
1

Simple Run-Time Infrastructure (SRTI): 1

An Accessible Distributed Computing Platform for Interdisciplinary 2

Simulation 3

 4

Szu-Yun Lin1, Andrew W. Hlynka2, Lichao Xu3, Hao Lu4, Omar A. Sediek5, Sherif El-5
Tawil6, Vineet R. Kamat7, Jason McCormick8, Carol C. Menassa9, Seymour M.J. Spence10, 6
Atul Prakash11, Benigno Aguirre12 7

 8
1Assistant Professor, Department of Civil Engineering, National Taiwan University, 9
Taipei, Taiwan; email: szuyunlin@ntu.edu.tw; corresponding author 10
2Research Area Specialist Senior, Office of Research, University of Michigan, Ann Arbor, 11
MI 48109, USA; email: ahlynka@umich.edu 12
3Ph.D., Department of Civil and Environmental Engineering, University of Michigan, 13
Ann Arbor, MI 48109, USA; email: lichaox@umich.edu 14
4Ph.D. Student, Department of Electrical Engineering and Computer Science, University 15
of Michigan, Ann Arbor, MI 48109, USA; email: harveylu@umich.edu 16
5Ph.D., Department of Civil and Environmental Engineering, University of Michigan, 17
Ann Arbor, MI 48109, USA; email: osediek@umich.edu 18
6Professor, Department of Civil and Environmental Engineering, University of Michigan, 19
Ann Arbor, MI 48109, USA; email: eltawil@umich.edu 20
7Professor, Department of Civil and Environmental Engineering, University of Michigan, 21
Ann Arbor, MI 48109, USA; email: vkamat@umich.edu 22
8Associate Professor, Department of Civil and Environmental Engineering, University of 23
Michigan, Ann Arbor, MI 48109, USA; email: jpmccorm@umich.edu 24
9Associate Professor, Department of Civil and Environmental Engineering, University of 25
Michigan, Ann Arbor, MI 48109, USA; email: menassa@umich.edu 26
10Associate Professor, Department of Civil and Environmental Engineering, University of 27
Michigan, Ann Arbor, MI 48109, USA; email: smjs@umich.edu 28
11Professor, Department of Electrical Engineering and Computer Science, University of 29
Michigan, Ann Arbor, MI 48109, USA; email: aprakash@umich.edu 30
12Emeritus Professor, Department of Sociology and Criminal Justice, University of 31
Delaware, Newark, DE 19716, USA; email: aguirre@udel.edu 32

 33

2

1. ABSTRACT 34

Distributed computing is a necessity for conducting cross-disciplinary research 35

where field-specific computational models (simulators) are available, but have not been 36

designed to work together. An example of this is natural hazards research. Simulators 37

abound in the disparate fields that fall under this area, e.g. social science, engineering, 38

economics, and health, but little progress has been made to integrate the simulators to study 39

overarching and cross-disciplinary disaster scenarios. The reason for slow penetration of 40

this technology is the high barrier to entry, which requires extensive knowledge of 41

computer science and programming. Building upon an existing platform named Simple 42

Run Time Infrastructure (SRTI v1), a new, fundamentally different version (SRTI v2) is 43

developed to address the issues mentioned above. Designed to provide a low barrier to use, 44

SRTI v2 is developed for users with limited programming experience and designed to 45

simplify and streamline a user’s effort to compose a distributed simulation and handle time 46

management. To achieve this primary objective, pre-compiled components are provided 47

including the RTI Management Server, RTI Wrapper, and a GUI. By exploiting these pre-48

compiled components, users can compose a scalable distributed simulation with 49

heterogeneous computational models. To demonstrate the concepts behind SRTI, a cross-50

language simulation, modified and extended from a time-dependent resilience analysis of 51

an electric power system in the literature, is presented to show the scalability and usability 52

of SRTI. Features of the different versions of SRTI are discussed and useful features to 53

develop in the future are outlined. 54

 55

3

2. INTRODUCTION 56

Distributed simulation links independent simulators that execute on the same and/or 57

separate processors to conduct an overarching analysis of a large-scale simulation system 58

comprised of the simulators [1]. A common characteristics of distributed simulations is 59

that they help users cut across disparate disciplines, in which one or more of the simulators 60

are rooted. The need for distributed simulation exists in research areas that are broadly 61

multi-disciplinary, such as natural hazards and defense. 62

Distributed simulation techniques and tools have been under development for the 63

past three decades. Most of the tools are based on the publish-subscribe principle for 64

message transmission between simulators. One of the earliest tools is the Distributed 65

Interactive Simulation (DIS) platform [2] developed by the US Department of Defense. 66

High-Level Architecture (HLA) is a set of standards [3-5] for building distributed 67

simulation tools. Unlike DIS, where simulators deal directly with one another, HLA relies 68

on a central manager (middleware), called Run-Time Infrastructure (RTI), to handle 69

message transmission. The Test and Training Enabling Architecture (TENA) is similar to 70

