Simple Run-Time Infrastructure (SRTI):

An Accessible Distributed Computing Platform for Interdisciplinary

Simulation

Szu-Yun Lin/, Andrew W. Hlynka’, Lichao Xu’, Hao Lu?, Omar A. Sediek’, Sherif El-
Tawil®, Vineet R. Kamat’, Jason McCormick?, Carol C. Menassa’, Seymour M.J. Spence’’,
Atul Prakash’/, Benigno Aguirre’?

! Assistant Professor, Department of Civil Engineering, National Taiwan University,
Taipei, Taiwan, email: szuyunlin@ntu.edu.tw, corresponding author

’Research Area Specialist Senior, Office of Research, University of Michigan, Ann Arbor,
MI 48109, USA; email: ahlynka@umich.edu

3Ph.D., Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109, USA; email: lichaox@umich.edu

“Ph.D. Student, Department of Electrical Engineering and Computer Science, University
of Michigan, Ann Arbor, MI 48109, USA; email: harveylu@umich.edu

SPh.D., Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109, USA; email: osediek@umich.edu

SProfessor, Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109, USA; email: eltawil@umich.edu

’Professor, Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109, USA; email: vkamat@umich.edu

84ssociate Professor, Department of Civil and Environmental Engineering, University of
Michigan, Ann Arbor, MI 48109, USA; email: jpmccorm@umich.edu

Associate Professor, Department of Civil and Environmental Engineering, University of
Michigan, Ann Arbor, MI 48109, USA; email: menassa@umich.edu

0 4ssociate Professor, Department of Civil and Environmental Engineering, University of
Michigan, Ann Arbor, MI 48109, USA; email: smjs@umich.edu

! Professor, Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109, USA, email: aprakash@umich.edu

2Emeritus Professor, Department of Sociology and Criminal Justice, University of
Delaware, Newark, DE 19716, USA; email: aguirre@udel.edu

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

1. ABSTRACT

Distributed computing is a necessity for conducting cross-disciplinary research
where field-specific computational models (simulators) are available, but have not been
designed to work together. An example of this is natural hazards research. Simulators
abound in the disparate fields that fall under this area, e.g. social science, engineering,
economics, and health, but little progress has been made to integrate the simulators to study
overarching and cross-disciplinary disaster scenarios. The reason for slow penetration of
this technology is the high barrier to entry, which requires extensive knowledge of
computer science and programming. Building upon an existing platform named Simple
Run Time Infrastructure (SRTI v1), a new, fundamentally different version (SRTI v2) is
developed to address the issues mentioned above. Designed to provide a low barrier to use,
SRTI v2 is developed for users with limited programming experience and designed to
simplify and streamline a user’s effort to compose a distributed simulation and handle time
management. To achieve this primary objective, pre-compiled components are provided
including the RTI Management Server, RTI Wrapper, and a GUI. By exploiting these pre-
compiled components, users can compose a scalable distributed simulation with
heterogeneous computational models. To demonstrate the concepts behind SRTI, a cross-
language simulation, modified and extended from a time-dependent resilience analysis of
an electric power system in the literature, is presented to show the scalability and usability
of SRTI. Features of the different versions of SRTI are discussed and useful features to

develop in the future are outlined.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

2. INTRODUCTION

Distributed simulation links independent simulators that execute on the same and/or
separate processors to conduct an overarching analysis of a large-scale simulation system
comprised of the simulators [1]. A common characteristics of distributed simulations is
that they help users cut across disparate disciplines, in which one or more of the simulators
are rooted. The need for distributed simulation exists in research areas that are broadly

multi-disciplinary, such as natural hazards and defense.

Distributed simulation techniques and tools have been under development for the
past three decades. Most of the tools are based on the publish-subscribe principle for
message transmission between simulators. One of the earliest tools is the Distributed
Interactive Simulation (DIS) platform [2] developed by the US Department of Defense.
High-Level Architecture (HLA) is a set of standards [3-5] for building distributed
simulation tools. Unlike DIS, where simulators deal directly with one another, HLA relies
on a central manager (middleware), called Run-Time Infrastructure (RTI), to handle
message transmission. The Test and Training Enabling Architecture (TENA) is similar to
HLA and also uses a middleware to organize message communication. Other techniques
are Distributed Data Services (DDS) [6] and Lightweight Communication and Marshalling
(LCM) [7]. The distributed simulation concept also has been applied locally in laboratories
as an experimental testing technique, i.e. hybrid simulation. For example, OpenFresco (the
Open-source Framework for Experimental Setup and Control) [8] is a software framework
designed for connecting finite element models and the physical portion of
structural/geotechnical systems to facilitate various experimental setups, control, and data

acquisition. Some newer tools, such as Google Protocol Buffers [9], operate like LCM. All

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

of these platforms require extensive user knowledge in order to operate them and therefore

offer a high barrier to entry for non-specialized users.

