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1. ABSTRACT  34 

Distributed computing is a necessity for conducting cross-disciplinary research 35 

where field-specific computational models (simulators) are available, but have not been 36 

designed to work together. An example of this is natural hazards research. Simulators 37 

abound in the disparate fields that fall under this area, e.g. social science, engineering, 38 

economics, and health, but little progress has been made to integrate the simulators to study 39 

overarching and cross-disciplinary disaster scenarios. The reason for slow penetration of 40 

this technology is the high barrier to entry, which requires extensive knowledge of 41 

computer science and programming. Building upon an existing platform named Simple 42 

Run Time Infrastructure (SRTI v1), a new, fundamentally different version (SRTI v2) is 43 

developed to address the issues mentioned above. Designed to provide a low barrier to use, 44 

SRTI v2 is developed for users with limited programming experience and designed to 45 

simplify and streamline a user’s effort to compose a distributed simulation and handle time 46 

management. To achieve this primary objective, pre-compiled components are provided 47 

including the RTI Management Server, RTI Wrapper, and a GUI. By exploiting these pre-48 

compiled components, users can compose a scalable distributed simulation with 49 

heterogeneous computational models. To demonstrate the concepts behind SRTI, a cross-50 

language simulation, modified and extended from a time-dependent resilience analysis of 51 

an electric power system in the literature, is presented to show the scalability and usability 52 

of SRTI.  Features of the different versions of SRTI are discussed and useful features to 53 

develop in the future are outlined. 54 

 55 
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2. INTRODUCTION 56 

Distributed simulation links independent simulators that execute on the same and/or 57 

separate processors to conduct an overarching analysis of a large-scale simulation system 58 

comprised of the simulators [1]. A common characteristics of distributed simulations is 59 

that they help users cut across disparate disciplines, in which one or more of the simulators 60 

are rooted. The need for distributed simulation exists in research areas that are broadly 61 

multi-disciplinary, such as natural hazards and defense.  62 

Distributed simulation techniques and tools have been under development for the 63 

past three decades. Most of the tools are based on the publish-subscribe principle for 64 

message transmission between simulators. One of the earliest tools is the Distributed 65 

Interactive Simulation (DIS) platform [2] developed by the US Department of Defense. 66 

High-Level Architecture (HLA) is a set of standards [3-5] for building distributed 67 

simulation tools. Unlike DIS, where simulators deal directly with one another, HLA relies 68 

on a central manager (middleware), called Run-Time Infrastructure (RTI), to handle 69 

message transmission. The Test and Training Enabling Architecture (TENA) is similar to 70 

HLA and also uses a middleware to organize message communication. Other techniques 71 

are Distributed Data Services (DDS) [6] and Lightweight Communication and Marshalling 72 

(LCM) [7]. The distributed simulation concept also has been applied locally in laboratories 73 

as an experimental testing technique, i.e. hybrid simulation. For example, OpenFresco (the 74 

Open-source Framework for Experimental Setup and Control) [8] is a software framework 75 

designed for connecting finite element models and the physical portion of 76 

structural/geotechnical systems to facilitate various experimental setups, control, and data 77 

acquisition. Some newer tools, such as Google Protocol Buffers [9], operate like LCM. All 78 
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of these platforms require extensive user knowledge in order to operate them and therefore 79 

offer a high barrier to entry for non-specialized users.  80 

To facilitate broader usage of distributed computing, especially by lay users, the 81 

intent of this paper is to describe fundamental modifications made to an existing free, open-82 

source distributed simulation platform (SRTI v1) that substantially reduces the barrier for 83 

use. The open source software, which has some architectural similarities to HLA, was 84 

developed to investigate hazard mitigation and multidisciplinary interactions in community 85 

resilience, but it could be repurposed for other fields. The tool is available as a pre-86 

compiled application for quick deployment and integration. Treated as a black box 87 

accessed through API (application programming interface) function calls, a user can edit 88 

the open-source code or rewrite components to support additional programming languages.  89 