HLA and also uses a middleware to organize message communication. Other techniques 71

are Distributed Data Services (DDS) [6] and Lightweight Communication and Marshalling 72

(LCM) [7]. The distributed simulation concept also has been applied locally in laboratories 73

as an experimental testing technique, i.e. hybrid simulation. For example, OpenFresco (the 74

Open-source Framework for Experimental Setup and Control) [8] is a software framework 75

designed for connecting finite element models and the physical portion of 76

structural/geotechnical systems to facilitate various experimental setups, control, and data 77

acquisition. Some newer tools, such as Google Protocol Buffers [9], operate like LCM. All 78

4

of these platforms require extensive user knowledge in order to operate them and therefore 79

offer a high barrier to entry for non-specialized users. 80

To facilitate broader usage of distributed computing, especially by lay users, the 81

intent of this paper is to describe fundamental modifications made to an existing free, open-82

source distributed simulation platform (SRTI v1) that substantially reduces the barrier for 83

use. The open source software, which has some architectural similarities to HLA, was 84

developed to investigate hazard mitigation and multidisciplinary interactions in community 85

resilience, but it could be repurposed for other fields. The tool is available as a pre-86

compiled application for quick deployment and integration. Treated as a black box 87

accessed through API (application programming interface) function calls, a user can edit 88

the open-source code or rewrite components to support additional programming languages. 89

In the following sections, the history and features of SRTI are discussed first then 90

the SRTI framework is provided from a high-level overview to the details of its constituent 91

components. A cross-language resilience analysis of an electric power system subjected to 92

an earthquake is used to showcase SRTI’s user friendliness, scalability and flexibility. 93

Finally, the unique features of SRTI and potential new ones that could be developed are 94

discussed. 95

3. HISTORY OF SRTI 96

The concept generation and technical development of SRTI have been under 97

development since 2016 [10]. The initial approach to the development of SRTI focused on 98

a purely data-transmission system based on the JSON format (SRTI v1), but it did not apply 99

mandatory rules on the simulators for time management [11]. While highly flexible for 100

5

composing simulations, this approach required users to embed time-related information 101

within the transmitted messages. This additional requirement made the barrier for use quite 102

high, as users needed to be familiar with computer programming and the inner workings 103

of the platform. 104

To address the additional time management requirements and enable a plug-and-105

play approach to composing simulations, a new version of the SRTI (v2) that is 106

fundamentally different in its approach was developed. Unlike the earlier version of the 107

SRTI that required users to add code into their simulators to allow them to access SRTI, 108

the new version simply requires users to prepare a configuration file. This configuration 109

file can be edited in any common ASCII text editor and provides the definition of the 110

simulators, messages, and their publish/subscribe relationships. To further facilitate ease-111

of-use, an optional SRTI graphical user interface (GUI) was developed to assist the used 112

in constructing these configuration files. By using the GUI, users can describe their 113

simulator through an interactive graphic interface and export the necessary configuration 114

files. It also allows users to launch and execute the RTI Management Server and simulators 115

through the same interface. Moreover, the SRTI GUI helps users inspect the content of 116

messages and time step during the execution of the simulation. Aside from lowering the 117

barrier for use for lay users, the use of text-editable configuration files in the new version 118

of SRTI allows users explicit control for time-dependent simulations for which time 119

synchronization between multiple simulators and phase changes are required. 120

 121

6

4. FRAMEWORK DESCRIPTION 122

SRTI v2 consists of a series of software tools that not only focus on data-transfer 123

between computer programs, but also assist in the construction of simulation scenarios. In 124

addition to data management, SRTI v2 was designed with the purpose of managing 125

simulator actions and time synchronization between multiple simulators inside a larger 126

complex simulation system, while maintaining user accessibility to easily replace or edit 127

components of the system. 128

A high-level view of the architecture of the SRTI v2 is shown in Figure 1Figure 1. 129

To facilitate referral to the software, the version (v2) will be dropped in subsequent 130

discussions. In addition to the RTI Server and RTI Lib API that existed in SRTI v1, the 131

pre-compiled components added in SRTI v2 include the RTI Management Server, RTI 132

Wrapper, and SRTI GUI. SRTI uses the RTI Management Server as the central node of a 133

connected network, by which multiple instances of RTI Wrapper are connected. The RTI 134

Wrapper handles the connection between user’s simulator and the RTI Management Server. 135