To facilitate broader usage of distributed computing, especially by lay users, the
intent of this paper is to describe fundamental modifications made to an existing free, open-
source distributed simulation platform (SRTI v1) that substantially reduces the barrier for
use. The open source software, which has some architectural similarities to HLA, was
developed to investigate hazard mitigation and multidisciplinary interactions in community
resilience, but it could be repurposed for other fields. The tool is available as a pre-
compiled application for quick deployment and integration. Treated as a black box
accessed through API (application programming interface) function calls, a user can edit

the open-source code or rewrite components to support additional programming languages.

In the following sections, the history and features of SRTI are discussed first then
the SRTI framework is provided from a high-level overview to the details of its constituent
components. A cross-language resilience analysis of an electric power system subjected to
an earthquake is used to showcase SRTI’s user friendliness, scalability and flexibility.
Finally, the unique features of SRTI and potential new ones that could be developed are

discussed.

3. HISTORY OF SRTI

The concept generation and technical development of SRTI have been under
development since 2016 [10]. The initial approach to the development of SRTI focused on
a purely data-transmission system based on the JSON format (SRTI v1), but it did not apply

mandatory rules on the simulators for time management [11]. While highly flexible for

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

composing simulations, this approach required users to embed time-related information
within the transmitted messages. This additional requirement made the barrier for use quite
high, as users needed to be familiar with computer programming and the inner workings

of the platform.

To address the additional time management requirements and enable a plug-and-
play approach to composing simulations, a new version of the SRTI (v2) that is
fundamentally different in its approach was developed. Unlike the earlier version of the
SRTI that required users to add code into their simulators to allow them to access SRTI,
the new version simply requires users to prepare a configuration file. This configuration
file can be edited in any common ASCII text editor and provides the definition of the
simulators, messages, and their publish/subscribe relationships. To further facilitate ease-
of-use, an optional SRTI graphical user interface (GUI) was developed to assist the used
in constructing these configuration files. By using the GUI, users can describe their
simulator through an interactive graphic interface and export the necessary configuration
files. It also allows users to launch and execute the RTI Management Server and simulators
through the same interface. Moreover, the SRTI GUI helps users inspect the content of
messages and time step during the execution of the simulation. Aside from lowering the
barrier for use for lay users, the use of text-editable configuration files in the new version
of SRTI allows users explicit control for time-dependent simulations for which time

synchronization between multiple simulators and phase changes are required.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

4. FRAMEWORK DESCRIPTION

SRTI v2 consists of a series of software tools that not only focus on data-transfer
between computer programs, but also assist in the construction of simulation scenarios. In
addition to data management, SRTI v2 was designed with the purpose of managing
simulator actions and time synchronization between multiple simulators inside a larger
complex simulation system, while maintaining user accessibility to easily replace or edit

components of the system.

A high-level view of the architecture of the SRTI v2 is shown in Figure 1Fisuret.

To facilitate referral to the software, the version (v2) will be dropped in subsequent
discussions. In addition to the RTI Server and RTI Lib API that existed in SRTI v1, the
pre-compiled components added in SRTI v2 include the RTI Management Server, RTI
Wrapper, and SRTI GUI. SRTI uses the RTI Management Server as the central node of a
connected network, by which multiple instances of RTI Wrapper are connected. The RTI
Wrapper handles the connection between user’s simulator and the RTI Management Server.
The SRTI GUI assists users in defining the configuration file for each RTI Wrapper, and

allows execution of the whole simulation system from a single place.

RTI Management Server

[RTI Server + Management Logic]
v h v N
[RTI Lib API [RTI Lib API J [SRTI'GUI]
: . T
RTI Wrapper RTI Wrapper
(compatible with Simulator 1)) (compatible with Simulator 2)

Simulator 1

~
Config.json ‘ Config.json \

138
| RTI Management Server
[RTIServer + Management Logic }
RTI Wrapper RTI Wrapper SRTI GUI
N\
[RTI Lib API [RTI Lib API] [GUI]
: . s
RTI Wrapper RTI Wrapper
(compatible with Simulator 1)) (compatible with Simulator 2)
. \ .
Smlator 1 ‘ Config.json Slmult ‘ Config.json
139 s—
140 Figure 1. A high-level view of the architecture of the SRTI

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

RTI Management Server

Publish-subscribe data transmission pattern and message format

Connections between the RTI Management Server and the RTI Wrapper are made
using sockets, allowing for connections both locally and over a network. By using a
centralized ‘server’ instance, each simulator has a shared access point to connect to the
larger simulation system, simplifying the method of initial connection. Messages are shared
through a publish-subscribe model, as in the framework introduced by Lin et al. [12], where
each connected simulator can choose which message(s) they should receive, by name. The
RTI Management Server sends out a copy of any received message to all simulators
subscribed to that message. Individual simulators can each publish one or more message
types (differentiated by name). This design avoids direct integration of simulation models,
which usually depends on the compatibility of programming languages and instead
replaces that with a dependency on messages. It allows the user to remove or edit individual
simulators from an existing simulation system, which is constructed via the SRTI
(assuming that any significant messages are still sent by at least one simulator in the

system).