In the following sections, the history and features of SRTI are discussed first then 90 

the SRTI framework is provided from a high-level overview to the details of its constituent 91 

components. A cross-language resilience analysis of an electric power system subjected to 92 

an earthquake is used to showcase SRTI’s user friendliness, scalability and flexibility. 93 

Finally, the unique features of SRTI and potential new ones that could be developed are 94 

discussed. 95 

3. HISTORY OF SRTI 96 

The concept generation and technical development of SRTI have been under 97 

development since 2016 [10]. The initial approach to the development of SRTI focused on 98 

a purely data-transmission system based on the JSON format (SRTI v1), but it did not apply 99 

mandatory rules on the simulators for time management [11]. While highly flexible for 100 
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composing simulations, this approach required users to embed time-related information 101 

within the transmitted messages. This additional requirement made the barrier for use quite 102 

high, as users needed to be familiar with computer programming and the inner workings 103 

of the platform.  104 

To address the additional time management requirements and enable a plug-and-105 

play approach to composing simulations, a new version of the SRTI (v2) that is 106 

fundamentally different in its approach was developed. Unlike the earlier version of the 107 

SRTI that required users to add code into their simulators to allow them to access SRTI, 108 

the new version simply requires users to prepare a configuration file. This configuration 109 

file can be edited in any common ASCII text editor and provides the definition of the 110 

simulators, messages, and their publish/subscribe relationships. To further facilitate ease-111 

of-use, an optional SRTI graphical user interface (GUI) was developed to assist the used 112 

in constructing these configuration files. By using the GUI, users can describe their 113 

simulator through an interactive graphic interface and export the necessary configuration 114 

files. It also allows users to launch and execute the RTI Management Server and simulators 115 

through the same interface. Moreover, the SRTI GUI helps users inspect the content of 116 

messages and time step during the execution of the simulation.  Aside from lowering the 117 

barrier for use for lay users, the use of text-editable configuration files in the new version 118 

of SRTI allows users explicit control for time-dependent simulations for which time 119 

synchronization between multiple simulators and phase changes are required. 120 

 121 
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4. FRAMEWORK DESCRIPTION 122 

SRTI v2 consists of a series of software tools that not only focus on data-transfer 123 

between computer programs, but also assist in the construction of simulation scenarios. In 124 

addition to data management, SRTI v2 was designed with the purpose of managing 125 

simulator actions and time synchronization between multiple simulators inside a larger 126 

complex simulation system, while maintaining user accessibility to easily replace or edit 127 

components of the system.  128 

A high-level view of the architecture of the SRTI v2 is shown in Figure 1Figure 1. 129 

To facilitate referral to the software, the version (v2) will be dropped in subsequent 130 

discussions. In addition to the RTI Server and RTI Lib API that existed in SRTI v1, the 131 

pre-compiled components added in SRTI v2 include the RTI Management Server, RTI 132 

Wrapper, and SRTI GUI. SRTI uses the RTI Management Server as the central node of a 133 

connected network, by which multiple instances of RTI Wrapper are connected. The RTI 134 

Wrapper handles the connection between user’s simulator and the RTI Management Server. 135 

The SRTI GUI assists users in defining the configuration file for each RTI Wrapper, and 136 

allows execution of the whole simulation system from a single place.   137 
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 138 

 139 

Figure 1. A high-level view of the architecture of the SRTI 140 
 141 
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RTI Management Server 142 

Publish-subscribe data transmission pattern and message format 143 

Connections between the RTI Management Server and the RTI Wrapper are made 144 

using sockets, allowing for connections both locally and over a network. By using a 145 

centralized ‘server’ instance, each simulator has a shared access point to connect to the 146 

larger simulation system, simplifying the method of initial connection. Messages are shared 147 

through a publish-subscribe model, as in the framework introduced by Lin et al. [12], where 148 

each connected simulator can choose which message(s) they should receive, by name. The 149 