The SRTI GUI assists users in defining the configuration file for each RTI Wrapper, and 136

allows execution of the whole simulation system from a single place. 137

7

 138

 139

Figure 1. A high-level view of the architecture of the SRTI 140
 141

8

RTI Management Server 142

Publish-subscribe data transmission pattern and message format 143

Connections between the RTI Management Server and the RTI Wrapper are made 144

using sockets, allowing for connections both locally and over a network. By using a 145

centralized ‘server’ instance, each simulator has a shared access point to connect to the 146

larger simulation system, simplifying the method of initial connection. Messages are shared 147

through a publish-subscribe model, as in the framework introduced by Lin et al. [12], where 148

each connected simulator can choose which message(s) they should receive, by name. The 149

RTI Management Server sends out a copy of any received message to all simulators 150

subscribed to that message. Individual simulators can each publish one or more message 151

types (differentiated by name). This design avoids direct integration of simulation models, 152

which usually depends on the compatibility of programming languages and instead 153

replaces that with a dependency on messages. It allows the user to remove or edit individual 154

simulators from an existing simulation system, which is constructed via the SRTI 155

(assuming that any significant messages are still sent by at least one simulator in the 156

system). 157

 Messages are formatted using standard JSON. Each message includes the following 158

important key-value pairs: “name” (the name of the message), “content” (data the 159

simulators share and receive), “source” (the name of the simulator it came from), 160

“timestamp” (the computer system’s time when the message was sent), and “vTimestamp” 161

(the virtual timestep for the simulation system). These (and other components used to 162

handle additional features internally through the SRTI system) are used by the RTI 163

Management Server and the RTI Wrapper to manage the system and to convey data in the 164

9

expected order. The RTI Wrapper helps prepare messages from each simulator to match 165

this format, which is independent of the system platform and programming language of the 166

simulators, allowing the users to focus on the data content itself. Several additional internal 167

messages in this format are exclusively for the RTI Management Server and RTI Wrapper 168

for managing simulator actions and time synchronization between multiple simulators. 169

Time synchronization and simulation step/stage control 170

 The RTI Management Server includes added logic at the server level that helps 171

manage features specific to virtual simulation. This logic was added based on needs 172

associated with possible simulation system requirements. One example is the concern of 173

time synchronization: if simulator logic is dependent on the concept of time, but one 174

simulator executes faster than others do in the simulation system, how can they be kept 175

synchronized? The RTI Management Server keeps track of an internal virtual timestep that 176

is shared in each message. This value does not increase until the RTI Management Server 177

receives a “finish” confirmation from every active simulator. When this occurs, the virtual 178

timestep is increased by one, and the RTI Management Server sends a message request to 179

each RTI Wrapper to “start” the next step. This process repeats, preventing any single 180

simulator from proceeding to the next step too early, while allowing for some 181

computational parallelization where the user deems it possible. 182

 This type of synchronization permits some additional variance to be controlled at 183

the RTI Management Server-level. For example, it allows simulators to run in order before 184

others in a certain step. It also supports the communication between simulators with 185

heterogeneous time steps (i.e. step intervals can vary from simulator to simulator). 186

Moreover, it supports complex simulation systems with different stages during execution, 187

10

where a different set of simulators may run at each stage and depend on the data from the 188

previous stage. The RTI Management Server controls the activation and deactivation of the 189

simulators at different stages. Control over the time step and simulation stage can be 190

automated through the RTI Management Server by many controlling parameters, either 191

defined inside a configuration file by users before the start of a system execution or inside 192

subsequent messages during execution. The RTI Wrapper plays an important role in 193

communicating these features to the RTI Management Server. 194

RTI Wrapper 195

 The RTI Wrapper is an important part of SRTI. As discussed in [13], in most 196

existing distributed simulation platforms and data passing tools, the user must modify the 197

internal code of their simulator to connect to a larger system using specific instructions. 198

While this feature remains in the SRTI to allow for customizability for experienced users, 199

most users will utilize the RTI Wrapper. The RTI Wrapper handles both the connection to 200

the RTI Management Server and to the user’s simulator code itself. It accomplishes this 201

task by reading and writing variable data from the simulator during execution and sharing 202

it with the larger simulation system. In ideal situations, the simulator code does not need 203

to be modified at all, and even the RTI Wrapper itself will not need to be edited or 204

recompiled. 205

 To accomplish its function, the RTI Wrapper primarily makes use of an object-206

oriented programming concept called “reflection” [14-16]. This concept allows one 207

computer program to inspect public variables and functions inside another program and 208

make use of them by name. It typically allows references with names defined at runtime, 209

after compilation. Therefore, the RTI Wrapper can be pre-compiled and distributed online 210

11

for users to simply download and run without compiling locally. The names of relevant 211

variables and functions inside the user’s simulator can be defined externally inside a 212

configuration file and then read as input at the beginning of the RTI Wrapper’s execution. 213

The configuration file is saved in JSON format, and consists of a large set of parameters 214

that can be defined by the user. A complete list of these parameters, including value type 215

and definition, can be found in the documentation on the SRTI GitHub site [17]. 216