Messages are formatted using standard JSON. Each message includes the following
important key-value pairs: “name” (the name of the message), “content” (data the
simulators share and receive), “source” (the name of the simulator it came from),
“timestamp” (the computer system’s time when the message was sent), and “vTimestamp”
(the virtual timestep for the simulation system). These (and other components used to
handle additional features internally through the SRTI system) are used by the RTI

Management Server and the RTI Wrapper to manage the system and to convey data in the

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

expected order. The RTI Wrapper helps prepare messages from each simulator to match
this format, which is independent of the system platform and programming language of the
simulators, allowing the users to focus on the data content itself. Several additional internal
messages in this format are exclusively for the RTI Management Server and RTI Wrapper

for managing simulator actions and time synchronization between multiple simulators.

Time synchronization and simulation step/stage control

The RTI Management Server includes added logic at the server level that helps
manage features specific to virtual simulation. This logic was added based on needs
associated with possible simulation system requirements. One example is the concern of
time synchronization: if simulator logic is dependent on the concept of time, but one
simulator executes faster than others do in the simulation system, how can they be kept
synchronized? The RTI Management Server keeps track of an internal virtual timestep that
is shared in each message. This value does not increase until the RTI Management Server
receives a “finish” confirmation from every active simulator. When this occurs, the virtual
timestep is increased by one, and the RTI Management Server sends a message request to
each RTI Wrapper to “start” the next step. This process repeats, preventing any single
simulator from proceeding to the next step too early, while allowing for some

computational parallelization where the user deems it possible.

This type of synchronization permits some additional variance to be controlled at
the RTI Management Server-level. For example, it allows simulators to run in order before
others in a certain step. It also supports the communication between simulators with
heterogeneous time steps (i.e. step intervals can vary from simulator to simulator).

Moreover, it supports complex simulation systems with different stages during execution,

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

where a different set of simulators may run at each stage and depend on the data from the
previous stage. The RTI Management Server controls the activation and deactivation of the
simulators at different stages. Control over the time step and simulation stage can be
automated through the RTI Management Server by many controlling parameters, either
defined inside a configuration file by users before the start of a system execution or inside
subsequent messages during execution. The RTI Wrapper plays an important role in

communicating these features to the RTI Management Server.

RTI Wrapper

The RTI Wrapper is an important part of SRTI. As discussed in [13], in most
existing distributed simulation platforms and data passing tools, the user must modify the
internal code of their simulator to connect to a larger system using specific instructions.
While this feature remains in the SRTI to allow for customizability for experienced users,
most users will utilize the RTI Wrapper. The RTI Wrapper handles both the connection to
the RTI Management Server and to the user’s simulator code itself. It accomplishes this
task by reading and writing variable data from the simulator during execution and sharing
it with the larger simulation system. In ideal situations, the simulator code does not need
to be modified at all, and even the RTI Wrapper itself will not need to be edited or

recompiled.

To accomplish its function, the RTI Wrapper primarily makes use of an object-
oriented programming concept called “reflection” [14-16]. This concept allows one
computer program to inspect public variables and functions inside another program and
make use of them by name. It typically allows references with names defined at runtime,

after compilation. Therefore, the RTI Wrapper can be pre-compiled and distributed online

10

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

for users to simply download and run without compiling locally. The names of relevant
variables and functions inside the user’s simulator can be defined externally inside a
configuration file and then read as input at the beginning of the RTI Wrapper’s execution.
The configuration file is saved in JSON format, and consists of a large set of parameters
that can be defined by the user. A complete list of these parameters, including value type

and definition, can be found in the documentation on the SRTI GitHub site [17].

There are advantages to using reflection in this solution. An RTI Wrapper is
convenient to share with users, and ready to use with pre-compiled simulators. However,
reflection across multiple languages is not a common feature, so unlike the RTI
Management Server, the RTI Wrapper must be re-written in a new language for every
computer language it needs to support. If new stability changes are made in the SRTI’s
continued development, all versions of the RTI Wrapper must be updated, which becomes
an issue for development scalability. Currently, RTI Wrapper versions for Java, Python,

Matlab and NetLogo [18] have been prepared for public access.

Additionally, some compiled languages do not support reflection, such as C, C++
and Fortran, making this approach difficult. Without reflection, an RTI Wrapper’s source
code would have to be modified to import and access a simulator’s functions, meant to
work exclusively with that one simulator. This prevents a pre-compiled version from being
released for certain languages and is different from previous versions of SRTI, which

allowed support for virtually any computer language.