RTI Management Server sends out a copy of any received message to all simulators 150 

subscribed to that message. Individual simulators can each publish one or more message 151 

types (differentiated by name). This design avoids direct integration of simulation models, 152 

which usually depends on the compatibility of programming languages and instead 153 

replaces that with a dependency on messages. It allows the user to remove or edit individual 154 

simulators from an existing simulation system, which is constructed via the SRTI 155 

(assuming that any significant messages are still sent by at least one simulator in the 156 

system). 157 

 Messages are formatted using standard JSON. Each message includes the following 158 

important key-value pairs: “name” (the name of the message), “content” (data the 159 

simulators share and receive), “source” (the name of the simulator it came from), 160 

“timestamp” (the computer system’s time when the message was sent), and “vTimestamp” 161 

(the virtual timestep for the simulation system). These (and other components used to 162 

handle additional features internally through the SRTI system) are used by the RTI 163 

Management Server and the RTI Wrapper to manage the system and to convey data in the 164 
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expected order. The RTI Wrapper helps prepare messages from each simulator to match 165 

this format, which is independent of the system platform and programming language of the 166 

simulators, allowing the users to focus on the data content itself. Several additional internal 167 

messages in this format are exclusively for the RTI Management Server and RTI Wrapper 168 

for managing simulator actions and time synchronization between multiple simulators.  169 

Time synchronization and simulation step/stage control 170 

 The RTI Management Server includes added logic at the server level that helps 171 

manage features specific to virtual simulation. This logic was added based on needs 172 

associated with possible simulation system requirements. One example is the concern of 173 

time synchronization: if simulator logic is dependent on the concept of time, but one 174 

simulator executes faster than others do in the simulation system, how can they be kept 175 

synchronized? The RTI Management Server keeps track of an internal virtual timestep that 176 

is shared in each message. This value does not increase until the RTI Management Server 177 

receives a “finish” confirmation from every active simulator. When this occurs, the virtual 178 

timestep is increased by one, and the RTI Management Server sends a message request to 179 

each RTI Wrapper to “start” the next step. This process repeats, preventing any single 180 

simulator from proceeding to the next step too early, while allowing for some 181 

computational parallelization where the user deems it possible. 182 

 This type of synchronization permits some additional variance to be controlled at 183 

the RTI Management Server-level. For example, it allows simulators to run in order before 184 

others in a certain step. It also supports the communication between simulators with 185 

heterogeneous time steps (i.e. step intervals can vary from simulator to simulator). 186 

Moreover, it supports complex simulation systems with different stages during execution, 187 
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where a different set of simulators may run at each stage and depend on the data from the 188 

previous stage. The RTI Management Server controls the activation and deactivation of the 189 

simulators at different stages. Control over the time step and simulation stage can be 190 

automated through the RTI Management Server by many controlling parameters, either 191 

defined inside a configuration file by users before the start of a system execution or inside 192 

subsequent messages during execution. The RTI Wrapper plays an important role in 193 

communicating these features to the RTI Management Server. 194 

RTI Wrapper 195 

 The RTI Wrapper is an important part of SRTI. As discussed in [13], in most 196 

existing distributed simulation platforms and data passing tools, the user must modify the 197 

internal code of their simulator to connect to a larger system using specific instructions. 198 

While this feature remains in the SRTI to allow for customizability for experienced users, 199 

most users will utilize the RTI Wrapper. The RTI Wrapper handles both the connection to 200 

the RTI Management Server and to the user’s simulator code itself. It accomplishes this 201 

task by reading and writing variable data from the simulator during execution and sharing 202 

it with the larger simulation system. In ideal situations, the simulator code does not need 203 

to be modified at all, and even the RTI Wrapper itself will not need to be edited or 204 

recompiled. 205 

 To accomplish its function, the RTI Wrapper primarily makes use of an object-206 

oriented programming concept called “reflection” [14-16]. This concept allows one 207 

computer program to inspect public variables and functions inside another program and 208 

make use of them by name. It typically allows references with names defined at runtime, 209 

after compilation. Therefore, the RTI Wrapper can be pre-compiled and distributed online 210 
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for users to simply download and run without compiling locally. The names of relevant 211 

variables and functions inside the user’s simulator can be defined externally inside a 212 

configuration file and then read as input at the beginning of the RTI Wrapper’s execution. 213 