 There are advantages to using reflection in this solution. An RTI Wrapper is 217

convenient to share with users, and ready to use with pre-compiled simulators. However, 218

reflection across multiple languages is not a common feature, so unlike the RTI 219

Management Server, the RTI Wrapper must be re-written in a new language for every 220

computer language it needs to support. If new stability changes are made in the SRTI’s 221

continued development, all versions of the RTI Wrapper must be updated, which becomes 222

an issue for development scalability. Currently, RTI Wrapper versions for Java, Python, 223

Matlab and NetLogo [18] have been prepared for public access. 224

 Additionally, some compiled languages do not support reflection, such as C, C++ 225

and Fortran, making this approach difficult. Without reflection, an RTI Wrapper’s source 226

code would have to be modified to import and access a simulator’s functions, meant to 227

work exclusively with that one simulator. This prevents a pre-compiled version from being 228

released for certain languages and is different from previous versions of SRTI, which 229

allowed support for virtually any computer language. 230

Aside from reflection, the RTI Wrapper also assumes simulators are written with 231

object-oriented design, or a similar alternative, such that specified variables and functions 232

can be accessible. This design is not supported by all languages, or it may require 233

12

simulators to be written in a specific manner to that users may not be accustomed. Also, if 234

important variables and simulators are ‘private’ rather than ‘public’ (a generally good 235

practice in computer programming), and if the simulator is closed-sourced (unable to be 236

modified and recompiled), then it may not be able to connect with the SRTI without 237

extreme adaptation by the end user. 238

 The RTI Wrapper utilizes user-defined parameters, including (but not limited to) 239

values to determine how to publish and subscribe to messages from the RTI Management 240

Server, how the data corresponds to simulator variables, when to execute, and what 241

simulator functions to execute at each virtual timestep. The configuration file can be edited 242

by hand in a text editor or through the SRTI GUI. The RTI Wrapper can handle translating 243

and sending simulator variables in the following formats: Boolean, integer, double 244

(decimal-precision numbers), strings (text), and multi-dimensional arrays of any of the 245

previously listed formats. 246

SRTI GUI 247

 The last component for the SRTI is the GUI. The SRTI GUI (Figure 2Figure 2) has 248

two primary functions: to help define the configuration file for each RTI Wrapper and to 249

allow execution of the simulation system from a single place (within the GUI itself). Unlike 250

the RTI Management Server and Wrapper, the SRTI GUI is optional. A simulation 251

system’s configuration files can be edited by hand, and individual RTI Wrapper instances 252

(for each simulator) can be started manually. However, the SRTI GUI greatly improves the 253

workflow. 254

 255

13

 256

(a) 257

 258

(b) 259

Figure 2. Screenshot of a simple project inside the SRTI GUI: (a) overview; (b) important 260
details 261

 262

14

 The GUI consists of an “Object Panel” on the left, a “Canvas” in the middle, and 263

an “Inspector Panel” on the right. The Object Panel allows the user to define new simulators 264

or messages to a given project, and then adds them to the Canvas to define how they will 265

be executed. The Inspector Panel allows access to modify finer details for each individual 266

simulator. Properties such as “publishing,” “subscribing” and “execution order” can be 267

intuitively displayed with the canvas. Some features, such as describing a RTI Wrapper 268

folder location, are defined through text-box input. The user is responsible to define the 269

terminal command that will launch the Wrapper and allow simulator access for your 270

corresponding language and operating system. First-time users will need to study the 271

documentation of the SRTI [17] carefully to understand what properties exist and how to 272

define them, with or without the GUI. 273

 Project files for the GUI can be saved and reloaded. Individual simulators and 274

messages in the project are copied and saved into individual files, allowing a user to import 275

a previous simulator into a new project. A menu command allows for generating and 276

outputting the expected RTI Wrapper configuration files in the corresponding file 277

directories (same directory as each Wrapper and simulator). The user can choose to start 278

the simulation system entirely from within the GUI, using “Play-mode” buttons at the top 279

to launch the RTI Management Server (and each RTI Wrapper), start the simulation, pause 280

and resume the simulation, or stop the simulation. Minimal feedback is provided in the 281

GUI to show the system running, which simulator is currently in the process of finishing a 282

step, and what recent messages were sent. Like the SRTI itself, distributed simulations 283

across a local area network (LAN) or a wide area network (WAN) can be supported through 284

the GUI, although extra steps are required to make an external computer accessible (or else, 285

15

to connect its simulators manually to a launched RTI Management Server without support 286

from the GUI). Generally, editing and running the system locally on one machine is 287

recommended for using the GUI as an all-in-one system. The GUI can be used to edit and 288

output configuration files, but the user would need to copy those files to desired locations 289

on high-performance servers and execute them one-by-one, using a terminal command for 290

each of them. Some minor changes to each configuration file might be necessary. Since the 291