Aside from reflection, the RTI Wrapper also assumes simulators are written with
object-oriented design, or a similar alternative, such that specified variables and functions

can be accessible. This design is not supported by all languages, or it may require

11

234
235
236
237

238

239
240
241
242
243
244
245

246

247
’248
249
250
251
252
253

254

255

simulators to be written in a specific manner to that users may not be accustomed. Also, if
important variables and simulators are ‘private’ rather than ‘public’ (a generally good
practice in computer programming), and if the simulator is closed-sourced (unable to be
modified and recompiled), then it may not be able to connect with the SRTI without

extreme adaptation by the end user.

The RTI Wrapper utilizes user-defined parameters, including (but not limited to)
values to determine how to publish and subscribe to messages from the RTI Management
Server, how the data corresponds to simulator variables, when to execute, and what
simulator functions to execute at each virtual timestep. The configuration file can be edited
by hand in a text editor or through the SRTI GUI. The RTI Wrapper can handle translating
and sending simulator variables in the following formats: Boolean, integer, double
(decimal-precision numbers), strings (text), and multi-dimensional arrays of any of the

previously listed formats.

SRTI GUI
The last component for the SRTI is the GUI. The SRTI GUI (Figure 2Fisure2) has
two primary functions: to help define the configuration file for each RTI Wrapper and to
allow execution of the simulation system from a single place (within the GUI itself). Unlike
the RTI Management Server and Wrapper, the SRTI GUI is optional. A simulation
system’s configuration files can be edited by hand, and individual RTI Wrapper instances
(for each simulator) can be started manually. However, the SRTI GUI greatly improves the

workflow.

12

@ SRTI2.00.00 Manager GUI —
File Edit View Help

LN/ B ® » u =
. New * 1
/ i Simulator in
Il ~ Project
JavaSim_A
II NetLogoSim_B ' JavaSim A MatlabSim_C MatlabSim_C
e im_|
MatlabSim_C ‘
—_— Change Local
| Time
‘ Set Initialize and
| Simulate
Functions
II l Change Stage
Transition
Conditions
|| RTI
=R Change End
System
JavaToNetLogo e
1

II JavaToNetLogo

project name)

]

v “ |

I | i N |
1

l

256
257 (a)
//—! Execute Buttons

> T Stage Bar
o] s

Action Toggle —
Buttons _/ R

Menu Bar

MatlabSim_C

Simulator
Object List

RTI

JavaToNetLogo

Message
Object List etoteon

258

259 (b)

260 Figure 2. Screenshot of a simple project inside the SRTI GUI: (a) overview; (b) important
261 details
262

13

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

The GUI consists of an “Object Panel” on the left, a “Canvas” in the middle, and
an “Inspector Panel” on the right. The Object Panel allows the user to define new simulators
or messages to a given project, and then adds them to the Canvas to define how they will
be executed. The Inspector Panel allows access to modify finer details for each individual

29 ¢

simulator. Properties such as “publishing,” “subscribing” and “execution order” can be
intuitively displayed with the canvas. Some features, such as describing a RTI Wrapper
folder location, are defined through text-box input. The user is responsible to define the
terminal command that will launch the Wrapper and allow simulator access for your
corresponding language and operating system. First-time users will need to study the

documentation of the SRTI [17] carefully to understand what properties exist and how to

define them, with or without the GUI.

Project files for the GUI can be saved and reloaded. Individual simulators and
messages in the project are copied and saved into individual files, allowing a user to import
a previous simulator into a new project. A menu command allows for generating and
outputting the expected RTI Wrapper configuration files in the corresponding file
directories (same directory as each Wrapper and simulator). The user can choose to start
the simulation system entirely from within the GUI, using “Play-mode” buttons at the top
to launch the RTI Management Server (and each RTI Wrapper), start the simulation, pause
and resume the simulation, or stop the simulation. Minimal feedback is provided in the
GUI to show the system running, which simulator is currently in the process of finishing a
step, and what recent messages were sent. Like the SRTI itself, distributed simulations
across a local area network (LAN) or a wide area network (WAN) can be supported through

the GUI, although extra steps are required to make an external computer accessible (or else,

14

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

to connect its simulators manually to a launched RTI Management Server without support
from the GUI). Generally, editing and running the system locally on one machine is
recommended for using the GUI as an all-in-one system. The GUI can be used to edit and
output configuration files, but the user would need to copy those files to desired locations
on high-performance servers and execute them one-by-one, using a terminal command for
each of them. Some minor changes to each configuration file might be necessary. Since the
GUI is an optional component of SRTI, an experienced user can still overcome any

limitations the GUI has for different systems.

While the RTI Management Server was written in the Java programming language,
the GUI was written in JavaScript, using the open-source Electron framework to compile
it into a desktop app. This GUI is not necessarily the only one that can or will be produced
for the SRTI, either internally or by a third-party. The SRTI GUI is treated as an additional
simulator from the perspective of the RTI Management Server, one that subscribes to all
messages (at this time, a RTI Wrapper or RTI Lib API was not written for the JavaScript
language, so the necessary socket connection is hard-coded into the GUI app). It is meant
to serve as an example, with source code available for modification and with the ability for
users to create their own GUI from scratch to replace it. This approach is in line with the
philosophy of the SRTTI: to be open-source, convenient to use and straightforward to extend,

either through new apps or through support of new languages.