The configuration file is saved in JSON format, and consists of a large set of parameters 214 

that can be defined by the user. A complete list of these parameters, including value type 215 

and definition, can be found in the documentation on the SRTI GitHub site [17].   216 

 There are advantages to using reflection in this solution. An RTI Wrapper is 217 

convenient to share with users, and ready to use with pre-compiled simulators. However, 218 

reflection across multiple languages is not a common feature, so unlike the RTI 219 

Management Server, the RTI Wrapper must be re-written in a new language for every 220 

computer language it needs to support. If new stability changes are made in the SRTI’s 221 

continued development, all versions of the RTI Wrapper must be updated, which becomes 222 

an issue for development scalability. Currently, RTI Wrapper versions for Java, Python, 223 

Matlab and NetLogo [18] have been prepared for public access. 224 

 Additionally, some compiled languages do not support reflection, such as C, C++ 225 

and Fortran, making this approach difficult. Without reflection, an RTI Wrapper’s source 226 

code would have to be modified to import and access a simulator’s functions, meant to 227 

work exclusively with that one simulator. This prevents a pre-compiled version from being 228 

released for certain languages and is different from previous versions of SRTI, which 229 

allowed support for virtually any computer language. 230 

Aside from reflection, the RTI Wrapper also assumes simulators are written with 231 

object-oriented design, or a similar alternative, such that specified variables and functions 232 

can be accessible. This design is not supported by all languages, or it may require 233 
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simulators to be written in a specific manner to that users may not be accustomed. Also, if 234 

important variables and simulators are ‘private’ rather than ‘public’ (a generally good 235 

practice in computer programming), and if the simulator is closed-sourced (unable to be 236 

modified and recompiled), then it may not be able to connect with the SRTI without 237 

extreme adaptation by the end user. 238 

 The RTI Wrapper utilizes user-defined parameters, including (but not limited to) 239 

values to determine how to publish and subscribe to messages from the RTI Management 240 

Server, how the data corresponds to simulator variables, when to execute, and what 241 

simulator functions to execute at each virtual timestep. The configuration file can be edited 242 

by hand in a text editor or through the SRTI GUI. The RTI Wrapper can handle translating 243 

and sending simulator variables in the following formats: Boolean, integer, double 244 

(decimal-precision numbers), strings (text), and multi-dimensional arrays of any of the 245 

previously listed formats. 246 

SRTI GUI 247 

 The last component for the SRTI is the GUI. The SRTI GUI (Figure 2Figure 2) has 248 

two primary functions: to help define the configuration file for each RTI Wrapper and to 249 

allow execution of the simulation system from a single place (within the GUI itself). Unlike 250 

the RTI Management Server and Wrapper, the SRTI GUI is optional. A simulation 251 

system’s configuration files can be edited by hand, and individual RTI Wrapper instances 252 

(for each simulator) can be started manually. However, the SRTI GUI greatly improves the 253 

workflow.  254 

   255 
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 256 

(a) 257 

  258 

(b) 259 

Figure 2. Screenshot of a simple project inside the SRTI GUI: (a) overview; (b) important 260 
details 261 