GUI is an optional component of SRTI, an experienced user can still overcome any 292

limitations the GUI has for different systems. 293

 While the RTI Management Server was written in the Java programming language, 294

the GUI was written in JavaScript, using the open-source Electron framework to compile 295

it into a desktop app. This GUI is not necessarily the only one that can or will be produced 296

for the SRTI, either internally or by a third-party. The SRTI GUI is treated as an additional 297

simulator from the perspective of the RTI Management Server, one that subscribes to all 298

messages (at this time, a RTI Wrapper or RTI Lib API was not written for the JavaScript 299

language, so the necessary socket connection is hard-coded into the GUI app). It is meant 300

to serve as an example, with source code available for modification and with the ability for 301

users to create their own GUI from scratch to replace it. This approach is in line with the 302

philosophy of the SRTI: to be open-source, convenient to use and straightforward to extend, 303

either through new apps or through support of new languages. 304

5. EXAMPLE: CROSS-LANGUAGE SIMULATION 305

In this section, a cross-platform simulation of an electric power system subjected 306

to an earthquake is conducted using SRTI (v2). To demonstrate the scalability and 307

flexibility of SRTI, the time-dependent analysis of three interdependent lifeline systems in 308

16

[19] has been simplified to consider the electric power system only (Figure 3Figure 3). A 309

Visualization Simulator written in NetLogo has been added to show the ability of the SRTI 310

to connect simulators across multiple languages. Figure 4Figure 4 shows the simulation 311

framework of the example, where the simulators written in Matlab are adapted from the 312

authors’ previous work [19] 313

 314

Figure 3. Electric power system in Shelby County, Tennessee {Adapted from [19].} 315
 316

 317

17

Figure 4. Simulation framework of cross-language example 318
 319

Using the SRTI and GUI to conduct the simulation, the disaster event and post-320

disaster recovery effort are represented by seven simulators that may run at one or both of 321

the disaster and recovery phases, named Stage 0 and Stage 1, as shown in Figure 5Figure 322

5 and Figure 6Figure 6. The time step of the disaster phase and recovery phase is taken as 323

0.01 second and one day, respectively. 324

18

 325

Figure 5. Simulators running du Stage 0: disaster phase 326

19

 327

Figure 6. Simulators running during Stage 1: recovery phase 328
 329

During Stage 0 (i.e. disaster phase), the Scenario Simulator provides the 330

coordinates and connectivity of the electric power system. The Hazard Simulator estimates 331

ground motion magnitudes at the location of components, where the EQ2 case in [19] is 332

adopted for considering an earthquake with a 5% probability of exceedance in 50 years. 333

20

The Damage Simulator obtains the physical damage of components using fragility 334

functions from HAZUS-MH [20]. The Performance Simulator assesses the connectivity 335

loss [19, 21] of the electric power system. The Recovery Simulator and Visualization 336

Simulator subscribe to the messages from the Damage Simulator and Performance 337

Simulator to update the damage state of components and the system performance, but they 338

neither carry out calculations nor publish messages in this stage. 339

During Stage 1, (i.e. recovery phase), the Strategy Simulator distributes limited 340

recovery resources (15 units/day) to the damaged components in order of their priority, 341

namely, the P strategy in [19]. The recovery priority of the damaged components in the 342

electric power system is as follows: supply nodes, demand nodes, and links/pipelines. The 343

Recovery Simulator estimates the progress of the physical reconstruction of the damage 344

components based on whether they are allocated recovery resources at the current time step. 345

The Performance Simulator keeps updating the system performance of lifelines based on 346

the recovery progress and the Visualization Simulator subscribes to the messages from the 347

Recovery Simulator and Performance Simulator to update the reconstruction progress and 348

system performance. 349

The active simulators and messages in each stage are listed in Table 1Table 1 and 350

Table 2Table 2. The message “RTI_” referenced in the tables refers to a handful of private 351

variables (including current timestep and stage) inside the “RTI Wrapper,” which has been 352

adapted to use the same subscription pattern as normal messages for simplification. 353

Simulators can decide whether to subscribe the “RTI_” message depending on their needs, 354

e.g., dependency on timestep or stage. Except for the Visualization Simulator, which is 355

implemented using NetLogo, the other simulators are written in Matlab language. The 356

21

detailed topological configuration of the lifeline system and the methodology of each 357

simulator have been well documented in [19]. This article focuses primarily on the 358

description of the procedure using the SRTI and GUI. 359

 360

Table 1. Active simulators and messages in Stage 0 361
Simulator Published Message Subscribed Message

Scenario Scenario RTI_

Hazard GroundMotion Scenario, RTI_

Damage Damage Scenario, GroundMotion, RTI_

Performance Performance Scenario, Damage, RTI_

Recovery - Scenario, Damage, RTI_

Visualization - Scenario, Damage, Performance, RTI_

 362

Table 2. Active simulators and messages in Stage 1 363
Simulator Published Message Subscribed Message