5. EXAMPLE: CROSS-LANGUAGE SIMULATION

In this section, a cross-platform simulation of an electric power system subjected
to an earthquake is conducted using SRTI (v2). To demonstrate the scalability and

flexibility of SRTI, the time-dependent analysis of three interdependent lifeline systems in

15

309 [19] has been simplified to consider the electric power system only (Figure 3Eigure3). A
310 Visualization Simulator written in NetLogo has been added to show the ability of the SRTI

311 to connect simulators across multiple languages. Figure 4Figure-4 shows the simulation

312 framework of the example, where the simulators written in Matlab are adapted from the

313 authors’ previous work [19]

Component Label
Gate Station ®
23kv Substation [|
12kv Substation Lo
Intersection Node ®
Transmission Line —

314
315 Figure 3. Electric power system in Shelby County, Tennessee {Adapted from [19].}
316
NetLogo
Scenario i TN
Simulator I Visualization I,
TEa ll Simulator :
\ ----- g <
Matlab X \
Hazard Damage Performance Strategy Recovery
Simulator Simulator Simulator Simulator Simulator
317 i |

16

318
319

320

321

22

23

324

Figure 4. Simulation framework of cross-language example

Using the SRTI and GUI to conduct the simulation, the disaster event and post-
disaster recovery effort are represented by seven simulators that may run at one or both of
the disaster and recovery phases, named Stage 0 and Stage 1, as shown in Figure 5Figure
5 and Figure 6Figure-6. The time step of the disaster phase and recovery phase is taken as

0.01 second and one day, respectively.

17

325
326

@ SRTI2.00.00 Manager GUI
File Edit View Help

Damage

Performance

Damage

Performance

Strategy

Recovery

Performance

Recovery Visualization

Scenario

I * 7 | N | N S S i
GroundMotion

[N N N S S
Damage

[[- 2 S .
Performance

N A S N
Strategy

[[R A N
Recovery

[[R A N
RTL

Figure 5. Simulators running du Stage 0: disaster phase

18

327

328
329

330

331

332

333

@ SRTI2.00.00 Manager GUI — O X
File Edit View Help

kix o

+ New

Damage
Performance
Strategy

ecovery

Visualization

GroundMotion

Damage

Performance
Scenario

| I | | IS | | N | S
GroundMotion

| I | | IS | S | I
Damage

"7 | | I || N | |
Performance

| 2
Strategy

0w | || |
Recovery

1
RTI

Strategy

Figure 6. Simulators running during Stage 1: recovery phase

During Stage 0 (i.e. disaster phase), the Scenario Simulator provides the
coordinates and connectivity of the electric power system. The Hazard Simulator estimates
ground motion magnitudes at the location of components, where the EQ2 case in [19] is

adopted for considering an earthquake with a 5% probability of exceedance in 50 years.

19

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

50

51

352

353

354

355

356

The Damage Simulator obtains the physical damage of components using fragility
functions from HAZUS-MH [20]. The Performance Simulator assesses the connectivity
loss [19, 21] of the electric power system. The Recovery Simulator and Visualization
Simulator subscribe to the messages from the Damage Simulator and Performance
Simulator to update the damage state of components and the system performance, but they

neither carry out calculations nor publish messages in this stage.

During Stage 1, (i.e. recovery phase), the Strategy Simulator distributes limited
recovery resources (15 units/day) to the damaged components in order of their priority,
namely, the P strategy in [19]. The recovery priority of the damaged components in the
electric power system is as follows: supply nodes, demand nodes, and links/pipelines. The
Recovery Simulator estimates the progress of the physical reconstruction of the damage
components based on whether they are allocated recovery resources at the current time step.
The Performance Simulator keeps updating the system performance of lifelines based on
the recovery progress and the Visualization Simulator subscribes to the messages from the
Recovery Simulator and Performance Simulator to update the reconstruction progress and

system performance.

The active simulators and messages in each stage are listed in Table |Table-} and
Table 2Fable-2. The message “RTI_” referenced in the tables refers to a handful of private
variables (including current timestep and stage) inside the “RTI Wrapper,” which has been
adapted to use the same subscription pattern as normal messages for simplification.
Simulators can decide whether to subscribe the “RTI message depending on their needs,
e.g., dependency on timestep or stage. Except for the Visualization Simulator, which is

implemented using NetLogo, the other simulators are written in Matlab language. The

20

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

detailed topological configuration of the lifeline system and the methodology of each
simulator have been well documented in [19]. This article focuses primarily on the

description of the procedure using the SRTI and GUI.