 262 
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 The GUI consists of an “Object Panel” on the left, a “Canvas” in the middle, and 263 

an “Inspector Panel” on the right. The Object Panel allows the user to define new simulators 264 

or messages to a given project, and then adds them to the Canvas to define how they will 265 

be executed. The Inspector Panel allows access to modify finer details for each individual 266 

simulator. Properties such as “publishing,” “subscribing” and “execution order” can be 267 

intuitively displayed with the canvas. Some features, such as describing a RTI Wrapper 268 

folder location, are defined through text-box input. The user is responsible to define the 269 

terminal command that will launch the Wrapper and allow simulator access for your 270 

corresponding language and operating system. First-time users will need to study the 271 

documentation of the SRTI [17] carefully to understand what properties exist and how to 272 

define them, with or without the GUI.   273 

 Project files for the GUI can be saved and reloaded. Individual simulators and 274 

messages in the project are copied and saved into individual files, allowing a user to import 275 

a previous simulator into a new project. A menu command allows for generating and 276 

outputting the expected RTI Wrapper configuration files in the corresponding file 277 

directories (same directory as each Wrapper and simulator). The user can choose to start 278 

the simulation system entirely from within the GUI, using “Play-mode” buttons at the top 279 

to launch the RTI Management Server (and each RTI Wrapper), start the simulation, pause 280 

and resume the simulation, or stop the simulation. Minimal feedback is provided in the 281 

GUI to show the system running, which simulator is currently in the process of finishing a 282 

step, and what recent messages were sent. Like the SRTI itself, distributed simulations 283 

across a local area network (LAN) or a wide area network (WAN) can be supported through 284 

the GUI, although extra steps are required to make an external computer accessible (or else, 285 
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to connect its simulators manually to a launched RTI Management Server without support 286 

from the GUI). Generally, editing and running the system locally on one machine is 287 

recommended for using the GUI as an all-in-one system. The GUI can be used to edit and 288 

output configuration files, but the user would need to copy those files to desired locations 289 

on high-performance servers and execute them one-by-one, using a terminal command for 290 

each of them. Some minor changes to each configuration file might be necessary. Since the 291 

GUI is an optional component of SRTI, an experienced user can still overcome any 292 

limitations the GUI has for different systems.  293 

 While the RTI Management Server was written in the Java programming language, 294 

the GUI was written in JavaScript, using the open-source Electron framework to compile 295 

it into a desktop app. This GUI is not necessarily the only one that can or will be produced 296 

for the SRTI, either internally or by a third-party. The SRTI GUI is treated as an additional 297 

simulator from the perspective of the RTI Management Server, one that subscribes to all 298 

messages (at this time, a RTI Wrapper or RTI Lib API was not written for the JavaScript 299 

language, so the necessary socket connection is hard-coded into the GUI app). It is meant 300 

to serve as an example, with source code available for modification and with the ability for 301 

users to create their own GUI from scratch to replace it. This approach is in line with the 302 

philosophy of the SRTI: to be open-source, convenient to use and straightforward to extend, 303 

either through new apps or through support of new languages. 304 

5. EXAMPLE: CROSS-LANGUAGE SIMULATION 305 

In this section, a cross-platform simulation of an electric power system subjected 306 

to an earthquake is conducted using SRTI (v2). To demonstrate the scalability and 307 

flexibility of SRTI, the time-dependent analysis of three interdependent lifeline systems in 308 
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[19] has been simplified to consider the electric power system only (Figure 3Figure 3). A 309 

Visualization Simulator written in NetLogo has been added to show the ability of the SRTI 310 

to connect simulators across multiple languages. Figure 4Figure 4 shows the simulation 311 

framework of the example, where the simulators written in Matlab are adapted from the 312 

authors’ previous work [19] 313 

 314 

Figure 3. Electric power system in Shelby County, Tennessee {Adapted from [19].} 315 
 316 

 317 
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Figure 4. Simulation framework of cross-language example 318 
 319 

Using the SRTI and GUI to conduct the simulation, the disaster event and post-320 

disaster recovery effort are represented by seven simulators that may run at one or both of 321 

the disaster and recovery phases, named Stage 0 and Stage 1, as shown in Figure 5Figure 322 

5 and Figure 6Figure 6. The time step of the disaster phase and recovery phase is taken as 323 

0.01 second and one day, respectively. 324 
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 325 

