠.

By following the logic in Section 8.2, we have

sup
𝑡∈[0,𝑇]

‖
‖𝑤(𝑡) − 𝑤𝛿(𝑡)‖‖ ≤ [‖𝑤(0) − 𝑤𝛿(0)‖ + 2𝛿𝑜𝑇] exp(𝐿𝑇).

By choice of initial conditions and 𝛿𝑜 sufficiently small we can achieve a 𝛿 > 0 approx-
imation.
Finally, we note that the approximate system (8.6) may be written as a recurrent

neural network of form (5.11) as follows. Consider the equations

(8.8)
̇𝑥𝛿 = 𝑓0(𝑥𝛿) + 𝐶ℎ𝑛𝛿 ,
̇𝑧𝛿 = 𝜎(𝐵𝑔𝑥𝛿 + 𝐴𝑔𝐶𝑔𝑧𝛿 + 𝑐𝑔),
̇𝑛𝛿 = 𝜎(𝐵ℎ𝑥𝛿 + 𝐴ℎ𝐶𝑔𝑧𝛿 + 𝑐ℎ),
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where we have defined (𝑧𝛿 , 𝑛𝛿) in terms of (𝑦𝛿 , 𝑚𝛿) by 𝑦𝛿 = 𝐶𝑔𝑧𝛿 and 𝑚𝛿 = 𝐶ℎ𝑛𝛿 .
Now note that (8.8) is equivalent to (5.11), with recurrent state 𝑟𝛿 and parameters 𝜃𝛿
given by:

• 𝑟𝛿 = [𝑧𝛿𝑛𝛿
]

• 𝐶𝛿 = [0 𝐶ℎ]

• 𝐵𝛿 = [𝐵𝑔𝐵ℎ
]

• 𝐴𝛿 = [𝐴𝑔𝐶𝑔 0
𝐴ℎ𝐶𝑔 0]

• 𝑐𝛿 = [𝑐𝑔𝑐ℎ
]

Any initial condition on (𝑦𝛿(0),𝑚𝛿(0))may be achieved by choice of initializations for
(𝑧𝛿(0), 𝑛𝛿(0)), since 𝐶𝑔, 𝐶ℎ are of full rank. □

8.4. Random feature approximation. Random feature methods lead to function
approximation for mappings between Hilbert spaces 𝑋 → 𝑌 . They operate by con-
structing a probability space (Θ, 𝜈, ℱ) with Θ ⊆ ℝ𝑝 and feature map 𝜑∶ 𝑋 × Θ → 𝑌
such that 𝑘(𝑥, 𝑥′) ≔ 𝔼𝜗[𝜑(𝑥; 𝜗) ⊗ 𝜑(𝑥′; 𝜗)] ∈ ℒ(𝑌, 𝑌) forms a reproducing kernel in
an associated reproducing kernel Hilbert space (RKHS)𝐾. Solutions are sought within
span{𝜑(⋅ ; 𝜗𝑙)}𝑚𝑙=1 where the {𝜗𝑙} are picked i.i.d. at random. Theory supporting the ap-
proach was established in finite dimensions by Rahimi and Recht [131]; the method
was recently applied in the infinite dimensional setting in [113].
We now explain the precise random features setting adopted in Section 5, and hy-

pothesis classes given by (5.1) and (5.6). We startwith random feature functions𝜑(⋅ ; 𝜗)∶
ℝ𝑑𝑥 → ℝ, with 𝜗 = [𝑤, 𝑏],

(8.9)
𝑤 ∈ ℝ𝑑𝑥 ∼ 𝒰(−𝜔, 𝜔),
𝑏 ∈ ℝ ∼ 𝒰(−𝛽, 𝛽),

𝜑(𝑥; 𝑤, 𝑏) ≔ tanh(𝑤𝑇𝑥 + 𝑏),

and 𝜔, 𝛽 > 0. We choose 𝐷 i.i.d. draws of 𝑤, 𝑏, and stack the resulting random feature
functions to form the map 𝜙(𝑥)∶ ℝ𝑑𝑥 → ℝ𝐷 given by

𝜙(𝑥) ≔ [𝜑(𝑥; 𝑤1, 𝑏𝑤) . . . 𝜑(𝑥; 𝑤𝐷, 𝑏𝐷)]
𝑇 .