Table 1. Active simulators and messages in Stage 0

Simulator Published Message Subscribed Message
Scenario Scenario RTI
Hazard GroundMotion Scenario, RTI
Damage Damage Scenario, GroundMotion, RTI
Performance Performance Scenario, Damage, RTI
Recovery - Scenario, Damage, RTI
Visualization - Scenario, Damage, Performance, RTI

Table 2. Active simulators and messages in Stage 1

Simulator Published Message Subscribed Message
Performance Performance Recovery, RTI
Strategy Strategy Performance, RTI
Recovery Recovery Strategy, RTI
Visualization - Recovery, Performance, RTI

As described in the documentation of the SRTI [17], the pre-compiled SRTI files
can be downloaded from the public GitHub Site. The download should include the RTI
Management Server, RTI Wrapper, and SRTI GUI, all of which can execute without
explicitly installation (uncompressing files and setting system paths, etc.). In addition to
saving the RTI Management Server and GUI in a file directory on their local machine, the
user needs to prepare individual folders for each simulator that contain the executable file

of the simulator and the corresponding Wrapper. For instance,

o /Simulator_A/

21

373
374
375
376
377
378
379
380
381
382

383
’384
385
386
387
338
389

390

391

392

393

394

395

396

397

= SRTI JavaWrapper v2 00 00.jar
= Simulator_A.jar
o /Simulator_B/
= SRTI NetLogoWrapper v2 00 00.jar
= Simulator B.nlogo
o /Simulator_C/
= SRTI Wrapper v2 00 00.m
= Simulator C.m

After preparing the file system, the next step is to launch the SRTI GUI.exe whose
layout is shown in Figure 2Figure-2. Simulators/messages can be created and defined
through the GUI. Then, users can click the objects on the Object List to add well-defined
simulators or messages to the Canvas for a given stage. Action toggle buttons can be used
to define the publish/subscribe relationships between simulators and messages, as shown
in Figure 5Figure—5 and Figure 6Fisure—6. All the defined simulators, messages, and
publish/subscribe relationships can then be saved as a .project file to be imported and edited
in the future. User will find the other files with extensions as described in Table 3Table3
after saving a project. These files are coded in ASCII-text data format, typically
representing a JSON object and can be read and edited in most text editors. Among them,
the definition file of a simulator or message (i.e. .simdef and .mesdef) can be imported into

a new project independently to prevent re-defining from scratch.

Table 3. Description for different file extension

File Extension | Description

.project Represents a single large JSON object that defines the full project. 1 of these files
exists per project.

.simdef Optional output file that describes a single simulator referenced in the .project file.

.mesdef Optional output file that describes a single message referenced in the .project file.

22

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

114

415

416

'417

418

419

The user can either run the simulation system within the SRTI GUI, or separately
using a command line prompt to open each simulator one by one. To run the simulation
directly within the GUI, the user needs to click “Export Execute Files” from Menu Bar,
and then click on the “Power On” button (in the Execute Buttons section) to launch an
instance of the RTI Management Server and the individual simulators. After allowing for
a few seconds for everything to finish opening and ensuring all simulators are connected
to the RTI Management Server successfully, the other buttons in the Execute Buttons
section are available to click. “Play” will start/resume the simulation system, “Pause” will
pause the simulation system, and “Stop” will close the RTI Management Server and the

simulators.

Other features of the SRTI GUI include being able to display the content of
messages and system timestep in the inspector panel to better trace the system’s execution
outside the individual simulators. In addition, while the simulation is running, the color of
the simulator objects on the Canvas will change according to their status, as shown in
Figure 7Figure—7. Blue indicates simulators that are waiting for the messages that they
subscribe to, and red indicates simulators running their internal calculation. Figure 8Figure
& shows the progress of seismic damage and post-disaster recovery of the power system
plotted by the NetLogo Visualization Simulator, where the blue, green, yellow, orange, and
red colors indicate the non-, minor, moderate, extensive, and complete damage state of the
lifeline components. Figure 9Fisure—9 shows the time history of system performance

plotted by the NetLogo Visualization Simulator.

23

@ SRTI V20000 Manages GUI

Simulation in
Execution

stace)

sier 75

Feed

420

421 Figure 7. Screenshot of SRTI GUI and NetLogo Visualization Simulator while the
422 simulation is running
423

24

424

425 Figure 8. Progress of seismic damage and post-disaster recovery of electric power system
426

System performance drops ___ _— System performance

due to the earthquake \, /" resumes to pre-disaster level
4 \'4
System Performance (Recovery completed)

Connectivity

0 \
0 Step \ 123

AN Post-disaster recovery begins
427

428 Figure 9. System performance plotted by NetLogo Visualization Simulator
429

25

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

6. DISCUSSION AND FUTURE OPPORTUNITIES

The concept of having a management simulator (Manager) to control the larger
system (timesteps, executing specific simulators, etc.) is an intuitive method for designing
simulations and controlling their complexity. Using the earlier versions of the SRTI (v1)
[11,22-24], a user would have had to send messages from a simulator to the RTI Server to
a user’s management simulator, a long communication channel for a simple process.
Putting the management logic within the RTI Management Server reduces the number of
nodes the message(s) have to travel to, providing faster overall system execution despite
speed not being an intended design factor of the SRTI. The downside of this management
logic is the difficulty of creating a generalized management system: SRTI v2 can handle
most design preferences, but does not allow unlimited control like the earlier versions of

SRTI (1).