Performance Performance Recovery, RTI_

Strategy Strategy Performance, RTI_

Recovery Recovery Strategy, RTI_

Visualization - Recovery, Performance, RTI_

 364

As described in the documentation of the SRTI [17], the pre-compiled SRTI files 365

can be downloaded from the public GitHub Site. The download should include the RTI 366

Management Server, RTI Wrapper, and SRTI GUI, all of which can execute without 367

explicitly installation (uncompressing files and setting system paths, etc.). In addition to 368

saving the RTI Management Server and GUI in a file directory on their local machine, the 369

user needs to prepare individual folders for each simulator that contain the executable file 370

of the simulator and the corresponding Wrapper. For instance, 371

o /Simulator_A/ 372

22

 SRTI_JavaWrapper_v2_00_00.jar 373
 Simulator_A.jar 374

o /Simulator_B/ 375
 SRTI_NetLogoWrapper_v2_00_00.jar 376
 Simulator_B.nlogo 377

o /Simulator_C/ 378
 SRTI_Wrapper_v2_00_00.m 379
 Simulator_C.m 380

o … 381
 382

After preparing the file system, the next step is to launch the SRTI GUI.exe whose 383

layout is shown in Figure 2Figure 2. Simulators/messages can be created and defined 384

through the GUI. Then, users can click the objects on the Object List to add well-defined 385

simulators or messages to the Canvas for a given stage. Action toggle buttons can be used 386

to define the publish/subscribe relationships between simulators and messages, as shown 387

in Figure 5Figure 5 and Figure 6Figure 6. All the defined simulators, messages, and 388

publish/subscribe relationships can then be saved as a .project file to be imported and edited 389

in the future. User will find the other files with extensions as described in Table 3Table 3 390

after saving a project. These files are coded in ASCII-text data format, typically 391

representing a JSON object and can be read and edited in most text editors. Among them, 392

the definition file of a simulator or message (i.e. .simdef and .mesdef) can be imported into 393

a new project independently to prevent re-defining from scratch. 394

 395

Table 3. Description for different file extension 396
File Extension Description

.project Represents a single large JSON object that defines the full project. 1 of these files
exists per project.

.simdef Optional output file that describes a single simulator referenced in the .project file.

.mesdef Optional output file that describes a single message referenced in the .project file.

 397

23

The user can either run the simulation system within the SRTI GUI, or separately 398

using a command line prompt to open each simulator one by one. To run the simulation 399

directly within the GUI, the user needs to click “Export Execute Files” from Menu Bar, 400

and then click on the “Power On” button (in the Execute Buttons section) to launch an 401

instance of the RTI Management Server and the individual simulators. After allowing for 402

a few seconds for everything to finish opening and ensuring all simulators are connected 403

to the RTI Management Server successfully, the other buttons in the Execute Buttons 404

section are available to click. “Play” will start/resume the simulation system, “Pause” will 405

pause the simulation system, and “Stop” will close the RTI Management Server and the 406

simulators. 407

Other features of the SRTI GUI include being able to display the content of 408

messages and system timestep in the inspector panel to better trace the system’s execution 409

outside the individual simulators. In addition, while the simulation is running, the color of 410

the simulator objects on the Canvas will change according to their status, as shown in 411

Figure 7Figure 7. Blue indicates simulators that are waiting for the messages that they 412

subscribe to, and red indicates simulators running their internal calculation. Figure 8Figure 413

8 shows the progress of seismic damage and post-disaster recovery of the power system 414

plotted by the NetLogo Visualization Simulator, where the blue, green, yellow, orange, and 415

red colors indicate the non-, minor, moderate, extensive, and complete damage state of the 416

lifeline components. Figure 9Figure 9 shows the time history of system performance 417

plotted by the NetLogo Visualization Simulator. 418

 419

24

 420

Figure 7. Screenshot of SRTI GUI and NetLogo Visualization Simulator while the 421
simulation is running 422

 423

25

 424

Figure 8. Progress of seismic damage and post-disaster recovery of electric power system 425
 426

 427

Figure 9. System performance plotted by NetLogo Visualization Simulator 428
 429

26

6. DISCUSSION AND FUTURE OPPORTUNITIES 430

The concept of having a management simulator (Manager) to control the larger 431

system (timesteps, executing specific simulators, etc.) is an intuitive method for designing 432

simulations and controlling their complexity. Using the earlier versions of the SRTI (v1) 433

[11, 22-24], a user would have had to send messages from a simulator to the RTI Server to 434

a user’s management simulator, a long communication channel for a simple process. 435

Putting the management logic within the RTI Management Server reduces the number of 436

nodes the message(s) have to travel to, providing faster overall system execution despite 437

speed not being an intended design factor of the SRTI. The downside of this management 438

logic is the difficulty of creating a generalized management system: SRTI v2 can handle 439

most design preferences, but does not allow unlimited control like the earlier versions of 440