Figure 5. Simulators running du Stage 0: disaster phase 326 
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 327 

Figure 6. Simulators running during Stage 1: recovery phase 328 
 329 

During Stage 0 (i.e. disaster phase), the Scenario Simulator provides the 330 

coordinates and connectivity of the electric power system. The Hazard Simulator estimates 331 

ground motion magnitudes at the location of components, where the EQ2 case in [19] is 332 

adopted for considering an earthquake with a 5% probability of exceedance in 50 years. 333 
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The Damage Simulator obtains the physical damage of components using fragility 334 

functions from HAZUS-MH [20]. The Performance Simulator assesses the connectivity 335 

loss [19, 21] of the electric power system. The Recovery Simulator and Visualization 336 

Simulator subscribe to the messages from the Damage Simulator and Performance 337 

Simulator to update the damage state of components and the system performance, but they 338 

neither carry out calculations nor publish messages in this stage.   339 

During Stage 1, (i.e. recovery phase), the Strategy Simulator distributes limited 340 

recovery resources (15 units/day) to the damaged components in order of their priority, 341 

namely, the P strategy in [19]. The recovery priority of the damaged components in the 342 

electric power system is as follows: supply nodes, demand nodes, and links/pipelines. The 343 

Recovery Simulator estimates the progress of the physical reconstruction of the damage 344 

components based on whether they are allocated recovery resources at the current time step. 345 

The Performance Simulator keeps updating the system performance of lifelines based on 346 

the recovery progress and the Visualization Simulator subscribes to the messages from the 347 

Recovery Simulator and Performance Simulator to update the reconstruction progress and 348 

system performance. 349 

The active simulators and messages in each stage are listed in Table 1Table 1 and 350 

Table 2Table 2. The message “RTI_” referenced in the tables refers to a handful of private 351 

variables (including current timestep and stage) inside the “RTI Wrapper,” which has been 352 

adapted to use the same subscription pattern as normal messages for simplification. 353 

Simulators can decide whether to subscribe the “RTI_” message depending on their needs, 354 

e.g., dependency on timestep or stage. Except for the Visualization Simulator, which is 355 

implemented using NetLogo, the other simulators are written in Matlab language. The 356 
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detailed topological configuration of the lifeline system and the methodology of each 357 

simulator have been well documented in [19]. This article focuses primarily on the 358 

description of the procedure using the SRTI and GUI. 359 

 360 

Table 1. Active simulators and messages in Stage 0 361 
Simulator Published Message Subscribed Message 

Scenario Scenario RTI_ 

Hazard GroundMotion Scenario, RTI_ 

Damage Damage Scenario, GroundMotion, RTI_ 

Performance Performance Scenario, Damage, RTI_ 

Recovery - Scenario, Damage, RTI_ 

Visualization - Scenario, Damage, Performance, RTI_ 

 362 

Table 2. Active simulators and messages in Stage 1 363 
Simulator Published Message Subscribed Message 

Performance Performance Recovery, RTI_ 

Strategy Strategy Performance, RTI_ 

Recovery Recovery Strategy, RTI_ 

Visualization - Recovery, Performance, RTI_ 

 364 

As described in the documentation of the SRTI [17], the pre-compiled SRTI files 365 

can be downloaded from the public GitHub Site. The download should include the RTI 366 

Management Server, RTI Wrapper, and SRTI GUI, all of which can execute without 367 

explicitly installation (uncompressing files and setting system paths, etc.). In addition to 368 

saving the RTI Management Server and GUI in a file directory on their local machine, the 369 

user needs to prepare individual folders for each simulator that contain the executable file 370 

of the simulator and the corresponding Wrapper. For instance, 371 

o /Simulator_A/ 372 
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 SRTI_JavaWrapper_v2_00_00.jar 373 
 Simulator_A.jar 374 

o /Simulator_B/ 375 
 SRTI_NetLogoWrapper_v2_00_00.jar 376 
 Simulator_B.nlogo 377 