We define hypothesis class (5.1) by introducing matrix 𝐶∶ ℝ𝐷 → ℝ𝑑𝑥 and seeking
approximation to model error in the form𝑚(𝑥) = 𝐶𝜙(𝑥) by optimizing a least squares
function over matrix 𝐶. This does not quite correspond to the random features model
with 𝑋 = 𝑌 = ℝ𝑑𝑥 because, when written as a linear span of vector fields mappingℝ𝑑𝑥

into itself, the vector fields are not independent. Nonetheless we found this approach
convenient in practice and employ it in our numerics.
To align with the random features model with 𝑋 = 𝑌 = ℝ𝑑𝑥 , we choose 𝐷 = 𝑑𝑥

and draw 𝑝 functions 𝜙(⋅), labelled as {𝑓ℓ(⋅)} i.i.d. at random from the preceding con-
struction, leading to hypothesis class (5.6): we then seek approximation to model error
in the form 𝑚(𝑥) = ∑𝑝

ℓ=1 𝜃ℓ𝑓ℓ(𝑥). We find this form of random features model most
convenient to explain the learning theory perspective on model error.
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8.5. Derivation of Tikhonov-regularized linear inverse problem. Here, we
show that optimization of (5.2)

𝒥𝑇(𝐶) =
1
2𝑇 ∫

𝑇

0

‖
‖ ̇𝑥(𝑡) − 𝑓0(𝑥) − 𝐶𝜙(𝑥(𝑡))‖‖

2
𝑑𝑡 + 𝜆

2‖𝐶‖
2

reduces to a Tikhonov-regularized linear inverse problem. Since (5.5) is quadratic in𝐶,
there exists a unique global minimizer for 𝐶∗ such that 𝜕𝒥𝑇

𝜕𝐶 (𝐶∗) = 0. The minimizer
𝐶∗ satisfies:

(𝑍 + 𝜆𝐼)𝐶𝑇 = 𝑌,
where

𝑍 = [𝜙 ⊗ 𝜙]𝑇 ,

𝑌 = [𝜙 ⊗ ( ̇𝑥 − 𝑓0)]𝑇 ,
and

[𝐴 ⊗ 𝐵]𝑡 ≔ 𝐴(𝑡)𝐵𝑇(𝑡),

𝐴𝑇 ≔
1
𝑇 ∫

𝑇

0
𝐴(𝑡)𝑑𝑡

for 𝐴(𝑡) ∈ ℝ𝑚×𝑛, 𝐵(𝑡) ∈ ℝ𝑚×𝑙.
To see this, observe that

𝒥𝑇(𝐶) =
1
2𝑇 ∫

𝑇

0
‖ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)) − 𝐶𝜙(𝑥(𝑡))‖2𝑑𝑡 + 𝜆

2‖𝐶‖
2

= 1
2𝑇 ∫

𝑇

0
‖ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡))‖2,

+ ⟨𝐶𝜙(𝑥(𝑡)), 𝐶𝜙(𝑥(𝑡))⟩ − 2⟨ ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡)), 𝐶𝜙(𝑥(𝑡))⟩𝑑𝑡 +
𝜆
2 ⟨𝐶, 𝐶⟩

and

𝜕𝒥𝑇(𝐶)
𝜕𝐶 = 1

2𝑇 ∫
𝑇

0
2𝐶[𝜙(𝑥(𝑡)) ⊗ 𝜙(𝑥(𝑡))] − 2[( ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡))) ⊗ 𝜙(𝑥(𝑡))]𝑑𝑡 + 𝜆𝐶.

By setting the gradient to zero, we see that

𝐶[ 1𝑇 ∫
𝑇

0
[𝜙(𝑥(𝑡)) ⊗ 𝜙(𝑥(𝑡))]𝑑𝑡 + 𝜆𝐼] = 1

𝑇 ∫
𝑇

0
[( ̇𝑥(𝑡) − 𝑓0(𝑥(𝑡))) ⊗ 𝜙(𝑥(𝑡))]𝑑𝑡.

Finally, we can take the transpose of both sides, apply our definitions of 𝑌, 𝑍, and
use symmetry of 𝑍 to get

[𝑍 + 𝜆𝐼]𝐶𝑇 = 𝑌.
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