SRTI (1). 441

To better support plug-and-play simulation, it is recommended that each individual 442

simulator remain independent of each other. If one simulator is removed, or if something 443

entirely different is added, the remaining simulators should still function as expected in 444

that new context. Dependencies on time are possible, but also discouraged, so that the SRTI 445

configuration files can more easily adapt different rates of time among different simulators. 446

The case study in this article does not follow this mindset; it is not necessary, but is highly 447

recommended. Simulation design varies greatly among different users, and these 448

guidelines may be unintuitive for some of them to follow. 449

The data content from each simulator is not absolute, and cannot represent 450

everything that an additional (future, as-of-yet unknown) simulator might require. For 451

certain research areas, creating a standard, strictly defined message format might be 452

27

necessary to help designers who want to extend a system with new simulators. This 453

approach is against the open concept of the SRTI, but such rules can be defined and 454

enforced while using the SRTI as middleware. Finding a balance between these lines of 455

thought will invoke further discussion across different fields. 456

The time management and synchronization of virtual simulations is commonly 457

associated with artificial time. However, there is no reason a ‘real-time’ simulator (utilizing 458

sensors in real space) cannot be used, or possibly a hybrid model of both virtual and real 459

simulators inside a system. This type of simulation may require sending messages at 460

different frequencies, an option that the SRTI fully supports. 461

The choice to have the RTI Management Server be in control of executing the time 462

management and message distribution, rather than having the RTI Wrapper be responsible 463

for direct contact and connections with other Wrappers, helps ensure correct 464

synchronization and simplicity in implementation at the expense of potential speed 465

optimizations. 466

The SRTI’s different versions have each been designed with such scalability and 467

usability as its primary goals, ignoring the common goal of execution speed. Although 468

there are some common strategies to increase performance such as optimizing data formats 469

by local compilation or running simulators on the same local machine (not allowing 470

network communication), these approaches conflict to the original goals of the SRTI. 471

Therefore, systems that require frequent transfer of large packets of data should not use 472

SRTI, unless they are capable of absorbing the extra execution time from this bottleneck. 473

The SRTI is designed as a black-box system; an alternative version of the tool can be 474

developed with efficiency in mind (using different protocols for communication, and 475

28

modifying ability to function across a network, are a couple strategies to achieve this) while 476

maintaining similar API functions, to retain a similar level of usability. 477

7. CONCLUSIONS 478

SRTI is a real-time data transmission solution for distributed computational 479

simulations that supports time-dependent simulations. The original version of SRTI (v1) 480

focused purely on data transmission between simulators and was not explicitly designed to 481

cater to lay users. Using a fundamentally different architecture, a new version of SRTI (v2) 482

was built to provide a low barrier to entry for user with limited programming experience, 483

or for teams that are unable to modify their simulators to function natively as a single 484

system. The new version was developed to address this issue through the use of a 485

generalized RTI Wrapper design that does not require users to edit programming code. In 486

the new version, the RTI Management Server is responsible for controlling of simulation 487

step and stage. The RTI Wrapper handles the connections between the RTI Management 488

Server and user’s simulator, and the message parsing. The SRTI GUI helps users prepare 489

the configuration files for the RTI Wrapper, and allow users to launch simulators and 490

execute simulation via the same graphic interface. The scalability and usability of the SRTI 491

were demonstrated through a cross-language simulation of seismic damage and post-492

disaster recovery of a lifeline system, exploiting the SRTI GUI. The SRTI encourages 493

thoughtful simulator design free of strict dependencies and fosters interdisciplinary 494

collaboration for computational simulation. 495

29

ACKNOWLEDGEMENTS 496

This research was supported by the University of Michigan and the US National 497

Science Foundation (NSF) through grants ACI-1638186. 498

 499

30

TABLE OF FIGURES 500

Figure 1. A high-level view of the architecture of the SRTI 76 501

Figure 2. Screenshot of a simple project inside the SRTI GUI: (a) overview; (b) 502

important details .. 13 503

Figure 3. Electric power system in Shelby County, Tennessee {Adapted from 504

[18].} ... 16 505

Figure 4. Simulation framework of cross-language example 1716 506

Figure 5. Simulators running du Stage 0: disaster phase 1817 507

Figure 6. Simulators running during Stage 1: recovery phase 1918 508

Figure 7. Screenshot of SRTI GUI and NetLogo Visualization Simulator while the 509

simulation is running... 2423 510

Figure 8. Progress of seismic damage and post-disaster recovery of electric power 511

system ... 2524 512

Figure 9. System performance plotted by NetLogo Visualization Simulator ... 2524 513