o /Simulator_C/ 378 
 SRTI_Wrapper_v2_00_00.m 379 
 Simulator_C.m 380 

o … 381 
 382 

After preparing the file system, the next step is to launch the SRTI GUI.exe whose 383 

layout is shown in Figure 2Figure 2. Simulators/messages can be created and defined 384 

through the GUI. Then, users can click the objects on the Object List to add well-defined 385 

simulators or messages to the Canvas for a given stage. Action toggle buttons can be used 386 

to define the publish/subscribe relationships between simulators and messages, as shown 387 

in Figure 5Figure 5 and Figure 6Figure 6. All the defined simulators, messages, and 388 

publish/subscribe relationships can then be saved as a .project file to be imported and edited 389 

in the future. User will find the other files with extensions as described in Table 3Table 3 390 

after saving a project. These files are coded in ASCII-text data format, typically 391 

representing a JSON object and can be read and edited in most text editors. Among them, 392 

the definition file of a simulator or message (i.e. .simdef and .mesdef) can be imported into 393 

a new project independently to prevent re-defining from scratch. 394 

 395 

Table 3. Description for different file extension 396 
File Extension Description 

.project Represents a single large JSON object that defines the full project. 1 of these files 
exists per project. 

.simdef Optional output file that describes a single simulator referenced in the .project file.  

.mesdef Optional output file that describes a single message referenced in the .project file.  

 397 
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The user can either run the simulation system within the SRTI GUI, or separately 398 

using a command line prompt to open each simulator one by one. To run the simulation 399 

directly within the GUI, the user needs to click “Export Execute Files” from Menu Bar, 400 

and then click on the “Power On” button (in the Execute Buttons section) to launch an 401 

instance of the RTI Management Server and the individual simulators. After allowing for 402 

a few seconds for everything to finish opening and ensuring all simulators are connected 403 

to the RTI Management Server successfully, the other buttons in the Execute Buttons 404 

section are available to click. “Play” will start/resume the simulation system, “Pause” will 405 

pause the simulation system, and “Stop” will close the RTI Management Server and the 406 

simulators.  407 

Other features of the SRTI GUI include being able to display the content of 408 

messages and system timestep in the inspector panel to better trace the system’s execution 409 

outside the individual simulators. In addition, while the simulation is running, the color of 410 

the simulator objects on the Canvas will change according to their status, as shown in 411 

Figure 7Figure 7. Blue indicates simulators that are waiting for the messages that they 412 

subscribe to, and red indicates simulators running their internal calculation. Figure 8Figure 413 

8 shows the progress of seismic damage and post-disaster recovery of the power system 414 

plotted by the NetLogo Visualization Simulator, where the blue, green, yellow, orange, and 415 

red colors indicate the non-, minor, moderate, extensive, and complete damage state of the 416 

lifeline components. Figure 9Figure 9 shows the time history of system performance 417 

plotted by the NetLogo Visualization Simulator. 418 

 419 
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 420 

Figure 7. Screenshot of SRTI GUI and NetLogo Visualization Simulator while the 421 
simulation is running 422 

 423 
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 424 

Figure 8. Progress of seismic damage and post-disaster recovery of electric power system 425 
 426 

 427 

Figure 9. System performance plotted by NetLogo Visualization Simulator 428 
 429 
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6. DISCUSSION AND FUTURE OPPORTUNITIES 430 

The concept of having a management simulator (Manager) to control the larger 431 

system (timesteps, executing specific simulators, etc.) is an intuitive method for designing 432 

simulations and controlling their complexity. Using the earlier versions of the SRTI (v1) 433 

[11, 22-24], a user would have had to send messages from a simulator to the RTI Server to 434 

a user’s management simulator, a long communication channel for a simple process. 435 