To better support plug-and-play simulation, it is recommended that each individual
simulator remain independent of each other. If one simulator is removed, or if something
entirely different is added, the remaining simulators should still function as expected in
that new context. Dependencies on time are possible, but also discouraged, so that the SRTI
configuration files can more easily adapt different rates of time among different simulators.
The case study in this article does not follow this mindset; it is not necessary, but is highly
recommended. Simulation design varies greatly among different users, and these

guidelines may be unintuitive for some of them to follow.

The data content from each simulator is not absolute, and cannot represent
everything that an additional (future, as-of-yet unknown) simulator might require. For

certain research areas, creating a standard, strictly defined message format might be

26

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

necessary to help designers who want to extend a system with new simulators. This
approach is against the open concept of the SRTI, but such rules can be defined and
enforced while using the SRTI as middleware. Finding a balance between these lines of

thought will invoke further discussion across different fields.

The time management and synchronization of virtual simulations is commonly
associated with artificial time. However, there is no reason a ‘real-time’ simulator (utilizing
sensors in real space) cannot be used, or possibly a hybrid model of both virtual and real
simulators inside a system. This type of simulation may require sending messages at

different frequencies, an option that the SRTI fully supports.

The choice to have the RTI Management Server be in control of executing the time
management and message distribution, rather than having the RTI Wrapper be responsible
for direct contact and connections with other Wrappers, helps ensure correct
synchronization and simplicity in implementation at the expense of potential speed

optimizations.

The SRTTI’s different versions have each been designed with such scalability and
usability as its primary goals, ignoring the common goal of execution speed. Although
there are some common strategies to increase performance such as optimizing data formats
by local compilation or running simulators on the same local machine (not allowing
network communication), these approaches conflict to the original goals of the SRTIL
Therefore, systems that require frequent transfer of large packets of data should not use
SRTI, unless they are capable of absorbing the extra execution time from this bottleneck.
The SRTI is designed as a black-box system; an alternative version of the tool can be

developed with efficiency in mind (using different protocols for communication, and

27

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

modifying ability to function across a network, are a couple strategies to achieve this) while

maintaining similar API functions, to retain a similar level of usability.

7. CONCLUSIONS

SRTI is a real-time data transmission solution for distributed computational
simulations that supports time-dependent simulations. The original version of SRTI (v1)
focused purely on data transmission between simulators and was not explicitly designed to
cater to lay users. Using a fundamentally different architecture, a new version of SRTI (v2)
was built to provide a low barrier to entry for user with limited programming experience,
or for teams that are unable to modify their simulators to function natively as a single
system. The new version was developed to address this issue through the use of a
generalized RTI Wrapper design that does not require users to edit programming code. In
the new version, the RTI Management Server is responsible for controlling of simulation
step and stage. The RTI Wrapper handles the connections between the RTI Management
Server and user’s simulator, and the message parsing. The SRTI GUI helps users prepare
the configuration files for the RTI Wrapper, and allow users to launch simulators and
execute simulation via the same graphic interface. The scalability and usability of the SRTI
were demonstrated through a cross-language simulation of seismic damage and post-
disaster recovery of a lifeline system, exploiting the SRTI GUI. The SRTI encourages
thoughtful simulator design free of strict dependencies and fosters interdisciplinary

collaboration for computational simulation.

28

496

497

498

499

ACKNOWLEDGEMENTS

This research was supported by the University of Michigan and the US National

Science Foundation (NSF) through grants ACI-1638186.

29

500
’501
502
503
504
505
506
507
508
509
510
511
512

513

514

515

TABLE OF FIGURES

Figure 1. A high-level view of the architecture of the SRTIcccoeeniennneen. 76
Figure 2. Screenshot of a simple project inside the SRTI GUI: (a) overview; (b)
IMPOTLANT AETATLS......eiiiiie et e e e e e e e e s teeessbaeessseeesnseeenns 13

Figure 3. Electric power system in Shelby County, Tennessee {Adapted from

L.} ettt et h et et a et et h e e bt en b e bt e bt et e entenbeenees 16
Figure 4. Simulation framework of cross-language example..............c..c.c...... 1746
Figure 5. Simulators running du Stage 0: disaster phase..........cccoeevveveererennen. 1847
Figure 6. Simulators running during Stage 1: recovery phase............c.cccueene.. 1918