 514

 515

31

TABLE OF TABLES 516

Table 1. Active simulators and messages in Stage 0 .. 2120 517

Table 2. Active simulators and messages in Stage 1 .. 2120 518

Table 3. Description for different file extension ... 2221 519

 520

32

REFERENCES 521

1. Fujimoto, R. Parallel and distributed simulation. in 2015 Winter Simulation 522

Conference (WSC). 2015. IEEE Press, Piscataway, NJ. 523

2. IEEE, IEEE Standard for Information Technology - Protocols for Distributed 524

Interactive Simulations Applications. Entity Information and Interaction. IEEE 525

Std 1278-1993, 1993. 526

3. IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level 527

Architecture (HLA)-- Federate Interface Specification. 2010, IEEE: New York, 528

NY. 529

4. IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level 530

Architecture (HLA)-- Framework and Rules. 2010, IEEE: New York, NY. 531

5. IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level 532

Architecture (HLA)-- Object Model Template (OMT) Specification. 2010, IEEE: 533

New York, NY. 534

6. OMG, Data Distribution Service (DDS), Version 1.4, O.M. Group, Editor. 2015, 535

Object Management Group. 536

7. LCM. Lightweight Communications and Marshalling (LCM). 2018 [cited 2018 537

Nov. 1]; Available from: https://lcm-proj.github.io/. 538

8. PEER. OpenFresco (the Open-source Framework for Experimental Setup and 539

Control). 2019 [cited 2019 December 1]; Available from: 540

https://openfresco.berkeley.edu/. 541

9. Google. Google Protocol Buffers. 2019 [cited 2019 Jan. 1]; Available from: 542

https://developers.google.com/protocol-buffers/. 543

33

10. ICoR. Interdependencies in Community Resilience (ICoR) Project. 2019 [cited 544

2019 Dec. 15]; Available from: https://icor.engin.umich.edu/. 545

11. Lin, S.-Y., et al., A Distributed Computational tool for Natural Hazards 546

Simulation, in 17th World Conference on Earthquake Engineering, 17WCEE. 547

2020: Sendai, Japan. 548

12. Lin, S.-Y., et al., Framework for Modeling Interdependent Effects in Natural 549

Disasters: Application to Wind Engineering Journal of Structural Engineering, 550

2019. 145(5): p. 04019025. 551

13. Xu, L., et al., Distributed Simulation Platforms and Data Passing Tools for 552

Natural Hazards Engineering: Reviews, Limitations, and Recommendations. 553

Advanced Engineering Informatics, under review, 2020. 554

14. Smith, B.C., Procedural Reflection in Programming Languages, in Dept. of 555

Electrical Engineering and Computer Science. 1982, Massachusetts Institute of 556

Technology: Cambridge, Massachusetts. 557

15. Smith, B.C., Reflection and semantics in a procedural language. 1982, 558

Massachusetts Institute of Technology: Cambridge, Massachusetts. 559

16. Ibrahim, M.H., REFLECTION IN OBJECT-ORIENTED PROGRAMMING. 560

International Journal on Artificial Intelligence Tools, 1992. 01(01): p. 117-136. 561

17. SRTI. Simple Run Time Infrastructure (SRTI). 2019 [cited 2019 Jan. 15]; 562

Available from: https://github.com/ICoR-code/SRTI. 563

18. Wilensky, U. NetLogo. Center for Connected Learning and Computer-Based 564

Modeling, Northwestern University. Evanston, IL. 1999 [cited 2019 April 26]; 565

Available from: http://ccl.northwestern.edu/netlogo/. 566

34

19. Lin, S.-Y. and S. El-Tawil, Time-Dependent Resilience Assessment of Seismic 567

Damage and Restoration of Interdependent Lifeline Systems. Journal of 568

Infrastructure Systems, 2020. 26(1): p. 04019040. 569

20. FEMA, Earthquake loss estimation methodology: Technical manual. 2003, 570

National Institute of Building for the Federal Emergency Management Agency: 571

Washington, DC. 572

21. Albert, R., I. Albert, and G.L. Nakarado, Structural Vulnerability of the North 573

American Power Grid. 2004. 574

22. Lin, S.-Y. and S. El-Tawil, Time-Dependent Computation of Multiscale 575

Interdependencies between Lifeline Systems Subjected to Seismic Events, in 576

International Conference in Commemoration of the 20th Anniversary of the 1999 577

Chi-Chi Earthquake. 2019: Taipei, Taiwan. 578

23. Abdelhady, A.U., et al., A Distributed Computing Platform for Community 579

Resilience Estimation, in 13th International Conference on Applications of 580

Statistics and Probability in Civil Engineering, ICASP13. 2019: Seoul, South 581

Korea. 582

24. Sediek, O.A., S. El-Tawil, and J. McCormick, Quantifying the Seismic Resilience 583

of Communities: A Distributed Computing Framework, in International 584

Conference in Commemoration of the 20th Anniversary of the 1999 Chi-Chi 585

Earthquake. 2019: Taipei, Taiwan. 586

 587