Putting the management logic within the RTI Management Server reduces the number of 436 

nodes the message(s) have to travel to, providing faster overall system execution despite 437 

speed not being an intended design factor of the SRTI. The downside of this management 438 

logic is the difficulty of creating a generalized management system: SRTI v2 can handle 439 

most design preferences, but does not allow unlimited control like the earlier versions of 440 

SRTI (1).  441 

To better support plug-and-play simulation, it is recommended that each individual 442 

simulator remain independent of each other. If one simulator is removed, or if something 443 

entirely different is added, the remaining simulators should still function as expected in 444 

that new context. Dependencies on time are possible, but also discouraged, so that the SRTI 445 

configuration files can more easily adapt different rates of time among different simulators.  446 

The case study in this article does not follow this mindset; it is not necessary, but is highly 447 

recommended. Simulation design varies greatly among different users, and these 448 

guidelines may be unintuitive for some of them to follow.  449 

The data content from each simulator is not absolute, and cannot represent 450 

everything that an additional (future, as-of-yet unknown) simulator might require. For 451 

certain research areas, creating a standard, strictly defined message format might be 452 
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necessary to help designers who want to extend a system with new simulators. This 453 

approach is against the open concept of the SRTI, but such rules can be defined and 454 

enforced while using the SRTI as middleware. Finding a balance between these lines of 455 

thought will invoke further discussion across different fields. 456 

The time management and synchronization of virtual simulations is commonly 457 

associated with artificial time. However, there is no reason a ‘real-time’ simulator (utilizing 458 

sensors in real space) cannot be used, or possibly a hybrid model of both virtual and real 459 

simulators inside a system. This type of simulation may require sending messages at 460 

different frequencies, an option that the SRTI fully supports.    461 

The choice to have the RTI Management Server be in control of executing the time 462 

management and message distribution, rather than having the RTI Wrapper be responsible 463 

for direct contact and connections with other Wrappers, helps ensure correct 464 

synchronization and simplicity in implementation at the expense of potential speed 465 

optimizations.  466 

The SRTI’s different versions have each been designed with such scalability and 467 

usability as its primary goals, ignoring the common goal of execution speed. Although 468 

there are some common strategies to increase performance such as optimizing data formats 469 

by local compilation or running simulators on the same local machine (not allowing 470 

network communication), these approaches conflict to the original goals of the SRTI. 471 

Therefore, systems that require frequent transfer of large packets of data should not use 472 

SRTI, unless they are capable of absorbing the extra execution time from this bottleneck.  473 

The SRTI is designed as a black-box system; an alternative version of the tool can be 474 

developed with efficiency in mind (using different protocols for communication, and 475 



28 
 

modifying ability to function across a network, are a couple strategies to achieve this) while 476 

maintaining similar API functions, to retain a similar level of usability.  477 

7. CONCLUSIONS  478 

SRTI is a real-time data transmission solution for distributed computational 479 

simulations that supports time-dependent simulations.  The original version of SRTI (v1) 480 

focused purely on data transmission between simulators and was not explicitly designed to 481 

cater to lay users. Using a fundamentally different architecture, a new version of SRTI (v2) 482 

was built to provide a low barrier to entry for user with limited programming experience, 483 

or for teams that are unable to modify their simulators to function natively as a single 484 

system. The new version was developed to address this issue through the use of a 485 

generalized RTI Wrapper design that does not require users to edit programming code. In 486 

the new version, the RTI Management Server is responsible for controlling of simulation 487 

step and stage. The RTI Wrapper handles the connections between the RTI Management 488 

Server and user’s simulator, and the message parsing. The SRTI GUI helps users prepare 489 

the configuration files for the RTI Wrapper, and allow users to launch simulators and 490 

execute simulation via the same graphic interface. The scalability and usability of the SRTI 491 

were demonstrated through a cross-language simulation of seismic damage and post-492 

disaster recovery of a lifeline system, exploiting the SRTI GUI. The SRTI encourages 493 

thoughtful simulator design free of strict dependencies and fosters interdisciplinary 494 

collaboration for computational simulation. 495 
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