Figure 7. Screenshot of SRTI GUI and NetLogo Visualization Simulator while the
SIMUIATION 1S TUNNING.....ecvieiiiieiieeiiesiie et eeeeeteesteeteeseaeebeessseeseeesseesseessseeseesnseenseennns 2423

Figure 8. Progress of seismic damage and post-disaster recovery of electric power

Figure 9. System performance plotted by NetLogo Visualization Simulator... 2524

30

516

517

518

519

520

TABLE OF TABLES

Table 1. Active simulators and messages in Stage 0cccoeeevveeeeveerciieenneeens 21

Table 2. Active simulators and messages in Stage 1ccceveveeveieeecieenciieens 21

Table 3. Description for different file extension

31

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

REFERENCES

Fujimoto, R. Parallel and distributed simulation. in 2015 Winter Simulation
Conference (WSC). 2015. IEEE Press, Piscataway, NJ.

IEEE, IEEFE Standard for Information Technology - Protocols for Distributed
Interactive Simulations Applications. Entity Information and Interaction. IEEE
Std 1278-1993, 1993.

IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Federate Interface Specification. 2010, IEEE: New York,
NY.

IEEE, IEEFE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Framework and Rules. 2010, IEEE: New York, NY.
IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Object Model Template (OMT) Specification. 2010, IEEE:
New York, NY.

OMG, Data Distribution Service (DDS), Version 1.4, O.M. Group, Editor. 2015,
Object Management Group.

LCM. Lightweight Communications and Marshalling (LCM). 2018 [cited 2018

Nov. 1]; Available from: https://Ilcm-proj.github.io/.

PEER. OpenFresco (the Open-source Framework for Experimental Setup and
Control). 2019 [cited 2019 December 1]; Available from:

https://openfresco.berkeley.edu/.

Google. Google Protocol Buffers. 2019 [cited 2019 Jan. 1]; Available from:

https://developers.google.com/protocol-buffers/.

32

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

10.

11.

12.

13.

14.

15.

16.

17.

18.

ICoR. Interdependencies in Community Resilience (ICoR) Project. 2019 [cited

2019 Dec. 15]; Available from: https://icor.engin.umich.edu/.

Lin, S.-Y., et al., 4 Distributed Computational tool for Natural Hazards
Simulation, in 17th World Conference on Earthquake Engineering, 17WCEE.
2020: Sendai, Japan.

Lin, S.-Y., et al., Framework for Modeling Interdependent Effects in Natural
Disasters: Application to Wind Engineering Journal of Structural Engineering,
2019. 145(5): p. 04019025.

Xu, L., et al., Distributed Simulation Platforms and Data Passing Tools for
Natural Hazards Engineering: Reviews, Limitations, and Recommendations.
Advanced Engineering Informatics, under review, 2020.

Smith, B.C., Procedural Reflection in Programming Languages, in Dept. of
Electrical Engineering and Computer Science. 1982, Massachusetts Institute of
Technology: Cambridge, Massachusetts.

Smith, B.C., Reflection and semantics in a procedural language. 1982,
Massachusetts Institute of Technology: Cambridge, Massachusetts.

Ibrahim, M.H., REFLECTION IN OBJECT-ORIENTED PROGRAMMING.
International Journal on Artificial Intelligence Tools, 1992. 01(01): p. 117-136.
SRTI. Simple Run Time Infrastructure (SRTI). 2019 [cited 2019 Jan. 15];

Available from: https://github.com/ICoR-code/SRTI.

Wilensky, U. NetLogo. Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL. 1999 [cited 2019 April 26];

Available from: http://ccl.northwestern.edu/netlogo/.

33

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

19.

20.

21.

22.

23.

24.

Lin, S.-Y. and S. El-Tawil, Time-Dependent Resilience Assessment of Seismic
Damage and Restoration of Interdependent Lifeline Systems. Journal of
Infrastructure Systems, 2020. 26(1): p. 04019040.

FEMA, Earthquake loss estimation methodology.: Technical manual. 2003,
National Institute of Building for the Federal Emergency Management Agency:
Washington, DC.

Albert, R., I. Albert, and G.L. Nakarado, Structural Vulnerability of the North
American Power Grid. 2004.

Lin, S.-Y. and S. El-Tawil, Time-Dependent Computation of Multiscale
Interdependencies between Lifeline Systems Subjected to Seismic Events, in
International Conference in Commemoration of the 20th Anniversary of the 1999
Chi-Chi Earthquake. 2019: Taipei, Taiwan.

Abdelhady, A.U., et al., A Distributed Computing Platform for Community
Resilience Estimation, in 13th International Conference on Applications of
Statistics and Probability in Civil Engineering, I[CASP13.2019: Seoul, South
Korea.

Sediek, O.A., S. El-Tawil, and J. McCormick, Quantifying the Seismic Resilience
of Communities: A Distributed Computing Framework, in International
Conference in Commemoration of the 20th Anniversary of the 1999 Chi-Chi

Earthquake. 2019: Taipei, Taiwan.

34

